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Abstract. Group key exchange (GKE) protocols can be used to guarantee confidentiality and group authenti-
cation in a variety of group applications. The notion of provable security subsumes the existence of an abstract
formalization (security model) that considers the environment of the protocol and identifies its security goals.
The first security model for GKE protocols was proposed by Bresson, Chevassut, Pointcheval, and Quisquater
in 2001, and has been subsequently applied in many security proofs. Their definitions of AKE- and MA-security
became meanwhile standard.

In this paper we analyze the BCPQ model and some of its later appeared modifications and identify several
security risks resulting from the technical construction of this model — the notion of partnering. Consequently,
we propose a revised model with extended definitions for AKE- and MA-security capturing, in addition, attacks
of malicious protocol participants.

Further, we analyze some well-known generic solutions (compilers) for AKE- and MA-security of GKE pro-
tocols proposed based on the definitions of the BCPQ model and its variants and identify several limitations
resulting from the underlying assumptions.

In order to remove these limitations and at the same time to show that our revised security model is in fact
practical enough for the construction of reductionist security proofs we describe a modified compiler which
provides AKE- and MA-security for any GKE protocol, under standard cryptographic assumptions.

Key words: Group key exchange, extended security model, malicious participants, compiler for AKE- and
MA -security

1 Introduction

MOTIVATION. Security of many privacy-preserving multi-party applications like encrypted group communication
for audio/video conferences, chat systems, computer-supported collaborative workflow systems, or secure server
replication systems depends on group key exchange (GKE) protocols. Security of those latter is therefore critical.
The paradigm of provable security is used across the modern literature to prove in a mathematical way, and under
reasonable assumptions, that a cryptographic scheme achieves the required security goals. Such proofs are usu-
ally constructed using a formal setting that specifies: (1) the computing environment (involved users, their trust
relationship, cryptographic parameters, communication. . . ), (2) the adversarial environment and (3) the definitions
of some concrete security goals. Security of earlier GKE protocols [3, 5, 18,31, 35,36, 42,45-47] has been ana-
lyzed heuristically based on informal definitions so that some of them have been broken later, e.g., [40,41]. In
particular some fundamental notions, like key secrecy [24], resistance against known-key attacks [17,48], implicit
and explicit key authentication [18, 39], and forward secrecy [30, 39] were not formally defined at that time. In
2001 Bresson, Chevassut, Pointcheval, and Quisquater [15] introduced the first computational (game-based) se-
curity model (referred to as the BCPQ model) designed for GKE protocols. They adopted some ideas previously
proposed by Bellare and Rogaway [7,9] in the context of two- and three-party key establishment protocols. The
BCPQ model, as well as its refinements [12, 13] and variants [14,27,32,33], have been meanwhile used in many
GKE security proofs including [1, 11-15,26,27,32-34] and became de facto standard. Therefore, it is immense
important that the definitions provided by these models are correct and general enough to be applicable for any
GKE protocol, regardless of its concrete specification.

* Last two authors were supported by the European Commission (IST-2002-507932 ECRYPT).
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MODULARITY OF PROTOCOL DESIGN. Since GKE protocols are used as building blocks for high-level applica-
tions, it is interesting to design them in a modular way: applications that make use of these protocols may have
specific security goals, and thus it is desirable that a specific GKE protocol can provide the corresponding proper-
ties. Modular design allows to build such “a la carte” protocols. In order to provide these modular constructions in
a generic way, so-called “compilers” have been developed, e.g., [32,33]. They allow designers to enhance security
of a protocol in a black-box manner, that is, independently of the implementation of the protocol being enhanced.
In general, security enhancement means enlarging the class of adversaries the protocol can deal with, or adding
new security properties.

CONTRIBUTIONS AND ORGANIZATION. We start with the brief overview of the BCPQ model and its security
definitions. In Section [3] we point out a problem in the BCPQ model between its technical core — the notion of
partnering — and its definition of MA-security. In Section ff] we analyze some well-known variants of the BCPQ
model, i.e., [27,32,33], from the perspective of general applicability (independence of protocol design), techni-
cal construction of partnering, and MA-security whereby focusing on possible attacks carried out by malicious
participants. By malicious participants we mean legitimate protocol participants who are fully controlled by the
adversary. We emphasize that consideration of malicious participants makes sense in the scope of MA-security but
not of AKE-security that deals with the secrecy of the group key since malicious participants learn the established
group key anyway.

After identifying some drawbacks in the mentioned variants we describe in Section[5]an extended “game-based”
security model with revised definitions of AKE- and MA-security under consideration of malicious participants.
Our model is based on the more powerful BCPQ refinement from [13] that considers AKE-security in the presence
of (partial) internal state corruptions (strong corruptions). We also introduce an additional notion of backward
secrecy which leads to new corruption models in case of AKE-security.

In Section[7.2] we provide a brief analysis of some known security-enhancing compilers for GKE protocols. In
particular, we show that the compiler proposed by Katz and Yung in [33] needs some additional assumptions in
order to be considered as a really generic solution. On the other hand, in order to show that our extended security
definitions are feasible enough for the construction of practical reductionist security proofs, in Section we
describe a compiler C-AMA (as a slightly modified combination of the compilers from [33] and [32]) that satisfies
our stronger definitions of AKE- and MA-security for any GKE protocol and prove its security under standard
cryptographic assumptions.

2 Overview of the BCPQ Model

The BCPQ model extends the methodology introduced by Bellare and Rogaway [8, 9] to a group setting. Each
protocol participant U; € I lﬂ ¢t = 1,...,n is modeled by an unlimited number of instances called oracles and
denoted I (s;-th instance of U;) that can be involved in different concurrent executions of P. Each user U is
assumed to have a long-lived key LL; (either symmetric or asymmetric). The BCPQ model uses session ids to
define the notion of partnering which is the technical construction used in the definition of all security goals. A
session id of an oracle II;" is defined as SID(J1;") := {SID;; | U; € ID} where SID;; is the concatenation
of all flows that II;" exchanges with another oracle H;j . According to the BCPQ model two oracles II;" and
H;j are called directly partnered, denoted II;" « II ;J, if both oracles accept (compute the session key) and if
SID(II;*) N SID(H;j) # (. Further, oracles II;" and H;j are partnered if, in the graph Ggips := (V, E) with
V ={I'\U €ID, 1 =1,...,n}and E := {(II;", I} )| II;* < II,"" }, there exists a sequence of oracles

(I, 1,2, I ) with I > 1 IT50 = I, T = I1)* and I1'7Y s II forall I = Iy, . .., ;. This

L Iy
kind of partnering is denoted II;* «~> H;j . The BCPQ model uses graph Gsips to construct (in polynomial time
|V|) the graph of partnering Gpips := (V/, E') with V! = V and E' = {(II;", II}'') | II;'" «~ II,}" }, and defines
the partner id for an oracle II7* as PIDS(II7*) = {II}" | II]* «~ II' V1 € {1,n} \ {i}}.

3 ID is a set of n participants involved in the current protocol execution and is part of a larger set that contains all possible
participants.
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The BCPQ model considers a Probabilistic Polynomial-Time (PPT) adversary .4 which while executed is al-
lowed to send messages to the oracles (and invoke the protocol execution) via a Send query, reveal the session
key computed by an oracle via a Reveal query, obtain a long-lived key of a user via a Corrupt query (note that
the oracle’s internal state information is not revealed), and ask a Test query to obtain either a session key or a
random number. Using this adversarial setting the BCPQ model specifies two security goals for a GKE protocol:
AKE-security and MA-security, both based on the notion of partnering. We emphasize that the above definition
of partnering has been further used in the BCPQ variants proposed in [12—14] and these models in turn have been
used in security proofs of GKE protocols in [12—-15].

For the AKE-security the model requires that, during its execution, adversary A asks a single Test query to a
fresh oracle. An oracle II;" is fresh if (1) it has accepted, (2) no oracle has been asked for a Corrupt query before
II7" accepts, and (3) neither IT;" nor any of its partners have been asked for a Reveal query. A GKE protocol is
said to be AKE-secure if .4 cannot guess which value it has received in response to its Test query, i.e., the session
key or a random number, significantly better than at random. This definition of AKE-security, applied with an
appropriate definition of freshness, subsumes the following earlier informal definitions:

— key secrecy [24] (a.k.a implicit key authentication [39]) which requires that each legitimate protocol participant
is assured that no other party except for other legitimate participants learns the established group key;

— resistance against known-key attacks [17,48] meaning that an adversary who knows group keys of previous
sessions must not be able to compute subsequent session keys, key independence [35] meaning that an adver-
sary who knows a proper subset of group keys must not be able to discover any other group keys;

— perfect forward secrecy [24,30, 39] requiring that the disclosure of long-term keying material must not com-
promise the secrecy of the established keys from earlier protocol runs.

The definition of MA-security in the BCPQ model captures the fact that it is hard for a computationally bounded
adversary A to impersonate any participant U; through its oracle IT;*. For a GKE protocol among n users to be
MA-secure, the probability that there exists at least one oracle II;* which accepts with [PIDS(I1;")| # n — 1 is
required to be negligible. In other words, for such protocols, the authors claim that if each participating oracle I7;*
accepts with |[PIDS(I7;*)| = n — 1 then no impersonation attacks could have occurred — thus the informal notion
of mutual authentication [Sﬂ meaning that each participating oracle is assured of every other oracle’s participation
in the protocol is satisfied.

Further, we point the reader’s attention to the following claims given by the authors of [15]:

In the definition of partnering, we do not require that the session key computed by partnered oracles be
the same since it can easily be proven that the probability that partnered oracles come up with different
session keys is negligible. [15, Footnote 3]

We are not concerned with partnered oracles coming up with different session keys, since our definition
of partnering implies the oracles have exchanged exactly the same flows. [15, Section 7.4]

If these claims hold then the above definition of MA-security additionally captures the following informal security
goals earlier specified in the literature:

— key confirmation meaning that each protocol participant must be assured that all other protocol participant that
have accepted hold identical group keysE],
— explicit key authentication [39], i.e., key confirmation and mutual authentication at the same time.

In Section 3] we explain why the definition of MA-security might not be general enough for GKE protocols. We
do not pretend having broken some provably MA-secure scheme. In contrast, we explain why, if every participating
oracle II;* accepts with |PIDS(II;*)| = n — 1, it does not necessarily mean that the considered protocol provides
mutual authentication and key confirmation. To do so, we exhibit cases where an impersonation attack may likely
result in different group keys accepted by different partnered oracles.

* introduced originally for two-party protocols
3 This is a slightly modified definition from [39] wrt. to the arguments from [43] on impossibility of the assurance of some
participant that other participants have actually accepted the group key.
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3 Problems with the Definition of MA-Security in the BCPQ Model

PROBLEMS. We provide examples for the following two scenarios:

1. there exists GKE protocols where an active adversary .4 can impersonate one of the participants through its
oracle but nevertheless every participating oracle I1;* accepts with |PIDS(II;*)| =n — 1

2. there exists GKE protocols where each participating oracle II7* accepts with |[PIDS(II;")| = n — 1 but there
are at least two partnered oracles that have computed different keys.

Note that these problems become visible only in the group setting with at least three protocol participants: therefore,
it does not concern the original notion of mutual authentication by Bellare and Rogaway [7] defined via matching
conversations. Before we give examples using a concrete GKE protocol we provide an abstract description of our
idea. Figure [T| shows the abstract messages denoted m; (index 4 specifies the order in which messages have been
sent) that have been exchanged between the oracles (at least three participants are required) during the honest
execution of any GKE protocol from [12—-15]. A concrete equivalent message of each abstract message m; can be
found in the corresponding up- or downflow stage of any of these GKE protocols.

oma mi . m2 mso
I3 1152 133
ms Ims ms s mi ’ﬁl1 s mo ma
I3 1152 1153
ms3 T ms3 ms
Fig. 1. Honest execution of protocols in [12—-15]. By

m,; at the beginning of the arrow we mean the original

message sent by the oracle, and by m; at the end of the Fig. 2. Protocol execution where .4 impersonates U
arrow we mean the corresponding message received by

another oracle.

Obviously, Figure|l|shows a correct execution of the protocol since no message is modified. Figure [3|specifies

the session ids of the oracles I75, ..., II5* during this honest protocol execution using the construction from the
BCPQ model.
SID(I{*) | SID; STD,;  SID;3 SID(Hé‘) SID;; SID;»  SID;3
SIDL) | 0 m ma
SID(II5Y) 0 my ms 5 =
52 SID(I15%) mi 0 ma|ms
SID(I15°) my 0 ma|ms ST (10 ;
SID(II3?) ms ma|ms 0 (I15°) ms ma|ms

Fig.4. SID(II;*) in the protocol execution with imper-

Fig.3. SID(II*) in the honest protocol execution sonation of U,

To show the first problem we consider the case where A impersonates U; and modifies message m to 7y
(Figure [2) such that SIDy; = r; (Figure ). We cannot generally assume that all oracles accept after this mod-
ification but we may assume that there exists protocols for which this is the case (our example later is such a
protocol where the oracles nevertheless accept). If so, we show that every participating oracle II;* accepts with
[PIDS(/I;*)| = 2. To that goal, we need to show that IT;" «~s II;7 (or II;* « II;’) still holds for any two
participating II;" and H]'-gj . Thus we need to look more precisely on the session ids of the oracles. First note
that SID15 = m;. Though SID(II;7*) N SID(II3?) = {mq,ms} N {m1,me|ms} = 0 and thus II7* + II52,
we still have SID(II7') N SID(I13%) = {ma,ms} N {ms, malms} = mg and SID(I13*) N SID(II5?) =
{ms,malms} N {Mm1, malms} = ma|mg so that II]* «~ II3? (and II7* < II3* and II5? « II3® as well).
Hence, |PIDS(I1;%)| = 2 for every II;*: all oracles are still partnered though the impersonation attack. Oracle
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I15? having received a different message than the one originally sent by 77", this may result in different group
keys computed by I1;* and I152.

CONCRETE EXAMPLE. Consider the GKE protocol described in the same paper as the BCPQ model [15] but
without the additional confirmation round; this additional round belongs to a concrete protocol design but not to a
general security model; it is not required that a protocol uses this additional round to achieves MA-security.

Recall, our goal is to show that despite of the acceptance of each oracle I7;* with [PIDS(II;")| = 2 mutual
authentication and key confirmation are not necessarily provided.

The protocol proceeds as described in Figure [5; [m]y, denotes a message m signed by I1;7, and V(m) Z1
its verification; g is a generator of a cyclic group of prime order p. Upon computing K = ¢g*1*2%3 each oracle
derives the resulting group key k := H(ID, F L3, K) with a random oracle H : {0,1}* — {0, 1} where [ is
the security parameter. Now we consider that 17" chooses z; € Zj but A drops the original message [F'l1]y,

m 1 1y
T1 €R Ly, X1 :={g,9"'}
’ U ? 2lu
T2 €R Ly, Xo = {g"', 9”2, 9" "} 3 €R Ly,
Flz :={ID, X2} X3 = {g"172, g™, g"2"4}
Fls = {ID, X3}
K= (g1
[Fls]u,
v . [] )
V(Fl3) 21 V(Fls) 21
K= (g7 K= (g7)"

Fig. 5. Execution of the protocol in [15] with three participants

and replays a correspondlng message f from some previous protocol execution. The replayed message is likely to be
[Fl Ju, with Fly := (ID, Xl) and X, := {g,¢""} for some 7 # 2. Obviously, IT5> can still verify the replayed
message, i.e., V(Fll) = 1 holds. It is easy to see that Xo = {g®!, g%, g"'*2} and X3 := {g®1%2, ¢g®1%3, g*273}
so that IT{* computes K = g”1*2%3 whereas T3> and IT* compute another value, i.e., K = g“'*2%3_ Thus the
derived group keys are different. Though (without the confirmation round) all oracles accept since all signature
verifications remain correct. Moreover, and similarly to the abstract problem description above, it is easy to check
that [PIDS(II;%)| = 2 for every II;*, i € {1,2,3}.

This illustrates the case where |PIDS(II;*)| = 2 and yet the protocol does not provide mutual authentication
and key confirmation. We stress, again, that this does not contradict the MA-security of the proposed protocol when
the additional round is executed. However, there may exist other protocols (including our example) for which this
statement is not true (if the MA-security is tentatively achieved with other techniques), and thus it is worth studying
the generality/applicability of MA-security definition in the BCPQ model.

Furthermore, we stress that the more general definition of MA-security should also consider attacks by mali-
cious protocol participants (the BCPQ model had no intention to consider such scenario). For example, as noted
in [22] many BCPQ-like models fail to provide security against unknown key-share attacks [10] because they do
not consider malicious (corrupted) participants during the protocol execution. It is interesting to notice that, while
malicious participants surely break the AKE-security (session key indistinguishability), their actions against MA-
security left some open questions: though the work by Katz and Shin [32] provides a partial solution, it is worth
noticing that protection (i.e., resilience) has no satisfying solution yet. It is a subject of future work to be able to
detect and eliminate the dishonest players in such a way that the remaining, honest ones, can compute a common
key.
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4 Discussion on Technical Constructions of some BCPQ-Variants and their Definitions
of MA-Security

A VARIANT BY KATZ AND YUNG. The modification by Katz and Yung [33] (denoted as the KY model) suggests
a different construction of partner ids and session ids. The partner id of an oracle II7* consists of the identities
of all group members who intend to participate in the protocol and is defined straight after the invocation of the
protocol execution. Hence, opposite to the BCPQ model, this set is known before the protocol completes. Further,
the session id of II;" is simply the concatenation of all messages that JI7* has sent or received during the protocol
execution. Note that the KY model was proposed in the context of a GKE protocol over an unreliable asynchronous
broadcast channel. Obviously, in this case every oracle computes the same session id. However, the K'Y model fails
in protocols where some messages are sent over unicast, e.g., in protocols from [12—15]. Note, however, that any
construction of session ids based on the concatenation of exchanged message flows has one significant drawback
— it becomes available after the protocol termination only. Since some protocols use uniqueness of session ids as
protection against replay and protocol interference attacks it is desirable to have a unique session id prior to the
protocol termination. The partnering between two oracles holds if they have equal partner ids and equal session ids.
Note that the KY model does not provide own definition of MA-security but refers to the one in the BCPQ model.
Due to the different construction of partnering the identified problems in the BCPQ model have no consequences
here.
Finally, another limitation of the K'Y model is that it is not intended for considering malicious participants.

A VARIANT BY DUTTA et al. The modification by Dutta et al. [27] is similar to the KY model regarding the
construction of partner ids. However, they define a session id of an oracle I1;* as {(U1, 1), . .., (Un, $n) } where
each pair (Uj, s;), j € {1,...,n} corresponds to the oracle H;j of the protocol participant U}, and say that two
oracles are partnered if they have equal partner ids and equal session ids. In order to keep session ids unique the
authors require the uniqueness of oracles for each new session. To have this notion made sense, [25] suggests to
use a counter value as an additional parameter which should be increased for every new oracle of the user. Though
this makes unique session ids available prior to the protocol termination, it forces the counter to be saved after
each execution and protected against modifications. A more practical approach seems to be using nonces in each
new protocol execution (excluding the highly improbable case of collisions). Note also that [27] and [25] had no
intentions to consider mutual authentication and key confirmation.

A VARIANT BY KATZ AND SHIN. Katz and Shin [32] proposed a different security model (referred to as the
KS model) for GKE protocols, and provide a security analysis in the framework of Universal Composability (UC)
[20]. The KS model provides the first formal treatment of GKE protocols security in the presence of malicious
participants. The KS model is an extension of the BCPQ and KY models. The partner ids and the partnering
relationship between the oracles is similar to the KY model but unique session ids are assumed to be provided by
some high-level application mechanism.

Among other things, the KS model defines security against insider attacks as a combination of two require-
ments: agreement and security against insider impersonation attacks:

— the adversary A is said to violate agreement if there exist two partnered oracles I and HJ’? such that neither
U; nor U; is corrupted but II; and H; have accepted with different session keys. Intuitively, this considers key
confirmation in case that all other participants are malicious (corrupted);

— the adversary A is said to impersonate U to (accepting) 117 if Uj; is uncorrupted and belongs to the (expected)
partner id of I7; but in fact no oracle IT} is partnered with IT?. In other words, the instance I7; computes the
session key and U; believes that U; does so, but in fact an adversary has participated in the protocol on behalf
of U;; a protocol is said to be secure against insider impersonation attacks if for any party U; and any instance
I1?, A cannot impersonate U; to II¥ under the (stronger) condition that neither U; nor Uj; is corrupted at the
time I accepts.

Obviously, the last requirement assumes the existence of at least two uncorrupted participants, but allows the
adversary to corrupt other participants: an active adversary can thus generate fresh messages on behalf of other
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participants. Intuitively, security against insider impersonation attacks considers mutual authentication and un-
known key-share resilience in the presence of malicious participants. Note that the KS model does not describe
what relationship do their formal definitions have with the well-known informal definitions. Their security analysis
holds in the framework of UC-security, based on the simulatability approach [19] rather than on a reductionist
approach [6,37].

Further, in addition to their model, Katz and Shin proposed a compiler to turn any GKE protocol which is
secure in the BCPQ model into a protocol which is secure in their UC-based model, and provided simulatability-
based security proofs for this case. However, they left open the question whether their definitions of agreement
and security against insider impersonation attacks are practical enough for the construction of reductionist security
proofs (even though UC-security is considered to be stronger).

5 The Revised “Game-based’ Security Model

In the following we propose a new variant of the BCPQ model while considering malicious participants. We
provide an alternative definition (which we call MA-security to keep consistency with all previous models) that
can be used to replace definitions of agreement and security against insider impersonation attacks of the KS model.
One advantage is that, for the same requirements, our model needs only one definition (and consequently one
reductionist proof) whereas in the KS model two definitions are needed. Furthermore, we prove that our definition
really unifies the informal notions of key confirmation, mutual authentication and unknown key-share resilience in
the presence of malicious participants while the KS model does not explicitly prove this.

Our variant is based on the refined BCPQ model as presented in [13], a refinement that considers strong cor-
ruptions, i.e., attacks against internal states. We also extend the original definition of AKE-security (in a modular
way) considering a new requirement which we call backward secrecy.

5.1 Protocol Participants, Variables

USERS, INSTANCE ORACLES. We consider I/ as a set of /N users in the universe. Each user U; € U holds a
long-lived key LL;. In order to handle participation of U; in distinct concurrent protocol executions we consider
that U; has an unlimited number of instances called oracles; II, with s € N, denotes the s-th instance oracle of
U;.

INTERNAL STATES. Every II7; maintains an internal state information stateg; which is composed of all private,
ephemeral information used during the protocol execution. The long-lived key LLy; is, in nature, excluded from it
(moreover the long-lived key is specific to the user, not to the oracle).

SESSION GROUP KEY, SESSION ID, PARTNER ID. In each session we consider a new group G of n € [1, N]
participating oracles. Each oracle in G is called a group member. By G, for i € [1,n] we denote the index of the
user related to the i-th oracle involved in G (this i-th oracle is denoted I1(G,)). Thus, for every i € [1,n] there
exists I1(G,i) = Il € G for some s € N. Every participating oracle II;; € G computes the session group
key ki, € {0,1}". Every session is identified by a unique session id sidg;. This value is known to all oracles
participating in the same session. Similarly, each oracle II; € G gets a value pidy; that contains the identities of
participating users (including U), or formally

pidy = {Ug, [11(G,5) € G, Vj =1,...,n}.
We say that two oracles, I1;" and II}7, are parmered if U; € pid}’, U; € pid;’, and sid;' = sid}’.

INSTANCE ORACLE STATES: STAND-BY, PROCESSING, ACCEPTED, TERMINATED. An oracle II{; may be ei-
ther used or unused. The oracle is considered as unused if it has never been initialized. Each unused oracle II;; can
be initialized with the long-lived key LL;;. The oracle is initialized as soon as it becomes part of some group G.
After the initialization the oracle is marked as used, and turns into the stand-by state where it waits for an invoca-
tion to execute a protocol operation. Upon receiving such invocation the oracle II{; learns its partner id pidg; (and
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possibly sid{;) and turns into a processing state where it sends, receives and processes messages according to the
description of the protocol. During the whole processing state the internal state information st ateg; is maintained
by the oracle. The oracle II;; remains in the processing state until it collects enough information to compute the
session group key kf;. After IIf; computes k7, it accepts and terminates the execution of the protocol operation
(possibly after some additional auxiliary steps), meaning that it would not send or receive further messages. If
the protocol execution fails (due to any adversarial actions) then I}, terminates without having accepted, i.e., the
session group key kg, is set to some undefined value.

5.2 Definition of a Group Key Exchange Protocol

Definition 1 (GKE Protocol). A group key exchange protocol P consists of a key generation algorithm KeyGen,
and a protocol Setup defined as follows:

P.XeyGen(1%): On input a security parameter 1% each user in U is provided with a long-lived key LLy;.
P.Setup(S): Oninput a set S of n unused oracles a new group G is created and set to be S, then a probabilistic
interactive protocol is executed between oracles in G.

We call P.Setup an operation. We say that a protocol is correct if all oracles in G accept with the same session
group key k. We assume it is the case for all protocols in this paper.

5.3 Adversarial Model

QUERIES TO THE INSTANCE ORACLES. The adversary A is represented by a PPT machine and is assumed to
have complete control over all communication in the network. It may interact with group members by making the
following oracle queries:

— Setup(S): This query models A eavesdropping the honest operation execution of P.Setup. P.Setup(S) is
executed and A is given the transcript of the execution.

- Send(II};, m): This query models A sending messages to the oracles. A receives the response which T}
would have generated after having processed the message m according to the description of P. The adversary
can ask an oracle II{; to invoke P.Setup with the oracles in S via the query of the form Send(II{;, S) which
gives A the first message that [T, would generate in this case. Thus, using Send queries the adversary can
actively participate in P.Setup.

- RevealKey(IIf;): Ais given the session group key kj;. This query is answered only if IT}; has accepted.

- RevealState(II}): A is given the internal state information stat e‘f]ﬂ

— Corrupt(U): A is given the long-lived key LLy;.

— Test(II{;): This query will be used to model the AKE-security of a GKE protocol. It can be asked by A at any
time, to any oracle having accepted, but only once during the entire attack. The query is answered as follows:
the oracle generates a random bit b. If b = 1 then A is given k7;, and if b = 0 then A is given a random string.

A passive adversary can eavesdrop the execution of the protocol operations via Setup queries, reveal session group
keys, internal states and corrupt participants via RevealKey, RevealState, and Corrupt queries, respectively, and
is also allowed to ask Test queries. Additionally, it is given access to the Send queries, however, with the restriction
that it is not allowed to inject, replay, or modify messages. Thus, a passive adversary can truly forward, drop, and
delay messages, or deliver them out of order. Although Setup queries can be simulated using Send with the
appropriate invocation messages, the presence of these queries still allows a separate treatment of the (weaker)
passive adversaries who are restricted to the eavesdropping of the protocol execution in the sense of [33]. Note that
in our model the passive adversary is stronger than in [33] and is comparable to the one from [21].

% This kind of the adversarial query has previously been mentioned by Canetti and Krawczyk in their model for two-party
protocols [21].
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FORWARD SECRECY. The notion of forward secrecy allows to distinguish between damages (in previously com-
pleted sessions) that result from actions of the adversary in the current session. Similar to [13] we distinguish
between weak-forward secrecy (wfs) where the adversary is additionally allowed to ask Corrupt queries, and
strong-forward secrecy (sfs) where it is additionally allowed to ask Corrupt and RevealState queries.

BACKWARD SECRECY. The notion of backward secrecy is symmetric to that of forward secrecy in the sense that
it considers damages to the AKE-security of future sessions after actions of the adversary in past/current sessions.
The notion might seem useless at first glance (such actions can make secrecy just impossible), however, there might
exist intermediate actions, such as corruptions of internal states, that do not compromise future session keys (or
at least not all of them). We distinguish between weak-backward secrecy (wbs) where the adversary is allowed to
ask RevealState queries, and strong-backward secrecy (sbs) where the adversary is additionally allowed to ask
Corrupt querieq’]

Note that in our definition of AKE-security that models key secrecy, the adversary is a non-participating party
and not a malicious participant, even in case that it reveals long-lived keys prior to the protocol execution. In order
to consider only non-participating adversaries we introduce the following notion of a-fresh sessions.

ORACLE FRESHNESS, CORRUPTION MODELS, ADVERSARIAL SETTINGS. The notion of freshness for an oracle
117 is needed to distinguish between various definitions of security with respect to different flavors of backward or
forward secrecy. Each flavor « € {f), wbs, wfs, sbs, sfs} leads to a different definition of freshness.

Definition 2 («-Freshness). Ler o € {0}, wfs,wbs, sfs, sbs}. The oracle II}, € G is

(-fresh if: neither II{; nor any of its partners is asked for a RevealKey query after having accepted;

wbs-fresh if: (1) neither II}; nor any of its partners is asked for a RevealState query after G is created, and (2)
neither II{; nor any of its partners is asked for a RevealKey query after having accepted;

wis-fresh if: (1) no U; € pidy; is asked for a Corrupt query prior to a query of the form Send(ﬂj-" ,m) such
that U; € pidj; before IIf; and all its partners accept, and (2) neither IIf; nor any of its partners is asked for
a RevealKey query after having accepted;

sbs-fresh if: (1) no U; € pidj; is asked for a Corrupt query prior to a query of the form Send(Hjj ,m) such
that U; € pidy; after G is created, (2) neither II{; nor any of its partners is asked for a RevealState query
after G is created, and (3) neither II{; nor any of its partners is asked for a RevealKey query after having
accepted;

sts-fresh if: (1) no U; € pidj; is asked for a Corrupt query prior to a query of the form Send(H;j ,m) such
that U; € pidyj; before 11}, and all its partners accept, (2) neither 1I{; nor any of its partners is asked for a
RevealState query before they accept, and (3) neither IIf; nor any of its partners is asked for a RevealKey
query after having accepted.

We say that a session is a-fresh if all participating oracles are a-fresh.

The above definition is given from the perspective of an oracle which participates in a concrete operation execution
of P. Note that in our model a new group G is created for every invoked operation, i.e., new session. In the following
we provide some additional explanations concerning our definition of a-freshness.

Obviously, the wfs-freshness allows Corrupt queries to any user in U/ after the oracles in G have accepted
whereas the sfs-freshness allows, additionally, RevealState queries to any oracle of any user in I/ after the oracles
in G have accepted. Beside this, the wfs-freshness allows Corrupt queries in previous and concurrent operations
to any user in U who does not have an oracle in G whereas the sfs-freshness allows, additionally, RevealState
queries in previous and concurrent operations to all oracles that do not belong to G.

The notion of a-fresh sessions becomes important in security proofs in order to distinguish between “honest”
and “corrupted” sessions. Intuitively, the above definitions are to be used as follows. In each of the secrecy cases

" In case of backward secrecy Corrupt queries are more damageable than RevealState queries because the long-lived keys
are usually used for authentication and their knowledge allows the adversary to impersonate users in subsequent sessions and
learn the session group key.
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considered, either the adversary is not allowed to ask some “bad” queries, more precisely such queries are allowed
but immediately make the oracle unfresh. The scenario aims to delimit the “bad” queries. To properly manage the
adversarial capabilities for each scenario of freshness, we distinguish between the following corruption models.

Definition 3 (Corruption Model 3). A PPT adversary A is an adversary that acts with respect to the corruption
model [3 according to the following definition:

weak corruption model wem : An adversary A can ask the queries Setup, Send, Test and RevealKey.

weak corruption model for forward secrecy wem-fs : An adversary A is given access to the queries Setup,
Send, Test RevealKey, and Corrupt.

weak corruption model for backward secrecy wem-bs : An adversary A is given access to the queries Setup,
Send, Test RevealKey and RevealState.

strong corruption model scm : An adversary A is given access to the queries Setup, Send, Test, RevealKey,
RevealState and Corrupt.

A concrete proof of AKE-security needs to specify capabilities of the adversary depending on the intended
freshness type. Combining definitions for freshness and corruption we obtain a set of reasonable adversarial set-
tings (o, B) € {(B,wem), (wfs,wem-£s), (wbs, wem-bs), (sbs, scm), (sfs, scm)}. Note that other imaginable set-
tings are not reasonable from the perspective of the attacks. Nevetheless, separation in five types of freshness and
four types of corruption models allows to talk about the corruption model in a general way, that is not necessarily
in the context of AKE-security (but also wrt. other security requirements).

Remark 1. In practice long-lived keys are mostly used to achieve authentication rather than for the actual group
key computation. It is thus intuitively clear that if an adversary is able to corrupt a group member (obtaining its
long-lived key) then it can impersonate that member in subsequent sessions. Therefore, achieving AKE-security in
the (sbs, scm) sense would require the long-lived keys to be fresh for each new execution, a contradiction with the
long-lived key terminology. To the contrary, the adversarial setting (wbs, wcm-bs) appears of great interest since
it concerns only oracle internal state information and is independent of any long-term secrets. Moreover we argue
that (wbs, wem-bs) is important since in previous models [13,32] a persistent internal state is used in both past and
future sessions, and thus, while forward secrecy looks at (state) corruptions in later sessions, backward secrecy
must legitimately look at state corruptions in previous sessions.

5.4 Security Goals

In this section we describe security goals for a GKE protocol. We give a formal definition of (Authenticated)KeyExchange-
security (indistinguishability of session group keys), and a new definition of MA-security that considers malicious
participants and internal state corruptions of honest participants.

Definition 4 ((A)KE-Security). Let P be a correct GKE protocol and b a uniformly chosen bit. Consider a rea-

sonable adversarial setting (a, ) and an (active) adversary A. We define game Ga meff)g?; b(A, K) as follows:

after initialization A interacts with instance oracles using queries;

if A asks a Test query to an a-fresh oracle 117, which has accepted, it receives either key, = ki, (ifb=1)
or keyy €r {0,1}" (ifb=0);

— A continues interacting with instance oracles;

— when A terminates, it outputs a bit trying to guess which case it was dealing with.

The output of A is the output of the game. The advantage function (over all adversaries running within time k) in
winning the game is defined as

Adv@*e () = max |2 Pr [Game(a)kefb(flv K) = b} -1

a,B,p a,B,p

(a)ke

We say that P is an (A)KE-secure protocol with a-secrecy, denoted (A)GKE-c, if the advantage Adv, s,

negligible. If o = (), we just say that P is (A)KE-secure.

(k) is
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We emphasize that at this step we do not consider malicious participants (users), but only (partially) corrupted
oracles for dealing with forward- and backward-secrecy.

The following definition of MA-security considers an adversary who is allowed to corrupt and act on behalf of
participants during the protocol execution.

Definition 5 (MA-Security). Let P be a correct GKE protocol and Gamel2(A, k) the interaction between the in-
stance oracles and an active adversary A which can query Send, Setup, RevealKey, RevealState, and Corrupt.
We say that A wins if at some point during the interaction there exist an uncorrupted user U; whose instance oracle
II7" has accepted with k' and another user U; with U; € pid;® that is uncorrupted at the time II;* accepts, such
that

1. there exists no instance oracle H;j with (pi d]s»j, si djj) = (pid*, sid;"), or
2. there exists an instance oracle H;’ with (pi djj, si djj) = (pid;’, sid;") that accepted with k;’ # k.

The maximum probability of this event (over all adversaries running within time ) is denoted Succy® (k). We say
that a GKE protocol P is MA-secure (MAGKE) if this probability is a negligible function of k.

Note that U; and U; must be uncorrupted, however, A is allowed to reveal internal states of their oracles. Hence,
our MA-security definition seems to be stronger than definitions of security against insider attacks in the KS model.

Note also that we do not deal with a-fresh sessions since malicious participants learn established keys implic-
itly. Also in Game['?(A, ) the adversarial Test query is useless. In the next section we show how this definition
subsumes informal requirements of unknown key-share resilience, key confirmation, and mutual authentication
(note that this is missing for the definitions in [32]).

6 Claims Concerning MA-Security

In the following we present some claims to illustrate the relationship between our definitions of MA-security and
the related mostly important informal notions concerning key confirmation, mutual authentication and unknown
key-share resilience, since this relationship may be difficult to see at first sight. The informal definition of key
confirmation [39] refined wrt. to the arguments in [43] means that each protocol participant must be assured that
all other protocol participant that have accepted hold identical group keys. The notion of mutual authentication
introduced in [8] for two-party protocols when considered for group key exchange protocols means that each
identified protocol participant is known to actually possess the established group key. Note that this requirement is
similar to explicit key authentication [39]. The related requirement called unknown key-share resilience surfaced
in [24] means that an active adversary must not be able to make one protocol participant believe that the key is
shared with one party when it is in fact shared with another party. Note that the adversary may be a malicious
participant and does not need necessarily to learn the established key [10].

The missing formalism of the original informal definitions allows only argumentative proofs for our claims.
We also stress that none of the previously proposed models provides such claims for their definitions.

Claim. If P is a MAGKE protocol then it provides key confirmation and mutual authentication (explicit key authen-
tication), i.e., every legitimate protocol participant is assured of the participation of every other participant, and all
participants that have accepted hold identical session group keys.

Proof. If P does not provide key confirmation and mutual authentication then there exists at least one honest
participant U; € G whose oracle II;* has accepted with a session group key k; and there exists at least one another
honest participant U; € pid;’ whose oracle 1T ; 7 has accepted with a different session group key k;;’ # kit
According to DeﬁnitionE]this is a successful attack against the MA-security of P. This, however, contradicts to the
assumption that P is a MAGKE protocol. ]

Claim. If P is a MAGKE protocol then it is resistant against unknown key-share attacks in the sense of [10, Sec.
5.1.2], i.e., the adversary .4 cannot make one protocol participant, say U;, believe that the session group key & is
shared with A when it is in fact shared with a different participant U;.
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Proof. With respect to our model we assume that oracles I fj and II7* participate in the protocol on behalf of U;
and U;, respectively. If an unknown key-share attack occurs then 17 JS 7 and II7" accepted with the identical session
group k, but since Hjj believes that the key is shared with A we conclude that U; ¢ pid‘;j must hold (other-
wise after having accepted U; would believe that the key is shared with U;) whereas U; € pid;’. This implies
(pid}’,sid}’) # (pid;’, sid;"). On the other hand, P is by assumption MAGKE. Thus, for any U; € pid;* there
must exist a corresponding oracle I7 ; 7 such that (pid;j ) sid‘;] ) = (pid}’, sid}"). This is a contradiction. = O

7 Compiler for AKE-Security and MA-Security under Standard Assumptions

7.1 Security-Enhancing Compilers and their Goals

Imagine, there exists a black-box implementation of a GKE protocol which should be used by some group appli-
cation. Assume this GKE implementation provides strong security properties but not all of them are in fact needed
for the application. This means that some communication or computation resources are uselessly spent, resulting
in a less efficient high-level application.

Assume, on the other hand, that the given GKE implementation does not satisfy all security requirements
desired for the particular group application. Instead of designing and implementing a new GKE protocol in an ad-
hoc fashion, it is desirable to have a generic technique which can be applied to the given black-box implementation
in order to enhance its security.

We are thus concerned with the following question. What is a good strategy for the implementation of GKE
protocols? Of course this depends on the relationship between the protocol and the application using it. Should
the protocol be designed for a very specific application (and not likely to be re-used), it might be better to con-
sider all stated requirements in the implementation and optimize the protocol accordingly. However, what to do if
the GKE implementation should be flexible and easily modifiable, in order to be reused by various applications
without any significant additional effort? Obviously, a good strategy (though not always optimal) is to implement
a GKE protocol in a modular way: one starts with the basic implementation that satisfies the most common set of
security requirements, then continues with the implementation of optional modules that can be added to provide
extended security requirements. The main goal of security-enhancing GKE protocol compilers is to enable secure
construction of GKE protocols in such a modular way.

Definition 6 (Security-Enhancing GKE Protocol Compiler C). A security-enhancing GKE compiler C is a pro-
cedure which takes as input a GKE protocol P and outputs a compiled GKE protocol Cp with additional security
properties possibly missing in P.

7.2 Discussion on Existing Compilers for GKE Protocols

In the following we provide some analysis on currently known security-enhancing compilers for GKE protocols.

Each compiler description holds in the perspective of one particular operation execution (session). Therefore,
by II? € G we consider the i-th oracle in G assuming that there exists an index j € [1, N] such that U; owns
IT?. Similar, by skf and pk; (resp., sk; and pk;) we denote the private and public keys of U, used in the compiled
protocol (resp., in the underlying protocol).

Compiler for AKE-Security The requirement on KE-security, i.e., key indistinguishability with respect to passive
adversaries states the basic security requirement for any GKE protocol. To the contrary, the requirement of AKE-
security may be optional. For example, if a network or a high-level application provides authentication implicitly
then it is sufficient to use a KE-secure protocol. Therefore, it is reasonable to specify AKE-security as an additional
property and design a compiler which adds AKE-security to any KE-secure protocol. Katz and Yung proposed
in [33] the following compiler which provides AKE-security. It uses a EUF-CMA digital signature scheme 2’ (see
Appendix [Alfor details).
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Definition 7 (Compiler for AKE-Security by Katz and Yung [33])). Let P be a GKE protocol and X := (Gen,
Sign, Verify) a digital signature scheme. A compiler for AKE-security consists of an initialization algorithm and
a modified protocol execution defined as follows:

Initialization: In the initialization phase each U; € U generates own private/public key pair (sk;,pk})
using Z‘.Gen(l“'). This is in addition to any key pair (sk;,pk;) used in P.

The protocol: This is an interactive protocol between the partnered oracles II;, ..., II; invoked prior to
any operation execution of P. Each II? chooses a random nonce r; €r {0,1}" and sends U;|0|r; to every
partnered oracle II;. After 117 receives Uj|O|r; from all partnered oracles it computes sid; = Us|ry] ...
|Uy|r,,. Then, members of G execute P with the following changes:

— IfII? is supposed to send a message U, |[t|m then it computes additionally o; := X .Sign(sk}, t|m|sid])
and outputs a modified message U, |t|m|o;.
— If II} receives Uj|t|m|o; it checks whether (1) U; € pid;, (2) t is the next expected sequence number,

”
and (3) ¥ Verify(pkj, tim|sid;, o;) = 1. If any of these verifications fail then 1I;} terminates without
accepting; otherwise it proceeds according to the specification of P upon receiving U |t|m.

— After II7 computes the session group key k7 in the execution of P it accepts with this key.

Missing Generality of Katz-Yung Compiler Katz and Yung proved security of this compiler assuming an unreliable
asynchronous broadcast channel and a passive adversary, which is only an eavesdropper. We show that in this case
their compiler is not really generic: there exist GKE protocols that are secure against eavesdroppers but become
insecure against active adversaries (even after the execution of the above compiler).

We consider the following (pathologic, but illustrative) protocol between II7 and II7. First II7 chooses his
exponent 1 €g Zj and sends X; := g™ to II3. If II5 receives X; within some specified time period § then
15 replies with X5 := g*2 for some randomly chosen xo €r Zj and accepts with the Diffie-Hellman session
key g*'*=. Similar if I} receives X5 within time ¢ then it accepts with g***2 too. However, if an oracle does not
receive data in time, it accepts with g. If the passive adversary is just an eavesdropper, messages are delivered on
time, and the protocol is “passively” secure. But an active adversary can drop messages so that both participants
accept with g. Obviously, it is insufficient to restrict passive adversaries to be just eavesdroppers. Passive attacks
should also model the unreliability of the communication, like we do.

Further, the compiler in [33] assumes that each sent message is of the form U |¢t|m where ¢ is a sequence number
which starts with 0 and is incremented each time an oracle I sends a new message. Before any received message
is processed by the original protocol P the compiler checks whether this message is expected or not with respect
to the next expected sequence number. Note that Katz and Yung introduced sequence numbers in order to simplify
the description of their proofs. In our setting we can easily omit sequence numbers since any protocol which is
KE-secure in our setting resists attacks based on modification of the delivery order of the protocol messages. Note
also that sequence numbers do not provide any additional security advantages for the protocol (e.g., they do not
protect against replay attacks). Another reason is that in order to check whether a message is expected or not
the compiler must explicitly know the total number of messages required in the protocol execution. Thus, these
numbers should be additionally given as input to the compiler. This additional effort must be applied for each GKE
protocol to be used with the compiler. This can be considered as an additional inconvenience, especially if the
protocol’s implementation is available as a “black-box” that allows access only to the established group key.

Compilers for MA-Security The first compiler for key confirmation and mutual authentication was proposed by
Bresson et al. [15]. However, their definition of MA is (de facto) the old one, and the proof is conducted in the
Random Oracle Model [8].

Katz and Shin [32] showed how to turn an AKE-secure GKE protocol into a UC-secure GKE protocol that
provides security against insider attacks (see Section ).

It requires a EUF-CMA digital signature scheme X, and a collision-resistant pseudo-random function f (see
Appendix [A]for details).

Definition 8 (Compiler for Security against Insider Attacks by Katz and Shin [32]). Let P be a GKE proto-
col, ¥ := (Gen, Sign, Verify) a digital signature scheme, F' := {fk a function ensemble with range

}ke{0,1}~
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{0,1}*, X\ € N and domain {0, 1}*, and s1id; is a unique session id. A compiler for security against insider attacks
consists of an initialization algorithm and a protocol defined as follows:

Initialization: eachU; € U generates his own additional private/public key pair (sk}, pk}) using Y .Gen(17).
The protocol: After an oracle IT7 accepts with (kf, pid;, sid;) in P:
— it computes p; := f: (vo) where vy is a constant public value;
— it computes K7 = fk (v1) where v1 # vg is another constant public value;
— it erases its local state information except for |;, K7, pid;, and sid;;
— it computes a signature o; := X.Sign(skj, p;|sid;|pid;) and sends Uj|o; to its partered oracle 117.
After II;" receives Uj|o; from all its partnered oracle I1 5

— it checks whether X Verify(pk’, pi|sid;|pid;, o) 1
— if all checks pass, it accepts with the session key K.

Working in the UC framework, Katz and Shin assume that session ids are unique and specified by some high-
level application (see [4] for setting up session ids in the UC framework). In this case the above compiler can be
proven to satisfy our MA-security requirement. On the other hand, if such unique session ids are not available then
it is obvious that some additional communication rounds are needed to set up such session ids. Intuitively, leaving
out session ids would allows replay attacks against the compiled protocol as illustrated in the following.

Imagine, the adversary A corrupts n — 2 participants (except for U; and U;) in some previous session and
behaves honestly in another session. Thus, he learns the key k! computed in that session and the message U;|5;
sent by IT} during the compiler round of that session. Remind, &; is computed on pid! and fi; = fj:(vo). After
the compiled protocol is executed A invokes a new session with the same protocol participants. Thus, users U; and
U; participate via fresh oracles I and II7, respectively. Note also that we have pid} = pid!. Let us assume that
A can influence IT ; in some way such that it computes k;;9 = I%;‘ and II? computes a different key k] # I?:f Then A
intercepts (and drops) the original message U;|o; and replays U;|G; to II3. Because p; = Jus (v) = Jrt (vo) = s
oracle II; verifies 5; successfully but k7 # k (which results in K7 # K). Thus, uncorrupted oracles /I and I1;
accept with different session keys.

7.3 Compiler C-AMA

In the following we describe a compiler (denoted C-AMA) which provides both AKE- and MA-security for any GKE
protocol P which satisfies the basic requirement of (unauthenticated) KE-security wrt. to our security model, i.e.,
where the passive adversary is given access to the query Send but is restricted not to modify, replay, or introduce
protocol messages. C-AMA combines KY and KS compilers whereby slight modifications are applied (as mentioned
in the previous chapter).

C-AMA uses digital signatures and collision-resistant pseudo-random functions (see Appendix [A]for details) and
can be proven secure in the standard model. C-AMA uses nonces to achieve uniqueness of protocol sessions and
security of concurrent executions without relying on session ids given by high-level applications.

Definition 9 (Compiler for AKE- and MA-Security C-AMA). Let P be a GKE protocol, ¥ := (Gen, Sign,
Verify) a digital signature scheme, F' := {fk}ke{o,l}” a function ensemble with range {0,1}*, A € N and
domain {0,1}". A compiler for AKE-security and MA-security, denoted C-AMA, consists of an algorithm INIT and
a protocol AVA defined as follows:

INIT: each U; € U generates own private/public key pair (sk}, pk}) using X.Gen(1%").
AMA: prior to the execution of P:
— Each II? chooses a AMA nonce r; €g {0, 1}" and sends U;|r, to its partners.
— After 11} receives all Uj|r;, it computes sid; :=rq|...|r,.
Then it invokes the execution of P and proceeds as follows:
— IfII? in P outputs a message U;|m then in C-AMAp it computes additionally o; := X .Sign(sk}, m|sidi|pid;)
and outputs a modified message U;|m|o;.
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"
— On receiving Uj|m|o; from a partner II it checks whether ¥ Verify(pk’, m|sid;|pid;, o;) = 1. If
this fails then II} terminates; otherwise it proceeds as in P upon receiving U;|m.

— After an oracle 11 computes k; in P it computes an AMA token pi; == f: (vo) where vy is a constant
public value, a signature o; := X.Sign(sk;, wi|sid;|pid;) and sends Ui|o; to every II: with U; €
pid;.

o

— On receiving Uj|o; from its partner, 117 checks if X Verify(pk}, pi|sid|pid;,o;) = 1.

— If all checks pass, II; computes K] := fy:(v1) where vy # vq is another constant public value, erases
all private state information from state; (including k) and accepts with K.

PERFORMANCE ANALYSIS. C-AMA requires two further rounds: one to exchange random nonces and another one
to exchange signatures on AMA tokens. As for the computation costs, every participant generates one signature
for every message sent during P and one additional signature on the computed AMA token. Furthermore, every
participant must verify one signature for every incoming message in P and n — 1 signatures during the additional
confirmation round. The computation of the AMA token p and of the session key K can be seen as negligible.

SECURITY ANALYSIS. Our first theorem shows that C-AMA adds AKE-security to any KE-secure GKE protocol.
Following Remark[I] we do not consider the adversarial setting (sbs, scm). Well-known definitions of EUF-CMA-
security for X' as well as pseudo-randomness and collision-resistance for F’ can be found in Appendix [A]

Theorem 1 (AKE-Security of C-AMAp). Let (v, 3) € {(, wem), (wbs, wem-bs), (wfs, wem-fs), (sfs, scm)} be an
adversarial setting, let P be a GKE-« protocol, and A an active adversary in the corruption model 3 launching at
most qs sessions of C-AMAp. If X is EUF-CMA and F' is pseudo-random then C-AMAp is AGKE-q, and

Ng?
2&—1

Advi'f%c_AMAp(n) < 2NSuccF " (k) + + 2q5AdVI§‘:5,P(H) + 4qSAdvarf(n).
Proof. In our proofs we use a well-known proving technique called sequence of games [44] which allows to reduce
complexity of “reductionist” security proofs for complex cryptographic protocols, and became meanwhile standard
for security proofs of group key exchange protocols, e.g., [1, 13, 14,26,27,34].

We define a sequence of games G;, 7 = 0, ..., 6 and corresponding events Win

bit ¥’ of G; is identical to the randomly chosen bit b in Gameiﬁ%jcliAMAP (A, k).

Game Gp:This game is the real game Ga mezk%_cli ama, (A ) played between a simulator S and an active adversary

A. Assume that the Test query is asked to an a-fresh oracle II?. Keep in mind that on the test query the adversary
receives either a random string or a session group key K.

Game Gq:This game is identical to Gy with the only exception that the simulation fails and bit b’ is set at random
if A asks a Send query on some U;|m|o (or U;|o) such that o is a valid signature that has not been previously
output by an oracle I17 before querying Corrupt(U;). In other words the simulation fails if .4 outputs a successful
forgery. In order to estimate Pr[Forge] we show that using A we can construct a EUF-CMA forger F against the
signature scheme X' as follows. F is given a public key pk and has access to the corresponding signing oracle.
During the initialization of C-Ap, F chooses uniformly at random a user U;« € U and defines pk,. := pk. All
other key pairs, i.e., (skf, pk;) for every U;+;» € U are generated honestly using X'.Gen(1"). F generates also all
key pairs (sk;, pk;) with U; € U if any are needed for the original execution of P. The forger simulates all queries
of A in a natural way by executing C—2;, and by obtaining the necessary signatures with respect to pk;. from
its signing oracle. This is a perfect simulation for .4 since by assumption no Corrupt(U;+) may occur (otherwise
F would not be able to answer it). Assuming Forge occurs, .4 outputs a new valid message/signature pair with
respect to some pkj; since i* was randomly chosen and the simulation is perfect, Pr[¢ = i*] = 1/N. In that case
JF outputs this pair as its forgery. Its success probability is given by Pr[Forge]/N. This implies

ake
i

as the events that the output

| Pr{Wing®] — Pr[Wing®]| < NSuccsf =™ (k). (1)

Game Gp:This game is identical to G except that the simulation fails and bit b’ is set at random if an AMA
nonce r; is used by any uncorrupted user’s oracle II; in two different sessions. If gs is the total number of protocol
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sessions, the probability that a randomly chosen A nonce r; appears twice is g2 /2" for one particular user. Since
there are at most [V users we obtain

i ~ake . ~ake N qg

| Pr[Wing | — Pr[Wing ]| < ETR 2)
This game implies that sid; computed by any uncorrupted user’s oracle I7; remains unique for each new session.
Note that sid is used to generate signatures in the AMA protocol of the compiler. This prevents any replay attacks
of A.
Game Gp:This game is identical to G except that the following rule is added: S chooses ¢5 € [1, gs] as a guess
for the number of sessions invoked before A asks the query Test. If this query does not occur in the ¢3-th session
then the simulation fails and bit b’ is set at random. Let Q be the event that this guess is correct. Obviously,
Pr[Q] = 1/gs. Thus, we get

Pr[Wing®] = Pr[Wing® A Q] + Pr[Wing® A -Q]
= Pr[Wing®|Q] Pr[Q] + Pr[Wing®|-Q] Pr[-Q]

1 1 1
= Pr|Wi a"e+<1—>.
[ rm}‘]s 2 ds

This implies
i ~ake ~ake 1 1
Pr[Wing "] = ¢s (PT[W"E] I 2> +3- 3

Game Gg:ln this game we consider the simulator S as a passive adversary against the KE-security of P that
participates in Ga mei;eyg’lp (S, k), i.e., the Test query of S to an accepted a-fresh oracle IT7 in P is answered with
the real session group key k. In the following we show how S answers the queries of A.

We focus on the construction w.r.t. the adversarial settings (wfs, wem-fs) and (sfs, scm) and describe a simpler
construction for the settings (), wem) and (wbs, wem-bs) at the end of the proof. Note that in case of (wfs, wem-£fs)
and (sfs,scm) the active adversary A is given access to the Corrupt query and can actively participate in the
protocol execution via Send queries in any session which is not a-fresh. Thus, if the guess of S is correct then
no active participation of A in the g3-th session is possible. Also none of the oracles participating in the ¢;-th
session can be asked for a RevealState query, and after these oracles have accepted none of them can be asked for
a RevealKey query either. With these observations in mind we construct S as follows.

S corrupts every user U; € U to obtain the long-lived key pair (sk;, pk;) used in the original protocol P (if
any such keys are defined). Then, S generates all key pairs (sk., pk]) honestly using X.Gen(1"), and provides
the active adversary A with the set of the public keys {pk}, pk; }u,cu. S initializes the list TList and runs A as a
subroutine.

The idea of the reduction is that in all sessions except for the g;-th session S executes the operation of C-AMAp
itself, whereas in the ¢}-th session S asks own Setup query to obtain a transcript T for the operation execution of
P which it extends to a transcript T’ for the simulated operation execution of C—Ap. An entry (sid, L) is saved in
TList for every session processed directly by S whereas (sid, T') is saved for the g&-th session. In both cases sid
specifies the unique session id used in that session. We need also to consider that A can invoke the gZ-th session
either via a Setup or an appropriate Send query. The queries of A are answered by S as follows.

Setup queries: If A invokes a protocol session via a Setup(S) query and the invoked session is not the
gZ-th session then S executes C-AMA; itself and saves (sid, L) in TList where sid is the unique session id
built by A for that session. S can simulate the operation execution efficiently because it knows the long-lived
keys of all users. If the invoked session is the gi-th session then S forwards the received Setup(S) query as
its own query and obtains a transcript T for the execution of P.Setup between the oracles /17 in G which is
composed of the ordered oracles in S. Then S extends T to a transcript T' for the corresponding execution of
C-AMA; .Setup by adding the initial messages of the form {U;|r;}1<i<n. S also builds the corresponding ¢Z-th
session id sid := r]...|r,. Furthermore, for each successive message U;|m in T the simulator computes a
signature o; := X.Sign(sk}, m|sid|pid) and appends the modified message U;|m|o; to T'. Then S asks own
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Test query to any oracle activated via the Setup query in the ¢} -th session and obtains (real) & which it then uses to
compute the AMA token p := fi (vo). Then, S computes o; := X.Sign(sk], u|sid|pid) and appends messages
of the form {U;|o; }1<i<n to T'. S saves (sid, T') in TList and gives T’ to A.

Send queries: By Sendy we define the query of the form Send(II?,S) which invokes a new operation exe-
cution for IT7. Consequently the second Send query to the same oracle I77 should include messages of the form
Uj|r; for each Uj..; who holds an oracle in S. We denote such second query as Send (117, (Ui|ry)|. .. |(Unlr,))
whereby each Uj that is part of (Uj|r;) is different from U;. Note that /I must have received a Send, query
before in order to be able to answer the Send; query.

On any Send, query asked to an oracle IT7 the simulator chooses a random nonce r; € {0,1}" and answers
with Uj|r,.

If a Send; query is asked to an oracle II? in a session which is different from ¢§ then S computes the session
id sid; using nonces from the received query while the nonce r; is already known after the previous Sendy query,
saves (sidj, L) in TList, and replies by executing the next step of the compiled protocol C-AMA;.Setup itself.
Note that if no Send, query was previously asked to IT? then S replies with an empty string since the Send;
query is unexpected.

If IT? receives a Send; query in the gZ-th session then S computes the session id sid; using nonces from the
received query while the nonce r; is already known after the previous Send, query and looks in TList for the entry
of the form (sid$, T'). If such an entry exists then S takes the appropriate response message from T and gives it to
A. This means that S has already asked own Setup query in the ¢} -th session and saved the obtained transcript in
the “patched” form in TList. Note that in the g3 -th session A is restricted to the actions of a passive adversary. If no
entry of the form (sidf, T') exists then A’ asks own Setup(S) query where S is composed of the unused oracles
of the users whose identities are part of the Send; query, and obtains the transcript T of the operation execution
of P.Setup. Similar to the description of the Setup query for the ¢g-th session above S “patches” the transcript T
with digital signatures to obtain the transcript T' for the corresponding operation execution of C—Ap.Setup, saves
(sidf, T') in TList, and replies to A with the appropriate message taken from T'.

On any other valid Send query to an oracle II? the S looks in TList for the entry of the form (sid;, T*). Such
an entry must exist since TList contains such pairs for all session ids of the previously invoked sessions; otherwise
the query cannot be valid due to the uniqueness of the session ids. If S executes the operation for I} itself then
T* = 1 must hold. In this case S executes the next step of C-AMA;.Setup and replies accordingly. Otherwise, S
finds the appropriate message U;|m|o; in T* = T and gives it to A. Note that if T* # | then T* = T' must hold
whereby T’ corresponds to the “patched” transcript saved during the processing of the Send; query for the ¢Z-th
session.

Corrupt queries: If A asks a query of the form Corrupt(U;) then S replies with (sk;, sk}).

RevealState queries: If A asks a query of the form RevealState(I77) then S finds an entry (sid;, T%) in
TList. If T* = L it means that S executes the protocol itself and is, therefore, able to answer this query directly. If
T* = T then S checks whether [T} has already accepted. In this case S asks its own RevealState query to obtain
state] and replies accordingly. Note that if II] has not yet accepted in C-AMA;.Setup then an empty string is
returned.

RevealKey queries: If A asks a query of the form RevealKey(II?) then S checks that IT7 has accepted;
otherwise an empty string is returned. Next, S finds an entry (sidf, T*) in TList. If T* = L then S is able to
answer with K directly since the protocol execution with IT¢ has been done by S. If T* = T’ then the query is
invalid since no RevealKey queries are allowed to the oracles that have accepted in the gZ-th session.

Test query: Note that in this game we are dealing with the Test query asked to an oracle II} that has participated
in the ¢Z-th session. The simulator S already knows k{ since it has already asked own Test query to build the
transcript T straight after the invocation of the ¢Z-th session. Thus, S computes the resulting session group key
K7 := fr:(v1) as specified in C-AMAp, chooses a random bit b € {0, 1} and returns K7 if b = 1 or a random
string sampled from {0, 1}* if b = 0.

This provides a perfect simulation for .A. Since S uses the real & to derive /K7 we can consider this game as a
“bridging step” so that

Pr[Wing®] = Pr[Wing®]. ()
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When dealing with the adversarial settings ((J, wem) and (wbs, wem-bs) the above simulation can be simplified
since no Corrupt queries need to be considered.

More precisely, when A asks for a Setup(S) query S first forwards it to obtain a transcript T of the execution
of P.Setup. Next, S chooses random nonces r; €r {0,1}" for every oracle IT7 in G which is composed of
the ordered oracles in G, computes sid and specifies {U;|r; }1<i<, as the initial messages in T'. Then, for each
successive message U;|m in T the passive adversary A’ computes a signature o; := X.Sign(sk;, m|sid|pid)
and appends the modified message U;|m|o; to T'. Then, S asks own Test query to obtain (real) k which it then uses
to compute the AMA token p and required digital signatures as described above. Finally, appends corresponding
messages to T, saves (sid, T') in TList and gives T to A.

Since in this case we are not dealing with Corrupt queries the simulator can answer all Send queries from the
predefined transcripts. All other queries, i.e., RevealState (only in the setting (wbs, wecm-bs)), RevealKey, and
Test asked by A are answered by S similar to the settings (wfs, wem-fs) and (sfs, scm).

Game Gp:ln this game we consider the simulator S as a passive adversary against the KE-security of P that
participates in Ga met‘:gg (S, k), i.e., the Test query of S to an accepted a-fresh oracle I77 in P is answered with a
random bit string instead of the real key k7. S answers all queries of A exactly as described in Gg. By a “hybrid
argument” we obtain

| Pr[Wing®] — Pr[Wing®]| < Adv®, . (k). (5)

Game Gg:This game is identical to G except that in the gg-th session /K and the AMA token p are replaced by
random values sampled from {0, 1}". Recall that &k used to compute K and y is uniform according to Gpg. Hence,

| Pr{Wind®] — Pr[Wing®]| < 2Adv® (k). (6)

Obviously, in this game A gains no advantage from the obtained information and cannot, therefore, guess b better
than by a random choice, i.e.,

. 1
Pr{Wing®) = 3 ©)
Considering Equations[T]to[7] we get:
Pr[Game®% 0, (1) = b] = Pr[Win§]
Ngq? .
< NSucc$ ™™ (k) + 238 + Pr[Win3*]
Ngq? . 1 1
= NSucc$ (k) + 235 +gs (Pr[Wlngke] - 2) + 3
N 2
< NSucc$ (k) + 235 + quth;e,g 5 (k) +
prf 1
2¢sAdvy (k) + 3
This results in the desired inequality
ake euf —cma N qg ke prf
AV 5 c-mn, () < 2NSucc§ (k) + o1 + 2¢sAdvy, 5 5 (k) + 4gsAdvy (k).
O

Our next theorem shows that C-AMA also provides MA-security for any GKE protocol P. Note that our definition
of MA-security allows malicious participants. Therefore, opposed to the BCPQ compiler, we are not concerned
about the AKE-security of P.

Theorem 2 (MA-Security of C-AMAp). Let P be a GKE protocol and A an active adversary launching at most qs
sessions of C-AMAp. If X is EUF-CMA and F is collision-resistant then C-AMAp is MAGKE, and

Ng2

o + gsSucc® (k).

Succgyu, (k) < NSuccS ™™ (k) +
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Proof. We define a sequence of games G, i = 0, ..., 2 and corresponding events Win"® meaning that .A wins in
G;. The queries made by .4 are answered by a simulator S.
Game Gry:This game is the real game Gameg gy, (A, <) played between S and A. Note that the goal of A is to
achieve that there exists an uncorrupted user U; whose corresponding oracle II; accepts with K7 and another user
U; € pidj that is uncorrupted at the time I accepts and either does not have a corresponding oracle 75 with
(pidj, sidj) = (pid;, sid]) or has such an oracle but this oracle accepts with K3 # K.
Game G:This game is identical to G with the only exception that the simulation fails if .A asks a Send query
on a message U;|m|o (or U;|o) such that o is a valid signature that has not been previously output by an oracle IT7?
before querying Corrupt(U;), i.e., the simulation fails if .4 outputs a successful forgery. According to Equation
we obtain,

| Pr[Wing®] — Pr[Wing?]| < NSucc$ ™" (k) ®)
Game Gp;:This game is identical to Gy except that the simulator aborts if an AMA nonce r; is used by any
uncorrupted user U; in two different sessions. Similar to Equation 2] we get

€))

Note that this prevents attacks where II7 during any session of the AMA protocol receives a replayed message of
the form U;|m|&; or U;|G; where Uj is uncorrupted and &; is a signature computed by its oracle in some previous
session. Note that I does not accept unless it successfully verifies all required o; for all U; € pidj in the
AMA protocol of C-AMA. Having excluded forgeries and replay attacks we follow that for every user U; € pid;
that is uncorrupted at the time I/ accepts there exists a corresponding instance oracle II7 with (pidj ,S id?) =
(pidf, sidy). Thus, according to DeﬁnitionA wins in this game only if any of these oracles has accepted with
K;# K.

Assume that A wins in this game. Then there exist two uncorrupted oracles /1]’ and /I that have accepted with
K? = frs(v1) resp. K ;= fk; (v1) where k resp. k3 are corresponding keys computed during the execution of P
such that K7 # K. Having eliminated forgeries and replay attacks between the oracles of any two uncorrupted
users we follow that messages exchanged between II; and /I have been delivered without any modification.
In particular, oracle II received the signature o; computed on p; = fk; (vp) and IT ; received the signature o;
computed on p; = fs (vo). Since both oracles have accepted we have p; = p;; otherwise oracles cannot have
accepted because signature verification would fail. The probability that A wins in this game is given by

PriK; # K A fre(v0) = frs(vo)] = Prlfis(v1) # fus(01) A fas(vo) = fis(v0)] < gsSucc (k).
Thus

2
| Pr{Wing?] — PriWing?]| < %

Pr[Wing?] < gsSucc®' (). (10)
Considering Equations 8] to[I0] we get the desired inequality

Succggu, (k) = Pr[Wing™]
Ngg

< NSucc (k) + o

+ gsSucc® (k).

8 Conclusion

In this paper we found some problems with the definition of MA-security in the foundational BCPQ model. We
proposed a revised definition which considers malicious participants and unifies many of the well-known informal
notions. Additionally, we extended the (strong) forward secrecy in AKE-security by the symmetrically opposed
notion of (strong) backward secrecy. Further we described the provably secure generic compiler C-AMA that adds
AKE- and MA-security to any GKE protocol which is passively secure (wrt. to an adversary which can change the
delivery order of messages, and delay or drop them).

We refer to our parallel work in [16,38] for further development, in particular, in the light of the contributory
nature of GKE protocols and the appropriate generic solution for this security goal.
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Cryptographic Tools Used by the Compiler C-AMA

Definition 10 (Digital Signature Scheme). A signature scheme ¥ := (Gen, Sign, Verify) consists of the fol-
lowing algorithms:

Gen: A probabilistic algorithm that on input a security parameter 1%, k. € N outputs a secret key sk and a public

key pk.

Sign: A probabilistic algorithm that on input a secret key sk and a message m € {0, 1}* outputs a signature o.
Verify: A deterministic algorithm that on input a public key pk, a message m € {0, 1}* and a candidate signature

o outputs 1 or 0, meaning that the signature is valid or not.
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Definition 11 (EUF-CMA Securit;ﬁ). A digital signature scheme X := (Gen, Sign, Verify) is said to be exis-

tentially unforgeable under chosen message attacks (EUF-CMA) if for any PPT algorithm (forger) F that receives

a public key pk and can access to a signing oracle Sign(sk,-), the probability that F outputs a pair (m, o) such
euf —cma

that Verify(pk,m,o) = 1 but m was never part of a query Sign(sk,m) is negligible. By Succ% s, “*(k) we
denote the probability that F outputs a successful forgery.

In the following we briefly describe the notion of pseudo-random functions. Informally, a pseudo-random
function (PRF) is specified by a random key k, and can be easily computed given this key. However, if k& remains
secret, the input-output behavior of PRF is indistinguishable from that of a truly random function with same domain
and range. The following definition is taken from [29, Definition 3.6.9].

Definition 12 (Efficiently Computable Generalized Pseudo-Random Function Ensemble F). An ensemble of
finite functions F = {{ fi : {0, 132 — {0, 1}”("“)}%{()71%}’iGN where p : N — N is upper-bounded by a
polynomial, is called an (efficiently computable) pseudo-random function ensemble if the following two conditions
hold:

1. Efficient computation: There exists a polynomial-time algorithm that on input k and x € {0, 1} %) returns
Ji(@). )

2. Pseudo-randomness: Choose uniformly k € {0,1}* and a function f in the set of all functions with domain
and range {0, 1}P\¥). Consider a PPT adversary A asking queries of the form Tag(z) and participating in one
of the following two games:

- Game%rf_1 (A, k) where a query Tag(z) is answered with fi.(z),

- Game%rf_o(A7 r) where a query Tag(x) is answered with f(z).
At the end of the execution A outputs a bit b trying to guess which game was played. The output of A is also
the output of the game. The advantage function of A in winning the game is defined as

Adv%rf(li) = max |2 Pr[Game?jf*b(A, k) =b] — 1|,

We say that F' is pseudo-random if Adv‘;{f (k) is negligible.
By an (efficiently computable) pseudo-random function we mean a function f;, € F for some random k € {0,1}*.

Remark 2. As noted in [29] there are some significant differences between using PRFs and the Random Oracle
Model (ROM) [8]. In ROM, a random oracle that can be queried by the adversary is not keyed. Still, the adversary
is forced to query it with chosen arguments instead of being able to compute the result by itself. Later, in the
implementation the random oracle is instantiated by a public function (usually a cryptographic hash function)
that can be evaluated by the adversary directly. To the contrary, when using PRFs, the oracle contains either a
pseudo-random function or a random function. The pseudo-random function is keyed and the key is supposed to be
kept secret from the adversary. This requirement is also preserved during the implementation. Hence, in any case
(theoretical or practical) the adversary is not able to evaluate the pseudo-random function by itself as long as the
key is kept secret. Thus, with PRFs there is no difference between theoretical specification of the function and its
practical instantiation. This is one of the reasons why security proofs based on pseudo-random functions instead
of random oracles can be carried out in the standard model. Another reason is that existence of pseudo-random
functions follows from the existence of one-way permutations, which is a standard cryptographic assumption.

Additionally, we require the following notion of collision-resistance of pseudo-random function ensembles.
This definition is essentially the one used by Katz and Shin [32]. The same property has previously been defined
in [28] and denoted there as fixed-value-key-binding property of a pseudo-random function ensemble. We also refer
to [32] for a possible construction based on one-way permutations and for the proof of Lemmal/l).

8 There exists a stronger security requirement called strong EUF-CMA [2]. It allows F to produce a forgery (m, o) for a
message m that was already queried to the signing oracle, provided that o was not returned by the signing oracle. However,
in our compiler we do not need this stronger property.
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Definition 13 (Collision-Resistance of F'). Let F' be a pseudo-random function ensemble. We say that F is
collision-resistant if there is an efficient procedure Sample such that the following success probability (over all
PPT adversaries A) is a negligible function in k:

kK € {0, 115A
k#KA
fe(v) = frr(v)

Lemma 1. If one-way permutations exist then there exist collision-resistant pseudo-random functions.

v« Sample(1%);
kK — A(1%,v)

Succ®! (k) == max Pr



	On Security Models and Compilers for Group Key Exchange Protocols
	Emmanuel Bresson, Mark Manulis, and Jörg Schwenk



