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Abstract. Group key exchange protocols allow their participants to compute a secret key which can
be used to ensure security and privacy for various multi-party applications. The resulting group key
should be computed through cooperation of all protocol participants such that none of them is trusted to
have any advantage concerning the protocol’s output. This trust relationship states the main difference
between group key exchange and group key transport protocols. Obviously, misbehaving participants in
group key exchange protocols may try to influence the resulting group key, thereby disrupting this trust
relationship, and also causing further security threats. This paper analyzes the currently known security
models for group key exchange protocols with respect to this kind of attacks by malicious participants
and proposes an extended model to remove the identified limitations. Additionally, it proposes an effi-
cient and provably secure generic solution, a compiler, to guarantee these additional security goals for
group keys exchanged in the presence of malicious participants.
Key words: group key exchange, malicious participants, key control, contributiveness, security model,
compiler

1 Introduction

The establishment of group keys is fundamental for a variety of security mechanisms in group applications.
For example, group keys can be utilized by symmetric encryption schemes for the purpose of confidentiality
which is one of the most frequent security requirements in group applications; also message authentication
codes require group keys for the purpose of group authentication and integrity. Thus, it is important to
have mechanisms that provide group members with shared secret keys. In almost 25 years of research on
group key establishment protocols two different classes – group key transport and group key exchange (or
equivalently group key distribution and group key agreement) – became subject of the most scientific papers
in this area. The following informal definitions, originally proposed by Menezes et al. [42] for two-party
protocols and extended here for the group setting, help to understand the fundamental difference between
these classes.

Definition 1 (Group Key Transport). A group key transport (GKT) protocol is a group key establishment
protocol where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s).

The main characteristic of GKT protocols is that the group key is chosen by a single party and then securely
transferred to all group members. This definition leaves open whether the party itself is one of the group
members or some trusted third party (TTP). Also the requirement on secure transfer of group keys forebodes
the existence of secret communication channels between the party that transfers the group keys and other
group members.

Definition 2 (Group Key Exchange). A group key exchange (GKE) protocol is a group key establishment
protocol in which a shared secret is derived by two or more parties as a function of the information con-
tributed by, or associated with, each of these, (ideally) such that no party can predetermine the resulting
value.

Obviously, in GKE protocols all group members have to interact in order to compute the group key. A
minor difference to GKT protocols is that GKE protocols do not require the existence of secure channels
between its participants since no secure transfer takes place. A more important difference is that in GKE
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protocols no party (or a coalition thereof) is allowed to choose the group key on behalf of the whole group.
This requirement implies that in GKE protocols participants do not trust each other during the computation
of the group key and provides the background for the consideration of malicious participants during the
protocol execution whose goal is to influence the resulting value of the group key. Note that the behavior of
malicious participants may strongly deviate from the protocol specification. In case that malicious partici-
pants succeed and enforce the computation of the same value for the group key in two (or more) different
protocol sessions or applications that use the same GKE protocol, new security threats become evident.
For example, if the group key is used for encryption then it would be no more possible to distinguish be-
tween cipher texts produced in different sessions or applications making interference attacks possible, e.g.,
encrypted messages generated by honest participants can be replayed.

In the paradigm of provable security, security analysis must hold in some formal security model. Early
GKE protocols have been analyzed without such formal settings and in a rather heuristic way; some of
them have been, therefore, broken later. In 2001, Bresson et al. [15] introduced the first (computational)
security model for GKE protocols (referred to as the BCPQ model), adapting some ideas by Bellare and
Rogaway [6, 8]. Several variations and refinements have been suggested thereafter [13, 33, 34]; we refer
to [41] for the survey and analysis of many currently known GKE security models. The BCPQ model as-
sumes honest participants and deal with two major security notions. The first notion is authenticated key
exchange (AKE) security which requires the indistinguishability of computed group keys from random keys.
Although this notion has been stated for GKE protocols we stress that similar threats should be prevented
for GKT protocols too. This follows from the general trust assumption that participants of any group key
establishment protocol do not deliberately reveal computed group keys to the adversary. The second notion
is mutual authentication (MA) security originating from [6] and meaning that two parties authenticate bi-
laterally: it requires that all protocol participants are ensured to actually compute the same key. A number
of papers, e.g., [2, 21, 33, 43], point out that the consideration of dishonest participants (either curious or
malicious) is of prime importance in the group setting, because such misbehaving insiders can have catas-
trophic effects on the protocol security. For example, [21] noticed that some protocols proven secure in the
BCPQ-like models are vulnerable to unknown key-share attacks – in which the attacker is believed (from
some participant’s view) to be a group member. In case of MA-security, malicious participants may try to
disrupt honest participants so that they compute different keys but cannot notice this.

Mitchel et al. in [43] first mentioned the issue of key control by which a misbehaving participant can
influence the value of the key. A related notion called contributiveness was proposed by Ateniese et al. [2]
requiring that all protocol participants equally contribute to the computation of the group key. These re-
quirements implicitly state a difference between GKT and GKE protocols in the spirit of Definitions 1 and
2. The main reason is that key control and contributiveness assume that none of the protocol participants is
trusted to choose the group key on behalf of other participants. However, the way towards formal definitions
of these requirements is not obvious.

A weaker security model (as in [12]) would consider protocol participants that have biased pseudo-
random generators and a curious adversary obtaining some extra information about the key. In this paper we
consider a stronger setting (in spirit of [9]), where malicious participants try to influence honest participants
computing some special value as a group key (including the so-called key replication attacks [39]).

In addition to usual corruptions where the adversary obtains full control over the parties we also consider
strong corruptions [13,46,49], that is, capabilities of the adversary to reveal internal memory of participants.
We also consider strong corruptions in the context of a curious adversary that reveals (but not modifies)
ephemeral secrets of honest participants. Currently, security against strong corruptions is considered in a
rather restrictive way, as part of the strong forward secrecy requirement in the context of AKE-security [13].
In order to talk about security of GKE protocols against strong corruptions in general we expand these
considerations for other requirements within our security model.

Contributions and Organization This paper provides an extended treatment of security of GKE protocols
in the presence of malicious participants and strong corruptions. In other words, we formally define what a
“secure group key” means in such scenario. As a starting motivation, in Sections 2 and 2.1 we first discuss
why currently known security models for GKE protocols are not mature enough to deal with malicious
participants and strong corruptions. Then, in Section 3 we extend the notions of AKE- and MA-security
and propose a new definition of contributiveness which models the main difference between GKE and GKT
protocols in the sense of Definition 2. In Section 4 we describe the relationship between our formal defini-
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tions of MA-security and contributiveness through some informally stated requirements from the previous
literature. To prove the soundness and feasibility of our extensions, in Section 5 we propose a generic so-
lution (compiler) which turns any AKE-secure GKE protocol into an enhanced protocol, which provably
satisfies our advanced security requirements under standard cryptographic assumptions.

2 Related Work

General Security Notions for GKE Protocols AKE-security as defined in [13, 15, 34] subsumes some
informal security goals defined in the literature: key secrecy [23] or implicit key authentication [42] which
ensures that no party except for legitimate participants learns the established group key, security against
impersonation attacks [17] or a related notion of entity authentication [6] requiring that an adversary must
not be able to replace an honest participant in the execution of the protocol; resistance against known-
key attacks [16, 51] meaning that an adversary knowing group keys of previous sessions cannot compute
subsequent session keys, key independence [36] meaning that an adversary knowing a proper subset of group
keys must not be able to discover any other group keys. Also it subsumes (perfect) forward secrecy [23, 30,
42] which requires that the disclosure of long-lived keys must not compromise the secrecy of the previously
established group keys. The latter can be strengthened by the requirement of strong forward secrecy in which
the adversary in addition to the long-lived keys reveals the internal data of participants such as ephemeral
secrets used during the protocol execution.

The currently available formal definition of MA-security in [15] has been designed to cover the informal
definitions of key confirmation or explicit key authentication [6, 42, § 12.2].

According to [21], however, these definitions do not consider security against unknown key-share at-
tacks [10,23], in which a corrupted participant can make an honest participant believe that the key is shared
with one party though in fact it is shared with another party.

Informal Security Treatment of Key Control and Contributiveness There have been only few attempts
to handle malicious participants in GKE protocols. Misbehavior of protocol participants was first in [43]: the
authors described the issue of key control. They suggested to use hash functions in order to commit on the
values (ephemeral secrets) used in the group key computation (without proving security of this suggestion).
However, when considering strong corruptions commitments do not provide sufficient security since the
committed secret value can be revealed as part of the participant’s internal state. Independently, Ateniese et
al. [2] introduced a more general notion of unpredictability (which intuitively implies security against key
control). Further, they proposed a related notion called contributory group key agreement: the property by
which each participant equally contributes to the resulting group key and guarantees its freshness. Based on
the definition of contributiveness [2] specifies complete group key authentication as the property by which
any two parties compute the same key only if all other parties have contributed to it. Moreover, they defined
verifiable contributory GKE protocols where each participant must be assured of every other participant’s
contribution. Subsequent security models have tried to formalize this approach. Though the protocols in [2]
have been broken in [44] we stress that the notions are still worth being formalized.

The KS Model Katz and Shin [33] proposed security definitions against malicious participants in a BCPQ-
like model: briefly speaking any user Ui may have many instance oracles Πs

i , s ∈ N. Each oracle represents
Ui in one of many possible concurrent protocol executions. All participants of the same protocol execution
are considered as partners. First, the KS model says that A impersonates (uncorrupted) Uj to (accepting)
Πs

i if Uj belongs to the (expected) partners of Πs
i , but in fact no oracle Πt

j is partnered with Πs
i . In other

words, the instance Πs
i computes the session key and Ui believes that Uj does so, but in fact an adversary

has participated in the protocol on behalf of Uj . Then, the authors call a protocol secure against insider
impersonation attacks if for any party Uj and any instance Πs

i , the adversary cannot impersonate Uj to Πs
i ,

under the (stronger) condition that neither Uj nor Ui is corrupted at the time Πs
i accepts.

The BVS Model Bohli et al. [9] proposed another extension (which we refer to as the BVS model) to-
wards security goals in the presence of malicious participants. The process dealing with key control and
contributiveness, at an informal level, runs as follows. In a first stage, the adversary A interacts with the
users and may corrupt some of them; A then specifies an unused instance oracle Πs

i and a subset K in the
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session key space K. In the second stage, the adversary tries to make Πs
i accept a session key k ∈ K but is

not allowed to corrupt Ui. The BVS model defines a GKE protocol as being t-contributory if the adversary
succeeds with only negligible probability, with the total number of corruptions remains (strictly) less than
t. A n-contributory protocol between n participants is called a key agreement.

2.1 Discussion of the KS and BVS Models

Missing Key Control and Contributiveness in the KS Model Katz and Shin proposed a compiler to turn
any AKE-secure protocol (in the sense of BCPQ) into a protocol secure in their extended model. In the
following we illustrate how malicious participants can predict the resulting value of the group key, that is,
the KS model does not provide key control and contributiveness.

The KS compiler uses a pseudo-random function fk with k ∈R {0, 1}κ and runs (intuitively) as follows.
Each player acknowledges the key ki obtained in the input protocol by signing and sending a token acki :=
fki

(v0) where v0 is a public value. If all verifications match, players terminate the compiled protocol with
key Ki := fki

(v1) where v1 6= v0 is another public value. We argue that the compiler does not ensure
unpredictability and contributiveness since Ki may be predictible as soon as ki is, and Ki is not composed
of each participant’s contribution if ki is not.

Absence of Strong Corruptions in the BVS Model A first drawback of the BVS model is that A is not
adaptive in her choice of Πs

i , because she is required to commit to it in the first stage (not in the second).
The second, main drawback is that strong corruptions are not allowed: therefore, contributiveness does not
capture attacks in which A tries to influence the session key using the (passive) knowledge of the internal
states of the honest oracles (but without knowing their long-term secrets).

3 Our Extended Security Model

In the following we propose a security model for GKE protocols that includes extended security definitions
concerning MA-security and contributiveness, while taking into account strong corruptions. Similar to [9,
33, 34] our model assumes that the communication channel is fully controlled by the adversary which
can simply refuse to deliver protocol messages (even those originated by honest participants). Therefore,
our definitions do not deal with the denial-of-service attacks and fault-tolerance issues but rather aim to
recognize that the actual protocol execution deviates from the original specification and prevent that an
honest participant accepts a “biased” group key.

3.1 Protocol Participants, Variables

Users, Instance Oracles Similar to [13] U is a set of N users. Each user Ui ∈ U holds a long-lived key
LLi. In order to handle participation of Ui in distinct concurrent protocol executions we consider that Ui

has an unlimited number of instances called oracles; Πs
i , with s ∈ N, denotes the s-th instance oracle of

Ui.

Internal States Every Πs
U maintains an internal state information states

U which is composed of all
private, ephemeral information used during the protocol execution. The long-lived key LLU is, in nature,
excluded from it (moreover the long-lived key is specific to the user, not to the oracle).

Session Group Key, Session ID, Partner ID In each session we consider a new group G of n ∈ [1, N ]
participating oracles. Each oracle in G is called a group member. By Gi for i ∈ [1, n] we denote the index
of the user related to the i-th oracle involved in G (this i-th oracle is denoted Π(G, i)). Thus, for every
i ∈ [1, n] there exists Π(G, i) = Πs

Gi
∈ G for some s ∈ N. Every participating oracle Πs

U ∈ G computes
the session group key ks

U ∈ {0, 1}κ. Every session is identified by a unique session id sids
U . This value is

known to all oracles participating in the same session. Similarly, each oracle Πs
U ∈ G gets a value pids

U

that contains the identities of participating users (including U ), or formally

pids
U := {UGj

| Π(G, j) ∈ G, ∀j = 1, . . . , n}.

We say that two oracles, Πsi
i and Π

sj

j , are partnered if Ui ∈ pid
sj

j , Uj ∈ pidsi
i , and sidsi

i = sid
sj

j .
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Instance Oracle States An oracle Πs
U may be either used or unused. The oracle is considered as unused

if it has never been initialized. Each unused oracle Πs
U can be initialized with the long-lived key LLU .

The oracle is initialized as soon as it becomes part of some group G. After the initialization the oracle
is marked as used, and turns into the stand-by state where it waits for an invocation to execute a protocol
operation. Upon receiving such invocation the oracle Πs

U learns its partner id pids
U (and possibly sids

U ) and
turns into a processing state where it sends, receives and processes messages according to the description
of the protocol. During the whole processing state the internal state information states

U is maintained by
the oracle. The oracle Πs

U remains in the processing state until it collects enough information to compute
the session group key ks

U . As soon as ks
U is computed Πs

U accepts and terminates the protocol execution
meaning that it would not send or receive further messages. If the protocol execution fails (due to any
adversarial actions) then Πs

U terminates without having accepted, i.e., the session group key ks
U is set to

some undefined value.

3.2 Definition of a Group Key Exchange Protocol

Definition 3 (GKE Protocol). A group key exchange protocol P consists of the key generation algorithm
KeyGen, and a protocol Setup defined as follows:

P.KeyGen(1κ): On input a security parameter 1κ each user in U is provided with a long-lived key LLU .
P.Setup(S): On input a set S of n unused oracles a new group G is created and set to be S, then a
probabilistic interactive protocol is executed between oracles in G.

We call P.Setup an operation. We say that a protocol is correct if all oracles in G accept with the same
session group key k. We assume it is the case for all protocols in this paper.

3.3 Adversarial Model

Queries to the Instance Oracles We now consider an adversary A which is a Probabilistic Polynomial-
Time (PPT) algorithm having complete control over the network. A can invoke protocol execution and
interact with protocol participants via queries to their oracles.

Execute(S): This query modelsA eavesdropping the honest operation execution of P.Setup. P.Setup(S)
is executed and A is given the transcript of the execution.

Send(Πs
U ,m): This query models A sending messages to the oracles. A receives the response which Πs

U

would have generated after having processed the message m according to the description of P. The
adversary can ask an oracle Πs

U to invoke P.Setup with the oracles in S via the query of the form
Send(Πs

U ,S) which gives A the first message that Πs
U would generate in this case. Thus, using Send

queries the adversary can actively participate in P.Setup.
RevealKey(Πs

U ): A is given the session group key ks
U . This query is answered only if Πs

U has accepted.
RevealState(Πs

U ): A is given the internal state information states
U .

Corrupt(U): A is given the long-lived key LLU .
Test(Πs

U ): This query is used to model the AKE-security of a protocol. It can be asked by A as soon as
Πs

U accepts, but only once in A’s execution. The query is answered as follows: The oracle generates a
random bit b. If b = 1 then A is given ks

U , and if b = 0 then A is given a random string.

We say that Πs
U is a malicious participant if the adversary has previously asked the Corrupt(U) query.

In all other cases Πs
U is honest. We say that the adversary is curious if it asks a RevealState(Πs

U ) query for
some honest Πs

U . This is possible since long-lived keys are separated from the ephemeral secrets stored in
states

U .

3.4 Security Goals

AKE-Security with Strong Forward Secrecy As defined in [13] strong forward secrecy states that AKE-
security of previously computed session keys is preserved if the adversary obtains long-lived keys of proto-
col participants and internal states of their oracles in later protocol sessions.

Definition 4 (Oracle Freshness). In the execution of P the oracle Πs
U is fresh if all of the following holds:
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1. no Ui ∈ pids
U is asked for a Corrupt query prior to a query of the form Send(Πsj

j ,m) such that
Uj ∈ pids

U before Πs
U and all its partners accept,

2. neither Πs
U nor its partners are asked for a RevealState query before Πs

U and all its partners accept,
3. neither Πs

U nor any of its partners is asked for a RevealKey query after having accepted.

We say that a session is fresh if all participating oracles are fresh.

Note that in our model each Πs
U is bound to one particular protocol execution (session). Thus, Πs

U remains
fresh if RevealState and RevealKey queries have been asked to other oracles owned by U , that is to oracles
participating in other sessions. Hence, in contrast to [13] (and [34]) our definition is stronger since it allows
the adversary to obtain knowledge of internal states from earlier sessions too.

Definition 5 (AKE-Security). Let P be a GKE protocol from Definition 3 and b a uniformly chosen bit.
Consider an active adversary A participating in game Gameake−b

sfs,P (κ) defined as follows:

– after initialization, A interacts with instance oracles using queries;
– at some point A asks a Test query to a fresh oracle Πs

U which has accepted, and receives either
k1 := ks

U (if b = 1) or k0 ∈R {0, 1}κ (if b = 0);
– A continues interacting with instance oracles;
– when A terminates, it outputs a bit trying to guess b.

The output ofA is the output of the game. The advantage function (over all adversaries running within time
κ) in winning this game is defined as:

Advake
sfs,P(κ) :=

∣∣∣2 Pr[Gameake−b
sfs,P (κ) = b]− 1

∣∣∣
A GKE protocol P is AKE-secure with strong forward secrecy (AGKE-sfs) if this advantage is negligible.

MA-Security Our definition differs from the one in [13,15] which does not consider malicious participants
and curious adversaries and is vulnerable to unknown key-share attacks.

Definition 6 (MA-Security). Let P be a correct GKE protocol and Gamema
P (κ) the interaction between the

instance oracles and an active adversaryAwho is allowed to query Send, Execute, RevealKey, RevealState,
and Corrupt. We say that A wins if at some point during the interaction there exist an uncorrupted user Ui

whose instance oracle Πsi
i has accepted with ksi

i and another user Uj with Uj ∈ pidsi
i that is uncorrupted

at the time Πsi
i accepts, such that

1. it exists no instance oracle Π
sj

j with (pidsj

j , sid
sj

j ) = (pidsi
i , sidsi

i ), or
2. it exists an instance oracle Π

sj

j with (pidsj

j , sid
sj

j ) = (pidsi
i , sidsi

i ) that accepted with k
sj

j 6= ksi
i .

The maximum probability of this event (over all adversaries running within time κ) is denoted Succma
P (κ).

We say that a GKE protocol P is MA-secure (MAGKE) if this probability is a negligible function of κ.

This definition subsumes informal requirements of unknown key-share resilience [10, 23], key confir-
mation [42], and the original notion of mutual authentication [6] in the context of group key exchange
protocols as claimed in Section 4.

Contributiveness In the following we propose a definition which deals with the issues of key control,
contributiveness and unpredictability of session group keys in case of strong corruptions; this, again, is
important for the security of GKE protocols in the assumed trust relationship. Informally, we consider an
active PPT adversary which is allowed to corrupt up to n − 1 group members and reveal internal states of
all n oracles during the execution of P aiming to achieve that there exists at least one uncorrupted group
member whose oracle accepts the session group key chosen by the adversary. In particular, our definition
prevents malicious participants from being able to influence honest participants to accept some previously
used session group key in a later session (this includes so-called key replication attacks [39]). We stress that
considering strong corruptions in the following definition is important, since they are also considered in
the definitions of AKE- and MA-security. Note also that any GKE protocol satisfying our strong definition
implicitly prevents key control and provides contributiveness for the same goal where only weak corruptions
are considered (as in [9]).
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Definition 7 (Contributiveness). Let P be a correct GKE protocol and A an adversary running in two
stages, prepare and attack, that interacts with the instance oracles in the following game Gamecon

P (κ):

– A(prepare) is given access to the queries Send, Execute, RevealKey, RevealState, and Corrupt. At
the end of the stage, it outputs k̃ ∈ {0, 1}κ, and some state information St. After A makes its output
and all previously asked queries are processed the following sets are built: Gus consisting of all honest
used oracles, Gstd consisting of all honest oracles that are in the stand-by state (Gstd ⊆ Gus), and Ψ
consisting of session ids sidsi

i for every Πsi
i ∈ Gus. Then A is invoked for the attack stage.

– A(attack, St) is given access to the queries Send, Execute, RevealKey, RevealState, and Corrupt. At
the end of the stage A outputs (s, U).

The adversary A wins in Gamecon
A,P(κ) if all of the following holds:

1. Πs
U is terminated, has accepted with k̃, no Corrupt(U) has been asked, Πs

U 6∈ Gus\Gstd and sids
U 6∈ Ψ .

2. There are at most n− 1 corrupted users Ui having oracles Πsi
i partnered with Πs

U .

The maximal probability (over all adversaries running within time κ) in winning the game is defined as

Succcon
P (κ) := Pr[A wins in Gamecon

P (κ)]

We say that a GKE protocol P is contributory (CGKE) if this probability is a negligible function of κ.

Comments The first requirement ensures that Πs
U belongs to an uncorrupted user. The condition Πs

U 6∈
Gus \ Gstd prevents the case where A while being an operation participant outputs k̃ for the still running
operation which is then accepted by Πs

U that participates in the same operation (this is not an attack since
participants do not compute group keys synchronously). Note that Gus \ Gstd consists of all oracles that
at the end of the prepare stage have already terminated or remain in the processing state. Similarly, the
condition sids

U 6∈ Ψ prevents that A while being in the attack stage outputs (s, U) such that Πs
U has

accepted with k̃ already in the prepare stage; otherwise as soon as Πs
U computes some ks

U in the prepare
stage A can trivially output k̃ = ks

U . The second requirement allows A to corrupt at most n − 1 (out of
totally n) participants in the session where Πs

U accepts with k̃.
Note also that U must be uncorrupted but curious A is allowed to reveal the internal state of Πs

U during
the execution of the attack stage (this is because our model separates LLU from states

U ). Also, due to the
adaptiveness and strong corruptions the adversary in this game seems to be strictly stronger3 than in [9].

The following example highlights this idea. We consider the well-known two-party Diffie-Hellman (DH)
key exchange [22], and show that if a malicious participant is able to (passively) reveal internal states of
the oracles (strong corruptions) then it has full control over the obtained key. Let U1 and U2 have their
corresponding oracles Πs1

1 and Πs2
2 . They choose ephemeral secret exponents x1 and x2, then exchange

the (authenticated) values gx1 and gx2 , respectively, and finally compute the key k := gx1x2 . Now assume
U1 is malicious. She specifies k̃ as gx̃ for some chosen x̃ before the execution of the protocol. Since the
communication model is asymmetric (this is also the common case in praxis) U1 waits to receive gx2 sent
by the honest U2, then queries RevealState(Πs2

2 ) to obtain x2 as part of the internal state of Πs2
2 , and finally

computes x1 := x̃/x2 and sends gx1 to U2. It is easy to see that U2 accepts with k := (gx1)x2 = gx̃ = k̃. As
observed in [40] similar attacks can be found against many currently known group key exchange protocols
(that are extensions of the original DH protocol), e.g., [3–5, 17, 20, 24, 26, 31, 32, 34, 37, 38, 45, 48, 50].

3 Definition 7 ensures unpredictability of group keys and is sufficient for preventing (application interference) attacks
resulting from the same group key being computed twice. However, (similar to [9]) we do not deal with the unpre-
dictability of some bits of the group key. Independent of the question on reasonability of this attack (since its threats
are not obvious), it is impossible to achieve such decisional contributiveness can for the asymmetric communication
and strong corruptions with the same bounds as in Definition 7, i.e., up to n−1 corruptions and possible RevealState
queries to all n oracles. Note that during the protocol execution there are no secrets from the adversarial perspective.
Thus, intuitively, decisional contributiveness is related to the problem of asynchronous distributed consensus for
probabilistic algorithms without trusted parties for which a theoretical bound of at most (n− 1)/3 corrupted parties
exists, e.g., [11, 18, 19]. On the other hand, in the weak corruption model (without RevealState queries) decisional
contributiveness can be easily achieved, e.g., via (hash) commitments as in [35, 43], whereas strong corruptions can
reveal the committed secrets as part of states

U .
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4 Unifying Relationship of MA-Security and Contributiveness

In this section we present some claims to illustrate that given definitions of MA-security and contributive-
ness unify many related informal definitions proposed in the previous literature, particularly in [2, 10, 42].
Note that missing formalism in the informal definitions allows only argumentative proofs.

Claim 1 If P is a MAGKE protocol then it provides key confirmation and mutual authentication (explicit key
authentication) in the sense of [42, Def. 12.6-12.8], i.e., every legitimate protocol participant is assured of
the participation of every other participant, and all participants that have accepted hold identical session
group keys.

Proof (informal). If P does not provide key confirmation and (implicit) key authentication then there exists
at least one honest participant Ui ∈ G whose oracle Πsi

i has accepted with a session group key ksi
i and there

exists at least one another honest participant Uj ∈ pidsi
i whose oracle Π

sj

j has accepted with a different
session group key k

sj

j 6= ksi
i . According to Definition 6 this is a successful attack against the MA-security

of P. This, however, contradicts to the assumption that P is a MAGKE protocol.

Claim 2 If P is a MAGKE protocol then it is resistant against unknown key-share attacks in the sense of [10,
Sec. 5.1.2], i.e., the adversary A cannot make one protocol participant, say Uj , believe that the session
group key k is shared with A when it is in fact shared with a different participant Ui.

Proof (informal). With respect to our model we assume that oracles Π
sj

j and Πsi
i participate in the protocol

on behalf of Uj and Ui, respectively. If an unknown key-share attack occurs then Π
sj

j and Πsi
i accepted

with the identical session group k, but since Π
sj

j believes that the key is shared with A we conclude that
Ui 6∈ pid

sj

j must hold (otherwise after having accepted Uj would believe that the key is shared with Ui)
whereas Uj ∈ pidsi

i . This implies (pidsj

j , sid
sj

j ) 6= (pidsi
i , sidsi

i ). On the other hand, P is by assumption
MAGKE. Thus, according to Definition 6 for any Uj ∈ pidsi

i there must exist a corresponding oracle Π
sj

j

such that (pidsj

j , sid
sj

j ) = (pidsi
i , sidsi

i ). This is a contradiction.

Claim 3 If P is a CGKE protocol then its output is unpredictable by any subset of n− 1 participants.

Proof (informal). If the output of P is predictable by a subset G̃ ⊂ G of n − 1 protocol participants then
there exists k̃ which was predicted by G̃ and accepted by some oracle Πs

U of an uncorrupted user U ∈ G \G̃.
However, this implies that there exists an adversary A who corrupts up to n − 1 users whose oracles
are partnered with Πs

U and predicts the session group key accepted by Πs
U . This is a contradiction to the

assumption that P is a CGKE protocol.

Claim 4 If P is a CGKE protocol then P is contributory in the sense of [2, Def. 3.2], i.e., each participant
equally contributes to the resulting session group key and guarantees its freshness.

Proof (informal). If P is not contributory then there exists an honest oracle Πs
U who accepts a session group

key without having contributed to its computation, i.e., the session group key accepted by Πs
U is composed

of at most n − 1 contributions. This, however, implies that there exists an adversary A who corrupts up to
n − 1 users and influences Πs

U to accept a session group key built from contributions of these corrupted
users. This is a contradiction to the assumption that P is a CGKE protocol.

Claim 5 If P is a CGKE and a MAGKE protocol then P provides complete group key authentication in the sense
of [2, Def. 6.3], i.e., any two participants compute the same session group key only if all other participants
have contributed to it.

Proof (informal). Since P is a CGKE protocol then according to the previous claim P is contributory. Hence,
none of the honest users accepts the key without having contributed to its computation. Since P is a MAGKE
protocol all honest users accept the same session group key. Hence, all honest users have contributed to the
session group key. Therefore, there can be no pair of users who accept the same group key which is not
contributed to by all other honest users. Thus, P provides complete group key authentication.
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The notion of verifiable contributiveness [2] is relevant to MA-security, since this mechanism is designed
for providing confirmation (and thus, verification) that the protocol actually fits the security requirements.
In the case of contributory protocols, it is intuitively true that the MA-security guarantees that the contribu-
tiveness was satisfied (otherwise, some player would be able to check that his own contribution was not
properly taken into account). Hence,

Claim 6 If P is a CGKE and MAGKE protocol then P is verifiable contributory in the sense of [2, Def. 7.3],
i.e., each participant is assured of every other participant’s contribution to the group key.

Proof (informal). Since P is a MAGKE protocol all honest users accept the same session group key. Since P
is also a CGKE protocol and, therefore, contributory the accepted group key is contributed to by each honest
user.

5 Our Compiler for MA-Security and Contributiveness

In this section we propose a compiler which can be used to turn any AKE-secure GKE protocol into a GKE
protocol which is additionally MA-secure and provides contributiveness4.

Our compiler denoted C-MACON can be seen as an extension of the compiler in [33] that according to
our model satisfies the requirement of MA-security5 but not of contributiveness. If P is a GKE protocol, by
C-MACONP we denote the compiled protocol.

In the following, we assume that each message sent by Πs
U can be parsed as U |m consisting of the

sender’s identity U and a message m. Additionally, an authentication token σ, e.g., a digital signature on m,
can be attached. Our compiler is formally described in Definition 8: it is based on a one-way permutation π, a
collision-resistant pseudo-random function ensemble F , and an existentially unforgeable digital signature Σ
(for completeness, we provide more details on these well-known primitives in Appendix D). The description
holds in the perspective of one particular operation execution (session). Therefore, by Πs

i ∈ G we consider
the i-th oracle in G assuming that there exists an index j ∈ [1, N ] such that Uj owns Πs

i . Similar, by sk′i and
pk′i (resp., ski and pki) we denote the private and public keys of Uj used in the compiled protocol (resp., in
the underlying protocol).

Main Ideas After computing the session group key k in the underlying protocol P participants execute
C-MACON. In its first communication round they exchange randomly chosen nonces ri that are then con-
catenated into a session id sid (this is a classical way to define unique session ids). Then, each participant
iteratively computes values ρ1, . . . , ρn by adequately using the pseudo-random function f, in such a way
that every random nonce (contribution of each participant) is embedded into the computation of K := ρn.
The intuition is that malicious participant cannot influence this computation. The second communication
round of C-MACON is used to ensure key confirmation. For this purpose we apply the same technique as
in [33], i.e., every participant computes a key confirmatory token µi = fK (v1) using a public input value
v1, signs it and sends it to other participants. After verifying signatures each party accepts with the session
group key K = fK (v2) with public input value v2 6= v1. All intermediate values are then erased.

Definition 8 (Compiler C-MACON). Let P be a GKE protocol from Definition 3, π : {0, 1}κ → {0, 1}κ a per-
mutation, F :=

{
fk

}
k∈{0,1}κ , κ ∈ N a function ensemble with domain and range {0, 1}κ, and Σ := (Gen,

Sign, Verify) a digital signature scheme. A compiler for MA-security and n-contributiveness, denoted
C-MACONP, consists of the algorithm INIT and a two-round protocol MACON defined as follows:

INIT: In the initialization phase each Ui ∈ U generates own private/public key pair (sk′i, pk′i) using
Σ.Gen(1κ). This is in addition to any key pair (ski, pki) used in P.

MACON: After an oracle Πs
i computes ks

i in the execution of P it proceeds as follows.
Round 1: It chooses a random MACON nonce ri ∈R {0, 1}κ and sends Ui|ri to every oracle Πs

j with

Uj ∈ pids
i . After Πs

i receives Uj |rj from Πs
j with Uj ∈ pids

i it checks whether |rj |
?= κ. If this

verification fails then Πs
i terminates without accepting;

4 For completeness we mention that with the compiler proposed by Katz and Yung in [34] there exists a generic
solution which can be used to achieve AKE-security for any GKE protocol which is secure against passive attacks.

5 The proof of this statement can be directly derived from the proof of MA-security of our compiler (Theorem 2).
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Round 2: Otherwise, after having received and verified these messages from all other partnered ora-
cles it computes ρ1 := fks

i⊕π(r1)
(v0) and each ρl := fρl−1⊕π(rl)

(v0) for all l ∈ {2, . . . , n} where
v0 is a public value. Then, it defines the intermediate key Ks

i := ρn and sids
i := r1| . . . |rn and

computes a MACON token µi := fKs
i
(v1) where v1 is a public value, together with a signature

σi := Σ.Sign(sk′i, µi|sids
i |pids

i ). Then, it sends Ui|σi to every oracle Πs
j with Uj ∈ pids

i and
erases every other private information from states

i (including ks
i and each ρl, l ∈ [1, n]) except

for Ks
i .

After Πs
i receives Uj |σj from Πs

j with Uj ∈ pids
i it checks whether Σ.Verify(pk′j , µi|sids

i |pids
i ,

σj)
?= 1. If this verification fails then Πs

i terminates without accepting; otherwise it accepts with
the session group key Ks

i := fKs
i
(v2) where v2 6= v1 is another public value, after having erased

every other private information from states
i (including Ks

i ).

Note that C-MACON can be considered as an add-on protocol that should be executed after the execution
of P. Moreover, with the MACON nonces we achieve not only the uniqueness of session ids but also the
randomization and contributiveness (via successive evaluations of f) for the intermediate value K , for the
key confirmatory MACON tokens (as in [33]) and for the derived resulting session group key K.

5.1 Complexity of C-MACON

Obviously, C-MACON requires two communication rounds. This is similar to the KS compiler [33] in case
that no session ids are predefined and have to be negotiated first. Each participant must generate one digital
signature and verify n signatures where n is the total number of session participants. This is also similar to
the KS compiler. C-MACON achieves contributiveness at an additional cost of n executions of the one-way
permutation π and n executions of the pseudo-random function f per participant.6

5.2 Security Analysis

Let P be a GKE protocol from Definition 3. For this analysis we require Σ to be existentially unforgeable
under chosen message attacks (EUF-CMA) according to Definition 13, π to be one-way as in Definition 9,
and F to be collision-resistant pseudo-random according to Definitions 10 and 11. Remind that we as-
sume ephemeral secret information being independent of the long-lived key; that is, states

U may contain
ephemeral secrets used in P, the session key ks

U computed in P, and ρ1, . . . , ρn together with some (imple-
mentation specific) temporary variables used to compute these values. Note that states

U is erased at the end
of the protocol. By contrast, temporary data used by Σ.Sign(sk′U ,m) are dependent from the long-lived
key and thus should be executed under the same protection mechanism as sk′U , e.g., in a smart card [13]7.
Let qs be the total number of executed protocol sessions during the attack.

The following theorem (whose proof appears in Appendix A) shows that C-MACONP preserves the AKE-
security with strong forward secrecy of the underlying protocol P.

Theorem 1 (AKE-Security of C-MACONP). For any AGKE-sfs protocol P if Σ is EUF-CMA and F is
pseudo-random then C-MACONP is also a AGKE-sfs protocol, and

Advake
sfs,C-MACONP(κ) ≤ 2NSucceuf−cma

Σ (κ) +
Nq2

s

2κ−1
+ 2qsAdvake

sfs,P(κ) + 2(N + 2)qsAdvprf
F (κ).

The following theorems (whose proofs appear in Appendix B and C respectively) concern the MA-
security and the contributiveness of C-MACONP in the presence of malicious participants and strong corrup-
tions.

Theorem 2 (MA-Security of C-MACONP). For any GKE protocol P if Σ is EUF-CMA and F is collision-
resistant then C-MACONP is MAGKE, and

Succma
C-MACONP(κ) ≤ NSucceuf−cma

Σ (κ) +
Nq2

s

2κ
+ qsSucccoll

F (κ).

6 Note that costs of XOR operations are usually omitted in the complexity analysis if public-key cryptography op-
erations are present. Note also that pseudo-random functions can be realized using techniques of the symmetric
cryptography massively reducing the required computational effort.

7 Smart cards have limited resources. However, in C-MACON each Πs
U has to generate only one signature.
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Theorem 3 (Contributiveness of C-MACONP). For any GKE protocol P if π is one-way and F is collision-
resistant pseudo-random then C-MACONP is CGKE, and

Succcon
C-MACONP(κ) ≤ Nq2

s + Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) + NqsSuccow

π (κ).

Remark 1. Note that the contributiveness of C-MACONP depends neither on AKE-security of P nor on the
security of the digital signature scheme Σ. Hence our compiler can also be used for unauthenticated GKE
protocols by omitting digital signatures of exchanged messages. However, in this case it would guarantee
only contributiveness but not MA-security in the presence of malicious participants. The latter can be only
guaranteed using digital signatures (as also noticed in [33] for their definition of security against insider
attacks). Note also that C-MACONP provides contributiveness in some even stronger sense than required in
Definition 7 (for details we refer to Remark 3 in Appendix C).

6 Conclusion

In this paper we have addressed the main difference in the trust relationship between participants of group
key exchange (GKE) and whose of group key transport (GKT) protocols, namely, the question of key con-
trol and contributiveness. This has been done from the perspective of malicious participants and powerful
adversaries who are able to reveal the internal memory of honest participants. The proposed security model
based on the extension of the well-known notion of AKE-security with strong forward secrecy from [13]
towards additional requirements of MA-security and contributiveness seems to be stronger than the previ-
ous models for group key exchange protocols that address similar issues. The described compiler C-MACON
satisfies these additional security requirements and extends the list of currently known compilers for GKE
protocols, i.e., the compiler for AKE-security by Katz and Yung [34] and the compiler for security against
“insider attacks” by Katz and Shin [33] (that according to our model provides MA-security but not con-
tributiveness). Finally, group key exchange protocols that satisfy our stronger interpretation of key control
and contributiveness also provide resilience in the following (weaker) cases: (i) where participants do not
have intentions to control the value of the group key, e.g., do not know that their source of randomness is
biased (as in [12]), and (ii) where the adversary is given access only to the weak corruptions (as in [9]).
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A Proof of Theorem 1

In our proofs we use a well-known proving technique called sequence of games [47] (see also Appendix C.1)
which allows to reduce complexity of “reductionist” security proofs for complex cryptographic protocols,
and became meanwhile standard for security proofs of group key exchange protocols, e.g., [1,13,14,25,26,
35].

Theorem 1 (AKE-Security) For any AGKE-sfs protocol P if Σ is EUF-CMA and F is pseudo-random
then C-MACONP is also a AGKE-sfs protocol, and

Advake
sfs,C-MACONP(κ) ≤ 2NSucceuf−cma

Σ (κ) +
Nq2

s

2κ−1
+ 2qsAdvake

sfs,P(κ) + 2(N + 2)qsAdvprf
F (κ).

Proof. We define a sequence of games Gi, i = 0, . . . , 7 and corresponding events Winake
i as the events

that the output bit b′ of Gi is identical to the randomly chosen bit b. The queries made by the adversary A
are answered by a simulator ∆. The (classical) idea behind the proof is to incrementally add changes to the
game Gi in the definition of Gi+1 and then relate the probabilities of the events Winake

i and Winake
i+1.

Game G0. This game is the real game Gameake−b
sfs,C-MACONP(κ) played between a simulator ∆ and A. We

assume that the Test query is asked to a fresh oracle Πs
i . Keep in mind that on the Test query the adversary

receives either a random string or a session group key Ks
i := fKs

i
(v2) computed by Πs

i .
Game G1. This game is identical to Game G0 with the only exception that the simulator fails and sets

b′ at random ifA asks a Send query on some Ui|m|σ such that σ is a valid signature on m that has not been
previously output by an honest oracle Πs

i before querying Corrupt(Ui). In other words the simulation fails
if A outputs a successful forgery; we denote this event as Forge.

http://eprint.iacr.org/2006/395
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http://eprint.iacr.org/2006/388
http://shoup.net/
http://eprint.iacr.org/2004/332.pdf
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In order to estimate Pr[Forge] we show that using A we can construct an EUF-CMA forger F against
the signature scheme Σ as follows. F is given a public key pk and has access to the corresponding sign-
ing oracle. During the initialization of C-MACONP, F chooses uniformly at random a user Ui∗ ∈ U and
defines pk′i∗ := pk . All other key pairs, i.e., (sk′i, pk′i) for every Ui 6=i∗ ∈ U are generated honestly using
Σ.Gen(1κ). F generates also all key pairs (ski, pki) with Ui ∈ U if any are needed for the original execu-
tion of P. The forger simulates all queries of A in a natural way by executing C-MACONP by itself, and by
obtaining the necessary signatures with respect to pk′i∗ from its signing oracle. This is a perfect simulation
for A: by assumption, no Corrupt(Ui∗) occurs—forger F would not be able to answer it. Assuming Forge
occurs, A outputs a new valid message/signature pair with respect to some pk′i; since i∗ was randomly
chosen and the simulation is perfect, Pr[i = i∗] = 1/N . In that case F outputs this pair as its forgery. Its
success probability is given by Pr[Forge]/N . This implies

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ Pr[Forge] ≤ NSucceuf−cma
Σ (κ). (1)

Game G2. This game is identical to Game G1 except that the simulator fails and sets b′ at random if a
MACON nonce ri is used by any uncorrupted user’s oracle Πs

i in two different sessions. If qs is the total
number of protocol sessions, the probability that a randomly chosen MACON nonce ri appears twice is
q2

s /2κ for one uncorrupted user. Since there are at most N users we obtain

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Nq2
s

2κ
(2)

Note that this game excludes replay attacks in the MACON protocol because sids
i is unique for each new

session.
Game G3. This game is identical to Game G2 except that the following rule is added: ∆ chooses

q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query Test. If this query does
not occur in the q∗s -th session then the simulation fails and bit b′ is set at random. Let Q be the event that
this guess is correct. Obviously, Pr[Q] = 1/qs. Thus, we get

Pr[Winake
3

] = Pr[Winake
3
∧Q] + Pr[Winake

3
∧ ¬Q]

= Pr[Winake
3
|Q] Pr[Q] + Pr[Winake

3
|¬Q] Pr[¬Q]

= Pr[Winake
2

]
1
qs

+
1
2

(
1− 1

qs

)
.

This implies

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1
2
. (3)

Game G4. In this game we consider the simulator ∆ as an active adversary against the AKE-security of
the underlying protocol P that participates in Gameake−1

sfs,P (κ), i.e., the Test query of ∆ to an accepted fresh
oracle Πs

i is answered with the real session group key ks
i computed in P. In the following we show how ∆

answers the queries of A. Note that ∆ and A operate in the same adversarial model, i.e., are both active,
have access to the same queries, and must ask own Test query to a fresh oracle. In fact, we never require
∆ to execute operations of P itself but to forward each related query of A as its own query and respond
accordingly. ∆ itself performs only those additional computations that are necessary for the additional
rounds of C-MACON.

The simulator ∆ which is initialized with the public keys {pk′i}Ui∈U (if any are given in the original
protocol P) generates all key pairs (sk′i, pk′i) honestly using Σ.Gen(1κ), and provides the active adversary
A with the set of the public keys {pk′i, pki}Ui∈U . Then, ∆ runs A as a subroutine and answers its queries.

Execute queries: If A invokes a protocol session via a Execute(S) query then ∆ forwards this query
as its own and obtains the transcript T of the P.Setup(S) execution. The goal of ∆ is to extend T to a
transcript T′ for the corresponding execution of C-MACONP.Setup(S). Therefore,A chooses random nonces
ri for each Πs

i in G which is composed of the ordered oracles in S and computes sid := r1| . . . |rn. In
order to build T′ the simulator, first, appends {Ui|ri}1≤i≤n to T. Next, if the invoked session is the q∗s -
th session then ∆ asks own Test query to any oracle activated via the Execute query and obtains real k .
Otherwise, if the session is not the q∗s -th session then ∆ asks own RevealKey query to any of the mentioned
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oracles and obtains real k . Hence, in any case ∆ knows real k which it then uses to compute the sequence
ρ1, . . . , ρn (note that K = ρn) and the MACON token µ := fK (v1). Then, ∆ computes σi := Σ.Sign(sk′i,
µ|sid|pid) and appends messages of the form {Ui|σi}1≤i≤n to T′. Then, ∆ computes K := fK (v2) and
gives T′ to A.

Send queries: All Send queries ofA related to the execution of the underlying protocol P are forwarded
by ∆ as its own queries and replied with whatever ∆ obtains. Note that the execution of the MACON protocol
starts after Πs

i computed ks
i in P. By SendF to an oracle Πs

i we define the final Send query ofA concerning
the execution of P.Setup, which results in Πs

i having computed ks
i . This means that all further valid Send

queries to Πs
i would be related to the additional communication rounds of the MACON protocol. Having

received SendF for an oracle Πs
i the simulator forwards it as its own query implying the computation of

ks
i by Πs

i . Then, ∆ asks own Test query (if the received Send query is addressed to some participant of the
q∗s -th session) or RevealKey query (in all other sessions) to obtain the real intermediate key ks

i . Then, ∆
chooses ri ∈R {0, 1}κ and responds with Ui|ri.

By SendF+ we denote the Send query which includes messages of the form Uj |rj for each Uj 6=i who
holds an oracle in the current group G. This query has the form Send(Πs

i , (U1|r1)| . . . |(Un|rn)) where n
is the number of operation participants and (Ui|ri) is not part of the query message. Note that Πs

i must
have computed ks

i prior to the SendF+ query; otherwise the query is unexpected. Upon receiving a (valid)
SendF+ query for Πs

i the simulator computes the sequence ρ1, . . . , ρn, defines Ks
i := ρn, computes the

MACON token µi := fKs
i
(v1), the signature σi := Σ.Sign(sk′i, µi|sids

i |pids
i ) and responds with Ui|σi

to A.
The last valid Send query to Πs

i in the execution of C-MACONP has the form Send(Πs
i , (U1|σ1)| . . . |

(Un|σn)) whereby (Ui|σi) is not part of the query message. Upon receiving this query ∆ verifies all in-
cluded signatures. If all signatures are valid ∆ computes Ks

i := fKs
i
(v2).

Corrupt queries: When A asks a Corrupt(Ui) query ∆ forwards own Corrupt(Ui) query to obtain ski

and replies with (ski, sk
′
i). Note that ∆ and A have identical restrictions concerning the Corrupt queries.

RevealState queries: WhenA asks a RevealState(Πs
i ) query ∆ forwards own RevealState(Πs

i ) query to
obtain states

i . If Πs
i is waiting for the last Send query of the form Send(Πs

i ,(U1|σ1)| . . . |(Un|σn)) then ∆
inserts Ks

i (which is not treated as erased yet) into states
i and returns it toA; otherwise it simply forwards

states
i to A. Note that ∆ and A have identical restrictions concerning the RevealState queries.

RevealKey queries: When A asks a RevealKey(Πs
i ) query ∆ checks that Πs

i has accepted; otherwise
an empty string is returned. Then, ∆ returns the session group key Ks

i . Note that ∆ is always able to do this
since it executes the last steps of the MACON protocol itself, i.e., the computation of ρ1, . . . , ρn, µi, and Ks

i

for every (honest) oracle Πs
i .

Test query: Note that in this game we are dealing with the Test query asked to an oracle Πs
i that has

participated in the q∗s -th session. The simulator ∆ already knows Ks
i since this value is computed by ∆ for

every (honest) oracle Πs
i in the simulation. Thus, ∆ chooses a random bit b ∈R {0, 1} and returns Ks

i if
b = 1 or a random string sampled from {0, 1}κ if b = 0.

We claim that this is a perfect simulation for A. Since ∆ uses the real ks
i to derive Ks

i we can consider
this game as a “bridging step” so that

Pr[Winake
4

] = Pr[Winake
3

]. (4)

Game G5. In this game we consider the simulator ∆ as an active adversary against the AKE-security
of the underlying protocol P that participates in Gameake−0

sfs,P (κ), i.e., the Test query of ∆ to an accepted
fresh oracle Πs

i is answered with a random bit string instead of the real key ks
i . ∆ answers all queries of A

exactly as described in Game G4. Note that the only difference is that in this game ρ1 (which is in turn used
to compute ρ2, . . . , ρn, Ks

i , and Ks
i ) is computed using a random string a not the real intermediate key ks

i

as in the previous game. By a “hybrid argument” we obtain

|Pr[Winake
5

]− Pr[Winake
4

]| ≤ Advake
sfs,P(κ). (5)

Game G6. This game is identical to Game G5 except that in the q∗s -th session each ρi, i = 1, . . . , n is
replaced by a random value sampled from {0, 1}κ. Notice, this implies that Ks

i is uniformly distributed in
this session.

In order to estimate the difference to the previous game we apply the “hybrid technique” and define
auxiliary games G′

6,l, l = 1, . . . , n + 1 such that G′
6,1 = G5 and G′

6,n+1 = G6 . That is, in the q∗s -th
session in each G′

6,l the intermediate values ρi, i ≤ l, are computed as specified in the compiler whereas in
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G′
6,l+1 these values are chosen at random from {0, 1}κ. Note that each replacement of ρi, i = 1, . . . , n− 1

by a random bit string implies uniform distribution of the PRF key ρi⊕ π(ri+1) used in the computation of
ρi+1, and that ks

i used to compute ρ1 is already uniform according to Game G5.
Since n ≤ N we get

|Pr[Winake
6

]− Pr[Winake
5

]| ≤ NAdvprf
F (κ). (6)

Game G7. This game is identical to Game G6 except that in the q∗s -th session Ks
i and the MACON

token µi are replaced by random values sampled from {0, 1}κ (note that same values must be chosen for
all participants of the q∗s -th session). Recall that Ks

i used to compute Ks
i and µi is uniform according to

Game G6. Notice that this implies that Ks
i is uniformly distributed in this game. Obviously,

|Pr[Winake
7

]− Pr[Winake
6

]| ≤ 2Advprf
F (κ). (7)

Since Ks
i is uniformly distributed A gains no advantage from the obtained information and cannot,

therefore, guess b better than by a random choice, i.e.,

Pr[Winake
7

] =
1
2

(8)

Considering Equations 1 to 8 we get

Pr[Gameake−b
sfs,C-MACONP(κ) = b] = Pr[Winake

0 ]

= NSucceuf−cma
Σ (κ) +

Nq2
s

2κ
+ qs

(
Pr[Winake

3 ]− 1
2

)
+

1
2

≤ NSucceuf−cma
Σ (κ) +

Nq2
s

2κ
+ qsAdvake

sfs,P(κ) + (N + 2)qsAdvprf
F (κ) +

1
2
.

This results in the desired inequality

Advake
sfs,C-MACONP(κ) ≤ 2NSucceuf−cma

Σ (κ) +
Nq2

s

2κ−1
+ 2qsAdvake

sfs,P(κ) + 2(N + 2)qsAdvprf
F (κ).

Note that the negligibility of Advake
sfs,C-MACONP(κ) follows from the negligibility of the arguments at the right

hand side of the inequality based on the assumptions that Σ is existentially unforgeable under chosen
message attacks (EUF-CMA), F is pseudo-random and P is AGKE-sfs.

B Proof of Theorem 2

Theorem 2 (MA-Security) For any GKE protocol P if Σ is EUF-CMA and F is collision-resistant then
C-MACONP is MAGKE, and

Succma
C-MACONP(κ) ≤ NSucceuf−cma

Σ (κ) +
Nq2

s

2κ
+ qsSucccoll

F (κ).

Proof. We define a sequence of games Gi, i = 0, . . . , 2 and corresponding events Winma
i meaning that A

wins in Gi. The queries made by A are answered by a simulator ∆.
Game G0. This game is the real game Gamema

C-MACONP(κ) played between ∆ andA. Note that the goal of
A is to achieve that there exists an uncorrupted user Ui whose corresponding oracle Πs

i accepts with Ks
i and

another user Uj ∈ pids
i that is uncorrupted at the time Πs

i accepts and either does not have a corresponding
oracle Πs

j with (pids
j , sid

s
j) = (pids

i , sid
s
i ) or has such an oracle but this oracle accepts with Ks

i 6= Ks
j .

Game G1. This game is identical to Game G0 with the only exception that the simulation aborts if A
asks a Send query on a message Ui|σ such that σ is a valid signature that has not been previously output by
an oracle Πs

i before querying Corrupt(Ui), i.e., the simulation fails ifA outputs a successful forgery (event
Forge occurs). Similar to Game G1 from the proof of Theorem 1 (Equation 1) we have

|Pr[Winma
1

]− Pr[Winma
0

]| ≤ NSucceuf−cma
F,Σ (κ). (9)
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Game G2. This game is identical to Game G1 except that the simulation aborts if a MACON nonce
ri is used by any uncorrupted user Ui in two different sessions. Similar to Game G2 from the proof of
Theorem 1 (Equation 2) we obtain

|Pr[Winma
2

]− Pr[Winma
1

]| ≤ Nq2
s

2κ
. (10)

This game implies that sids
i computed by any uncorrupted user’s oracle Πs

i is unique for each new session.
Note that sids

i is used to generate the signature σi in the MACON protocol of the compiler.
Hence, this prevents attacks where Πs

i during any session of the MACON protocol receives a replayed
message of the form Uj |σ̄j where Uj is uncorrupted and σ̄j is a signature computed by its oracle in some
previous session. Note that Πs

i does not accept unless it successfully verifies σj for all Uj ∈ pids
i in the

MACON protocol of C-MACON. Having excluded forgeries and replay attacks we follow that for every user
Uj ∈ pids

i that is uncorrupted at the time Πs
i accepts there exists a corresponding instance oracle Πs

j with
(pids

j , sid
s
j) = (pids

i , sid
s
i ). Thus, according to Definition 6 A wins in this game only if any of these

oracles has accepted with Ks
i 6= Ks

j .
Assume that A wins in this game. Then, Πs

i and Πs
j have accepted with Ks

i = fKs
i
(v2) resp. Ks

i =
fKs

j
(v2) where Ks

i resp. Ks
j are corresponding temporary keys computed during the execution of MACON,

and Ks
i 6= Ks

j . Having eliminated forgeries and replay attacks between the oracles of any two oracles of
uncorrupted users we follow that messages exchanged between Πs

i and Πs
j have been delivered without

any modification. In particular, oracle Πs
i received the signature σj computed on µj = fKs

j
(v1) and Πs

j

received the signature σi computed on µi = fKs
i
(v1). Since both oracles have accepted we have µi = µj ;

otherwise oracles cannot have accepted because signature verification would fail. The probability that A
wins in this game is given by

Pr[Ks
i 6= Ks

j ∧ fKs
i
(v1) = fKs

j
(v1)] =

Pr[fKs
i
(v2) 6= fKs

j
(v2) ∧ fKs

i
(v1) = fKs

j
(v1)] ≤ qsSucccoll

F (κ).

Hence,
|Pr[Winma

2
]− Pr[Winma

1
]| ≤ qsSucccoll

F (κ). (11)

Considering Equations 9 and 11 we get the desired inequality

Succma
C-MACONP(κ) = Pr[Winma

0 ]

≤ NSucceuf−cma
Σ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ).

Note that the negligibility of Succma
C-MACONP(κ) follows from the negligibility of the arguments at the right

hand side of the inequality based on the assumption that F is collision-resistant and Σ is existentially
unforgeable under chosen message attacks (EUF-CMA).

C Proof of Theorem 3

C.1 Transitions based on “Condition Events” in the “Sequence of Games” Technique

In the following proof we apply a new transition technique within the framework of “sequence of games”
[47]. In particular we extend this framework with an additional kind of transitions between games: we
call them transitions based on “condition events”. Recall that the classical framework considers the con-
struction of a sequence of games G0,G1, . . . ,Gn starting with the original game between the adversarial
algorithm A and its environment (typically a simulator). In the security proof, one is interested in a par-
ticular event, whose occurrence in each game Gi is represented by event Wini. The goal of the proof is
to relate probabilities of successive events Win0, . . . , Winn. In the survey provided in [47], the technique
consists of the following three transition types: transitions based on indistinguishability, transitions based
on “failure events”, and transitions based on “bridging steps”. These types have been identified based on a
large number of available security proofs.
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Transitions based on indistinguishability work as follows, assuming two computationally indistinguish-
able distributions D0 and D1. One constructs games Gi+1 from Gi such that if their difference is de-
tected by the adversary then it is possible to distinguish D0 from D1 with advantage at least |Pr[Wini] −
Pr[Wini+1]|. The assumption on D0 and D1 ensures that this advantage is negligible.

Transitions based on “failure events” are used to construct Gi+1 from Gi in a way that both games
proceed identically unless some specified “failure event” F occurs. If both games are defined over the same
probability space, then a classical lemma ensures that |Pr[Wini]− Pr[Wini+1]| ≤ Pr[F].

Transitions based on “bridging steps” are transitions where
Pr[Wini] = Pr[Wini+1]. Such transitions can be build by restating the way of computation of certain
entities while keeping their resulting values equivalent. They may be useful to prepare transitions of other
types.

In the following we describe an additional type of transitions – transitions based on “condition events”.
The background is given by the following lemma.

Lemma 1. Let A, B, C be events defined in some probability distribution, and suppose that Pr[B] =
Pr[A|C]. Then

Pr[A]− Pr[B] ≤ Pr[¬C].

Proof. We compute

Pr[A] = Pr[A|C] Pr[C] + Pr[A|¬C] Pr[¬C]
= Pr[B] Pr[C] + Pr[A|¬C] Pr[¬C]
≤ Pr[B] + Pr[¬C].

In order to construct a new game Gi+1 from the previous game Gi via a transition based on a “condition
event” one proceeds as follows. One defines an appropriate “condition event” C and sets Wini+1 as the event
that Wini occurs given C. Then according to Lemma 1 Pr[Wini] − Pr[Wini+1] ≤ Pr[¬C]. Therefore, in
order to estimate the probability distance between Gi and Gi+1 it is sufficient to compute the probability
of ¬C. Note that in this form Gi and Gi+1 proceed identical from the perspective of the adversary, and
we are only interested in the probability of ¬C. Therefore, it is not necessary for the simulator to detect
whether this “condition event” occurs or not. This is an important difference to games Gi and Gi+1 built
via transitions based on “failure events” where both games proceed identically unless the specified “failure
event” has occurred so that usually, e.g., in the proofs of [13] and in our proofs of Theorems 1 and 2 (Games
G1 and G2), the simulator must be able to detect this event in order to change the process of Gi+1.

Theorem 3 (Contributiveness) For any GKE protocol P if π is one-way and F is collision-resistant
pseudo-random then C-MACONP is CGKE, and

Succcon
C-MACONP(κ) ≤ Nq2

s + Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) + NqsSuccow

π (κ).

Remark 2. Although this proof is put into the formal “sequence of games” framework some parts of it
are kept intuitive. The main reason is that no formal reduction when discussing success probabilities in
games G2 to G4 could be found. The reason is that from the perspective of the adversary all values are
known, especially all PRF keys used to compute ρl, l = 1, . . . , n. The classical approach where the outputs
of a pseudo-random function are replaced by random values, fails here, because the adversary obtaining
these values can easily distinguish between the simulation and the real game. Note that in [9] no formal
reductions for their (weaker) definition of contributiveness could be given either. It seems that proving this
kind of requirements may require some additional techniques.

Proof. In the following we consider an adversaryA from Definition 7 who wins in Gamecon
C-MACONP(κ) (which

event we denote Wincon). Assume that A wins in Gamecon
C-MACONP(κ) (which event we denote Wincon). Then

at the end of the stage prepare it has returned K̃ such that in the stage attack an honest oracle Πs
i∗ ∈ G

accepted with Ks
i∗ = K̃. According to the construction of Ks

i∗ we follow that K̃ = fKs
i∗

(v2) computed by
Πs

i∗ , and consider the following games.
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Game G0. This is the real game Gamecon
C-MACONP(κ), in which the honest players are replaced by a simu-

lator.
Game G1. In this game we abort the simulation if the same MACON nonce ri is used by any un-

corrupted user’s oracle Πs
i in two different sessions. Similar to Game G2 from the proof of Theorem 1

(Equation 2) we have

|Pr[Wincon
0

]− Pr[Wincon
1

]| ≤ Nq2
s

2κ
. (12)

Game G2. This game is identical to Game G1 with the “condition event” that A being in the prepare
stage is NOT able to output ρi∗ computed by Πs

i∗ in any session of the attack stage.8 According to Lemma
1 we need to estimate the probability of the opposite event, i.e., that A being in the prepare stage is able
to output ρi∗ . We consider two cases: i∗ = 1 and i∗ > 1. Note that all other oracles except for Πs

i∗ can
be corrupted. An important observation for our argumentation in this game is that the random nonce ri∗

is chosen by Πs
i∗ after the computation of ks

i∗ in P. In other words, when Πs
i∗ chooses ri∗ the key ks

i∗ is
already defined and cannot be influenced (changed) any more, thus as soon as the compiler round starts ks

i∗

can be considered as some fixed value.
Case i∗ = 1: In any session of the attack stage honest oracle Πs

1 computes ρ1 := fks
1⊕π(r1)

(v0). Intu-
itively, without knowing the PRF key given by the XOR sum ks

1 ⊕ π(r1) (denoted R1) in the prepare
stage A’s probability to output ρ1 = fR1(v0) in that stage is bound by the probability that either A
chooses a different PRF key and succeeds (thus a PRF collision occurs) or succeeds by a random guess,
i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to discuss the case where A chooses R1 in the prepare stage and
tries to influence Πs

1 computing exactly this value in some session of the attack stage. Note that as men-
tioned above ks

1 is some fixed value at the time point when Πs
1 chooses r1 uniformly at random. Since π is

a permutation the value π(r1) is uniform and fixed for every session in the attack stage. This implies that
R1 is also uniform and fixed, and unknown to A in the prepare stage. Hence, A cannot learn R1 in the
prepare stage better than by a random guess.

Case i∗ > 1: In any session of the attack stage honest oracle Πs
i∗ computes ρi∗ := fρi∗−1⊕π(r

i∗ )(v0).
Intuitively, without knowing the PRF key given by the XOR sum ρi∗−1 ⊕ π(ri∗) (denoted Ri∗ ) in the
prepare stage A’s probability to output ρi∗ = fRi∗ (v0) in that stage is bound by the probability that either
A chooses a different PRF key and succeeds (thus a PRF collision occurs) or succeeds by a random guess,
i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to discuss the case where A chooses Ri∗ in the prepare stage
and tries to influence Πs

i∗ computing exactly this value in some session of the attack stage. Since ri∗ is
chosen by honest Πs

i∗ at random in every attack-ed session and π is a permutation the value π(ri∗) is
uniform and fixed for each attack-ed session. Hence, the adversary must influence in the attack stage the
oracle Πs

i∗ to compute ρi∗−1 = Ri∗ ⊕ π(ri∗) which is fixed and uniformly distributed for each attack-ed
session. Note that A learns the required ρi∗−1 only after having received ri∗ , that is during the attack-ed
session. Since Ui∗ is uncorrupted its oracle computes ρi∗−1 according to the protocol specification, that
is ρi∗−1 := fρi∗−2⊕π(r

i∗−1)
(v0). Having excluded PRF collisions and random guesses we consider the

PRF key ρi∗−2 ⊕ π(ri∗−1) as a fixed value unknown to the adversary. The probability that A recovers it is
intuitively bound by Advprf

F (κ). This is because any adversary that is able to reveal the PRF key can act as a
distinguisher for the pseudo-randomness of f.

Since there are at most qs sessions we have

Pr[Wincon
1

]− Pr[Wincon
2

] ≤ qsSucccoll
F (κ) + qsAdvprf

F (κ) +
qs

2κ
. (13)

As a consequence of the “condition event” in this game, in every subsequent game of the sequence the
adversary, while being in the prepare stage, is not able to output ρi∗ computed by Πs

i∗ in any session of
the attack stage. Note that we do not need to consider the values ρl, l < i∗ computed by Πs

i∗ since in order
to compute Ks

i∗ every honest oracle must compute the whole sequence ρ1, . . . , ρn. Thus, it is sufficient to
argue that the probability of A influencing any ρl, l ≥ i∗, computed by Πs

i∗ in any attack-ed session is
negligible.

8 Note, in G0 and G1 the adversary only outputs a value for the resulting group key. In G2 we consider the additional
(in)ability of the adversary to output the value for ρi∗ . Since we are only interested in the probability of the adversarial
success under this “condition event” the simulator does not need to detect whether A is able to output the correct
value or not. The same considerations are applicable to G3 w.r.t. Ks

i∗ , and G4 w.r.t. Ks
i∗ .



20 Emmanuel Bresson and Mark Manulis

Game G3. This game is identical to Game G2 with the “condition event” that A being in the prepare
stage is NOT able to output Ks

i∗ = ρn computed by Πs
i∗ in any session of the attack stage. Again, the

simulator does not need to detect whether this event occurs since both games proceed identical in any case.
According to Lemma 1 we need to estimate the probability of the opposite event that A in the prepare

stage is able to output the mentioned value for Ks
i .

Based on the “hybrid technique” we define a sequence of auxiliary games G′
3,l, l = i∗, . . . , n. Each of

these games is identical to the previous one in the sequence with the “condition event” that A being in the
prepare stage is NOT able to output ρl computed by Πs

i∗ in any session of the attack stage. Obviously,
G′

3,i∗ = G2 and G′
3,n = G3 . According to Lemma 1 we need to estimate the probability that A being in

the prepare stage is able to output ρl.
Since ρl := fρl−1⊕π(rl)

(v0) for all l > i∗ and each rl is not chosen by Πs
i∗ each two consecutive

auxiliary games have the same difference. Hence, it is sufficient to compute this difference between any two
consecutive auxiliary games. In the following we compute the difference between G′

3,i∗+1 and G′
3,i∗ = G2 .

We estimate the probability that A being in the prepare stage is able to output ρi∗+1 computed by Πs
i∗ in

any session of the attack stage.
We argue by intuition. Since Πs

i∗ is honest, in the attack stage it computes ρi∗+1 := fρi∗⊕π(r
i∗+1)

(v0).
Intuitively, without knowing the PRF key given by the XOR sum ρi∗ ⊕ π(ri∗+1) (denoted Ri∗+1) in the
prepare stage A’s probability to output ρi∗+1 = fRi∗+1(v0) in that stage is bound by the probability that
either A chooses a different PRF key and succeeds (thus a PRF collision occurs) or succeeds by a random
guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to discuss the case where A chooses Ri∗+1 in the prepare
stage and tries to influence Πs

i∗ computing exactly this value in some session of the attack stage. Recall that
A is allowed to corrupt any user Ul 6=i∗ , and thus choose each nonce rl, l 6= i∗. SinceA learns ρi∗ only in the
attack-ed session (as observed in Game G2) and having excluded PRF collisions and random guesses the
probability that A is able to influence Πs

i∗ computing Ri∗+1 in the attack stage is bound by the probability
that in the attack-ed session A computes the appropriate nonce ri∗+1 such that π(ri∗+1) = Ri∗+1 ⊕ ρi∗

holds. Since π is one-way this probability is intuitively bound by Succow
π (κ). Thus,A is able to output ρi∗+1

while being in the prepare stage with the probability of at most Succcoll
F (κ) + Succow

π (κ) + 1/2κ. Since
there are at most qs sessions the total probability that A is able to do this is at most

qsSucccoll
F (κ) + qsSuccow

π (κ) +
qs

2κ
.

The above sum upper-bounds the difference between G′
3,i∗+1 and G2 . Since there are at most N auxil-

iary games (due to n ≤ N ) we obtain

Pr[Wincon
2

]− Pr[Wincon
3

] ≤ NqsSucccoll
F (κ) + NqsSuccow

π (κ) +
Nqs

2κ
. (14)

As a consequence of the “condition event” in this game, in every subsequent game of the sequence the
adversary, while being in the prepare stage, is not able to output Ks

i∗ computed by Πs
i∗ in any session of

the attack stage.
Game G4. This game is identical to Game G3 with the “condition event” that A being in the prepare

stage is NOT able to output Ks
i∗ computed by Πs

i∗ in any session of the attack stage. Note that in every
attack-ed session, the honest oracle Πs

i∗ computes Ks
i∗ := fKs

i∗
(v2). Intuitively, since in the prepare stage

Ks
i∗ is unknown to A (as observed in the previous game), A’s probability to output Ks

i∗ in that stage is
bound by the probability that A chooses a different PRF key and succeeds (thus a PRF collision occurs) or
succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Hence,

Pr[Wincon
3

]− Pr[Wincon
4

] ≤ qsSucccoll
F (κ) +

qs

2κ
. (15)

Obviously, the probability of Wincon
4

is 0, meaning that the adversary did not output a correct value of K̃ in
the prepare stage.

Considering Equations 12 to 15 we obtain the desired inequality

Succcon
C-MACONP(κ) = Pr[Wincon

0 ]

≤ Nq2
s + Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) + NqsSuccow

π (κ).
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Note that the negligibility of Succcon
C-MACONP(κ) follows from the negligibility of the arguments at the right

hand side of the inequality based on the assumption that F is collision-resistant pseudo-random and π is
one-way.

Remark 3. In the proof of the Theorem 3 we consider that A may even predict (control) the output of the
original protocol P, i.e. the key k. Even though, our compiler still provides contributiveness for the resulting
group key K. Hence, C-MACONP considered as a complete GKE protocol provides contributiveness in some
even stronger sense than required in Definition 7, i.e.A may even be allowed to output K̃ before the honest
participant U (who is supposed to accept with K̃ in Gamecon

C-MACONP(κ)) starts with the MACON protocol of the
compiler, and not necessarily before the execution of the new C-MACONP session.

D Cryptographic Tools Used by the Compiler C-MACONP

We first recall the notion of a one-way permutation.

Definition 9 (One-Way Permutation). A function π : {0, 1}κ → {0, 1}κ is called a one-way permutation
if the following three conditions hold:

– there exists an efficient algorithm that on input x outputs π(x);
– π is a permutation;
– for every PPT algorithm A, the following probability is negligible (in κ):

Succow
π (κ) := Pr [π(A(1κ, π(x))) = π(x) | x ∈R {0, 1}κ]

In the following we briefly describe the notion of pseudo-random functions which we make use of in
our compiler C-MACONP. Informally, a pseudo-random function (PRF) is specified by a (short) random key
k, and can be easily computed given this key. However, if k remains secret, the input-output behavior of
PRF is indistinguishable from that of a truly random function with same domain and range. In our compiler
we use the primitive of (efficiently computable) generalized pseudo-random function ensembles, defined in
the following (see also [28, Definition 3.6.9]).

Definition 10 ((Efficiently Computable) Pseudo-Random Function Ensemble F ). An ensemble of finite
functions F :=

{{
fk : {0, 1}p(κ) → {0, 1}p(κ)

}
k∈{0,1}κ

}
κ∈N where p : N → N is upper-bounded by

a polynomial, is called an (efficiently computable) pseudo-random function ensemble if the following two
conditions hold:

1. Efficient computation: There exists a polynomial-time algorithm that on input k and x ∈ {0, 1}p(κ)

returns fk(x).
2. Pseudo-Randomness: Choose uniformly k ∈R {0, 1}κ and a function f̃ in the set of all functions with

domain and range {0, 1}p(κ). Consider a PPT adversary A asking queries of the form Tag(x) and
participating in one of the following two games:

– Gameprf−1
F (κ) where a query Tag(x) is answered with fk(x),

– Gameprf−0
F (κ) where a query Tag(x) is answered with f̃(x).

At the end of the execution A outputs a bit b trying to guess which game was played. The output of A
is also the output of the game. The advantage function (over all adversaries running within time κ) in
winning the game is defined as

Advprf
F (κ) :=

∣∣2 Pr[Gameprf−b
A,F (κ) = b]− 1

∣∣.
We say that F is pseudo-random if Advprf

F (κ) is negligible for all sufficiently large κ.

By an (efficiently computable) pseudo-random function we mean a function fk ∈ F for some random
k ∈R {0, 1}κ.

In other words in the above definition the goal of the adversary A is to distinguish whether replies on
its Tag queries are generated by a pseudo-random function f or by a truly random function f̃ of the same
range. Note that in the above definition the pseudo-randomness of the ensemble is defined using a black-box
setting where the adversary may indirectly (via Tag queries) obtain the value of the function chosen in the
corresponding games for any arguments of its choice, but does not get any information (e.g., keys) which
would allow it to evaluate the pseudo-random function itself.
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Remark 4. As noted in [28] there are some significant differences between using PRFs and the Random
Oracle Model (ROM) [7]. In ROM, a random oracle that can be queried by the adversary is not keyed. Still,
the adversary is forced to query it with chosen arguments instead of being able to compute the result by itself.
Later, in the implementation the random oracle is instantiated by a public function (usually a cryptographic
hash function) that can be evaluated by the adversary directly. To the contrary, when using PRFs, the oracle
contains either a pseudo-random function or a random function. The pseudo-random function is keyed
and the key is supposed to be kept secret from the adversary. This requirement is also preserved during
the implementation. Hence, in any case (theoretical or practical) the adversary is not able to evaluate the
pseudo-random function by itself as long as the key is kept secret. Thus, with PRFs there is no difference
between theoretical specification of the function and its practical instantiation. This is one of the reasons
why security proofs based on pseudo-random functions instead of random oracles can be carried out in the
standard model. Another reason is that existence of pseudo-random functions follows from the existence of
one-way permutations, which is a standard cryptographic assumption.

Additionally, we require the following notion of collision-resistance of pseudo-random function ensem-
bles. This definition is essentially the one used by Katz and Shin [33]. The same property has previously
been defined in [27] and denoted there as fixed-value-key-binding property of a pseudo-random function en-
semble. We also refer to [33] for a possible construction based on one-way permutations and for the proof
of Lemma 2).

Definition 11 (Collision-Resistance of F ). Let F be a pseudo-random function ensemble. We say that F
is collision-resistant if there is an efficient procedure Sample such that for all PPT adversaries A the
following advantage is a negligible function in κ:

Succcoll
F (κ) := Pr

x← Sample(1κ);
k, k′ ← A(1κ, x) :

k, k′ ∈ {0, 1}κ∧
k 6= k′∧

fk(x) = fk′(x)


Lemma 2 ( [33]). If one-way permutations exist then there exist collision-resistant pseudo-random func-
tions.

Further, our compiler C-MACON applies digital signatures which must be existentially unforgeable under
chosen message attacks [29].

Definition 12 (Digital Signature Scheme). A signature scheme Σ := (Gen, Sign, Verify) consists of the
following algorithms:

Gen: A probabilistic algorithm that on input a security parameter 1κ outputs a secret key sk and a public
key pk.

Sign: A (possibly probabilistic) algorithm that on input a secret key sk and a message m ∈ {0, 1}∗ outputs
a signature σ.

Verify: A deterministic algorithm that on input a public key pk, a message m ∈ {0, 1}∗ and a candidate
signature σ outputs 1 or 0, meaning that the signature is valid or not.

Definition 13 (EUF-CMA Security). A digital signature scheme Σ := (Gen, Sign, Verify) from Defi-
nition 12 is said to be existentially unforgeable under chosen message attacks (EUF-CMA) if for any PPT
algorithm (forger) F , given a public key pk and access to the signing oracle Sign(sk, ·), the probability
thatF outputs a pair (m,σ) such that Verify(pk, m, σ) = 1 but m was never part of a query Sign(sk,m)
is negligible. By Succeuf−cma

Σ (κ) we denote the probability that F outputs a successful forgery.
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