
Distributed Smooth Projective Hashing
and its Application to Two-Server PAKE∗

Franziskus Kiefer and Mark Manulis

Department of Computing, University of Surrey, UK
mail@franziskuskiefer.de, mark@manulis.eu

Abstract. Smooth projective hash functions have been used as building block for various cryptographic
applications, in particular for password-based authentication.

In this work we propose the extended concept of distributed smooth projective hash functions where
the computation of the hash value is distributed across n parties and show how to instantiate the
underlying approach for languages consisting of Cramer-Shoup ciphertexts.

As an application of distributed smooth projective hashing we build a new framework for the design of
two-server password authenticated key exchange protocols, which we believe can help to “explain” the
design of earlier two-server password authenticated key exchange protocols.

Keywords: Smooth Projective Hash Functions, Two-Server PAKE

1 Introduction

Smooth projective hashing allows to compute the hash value of an element from a set in two different ways:
either by using a secret hashing key on the element, or utilising the public projection key and some secret
information proving that the particular element is part of a specific subset under consideration. In addition,
smooth projective hash values guarantee to be uniformly distributed in their domain as long as the input
element is not from a specific subset of the input set. These features make them a quite popular building
block in many protocols such as CCA-secure public key encryption, blind signatures, password authenticated
key exchange, oblivious transfer, zero-knowledge proofs, commitments and verifiable encryption.

Smooth projective hash functions (SPHF) are due to Cramer and Shoup [10] who used them to construct
CCA-secure public key encryption schemes and analyse mechanisms from [9]. The first use of SPHFs in the
construction of a password authenticated key exchange (PAKE) protocol is due to Gennaro and Lindell [11],
who introduced additional requirements to the SPHF such as pseudorandomness that was later extended in
[15]. The SPHF-based approach taken in [11] was further helpful in the “explanation” of the KOY protocol
from [14], where those functions were implicitly applied.

Abdalla et al. [1] introduced conjunction and disjunction of languages for smooth projective hashing that
were later used in the construction of blind signatures [7,5], oblivious signature-based envelopes [7], and
authenticated key exchange protocols for algebraic languages [4]. Blazy et al. [7] demonstrate more general
use of smooth projective hashing in designing round-optimal privacy-preserving interactive protocols.

We extend this line of work by considering divergent parametrised languages in one smooth projective
hash function that allows multiple parties to jointly evaluate the result of the function. We propose the
notion of (distributed) extended smooth projective hashing that enables joint hash computation for special
languages. Further, we propose a new two-server password authenticated key exchange framework using the
new notion of distributed smooth projective hashing and show how it helps to explain the protocol from
[13]. Actually, the authors of [2] already built a group PAKE protocol using smooth projective hashing in a
multi-party party protocol. However, they assume a ring structure such that the smooth projective hashing
is only used between two parties.

∗A shortened version of this paper with the name “Distributed Smooth Projective Hashing and its Application to
Two-Server Password Authenticated Key Exchange” appears in the proceedings of the 12th International Conference
on Applied Cryptography and Network Security (ACNS 2014), June 10–13, 2014, Lausanne, Switzerland. This is the
full version.

Organisation We start by recalling smooth projective hash functions and introduce useful definitions in
Section 2. Our first contribution is the definition of an extended smooth projective hash function SPHFx that
handles divergent parametrised languages in Section 3. Then we show how to distribute their computation
between multiple parties, introducing distributed SPHFx in Section 3.1 and give a concrete instantiation in
Section 3.3. Finally, we propose a two-server PAKE framework in Section 4 and analyse the two-server KOY
protocol using a variant of distributed SPHFx in Section 4.2.

2 Smooth Projective Hash Functions

First, we recall definitions from [5] for classical SPHF with some minor changes. We stick with the framework
from [5, Section 3] on cyclic groups G of prime order and focus on languages of ciphertexts. This seems
reasonable since it is the preferred setting and allows a comprehensible description. An extension to graded
rings and general languages should be possible and is left open for future work.

A language Laux is indexed by a parameter aux, consisting of global public information and secret variable
information aux′. In our setting of languages of ciphertexts the public part of aux is essentially a common
reference string crs containing the public key pk of the used encryption scheme. The secret part aux′ contains
the message that should be encrypted. By π we denote the crs trapdoor, the secret key to pk. We denote
L the encryption scheme used to generate words. Unless stated otherwise we assume that L is a labelled
CCA-secure encryption scheme.

Definition 1 (Languages of Ciphertexts). Let Laux ⊆ Set denote the language of ciphertext under
consideration. A ciphertext C is in the language Laux if C ← EncLpk(`, aux

′;w) for aux = (pk, aux′). Formally,

a word C is in the language Laux if and only if ∃λ ∈ Z1×k
p such that Θaux(C) = λ� Γ (C), where Γ : Set 7→

Gk×n and Θaux : Set 7→ G1×n for integers k, n.

We use the notation � and common matrix and vector operations on it from [5]: for a ∈ G, r ∈ Zp : a� r =
r � a = ar ∈ G (cf. Appendix C).

Definition 2 (SPHF [5]). Let Laux denote a language such that C ∈ Laux if there exists a witness w proving
so. A smooth projective hash function for ciphertext language Laux consists of the following four algorithms:

– KGenH(Laux) generates a hashing key kh ∈R Z1×n
p for language Laux.

– KGenP(kh, Laux, C) derives the projection key kp = Γ (C)� kh ∈ Gk×1, possibly depending on C.
– Hash(kh, Laux, C) outputs the hash value h = Θaux(C)� kh ∈ G.
– PHash(kp, Laux, C, w) returns the hash value h = λ � kp ∈ G, with λ = Ω(w,C) for some Ω : {0, 1}∗ 7→

G1×k.

A SPHF has to fulfil the following three properties (formal definitions follow):

– Correctness: If C ∈ L, with w proving so, then Hash(kh, Laux, C) = PHash(kp, Laux, C, w).
– Smoothness: If C 6∈ Laux, the hash value h is statistically indistinguishable from a random element in G.
– Pseudorandomness: If C ∈ Laux, the hash value h is indistinguishable from a random element in G.1

In a nutshell, smoothness ensures that the hash value always looks random in G when computed on an
element not in the language, while pseudorandomness ensures that it looks random in G when computed
on an element in the language. The authors of [6] identify three different SPHF classes: word-independent
key and adaptive smoothness (KV-SPHF, first proposed in [15]), word-independent key and non-adaptive
smoothness (CS-SPHF, first proposed in [10]), and word-dependent key (GL-SPHF, first proposed in [11]).

In this work we focus on the strongest notion behind KV-SPHF: word-independent key with adaptive
smoothness. Unless stated otherwise all SPHFs in the following are KV-SPHFs where the projection key is

1Note that this is not always a requirement or even possible. But as languages of labelled CCA-secure ciphertexts
are hard-on-average problems the corresponding SPHF is also pseudorandom.

2

independent of the ciphertext. This property enables our construction of extended SPHFs. The corresponding
notion of adaptive smoothness with word-independent keys is defined as follows. For any function f : Set \
Laux 7→ Gl×1 the following distributions are statistically ε-close:

{(kp, h) | kh
R← KGenH(Laux); kp ← KGenP(kh, Laux);h← Hash(kh, Laux, f(kp))}

ε
= {(kp, h) | kh

R← KGenH(Laux); kp ← KGenP(kh, Laux);h ∈R G}

Gennaro and Lindell [11] introduced pseudorandomness of SPHFs to show that Hash and PHash are the only
way to compute the hash value even though the adversary knows some tuples (kp, C, Hash(kh, Laux, C)) for
C ∈ Laux. A SPHF is pseudorandom if the hash values produced by Hash and PHash are indistinguishable
from random without the knowledge of the uniformly chosen hash key kh or a witness w, i.e. for all C ∈ Laux

the following distributions are computationally ε-close:

{(kp, C, h) | kh
R← KGenH(Laux); kp ← KGenP(kh, Laux);h← Hash(kh, Laux, C)}

ε
= {(kp, C, h) | kh

R← KGenH(Laux); kp ← KGenP(kh, Laux);h ∈R G}

To define pseudorandomness of a SPHF we use an experiment based on those from [11, Corollary 3.3] and
[15].

Definition 3 (SPHF Pseudorandomness). For all PPT algorithms A there exists a negligible function
ε(·) such that ∣∣∣Pr[AEncLpk(·),Hash(·) = 1]− Pr[AEncLpk(·),U(·) = 1]

∣∣∣ < ε(λ).

– EncLpk(`, aux) with aux = (pk, aux′) returns elements C ∈ Laux encrypting aux′ using pk, label ` and
encryption algorithm L.

– Hash(C) returns (KGenP(kh, Laux, C), Hash(kh, Laux, C)) for fresh kh ← KGenH (Laux) if C has been output
by EncLpk, nothing otherwise.

– U(C) returns (KGenP(kh, Laux, C), h) for fresh kh ← KGenH(Laux) and random h ∈ G if C has been output
by EncLpk, nothing otherwise.

While the authors of [5,6] have skipped the proof of pseudorandomness as it is straightforward, we want to
briefly give an intuition why their SPHF framework is pseudorandom. The reasoning for pseudorandomness
of SPHFs is actually easy and always follows the same approach given in [11]. By replacing the correct
ciphertexts in the simulation with ciphertexts C 6∈ Laux we can use the smoothness of SPHFs to show their
indistinguishability. The replacement itself is covered by the hard-on-average subset membership problem, in
the case of ciphertexts their CCA-security. In [15] pseudorandomness in the case of hash key and ciphertext
reuse is added. We discuss this extension when defining concurrent pseudorandomness of our extended
smooth projective hash functions in the next section.

Encryption Schemes & SPHFs We use SPHFs on labelled Cramer-Shoup (CS) encryptions through-
out this work as an example, i.e. L = CS. Thus, we briefly recall its definition. Let C = (`,u, e, v) ←
EncCS

pk (`,m; r) with u = (u1, u2) = (gr1, g
r
2), e = hrgm1 and v = (cdξ)r with ξ = Hk(`,u, e) denote a

labelled Cramer-Shoup ciphertext. We assume m ∈ Zp and G is a cyclic group of prime order p with
generators g1 and g2 such that gm1 ∈ G. The CS public key is defined as pk = (p,G, g1, g2, c, d,Hk) with
c = gx1

1 gx2
2 , d = gy11 g

y2
2 , h = gz1 and hash function Hk such that dk = (x1, x2, y1, y2, z) denotes the decryp-

tion key. Decryption is defined as gm1 = DecCS
dk (C) = e/uz1 if ux1+y1·ξ′

1 ux2+y2·ξ′
2 = v with ξ′ = Hk(`,u, e).

Benhamouda et al. propose a new perfectly smooth SPHF for labelled Cramer-Shoup encryptions in [5].
Note that the witness for C ∈ Laux is the used randomness w = r. The SPHF is den given by Definition

2 and the following variables: Γ (C) =

(
g1 1 g2 h c
1 g1 1 1 d

)
∈ G2×5, λ = (r, rξ) ∈ Z1×2

p for Ω(r, C) = (r, rξ),

Θaux(C) = (u1, u
ξ
1, u2, e/m, v) ∈ G1×5 and kh = (η1, η2, θ, µ, ν) ∈R Z1×5

p .

3

We further use El-Gamal (EG) encryptions. Let C = (u, e) ← EncEG
pk (m; r) with u = gr and e = hrgm

denote an El-Gamal ciphertext. Note that we assume m ∈ Zp and G is a cyclic group of prime order p with
generator g such that gm ∈ G. The El-Gamal public key is defined as pk = (p,G, g, h) with h = gz such that
dk = z denotes the decryption key. Decryption is given by gm = DecEG

dk (C) = e/uz. A SPHF on El-Gamal
ciphertexts can be build from Definition 2 using the following variables: Γ (C) = (g, h)T ∈ G2×1, λ = r ∈ Zp
for Ω(r, C) = r, Θaux(C) = (u, e/m) ∈ G1×2 and kh = (η, θ) ∈R Z1×2

p .

3 Extended Smooth Projective Hash Functions (SPHFx)

We introduce an extended notion of smooth projective hashing that allows us to distribute the computation
of the hash value. The new notion of extended SPHF (SPHFx) is defined in the following setting: The
parameter aux, a language is indexed with, allows us to easily describe languages that differ only in the secret
part aux′. We consider a language Laux with words (ciphertexts) C that are ordered sets of n ciphertexts
(C0, . . . , Cx). The secret variable information aux′ is chosen from the additive group (P,+) = (Z+

p ,+) with

a function h : P 7→ Px. Let LLaux denote the language of ciphertexts encrypting the secret part aux′ from
aux with the public key pk from aux using encryption scheme L. For all Ci, i ∈ {1, . . . , x} it must hold that
Ci ∈ LLauxi where auxi = (pk, aux′i) with aux′i = h(aux′)[i]. For C0 it must hold that C0 ∈ LLaux. Furthermore,
the ciphertexts must offer certain homomorphic properties such that there exists a modified decryption
algorithm Dec′ and a combining function g such that Dec′π(C0) = Dec′π(g(C1, . . . , Cx)), where π denotes the
secret key for the corresponding public key pk from crs.

The idea of SPHFx is to be able to use the SPHF functionality not only on a single ciphertext, but on a
set of ciphertexts with specific properties. Due to the nature of the words considered in SPHFx they produce
two different hash values. One can think of the two hash values as h0 for C0 and hx for C1, . . . , Cx. The
hash value h0 can be either computed with knowledge of the hash key kh0 or with the witnesses w1, . . . , wx
that C1, . . . , Cx are in LLauxi each. The hash value hx can be computed with knowledge of the hash keys
kh1, . . . , khx or with the witness w0 that C0 is in LLaux.

Definition 4 (SPHFx). Let Laux denote a language such that C = (C0, C1, . . . , Cx) ∈ Laux if there exists
a witness w = (w0, w1, . . . , wx) proving so and there exist functions h(aux′) = (aux′1, . . . , aux

′
x) and g :

Gl 7→ Gl′ as described above. An extended smooth projective hash function for language Laux with Γ ∈ Gk×n
consists of the following six algorithms:

– KGenH(Laux) generates a hashing key khi ∈ Z1×n
p for i ∈ {0, . . . , x} and language Laux.

– KGenP(khi, Laux) derives the projection key kpi = Γ � khi ∈ G1×k for i ∈ {0, . . . , x}.
– Hashx(kh0, Laux, C1, . . . , Cx) outputs hash value hx = Θxaux(C1, . . . , Cx)� kh0.

– PHashx(kp0, Laux, C1, . . . , Cx, w1, . . . , wx) returns hash value hx =
∏x
i=1(λi� kp0), where λi = Ω(wi, Ci).

– Hash0(kh1, . . . , khx, Laux, C0) outputs hash value h0 =
∏x
i=1(Θ0

aux(C0)� khi) = Θ0
aux(C0)�

∑x
i=1 khi.

– PHash0(kp1, . . . , kpx, Laux, C0, w0) returns hash value h0 =
∏x
i=1(λ0 � kpi), with λ0 = Ω(w0, C0).

The correctness of the scheme can be easily verified by checking that Hashx = PHashx and Hash0 = PHash0.

Security of SPHFx We refine definitions of smoothness and pseudorandomness to account for the two
different hash functions. Therefore, we add both hash values to the indistinguishable sets, as well as the
vector of projection keys. We start with the smoothness of the described SPHFx. The smoothness proven
in Theorem 1 follows directly from the proof given in [5, Appendix D.3] and follows the same approach for
smoothness proofs as in previous works on SPHF [5,11,15]. Recall that we are only concerned with adaptive
smoothness. Let kp denote the vector of projection keys kpi for i = 0, . . . , x. For any functions f, f ′ to

4

Set \ Laux the following distributions are statistically ε-close:

{(kp, h0, hx) | h0 ← Hash0(kh1, . . . , khx, Laux, f(kp0)); hx ← Hashx(kh0, Laux,

f ′(kp1, . . . , kpx));∀i ∈ {0, . . . , x} : khi
R← KGenH(Laux); kpi ← KGenP(khi, Laux)}

ε
={(kp, h0, hx) | h0 ∈R G; hx ∈R G;∀i ∈ {0, . . . , x} : khi

R← KGenH(Laux);

kpi ← KGenP(khi, Laux)}.

Theorem 1 (SPHFx Smoothness). The SPHFx construction from Definition 4 on cyclic groups is sta-
tistically smooth.

Proof. We show that the logarithm of the projection keys kp and the logarithm of the hash values h0
and hx are defined by linearly independent equations and thus h0 and hx are uniform in G, given kp. In
addition to this general proof we give an extended proof of the SPHFx smoothness instantiated with labelled
Cramer-Shoup encryption for better understanding in Appendix B.1. To show that (kp, h0, hx) is uniformly
distributed in Gk+2 for C 6∈ Laux, i.e. ε-close to (kp, g0, gx) for random g0, gx ∈R G, we consider a word
C = (C0, C1, . . . , Cx) 6∈ Laux and a projection key kpj = Γ � khj such that one Cj does not fulfill the

property Cj ∈ Lauxj , i.e. ∃j ∈ {0, . . . , x},∀λj ∈ Z1×k
p : Θauxj (Cj) 6= λj � Γ . From [5, Appendix D.3] it

follows directly that Θauxj (Cj)�khj is a uniformly distributed element in G, and thus Θxaux(C1, . . . , Cx)�kh0
and

∏x
i=1(Θ0

aux(C0) � khi) is uniformly in G. The projection key kp is uniformly at random in Gk anyway,
given the randomness of all khi. Note that any violation of Dec′π(C0) = Dec′π(g(C1, . . . , Cx)) implies the
existence of an index j such that Cj 6∈ Lauxj . ut

While smoothness is the foremost property of (extended) smooth projective hash functions, in some cases like
password authenticated key exchange pseudorandomness of the produced hash values has to be guaranteed
too. Let kp denote the vector of projection keys kpi for i = 0, . . . , x. A SPHFx is pseudorandom if its hash
values are computationally indistinguishable from random without knowledge of the uniformly chosen hash
keys kh or the witnesses w, i.e. for all C = (C0, . . . , Cx) ∈ Laux the following distributions are computationally
ε-close:

{(kp, C, h0, hx) | ∀i ∈ {0, . . . , x} : khi
R← KGenH(Laux); kpi ← KGenP(khi, Laux);

h0 ← Hash0(kh1, . . . , khx, Laux, C0); hx ← Hashx(kh0, Laux, C1, . . . , Cx)}
ε
= {(kp, C, h0, hx) | ∀i ∈ {0, . . . , x} : khi

R← KGenH(Laux); kpi ← KGenP(khi, Laux);

h0 ∈R G;hx ∈R G}

To prove pseudorandomness of an SPHFx we use modified experiments from [11] given in Definition 5. The
proof for the pseudorandomness of SPHFx follows the line of argument from [11].

Definition 5 (SPHFx Pseudorandomness). A SPHFx Π is pseudorandom if for all PPT algorithms A
there exists a negligible function ε(·) such that

AdvPr
Π,A =

∣∣∣∣Pr[ExpPr
Π,A = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

ExpPr
Π,A(λ) : Choose b ∈R {0, 1}, call b′ ← AΩ

L
pk(·)(λ, kp0, . . . , kpx) with kpi ← KGenP(khi, Laux, Ci) and khi ←

KGenH(Laux) for all i ∈ 0, . . . , x. Return b = b′.

ΩLpk(`, aux) returns elements C = (C0, . . . , Cx) ∈ Laux with C0 ← EncLpk(`0, aux
′; r0) and Ci ← EncLpk

(`i, aux
′
i; ri) for all i ∈ 1, . . . , x and pk ∈ aux using encryption scheme L and according labels `i. It

additionally returns Hash0(kh1, . . . , khx, Laux, C0), Hashx(kh0, Laux, C1, . . . , Cx) if b = 0 or h0, hx ∈R G if
b = 1.

5

The following theorem shows pseudorandomness of hash values in SPHFx.

Theorem 2 (SPHFx Pseudorandomness). The SPHFx construction from Definition 4 on cyclic groups
is pseudorandom if L is a CCA-secure labelled encryption scheme.

Proof. Pseudorandomness of SPHFx follows immediately from its smoothness and the CCA-security of the
used encryption scheme. First we change ΩLpk such that it returns the encryption of 0 for a random i ∈ 0, . . . , x.
This change is not noticeable by the adversary due to the CCA-security of the encryption scheme. Assuming
0 is not a valid message, i.e. aux′ 6= 0 and auxi 6= 0 for all i ∈ 1, . . . , x, the pseudorandomness of SPHFx

follows from its smoothness. ut

The authors of [15] furthermore highlight that this definition of pseudorandomness is not enough when used
in PAKE protocols if the hash values are not bound to a specific session by signatures or MACs. Therefore,
they prove pseudorandomness under re-use of hash keys and ciphertexts. Taking into account re-use of
SPHFx values such as ciphertexts and keys we formalise the notion of concurrent pseudorandomness for
SPHFx following the approach from [15]. Let kp denote the vector of projection keys kpi for i = 0, . . . , x.
A SPHFx is pseudorandom in concurrent execution if the hash values are computationally indistinguishable
from random without knowledge of the uniformly chosen hash keys or the witnesses, i.e. for fixed l = l(λ)
the following distributions are computationally ε-close:

{(kp1, . . . , kpl, C1, . . . , Cl, h0,1, . . . , h0,l, hx,1, . . . , hx,l) |

∀i ∈ {0, . . . , x}, j ∈ {1, . . . , l} : khi,j
R← KGenH(Laux); kpi,j ← KGenP(khi, Laux);

∀j ∈ {1, . . . , l} : h0,j ← Hash0(kh1,j , . . . , khx,j , Laux, C0,j);

hx,j ← Hashx(kh0,j , Laux, C1,j , . . . , Cx,j)}
ε
= {(kp1, . . . , kpl, C1, . . . , Cl, h0,1, . . . , h0,l, hx,1, . . . , hx,l) |

∀i ∈ {0, . . . , x}, j ∈ {1, . . . , l} : khi,j
R← KGenH(Laux); kpi,j ← KGenP(khi, Laux);

∀j ∈ {1, . . . , l} : h0,j ∈R G;hx,j ∈R G}

We extend Definition 5 to capture re-use of hash keys and ciphertexts. The corresponding experiment in
Definition 6 generates l hash values to each ciphertext, one for each hash key.

Definition 6 (SPHFx Concurrent Pseudorandomness). A SPHFx Π offers concurrent pseudoran-
domness if for all PPT algorithms A and polynomials l there exists a negligible function ε(·) such that

AdvPr
Π,A =

∣∣∣∣Pr[ExpPr
Π,A = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

ExpPr
Π,A(λ) : Choose b ∈R {0, 1}, call b′ ← AΩ

L
pk(·)(λ, kp1, . . . , kpl) with kpj = (kp0, . . . , kpx) where kpi ←

KGenP(khi, Laux, Ci) and khi ← KGenH(Laux) for all i ∈ 0, . . . , x and j ∈ 1, . . . , l. Return b = b′.

ΩLpk(`, aux) returns elements C = (C0, . . . , Cx) ∈ Laux with C0 ← EncLpk(`0, aux
′; r0) and Ci ← EncLpk

(`i, auxi; ri) for all i ∈ 1, . . . , x and pk ∈ aux using encryption algorithm L and according labels `i.
It additionally returns Hash0,j(kh1,j , . . . , kh

j
x, Laux, C0), Hashx,j(kh0,j , Laux, C1, . . . , Cx) if b = 0 or h0,j ,

hx,j ∈ G if b = 1 for all j ∈ 1, . . . , l.

Using Definition 6 we prove the concurrent pseudorandomness of our construction, following the argument
from [15, Lemma 1].

Lemma 1 (SPHFx Concurrent Pseudorandomness). The SPHFx construction from Definition 4 on
cyclic groups is pseudorandom on re-use of hash and ciphertext values if L is a CCA-secure labelled encryption
scheme.

6

Proof. Using a hybrid argument it is enough to show that the adversary can not distinguish between exper-
iment Exp1 where Ω returns random elements for the first i hash values of the j-th query and all queries < j
and correct hashes for all subsequent queries and indices > i, and Exp2 where Ω returns random elements
for the first i + 1 hash values of the j-th query and all queries < j and correct hashes for all subsequent
queries and indices > i+ 1. Having this in mind the proof follows the same argument as the one for SPHFx

pseudorandomness. We briefly recall the argumentation there. We modify Exp1 to Exp′1 and Exp2 to Exp′2
such that Ω returns an encryption of 0 instead of correct encryptions for Cj . Note that we assume 0 is not
a valid message such that Cj 6∈ Laux in Exp′1. Due to CCA-security of L this step is not recognisable by the
adversary. Changing Exp′1 to Exp′2 the smoothness of SPHFx ensures that A can not distinguish between the
two experiments, which proves the lemma. ut

3.1 Distributed Computation of SPHFx

Using SPHFx is only reasonable in a distributed manner. We therefore consider n = x+1 entities participating
in the distributed computation of the SPHFx hash values h0, hx. Let Pi for i ∈ {1, . . . , x} denote parties,
each knowing auxi and computing the according ciphertext Ci and projection key kpi. Furthermore, let P0

denote the participant knowing aux and computing C0 and kp0. We define protocols in this setting with the
purpose that both P0 and P1 eventually compute h0 and hx.

While P0 can compute PHash0 and Hashx after receiving all Ci and kpi, computation of Hash0 and PHashx
can not be performed solely by the previously described algorithms in this setting, without disclosing the
witness or the hashing key. To compute PHashx and Hash0, parties P1, . . . , Px have to collaborate since they
know only part of the input parameters. Distributed SPHFx defines protocols that allow secure calculation
of h0 and hx. Intuitively distributed SPHFx reaches the same security properties as SPHFx, namely smooth-
ness and pseudorandomness in presence of a passive adversary, by additionally ensuring that no protocol
participant alone is able to compute the hash values. Note that while we assume each Pi for i > 0 holds a
key-pair and knows public keys of all other Pi such that all communication between two Pi is secured by the
receivers public key, those keys are not authenticated, i.e. we do not assume a PKI.

A distributed SPHFx protocol between n participants P0, . . . , Px computing hx and h0 consists of three
interactive protocols Setup, PHashDx and HashD0 . Let Π denote the SPHFx algorithm that is being distributed.

– Setup(aux, P0, . . . , Px) initialises a new instance for each participant with (aux, P0, P1, . . . , Px) for P0

and (auxi, Pi, P0, . . . , Px) for Pi, i ∈ {1, . . . , x}. Eventually, all participants compute and broadcast pro-
jection keys kpi and encryptions Ci ← EncLpk(`i, aux

′
i; ri) of their secret aux′i using Π.KGenH, Π.KGenP

and the associated encryption scheme L. Participants store incoming kpi, Ci for later use. After receiving
(kp1, C1, . . . , kpx, Cx), P0 computes h0 ← Π.PHash0(kp1, . . . , kpx, Laux, C0, r0) and hx ← Π.Hashx(kh0, Laux,
C1, . . . , Cx).

– PHashDx is executed between parties P1, . . . , Px. Each Pi performs PHashDx on input (kp0, auxi, C1, . . . , Cx, ri)
such that P1 eventually holds hx while all Pi for i > 1 do not learn anything about hx.

– HashD0 is executed between parties P1, . . . , Px. Each Pi performs HashD0 on input (aux′i, khi, C0, . . . , Cx)
such that P1 eventually holds h0 and all Pi for i > 1 do not learn anything about h0.

A distributed SPHFx is said to be correct if PHashDx = PHashx and HashD0 = Hash0 assuming that all
messages are honestly computed and transmitted. The security of the distributed SPHFx in presence of a
passive adversary follows immediately from smoothness and pseudorandomness of the SPHFx algorithms.

Remark 1. Note that we focus on asymmetric distribution here such that only P1 computes the hash values.
Building symmetric distribution protocols where all parties Pi compute the hash values from this is straight-
forward but requires a different security model. Likewise, it is possible to build asymmetric distribution
protocols where all Pi compute different hash values (we will see an example of that later).

3.2 Security against Active Adversaries

Smooth projective hashing has not been used in a distributed manner before such that it was not neces-
sary to consider active adversaries. By introducing distributed computation of hash values the HashD0 and

7

PHashDx protocols are exposed to active attacks. However, the adversary must still not be able to distinguish
real hash values from random elements, i.e. smoothness and pseudorandomness must hold. Therefore we
introduce a security model for distributed SPHFx smoothness and pseudorandomness, capturing active at-
tacks in a multi-user and multi-instance setting. Let {(P j0 , P k1 , . . . , P lx)}P j

0∈P0,Pk
i ∈P i∈{1,...,x} denote all tuples

(P j0 , P
k
1 , . . . , P

l
x) such that P j0 ∈ P0 knows aux and P k1 , . . . , P

l
x ∈ P each know according auxi. We say P0

is registered with (P1, . . . , Px). The additional indices j, k, l denote the instance of the respective participant
(assigned by oracles and modelled as counters to ensure their uniqueness).

Definition 7 (SPHFx Security). A distributed SPHFx protocol Π is secure (offers adaptive smoothness
and concurrent pseudorandomness) if for all PPT adversaries A there exists a negligible function ε(·) such
that :

AdvSPHFx

Π,A (λ) =

∣∣∣∣Pr[ExpSPHFx

Π,A (λ) = 1]− 1

2

∣∣∣∣ ≤ ε(λ)

ExpSPHFx

Π,A (λ) : Choose b ∈R {0, 1}, call b′ ← ASetup(·),Send(·),Test(·)(λ, aux2, . . . , auxx,L, crs) and return b = b′.

– Setup(P0, . . . , Px) initialises new instances with (aux, P1, . . . , Px) for P0 registered with (P1, . . . , Px) and
(aux1, P1, P0, . . . , Px) for P1 and returns ((kp0, C0), (kp1, C1)) with Ci ← EncLpk(`, aux

′
i; ri) and khi ←

Π.KGenH(Laux), kpi ← Π.KGenP(khi, Laux)
– Send(Pa, Pb,m) sends message m with alleged originator Pb to Pa and returns Pa’s resulting message m′

if any.
– Test(P ji) for i ∈ {0, 1} returns two hash values (h0, hx). If the global bit b is 0, the hash values are chosen

uniformly at random from G, otherwise the hash values are computed according to protocol specification
Π.

Note that we assume without loss of generality that all participants P2, . . . , Px are corrupted by the adversary,
who knows their secrets. Furthermore, note that A can query the Test oracle only once.

The active security notion for distributed computation of SPHFx covers smoothness and pseudorandomess
as defined before. The experiment is equivalent to the computational smoothness definition when A computes
and forwards all messages honestly but changes at least one auxi. Note that this is actually a stronger notion
than smoothness as we require pseudorandomness of hash values output by the projection function on a
word not in the language. This is usually not included in the smoothness definition, which is defined over the
hash function. Further, Definition 7 is equivalent to Definition 6 when A computes and forwards all messages
honestly and does not change any auxi.

3.3 Instantiation – Distributed Cramer-Shoup SPHFx

We exemplify the SPHFx definition on the previously introduced Cramer-Shoup encryption scheme (a sec-
ond instantiation for ElGamal ciphertexts can be found in Appendix A.3). The ciphertexts are created as
Ci = (u1,i, u2,i, ei, vi) ← EncCS

pk (`i, aux
′
i; ri) for all i = 1, . . . , x with aux′i = h(aux′)[i] and C0 = (u1,0, u2,0,

e0, v0) ← EncCS
pk (`0, aux

′
0; r0), where `i consists of participating parties and the party’s projection key. We

define modified decryption as Dec′π(C) = e · u−z1 . The combining function g uses the homomorphic property
of u1 and e of the CS ciphertext such that g(C1, . . . , Cx) = (

∏x
i=1 u1,i,

∏x
i=1 ei) and aux′ =

∑x
i=1 aux

′
i. The

following variables define the Cramer-Shoup SPHFx:

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)
∈ G2×5, λ = (r, rξ) ∈ Z1×2

p

Θ0
aux(C0) = (u1, u

ξ
1, u2, e/aux

′, v) ∈ G1×5

Θxaux(C1, . . . , Cx) = (

x∏
i=1

u1,i,

x∏
i=1

uξi1,i,

x∏
i=1

u2,i,

x∏
i=1

ei/aux
′,

x∏
i=1

vi) ∈ G1×5

8

Using them in the SPHFx Definition 4 yields the Cramer-Shoup SPHFx. For a detailed description of the
resulting SPHFx see Appendix A.2. Instead of aiming for absolute generality we describe the distributed
Cramer-Shoup SPHFx for x = 2 such that both participants P1 and P2 compute and broadcast (kpi, Ci),
while P0 computes and broadcasts (kp0, C0). Let × denote element wise multiplication, e.g., for El-Gamal
ciphertexts C1 = (u1, e1), C2 = (u2, e2), C1 ×C2 is defined as (u1u2, e1e2). PHashDx and HashD0 protocols are
defined as follows (Figure 1 depicts the entire SPHFx execution):

– PHashDx is executed between P1 and P2. P2 computes hx,2 = λ � kp0 = (kp0[1] · kp0[2]ξ2)r2 and sends

it to P1. Eventually, P1 holds hx = hx,2 · (λ � kp0) = kp0[1]r1+r2 · kp0[2]ξ1·r1+ξ2·r2 . Note that P1 always
performs checks that kp0 ∈ G and G 3 hx2 6= 0.

– HashD0 is executed between P1 and P2 such that P1 eventually holds h0. Let Pi for i ∈ {1, 2} denote the
participating party knowing (auxi, ski, khi = (η1, η2, θ, µ, ν), pk1, pk2, C0 = (u1, u2, e, v, ξ)).

• P1 computes m0 ← EncEG
pk1

(g−µ1 ; r) and c′1 ← EncEG
pk1

(g
aux′1
1 ; r′), and sends (m0, c

′
1) to P2.

• Receiving (m0, c
′
1) from P1, P2 computes

m1 ← (m0)aux
′
2 × (c′1)−µ × EncEG

pk1
(g
−µ·aux′2
1 · uη1+ξη21 · uθ2 · eµ · vν ; r′′)

and sends it to P1.

• Receiving m1, P1 computes the hash value

h0 = g
−µ·aux′1
1 · DecEG

sk1
(m1) · uη1+ξη21 · uθ2 · eµ · vν .

P0 P1 P2

aux aux1 aux2

kh0 ← KGenH kh1 ← KGenH kh2 ← KGenH

kp0 ← KGenP(kh0) kp1 ← KGenP(kh1) kp2 ← KGenP(kh2)

` = (P0, P1, P2) `1 = (P1, P0, P2) `2 = (P2, P0, P1)

C0 ← EncCS
pk (`, aux′; r) C0, kp0 C1 ← EncCS

pk (`1, aux
′
1; r1) C2, kp2 C2 ← EncCS

pk (`2, aux
′
2; r2)

C1, kp1 m1 ← EncEG
pk1

(g−µ1)

c′1 ← EncEG
pk1

(gaux
′
1) x← g

−µ2·aux′2
1 u

η1,2+ξ0η2,2
1,0 uθ22,0e

µ2

0 vν20

t← u
η1,1+ξ0η2,1
1,0 uθ12,0e

µ1

0 vν10 m1, c
′
1 t← EncEG

pk1
(x)

hx ← Hashx(kh0, Laux, C1, C2) h0 = g
−µ1·aux′1
1 · DecEG

sk1
(m2) · t m2 m2 ← m

aux′2
1 × (c′1)−µ2 × t

h0 ← PHash0(kp1, kp2, Laux, C0, r) hx = (kp[1] · kp[2]ξ1)r1 · hx,2 hx,2 hx,2 = (kp[1] · hp[2]ξ2)r2

HashD0

PHashDx

Fig. 1: Distributed Cramer-Shoup SPHFx

Dashed lines denote broadcast messages.

Security of Distributed Cramer-Shoup SPHFx We show now that the proposed distributed Cramer-
Shoup SPHFx is secure. The intuition behind the proof is that the pseudorandomness of hx can be reduced
directly to the DDH problem in G while pseudorandomness of h0 value follows from the smoothness and
pseudorandomness of the underlying SPHFx scheme.

Theorem 3 (Cramer-Shoup SPHFx Security). The distributed Cramer-Shoup SPHFx instantiation is
secure against active adversaries according to Definition 7 when the DDH assumption in the used group G
holds and L = CS is CCA-secure.

9

Proof. First, note that the theorem follows immediately from smoothness and pseudorandomness in the
passive case if the adversary queries Test(P0). We therefore focus on Test(P1) queries. We start with the
pseudorandomness of hx, i.e. for all g it holds that Pr[hx = g] = 1/|G|. Consider an attacker A on input
(λ, aux2,L, crs) and let Exp0 denote the original SPHFx experiment.

Exp1 : We change Test such that a uniformly at random chosen element gx ∈R G is returned for hx.

Claim.
∣∣∣AdvExp0Π,A − Adv

Exp1
Π,A

∣∣∣ ≤ ε(λ)

Proof. The hash value hx in Exp0 is computed as hx = (kp
′
0
[1] · kp′0[2]ξ1)r1 · hx,2 with adversarially generated

hx,2 and kp
′
0
. Indistinguishability of hx and gx, and thus the claim, follows immediately as long as the DDH

assumption in G holds (using DDH triple (kp
′
0
[1] · kp′0[2]ξ1 , gr1 , hx) and (kp

′
0
[1] · kp′0[2]ξ1 , gr1 , gx)). Note that

P1 aborts if either hx,2 6∈ G or kp
′
0
6∈ G2. ut

To show the security (concurrent pseudorandomness and adaptive smoothness) of h0 we define two Send
queries that allow execution of the protocol: (m1, c

′
1) ← Send1(P2, P1, (kp

′
0
, C ′0, kp

′
2
, C ′2)) starts the protocol

execution between P1 and P2 and provides the attacker with (m1, c
′
1). Using these messages the adversary

(P2) computes a message m2 and sends it to P1 with Send2(P2, P1,m2). This reflects the execution of a single
protocol run of HashD0 such that P1 eventually computes h0. In contrast to the passive and classical SPHF
proofs we can not replace the ciphertexts with encryptions of words not in the language. However, this is
not necessary as t is in fact the Hash computation of the classical Cramer-Shoup SPHF without cancelling
the message, i.e. t = h ·mµ.

Exp2 : We change Test such that a uniformly at random chosen element g0 ∈R G is returned for h0.

Claim.
∣∣∣AdvExp1Π,A − Adv

Exp2
Π,A

∣∣∣ ≤ ε(λ)

Proof. The hash value h0 in Exp1 is computed as h0 = g−µ1·aux′1 · DecEG
sk1

(m2) · t with t = u
η1,1+ξ0η2,1
1,0 uθ12,0

eµ1

0 vν10 where m2 and C ′0 = (u1,0, u2,0, e0, v0) may be adversarially generated. The value t is actually the
Hash value of the classical Cramer-Shoup SPHF without cancelled message, or in other words t is the result
of a SPHF Hash computation for language L(crs,0) such that any C ′0, encrypting some correct aux′ 6= 0, is
not in this language. Due to smoothness of the Hash function [6] t is indistinguishable from a uniformly at
random chosen element. If the adversary encrypted 0 in C ′0 pseudorandomness of Hash takes effect. Therefore
h0 = d · t is indistinguishable from a random group element for all d ∈ G. ut

In Exp2 the adversary always gets random group elements in answer to his Test query. Therefore, he can not
do better than guessing bit b. ut

4 Two-Server PAKE from Distributed SPHFx

In this section we present a new two-server PAKE framework as an application of our distributed SPHFx

concept. Moreover, we show that the two-server PAKE protocol by Katz et al. [13] can be considered as a
variant of our framework using a “mix” of distributed SPHFx for Cramer-Shoup and El-Gamal ciphertexts.

With a single server storing the password, password authenticated key exchange (PAKE) protocols have
an intrinsic single point of failure. As soon as the server’s database, storing the client’s secrets, gets com-
promised the attacker can impersonate the client to this server, and most likely also to others considering
that users tend to reuse their passwords across multiple services. Mechanisms have been proposed to solve
the problem of server compromise [12,19]. However, as long as only one server is used, PAKE protocols are
prone to offline dictionary attacks on the server side. Two-server PAKE (2PAKE) protocols can solve this
problem by splitting the password in two parts such that a malicious or compromised server can be used to
recover only one part of the password. Raimondo and Gennaro [17] proposed a t-out-of-n threshold PAKE,

10

which is not suitable for the 2PAKE setting as it requires t < n/3. Another t-out-of-n threshold PAKE was
proposed in a PKI-based setting with random oracles [16]. Brainard and Juels [8] proposed two-server pass-
word based authentication without security proof. Szydlo and Kaliski [18] later modified constuctions from
[8] and proved their security in a simulation-based model. The first two-server PAKE in the password-only
setting, i.e. without a PKI, is due to Katz et al. [13], based on the KOY protocol from [14]. We consider the
same setting as [13] in which the client computes two independent session keys with the two servers.

4.1 A new Two-Server PAKE Framework

Using distributed SPHFx we can build efficient 2PAKE protocols. We consider the same setting as 2KOY [13],
in particular a client that negotiates independent session keys with both servers that hold pw1 + pw2 = pw.
We omit the second server in the description of the protocol in Figure 2 as the framework is symmetric in
the sense that the second server S2 performs like S1. The framework follows the same principle as the latest
PAKE frameworks from SPHFs. In particular it can be seen as a two-server variant of the PAKE protocol
from [15].

You can think of the two-server protocol as the execution of two distributed SPHFx protocols, one
between (C, S1, S2) and one between (C, S2, S1) where servers S2 and S1 swap roles, such that (C, S1) and
(C, S2) eventually hold common hash values that can be used to generate a shared session key sk1 and sk2.
The only overlap between the two SPHFx executions is the Hashx computation. The reuse of C1, C2 in Hashx
functions is covered by the concurrent pseudorandomness.

2PAKE Framework The servers encrypt their password shares under a public key pk stored in the crs

using a CCA-secure labelled encryption scheme and distribute this ciphertext together with two appropriate
projection keys for a secure distributed SPHFx, (kp1,1, kp1,2, C1) and (kp2,1, kp2,2, C2). The client computes
two independent encryptions of the password and generates two independent according projection keys
(kp0,1, C0,1, kp0,2, C0,2). The previously described SPHFx allows us to send all kpi, Ci in one round and
therefore reach optimality for this step. Using these values, the client can compute session keys as product
of the two hash values h0,1, hx,1 for sk1, which is shared with S1 and from h0,2, hx,2 for sk2 that is shared
with S2.

Subsequently, the two servers perform the HashD0 and PHashDx protocols such that S1 and S2 eventually
hold hash values h0,1 and hx,1, h0,2 and hx,2 respectively, to compute sk1, sk2 respectively. Eventually, C
holds sk1 = h0,1 · hx,1 and sk2 = h0,2 · hx,2, S1 holds sk1 = h0,1 · hx,1 and S2 holds sk2 = h0,2 · hx,2. An
instantiation of the framework using labelled Cramer-Shoup encryption and the aforementioned distributed
SPHFx yields a secure 2PAKE protocol. Note that this actually requires two SPHFx executions.

Security We use the well-known game based PAKE model first introduced by Bellare et al. [3] in it’s two-
server variant from [13]. For a formal description of the model we refer to [13]. The security of the two-server
PAKE framework follows directly from the CCA-security of the used encryption scheme and the security of
the distributed SPHFx.

Theorem 4. Let (KGenH, KGenP, PHash0, Hashx, Hash
D
0 , PHash

D
x) be a secure distributed SPHFx and (KGen,

Enc, Dec) a CCA-secure labelled encryption scheme, then the proposed framework in Figure 2 is a secure
two-server PAKE protocol.

Proof (sketch). Let Π denote a secure instantiation of the 2PAKE framework. To prove security of Π we
introduce three experiments such that the adversary in the last experiment Exp3 can not do better than

guessing the password as all messages are password independent, i.e. Adv
Exp3
Π,A ≤ q/|D| for q active attacks.

We initially focus on the AKE-security of sk1.
Exp1 is identical to the two-server AKE-security experiment except that the simulator knows π, the

decryption key to pk in the crs (only a syntactical change) and the following changes: If C0,1 or C1, handed
to S1 or C are adversarially generated and encrypt the correct password(share), the simulator stops and A

11

C S1

pk,pw pk,pw1, sk1, pk2

kh0,1 ← KGenH(Laux), kh0,2 ← KGenH(Laux) kh1,1 ← KGenH(Laux), kh1,2 ← KGenH(Laux)

kp0,1 ← KGenP(kh0,1), kp0,2 ← KGenP(kh0,2) kp1,1 ← KGenP(kh1,1), kp1,2 ← KGenP(kh1,2)

`0,1 = (C, S1, S2), `0,2 = (C, S2, S1) `1 = (S1, C, S2)

C0,1 ← EncLpk(`0,1,pw; r0,1), C0,2 ← EncLpk(`0,2,pw; r0,2) kp0,1, C0,1, kp0,2, C0,2 C1 ← EncLpk(`1,pw1, r1) kp2,1, kp2,2, C2

kp1,1, kp1,2, C1

h0,1 ← PHash0(kp1, kp2, Laux, C0,1, r0,1) h0,1 ← HashD0 (C0,1, kh1,1,pw1, sk1, pk2)

h0,2 ← PHash0(kp1, kp2, Laux, C0,2, r0,2) hx,1 ← PHashDx (kp1,1, C1, r1)

hx,1 ← Hashx(kh0,1, Laux, C1, C2) HashD0 (C0,2, kh1,2,pw1, sk1, pk2)

hx,2 ← Hashx(kh0,2, Laux, C1, C2) PHashDx (kp1,2, C1, r1)

sk1 = h0,1hx,1, sk2 = h0,2hx,2 sk1 = h0,1hx,1

Fig. 2: Two-Server PAKE framework using SPHFx

Dashed lines denote broadcast messages.

wins the experiment. If C0,1, C1 or C2, handed to S1 or C encrypt a wrong password(share), the key for that
session is drawn uniformly at random from G. The first change only increases the adversarial advantage and
the second one introduces a negligible gap according to the adaptive smoothness of the used SPHFx.

Exp2 performs like Exp1 except that it draws the session key at random from G if all Ci handed to C and
S1 are oracle generated or encrypt the correct password and no session key has been chosen for the partner
in that session (otherwise that previously drawn key is used). This introduces a negligible gap between
advantages in Exp1 and Exp2 due to the concurrent pseudorandomness of the used SPHFx.

Exp3 acts like Exp2 except that it returns encryptions of 0 for C0,1 and C1 (note that 0 is not a valid
password). This step is covered by the CCA-security of the used encryption scheme.

AKE-security of sk1 follows as all messages are password independent in Exp3 unless the adversary guesses
the correct password. Using the same sequence of experiments but considering C and S2 instead of C and
S1, AKE-security of sk2 follows. ut

4.2 2-Server KOY (2KOY) [13]

We can now “explain” the use of SPHF in 2KOY from [13]; similar to [11] that “explained” the original KOY
protocol from [14]. We define encryption schemes and distributed SPHFx used in 2KOY, highlight changes
to our framework and discuss implications of this on the security of 2KOY.

The crs contains a public key pk for Cramer-Shoup encryption as well as a public key g3 for El-Gamal
encryption. Since [13] uses El-Gamal encryptions on the server side, we have to use a combination of Cramer-
Shoup and El-Gamal based SPHFx in 2KOY. Instead of using Cramer-Shoup encryptions and SPHFx, the
client computes projection keys for an El-Gamal distributed SPHFx, which is based on the aforementioned
SPHF on El-Gamal ciphertexts.

Likewise, the servers compute projection keys for a Cramer-Shoup distributed GL-SPHFx and El-Gamal
encryptions of their password shares.2 We describe the original GL-SPHF on Cramer-Shoup ciphertexts
in Appendix A.1 The client sends the projection keys in a third round together with a signature on the
session transcript to the servers. The protocol is depicted in Figure 3. Note that we moved Kr into a
separate encryption compared to the original protocol. The ElGamal encryption of the password of party
i, Ĉi ← EncEG

pki
(gpwi ; ri) is precomputed and stored on Sj , j 6= i, j ∈ {1, 2}. Eventually, the client computes

hash values using the PHash0 function of the GL-SPHFx scheme on CS ciphertexts and the Hashx function
of the SPHFx scheme on El-Gamal ciphertexts. Further, the servers execute the HashD0 protocol of the

2Note that an additional signature on the session transcript in round three ensures “non-malleability” of these
ciphertexts.

12

distributed GL-SPHFx scheme on CS ciphertexts and the PHashDx protocol of the distributed SPHFx scheme
on El-Gamal ciphertexts.

C S1

crs,pw crs,pw1, Ĉ2

(vk, sk)← Gen, ` = (C, vk) (kh1, kh
′
1)← KGenH

CS(Laux)

C1,0 ← EncCS
pk (`,pw; r1)

C2,0 ← EncCS
pk (`,pw; r2) C1,0, C2,0, vk (kp1, kp

′
1
)← KGenP

CS(kh1, kh
′
1, C1,0)

(kh1,0, kh2,0)
R← KGenH

EG(Laux)

(kp1,0, kp2,0)← KGenP
EG(kh1,0, kh2,0, Laux) C1, kp1, kp

′
1 C1 ← EncEG

g3 (g
pw1
1 ; r1) C2, kp2, kp

′
2

σ ← Sign(trans, kp1, kp2)

h0,1 ← PHashCS
0 (kp1, kp2, Laux, C1,0, r1) σ, kp1,0, kp2,0 check C,G2, trans

h0,2 ← PHashCS
0 (kp

′
1
, kp
′
2
, Laux, C2,0, r2) h0,1 ← HashD−CS0

hx,1 ← HashEG
x (kh1,0, Laux, C1, C2)

hx,2 ← HashEG
x (kh2,0, Laux, C1, C2) hx,1 ← PHashD−EG

x

sk1 = h0,1hx,1, sk2 = h0,2hx,2 sk1 = h0,1hx,1

Fig. 3: Two-Server KOY [13] using SPHFx

Dashed lines denote broadcast messages.

Security of 2KOY Security of the protocol in Figure 3 against passive adversaries follows immediately from
[13, Theorem 1] as we do not change the protocol. However, the authors of [13] need additional mechanisms
to prove their protocol secure against an active adversary. They add witness-indistinguishable Σ-protocols to
the PHashDx and HashD0 protocols that prove correctness of their messages. Without giving a proof it should
be clear that Theorem 4 also holds for the 2KOY instantiation without additional mechanisms. Examining
the proof of [13, Theorem 2] shows that the additional steps are only necessary to conduct the proof without
actually giving additional security. This shows the power of distributed SPHFx as they allow for much simpler
proofs of multi-party protocols. Furthermore, with our framework the protocol becomes more efficient than
2KOY as it needs only two rounds instead of three and does not need correctness proofs in the distributed
hash and projection protocols.

5 Conclusion

We introduced the notion of extended (distributed) smooth projective hashing and gave an instantiation using
Cramer-Shoup ciphertexts. Distributed smooth projective hashing can be used as building block in threshold
and multi-party protocols. As an example, we built a two-server PAKE framework using a distributed
smooth projective hash function. This two-server PAKE framework yields the most efficient two-server PAKE
protocols today. The framework also allows us to explain and simplify the two-server PAKE protocol from
[13].

While we focused on two-server password authenticated key exchange as application of distributed SPHF
in this work, (distributed) extended smooth projective hash functions is an interesting building block for
future work on other multi-party and threshold protocols.

Acknowledgments This research was supported by the German Science Foundation (DFG) through the
project PRIMAKE (MA 4957)

13

References

1. M. Abdalla, C. Chevalier, and D. Pointcheval. Smooth Projective Hashing for Conditionally Extractable Com-
mitments. In CRYPTO’09, volume 5677 of Lecture Notes in Computer Science, pages 671–689. Springer-Verlag,
2009. 1

2. M. Abdalla and D. Pointcheval. A Scalable Password-Based Group Key Exchange Protocol in the Standard
Model. In ASIACRYPT’06, volume 4284 of Lecture Notes in Computer Science, pages 332–347. Springer-Verlag,
2006. 1

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In
EUROCRYPT’00, volume 1807 of Lecture Notes in Computer Science, pages 139–155. Springer-Verlag, 2000. 11

4. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. Efficient UC-Secure Authenticated
Key-Exchange for Algebraic Languages. In PKC’13, volume 7778 of Lecture Notes in Computer Science, pages
272–291. Springer-Verlag, 2013. 1

5. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New Smooth Projective Hash Functions
and One-Round Authenticated Key Exchange. Cryptology ePrint Archive, Report 2013/034, 2013. http://

eprint.iacr.org/. 1, 2, 3, 4, 5, 15
6. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New Techniques for SPHFs and

Efficient One-Round PAKE Protocols. In CRYPTO’13, volume 8042 of Lecture Notes in Computer Science,
pages 449–475. Springer-Verlag, 2013. 2, 3, 10

7. O. Blazy, D. Pointcheval, and D. Vergnaud. Round-Optimal privacy-preserving protocols with smooth projective
hash functions. In TCC’12, volume 7194 of Lecture Notes in Computer Science, pages 94–111. Springer-Verlag,
2012. 1

8. J. Brainard and A. Juels. A new two-server approach for authentication with short secrets. In USENIX’03,
volume 12 of SSYM’03, pages 14–14. USENIX Association, 2003. 11

9. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In CRYPOT’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer-Verlag, 1998.
1

10. R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure
Public-Key Encryption. In EUROCRYPT’02, volume 2332 of Lecture Notes in Computer Science, pages 45–64.
Springer-Verlag, 2002. 1, 2

11. R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key Exchange. ACM Trans. Inf.
Syst. Secur., 9(2):181–234, may 2006. 1, 2, 3, 4, 5, 12, 14

12. C. Gentry, P. D. MacKenzie, and Z. Ramzan. A Method for Making Password-Based Key Exchange Resilient
to Server Compromise. In CRYPTO’06, volume 4117 of Lecture Notes in Computer Science, pages 142–159.
Springer-Verlag, 2006. 10

13. J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-server password-only authenticated key exchange. In
ACNS’05, volume 3531 of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, 2005. 1, 10, 11, 12,
13

14. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange Using Human-Memorable
Passwords. In EUROCRYPT’01, volume 2045 of Lecture Notes in Computer Science, pages 475–494. Springer-
Verlag, 2001. 1, 11, 12, 14

15. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key exchange. In TCC’11, volume
6597 of Lecture Notes in Computer Science, pages 293–310. Springer-Verlag, 2011. 1, 2, 3, 4, 6, 11

16. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key exchange. In
CRYPTO’02, volume 2442 of Lecture Notes in Computer Science, pages 1–41. Springer-Verlag, 2002. 11

17. M. D. Raimondo and R. Gennaro. Provably secure threshold password-authenticated key exchange. In EU-
ROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 507–523. Springer-Verlag, 2003.
10

18. M. Szydlo and B. Kaliski. Proofs for Two-Server Password Authentication. In CT-RSA’05, volume 3376 of
Lecture Notes in Computer Science, pages 227–244. Springer-Verlag, 2005. 11

19. T. Wu. RFC 2945 - The SRP Authentication and Key Exchange System, sep 2000. 10

A SPHF Definitions

A.1 GL-SPHF [11]

In [11] Gennaro and Lindell formally introduced the first use of SPHF in the PAKE setting, denoted by GL-
SPHF here, by “explaining” the KOY protocol from [14]. To describe GL-SPHF on labelled Cramer-Shoup

14

http://eprint.iacr.org/
http://eprint.iacr.org/

ciphertexts in the framework from [5] we define the following variables: Let Γ (C) =

(
g1 g2 h c
1 1 1 dξ

)T
∈ G4×2,

λ = r ∈ Zp and Θaux(C) = (u1, u2, e/m, v) ∈ G1×4. GL-SPHF then is defined as follows:

– kh
R← KGenH(Laux) : kh = (η, θ, µ, ν) ∈R Z1×4

p

– kp ← KGenP(kh, Laux, C) :

kp = Γ � kh =

(
g1 g2 h c
1 1 1 dξ

)T
� (η, θ, µ, ν) = gη1g

θ
2h

µcνdξν ∈ G

– h← Hash(kh, Laux, C) :

h = Θaux(C)� kh = (u1, u2, e/m, v)� (η, θ, µ, ν) = uη1u
θ
2(e/m)µvν ∈ G

– h← PHash(kp, Laux, C, r) :

h = λ� kp = r � gη1gθ2hµcνdξν = (gη1g
θ
2h

µcνdξν)r ∈ G

A.2 Cramer-Shoup SPHFx

The Cramer-Shoup SPHFx is fully defined as follows (please see Section 3.3 for specifications of Θxaux, Θ
0
aux

and Γ):

– khi
R← KGenH(Laux) : khi = (η1, η2, θ, µ, ν) ∈R Z1×5

p .
– kpi ← KGenP(khi, Laux) :

kpi = Γ � khi =

(
g1 1 g2 h c
1 g1 1 1 d

)
� (η1,i, η2,i, θi, µi, νi) =

(
g
η1,i
1 gθi2 h

µicνi

g
η2,i
1 dνi

)
∈ G2×1

– hx ← Hashx(kh0, Laux, C1, . . . , Cx) :

hx = Θxaux(C1, . . . , Cx)� kh0

= (

x∏
i=1

u1,i,

x∏
i=1

uξi1,i,

x∏
i=1

u2,i,

x∏
i=1

ei/m,

x∏
i=1

vi)� (η1,0, η2,0, θ0, µ0, ν0)

= (

x∏
i=1

u1,i)
η1,0 · (

x∏
i=1

uξi1,i)
η2,0 · (

x∏
i=1

u2,i)
θ0 · (

x∏
i=1

ei/m)µ0 · (
x∏
i=1

vi)
ν0 ∈ G

– hx ← PHashx(kp0, Laux, C1, . . . , Cx, r1, . . . , rx) : with Ω(ri, Ci) = (ri, riξi)

hx =

x∏
i=1

(λi � kp0) =

x∏
i=1

(
(ri, riξi)�

(
g
η1,0
1 gθ02 h

µ0cν0

g
η2,0
1 dν0

))

=

x∏
i=1

[(g
η1,0
1 gθ02 h

µ0cν0)ri(g
η2,0
1 dν0)riξi] ∈ G

– h0 ← Hash0(kh1, . . . , khx, Laux, C0) :

h0 =

x∏
i=1

(Θ0
aux(C0)� khi) =

x∏
i=1

[(u1, u
ξ
1, u2, e/m, v)� (η1,i, η2,i, θi, µi, νi)]

=

x∏
i=1

(u
η1,i
1 · uξη2,i1 · uθi2 · (e/m)µi · vνi)

15

– h0 ← PHash0(kp1, . . . , kpx, Laux, C0, r0) : with λ0 = Ω(r0, C0)

h0 =

x∏
i=1

(λ0 � kpi) =

x∏
i=1

(
(r0, r0ξ0)�

(
g
η1,i
1 gθi2 h

µicνi

g
η2,i
1 dνi

))

=

x∏
i=1

[(g
η1,i
1 gθ,i2 hµicνi)r0(g

η2,i
1 dνi)r0ξ0] ∈ G

A.3 ElGamal SPHFx

We use m for the encrypted message, that is part of aux′ and pk for the ElGamal public key h = gz from the
crs. The ciphertexts are created as Ci = (u, e) ← EncEG

pk (mi; ri) for all i = 1, . . . , x with mi = h(m)[i] and

C0 = (u, e)← EncEG
pk (m; r0). The decryption follows the ElGamal decryption such that Dec′π = DecEG

z . The

combining function g uses the homomorphic property of u and e such that g(C1, . . . , Cx) = (
∏x
i=1 ui,

∏x
i=1 ei).

To use the SPHF framework we also need the following variables and functions:

Γ (C) = (g, h)T ∈ G2×1, λ = r ∈ Zp, Θ0
aux(C) = (u, e/m) ∈ G1×2

Θxaux(C1, . . . , Cx) = (

x∏
i=1

ui,

x∏
i=1

ei/m) ∈ G1×2

Using them in the SPHFx Definition 4 yields the following ElGamal SPHFx:

– h0 ← Hash0(kh1, . . . , khx, Laux, C0) :

h0 =

x∏
i=1

Θ0
aux(C)� khi =

x∏
i=1

[(u0, e0/m)� (η, θ)] =

x∏
i=1

[uηi0 (e0/m)θi] ∈ G

– hx ← PHashx(kp0, Laux, C1, . . . , Cx, r1, . . . , rx) :

hx =

x∏
i=1

(λi � kp0) =

x∏
i=1

(ri � gη0hθ0) =

x∏
i=1

(gη0hθ0)ri ∈ G

B SPHF Technicalities

B.1 Smoothness of Cramer-Shoup SPHFx

We want to discuss the statistical smoothness of SPHFx from Theorem 1 in this section. While the intuition
and actual proof has been given in Section 3, we want to formulate what actually happens there. Therefore,
we use the instantiation of Cramer-Shoup SPHFx and limit x = 2. Recall that we thus want to show
that (kp0, kp1, kp2, h0, hx) is uniformly distributed in Gk+2 for all C 6∈ Laux. Actually, we do not have to

bother with the projection keys kp0, kp1, kp2, as they are each uniformly at random in Gk anyway, given
the randomness of all khi. What we want to show is that given kp0, kp1, kp2, the hash values h0 and hx are
uniformly distributed in G. More precisely, we show that for all C = (C0, C1, C2) 6∈ Laux the projection keys
kp0, kp1, kp2 are defined by functions that are linearly independent from the functions used in Hash0 and
Hashx, such that the resulting hash values h0 ← Hash0 and hx ← Hashx are uniformly distributed in G.
Computing the discrete logarithm in base g1 of hx, h0 and the projection keys kp1, kp1 and kp2 with m = gpw

and m′ = gpw
′

such that EncCS
pk (m′) 6∈ Laux we get the following equations:

logg1(h0) = logg1(kp1[0]) · r0 + logg1(kp1[1]) · ξ0r0
+ logg1(kp2[0]) · r0 + logg2(kp2[1]) · ξ0r0 + logg1(m′/m) · (ν1 + ν2)

= r0(η1,1 + η1,2) + ξ0r0(η2,1 + η2,2) + logg1(g2) · r0(θ1 + θ2) + z · r0(ν1 + ν2) (1)

+ logg1(c) · r0(ν1 + ν2) + logg1(d) · ξ0r0(ν1 + ν2) + logg1(m′/m) · (ν1 + ν2)

16

logg1(hx) = logg1(kp0[0]) · (r1 + r2) + logg1(kp0[1]) · (ξ1r1 + ξ2r2) + logg1(m′/m) · ν0
= (r1 + r2)η1,0 + (ξ1r1 + ξ2r2)η2,0 + logg1(g2) · (r1 + r2)θ0 + z · (r1 + r2)ν0 (2)

+ logg1(c) · (r1 + r2)ν0 + logg1(d) · (ξ1r1 + ξ2r2)ν0 + logg1(m′/m) · ν0

logg1(kp0[0]) = η1,0 + logg1(g2) · θ0 + logg1(h) · µ0 + logg1(v) · ν0 (3)

logg1(kp0[1]) = η2,0 + logg1(d) · ν0 (4)

logg1(kp1[0]) = η1,1 + logg1(g2) · θ1 + z · µ1 + logg1(v) · ν1 (5)

logg1(kp1[1]) = η2,1 + logg1(d) · ν1 (6)

logg1(kp2[0]) = η1,2 + logg1(g2) · θ2 + z · µ2 + logg1(v) · ν2 (7)

logg1(kp2[1]) = η2,2 + logg1(d) · ν2. (8)

Since C 6∈ Laux we know that m 6= m′ and thus m′/m 6= 1. Therefore, the probability for g0 = logg1(m′/m) ·
(ν1 +ν2) and gx = logg1(m′/m) ·ν0 for any g0, gx ∈ G is 1/|G| even knowing the projection keys kp0, kp1, kp2.
Note that these equations for g0 and gx are linearly independent from Equations 3 - 8 such that every element
from G is equally likely to be the result. Equations 1 and 2 are fully determined by public information
C0, C1, C2 and kp0, kp1, kp2 such that their result is uniformly distributed in G given the randomness of g0
and gx.

C Notation

Using common matrix and vector operations on � can be used as follows:

b� s =

b11 · · · b1y...
...

bx1 · · · bxy

� (s11, . . . , s1y) = (

y∏
i=1

bs1i1i , . . . ,

y∏
i=1

bsxi
xi)T ∈ Gx×1

s� c = (s11, . . . , s1y)� (c11, . . . , cy1)T =

y∏
i=1

cs1ii1 ∈ G

17

	Distributed Smooth Projective Hashing and its Application to Two-Server PAKEA shortened version of this paper with the name ``Distributed Smooth Projective Hashing and its Application to Two-Server Password Authenticated Key Exchange'' appears in the proceedings of the 12th International Conference on Applied Cryptography and Network Security (ACNS 2014), June 10–13, 2014, Lausanne, Switzerland. This is the full version.
	Franziskus Kiefer and Mark Manulis
	Introduction
	Organisation

	Smooth Projective Hash Functions
	Encryption Schemes & SPHFs

	Extended Smooth Projective Hash Functions (SPHFx)
	Security of SPHFx
	Distributed Computation of SPHFx
	Security against Active Adversaries
	Instantiation – Distributed Cramer-Shoup SPHFx
	Security of Distributed Cramer-Shoup SPHFx

	Two-Server PAKE from Distributed SPHFx
	A new Two-Server PAKE Framework
	2PAKE Framework
	Security

	2-Server KOY (2KOY)
	Security of 2KOY

	Conclusion
	SPHF Definitions
	GL-SPHF Gennaro2003
	Cramer-Shoup SPHFx
	ElGamal SPHFx

	SPHF Technicalities
	Smoothness of Cramer-Shoup SPHFx

	Notation

