
Blind Password Registration for Verifier-based PAKE

Franziskus Kiefer
Mozilla Inc.

Berlin, Germany
mail@franziskuskiefer.de

Mark Manulis
Surrey Centre for Cyber Security
Department of Computer Science

University of Surrey, UK
mark@manulis.eu

ABSTRACT
We propose Blind Password Registration (BPR), a new class
of cryptographic protocols that is instrumental for secure
registration of client passwords at remote servers with addi-
tional protection against unwitting password disclosures on
the server side that may occur due to the lack of the state-
of-the-art password protection mechanisms implemented by
the server or due to common server-compromise attacks.
The dictionary attack resistance property of BPR protocols
guarantees that the only information available to the server
during and after the execution of the protocol cannot be
used to reveal the client password without performing an
offline dictionary attack on a password verifier (e.g. salted
hash value) that is stored by the server at the end of the
protocol. In particular, at no point in time the server is
supposed to work with plain passwords. Our BPR model
allows servers to enforce password policies and the require-
ment on the client to obey them during the execution of the
BPR protocol is covered by the policy compliance property.
We construct an efficient BPR protocol in the standard

model for ASCII-based password policies using some tech-
niques underlying the recently introduced Zero-Knowledge
Password Policy Checks (ZKPPC). However, we do not rely
on the full power of costly ZKPPC proofs and in fact show
that BPR protocols can be modelled and realised simpler
and significantly faster (as supported by our implementa-
tion) without using them as a building block. Our BPR
protocol can directly be used to replace ZKPPC-based reg-
istration procedure for existing VPAKE protocols.

1. INTRODUCTION
Cryptographic password authentication, including pass-

word authenticated key exchange (PAKE) protocols and
their variants, remains an important research topic since
the 1990s [8, 22, 7], driven by the wide use of passwords and
continuous damage from password compromise attacks. A
rich variety of challenges related to the modelling of PAKE
protocols [7, 12, 4, 13, 18], efficient design and security anal-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AsiaPKC’16, May 30-29 2016, Xi’an, China
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4286-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2898420.2898424

ysis [23, 3, 24, 10], possible deployment in practice [1, 2,
19, 20, 38, 28] along with the development of metrics for
password strength evaluation [32, 39, 27, 30] and usabil-
ity improvements for password authentication [14, 21, 26]
have been addressed so far, with only little attention paid
to the remote registration of passwords, which is the initial
step of any remote password-based protocol and perhaps
the most crucial one in terms of security. In many crypto-
graphic password-based protocols this step is often omitted
using the assumption that passwords are set up in a secure
way and known to the parties prior to the execution of the
protocol.
To see the importance of password registration consider

the current approach for remote registration of client pass-
words on the Web: the client establishes a server-authenti-
cated confidential channel (e.g., using TLS) over which the
password is sent to the server and then (securely) stored
in the password database. In order to offer better protec-
tion against compromised password databases servers are
supposed to store only the randomised password hash and
the random salt that was used. In later sessions the client
authenticates itself with the password whereas the server
uses stored password hash and salt to perform the check.
This concept resembles what is called a Verifier-based PAKE
(VPAKE) protocol [9, 18, 11] (aka. asymmetric [7] or aug-
mented PAKE [9]). A large number of break-ins into server
databases makes VPAKE a particularly valuable concept for
remote password-based authentication since in order to re-
cover the actual client password the attacker must perform
a costly dictionary attack on its password hash. However,
the increasing number of successful password leaks [33, 15,
31] suggests that many servers do not apply randomised
password hashing at all. For this reason, remote password
registration should ideally be performed without the need
for the client to send its password to the server; in other
words, without trusting the server to securely process and
store client passwords.
This was recently taken as a motivation in [25] to come up

with the concept of blind password registration for VPAKE
protocols by which the server only learns the randomised
password hash and the random salt but not the actual pass-
word. The major challenge addressed there was to find
a solution for blind registration of password verifiers for
VPAKE that can be proven to satisfy the server’s policy
on the format of passwords (e.g. minimal password length,
inclusion of characters of different types, etc.) during the
registration procedure, yet without disclosing those pass-
words in clear. This was realised using new Zero-Knowledge

39

http://dx.doi.org/10.1145/2898420.2898424

Password Policy Checks (ZKPPC) that served in [25] as
an intermediate registration step and allowed the client to
prove policy-compliance (soundness) of the chosen password
without leaking any information about the password (zero-
knowledge) to the server. The security of ZKPPC was de-
fined to prevent malicious clients from registering passwords
that do not comply with the server’s policy and to prevent
malicious servers from learning any information about pass-
words from the ZKPPC protocol execution. The security
model from [25] focused only on the ZKPPC proofs and
did not model the overall security of the blind password
registration procedure, where the client first performs the
ZKPPC proof and then discloses to the server (partial) ran-
domness that was used to compute the randomised password
hash and that remained secret during the ZKPPC execution.
Obviously, the zero-knowledge property of ZKPPC is too
strong since it also protects randomness that is disclosed
later and so the blind password registration procedure, if
modelled as a stand-alone protocol, can possibly be realised
using weaker (and more efficient) primitives than ZKPPC
proofs. In addition, a concrete ZKPPC construction pro-
posed in [25] for password strings consisting of printable
ASCII characters is too inefficient for practical use due to
the use of set membership proofs on committed values over
sets of size O(nmax) where the maximum password length
nmax is a fixed global parameter for the ZKPPC protocol.
Therefore, while [25] made the first step towards blind reg-
istration of policy-compliant VPAKE passwords, their pro-
posed modelling approach and solutions based on ZKPPC
leave space for further improvements.
In this work we take Blind Password Registration (BPR)

to a new level: first, we define a security model for stand-
alone BPR protocols without resorting to any intermediate
building blocks like ZKPPC and model two main require-
ments — policy compliance and dictionary attack resistance
— that a secure BPR protocol must fulfil (cf. Section 3).
In particular, our dictionary attack resistance, which basi-
cally says that the attacker must not be able to retrieve
the client password significantly faster from the information
obtained out of BPR executions than by trying each pass-
word individually against the password hash and the salt,
is a more natural requirement for BPR protocols than the
zero-knowledge requirement formulated for ZKPPC proofs.
Second, we present a truly efficient BPR protocol for policy-
compliant VPAKE passwords in Section 4 where nmax is no
longer needed as a parameter and the underlying set mem-
bership proofs for committed password characters proceed
with respect to sets of size O(1). This improvement comes
from the use of an efficient shuffling proof from [16] that is
used to link proofs of set membership of single characters
to the policy compliance of the combined password with-
out the need to inflate character sets to the maximum pass-
word length nmax. (While more efficient shuffling proofs exist,
e.g., [6], they have higher round complexity and their advan-
tage becomes noticeable only for larger sets than those used
to represent ASCII-based passwords.) By performing set
membership proofs over sets of maximum 94 characters we
eliminate the factor nmax from the protocol performance but
introduce a smaller cost of the shuffling proof in the pass-
word length n, which seems unavoidable in this approach
if the protocol should hide any relation between the policy
and the password other than its compliance. The proposed
BPR protocol is compatible with the recent VPAKE proto-

col from [25] such that both protocols together can be seen
as a framework for remote password registration and au-
thentication where the client password remains hidden from
the server.

2. PRELIMINARIES
We recall building blocks we use in our construction and

give preliminaries. We start with definitions of passwords,
dictionaries, and policies from [25]. Note that we incorpo-
rate small but substantial modifications to some definitions.
We use bold characters C = {Ci} to denote vectors of ele-
ments.

2.1 Passwords, Dictionaries and Policies

ASCII-based passwords.
The character mapping function CHRtoINT : Σ 7→ Z95

maps any of 94 printable ASCII characters c ∈ Σ to an in-
teger in Z95 using its decimal ASCII code ASCII(c), namely
CHRtoINT(c) := ASCII(c) − 32 for all 33 ≤ ASCII(c) ≤ 126.
Let n = |pw| denote the password length. The password
mapping function PWDtoINT : Σn 7→ Zbn with shift base
b ∈ N maps any password string pw = (c0, . . . , cn−1) ∈ Σn
to an integer in the set Zbn , namely

PWDtoINT(pw) :=
n−1∑
i=0

biCHRtoINT(ci).

We specify our protocol using shift base b as a parameter
and give concrete values in Section 4.3 where the implemen-
tation and performance of the protocol are discussed. We
use pw to denote a password string and π ← PWDtoINT(pw)
for its integer value, and write π =

∑n−1
i=0 b

iπi for encoded
characters πi ← ASCII(c)− 32. Note that the password en-
coding PWDtoINT is an injective function that maps every
password string pw to a corresponding unique integer π. In
particular, PWDtoINT(pw) 6= PWDtoINT(pw′) for all password
strings pw, pw′ ∈ {0, 1}∗ with pw 6= pw′.

Password policies.
A password policy is defined as a tuple f = (R,nmin),

where R is a policy expression over Σ = {d, u, l, s}, where
d denotes digits, u upper case letters, l lower case letters,
s symbols, and nmin defines the minimum length of a pass-
word. Note that, unlike [25], we do not specify an upper
limit on the password length. A policy expression R over Σ
is a simplified regular expression that only specifies the sets
necessary for a string to fulfil the expression. In particular,
it specifies the minimum number of occurrences of elements
from Σ in the password string, e.g., R = dl requires pw to
have at least one digit and one lower case letter, and R = ssd
requires pw to have at least two symbols and one digit. We
write f(pw) = true to indicate that the policy is satisfied
by the password string pw. Further, a character ci ∈ pw is
called significant if it is necessary to fulfil a policy expres-
sion R and say the according set Rj ∈ R is the according
significant set. For every Rj ∈ R the first occurrence of a
character ci ∈ Rj is considered significant. Note that Σ, and
thus d, u, l and s, in this work can refer to the set of encoded
characters, or the set of ASCII characters, depending on the
context.

40

Dictionaries.
A password dictionary is denoted by D and contains all

possible combinations of ASCII characters. For a more pre-
cise security analysis we also define the following subsets: a
dictionary containing all policy compliant passwords is de-
noted by Df = {pw ∈ D : f(pw) = true} and its subsets
with passwords of length l ∈ N by Df,l, i.e. Df,l = {pw ∈
D : f(pw) = true ∧ |pw| = l}.

2.2 Password Distributions and Min-Entropy
Intuitively, a password hashing scheme should be consid-

ered secure (and a BPR protocol resistant to dictionary at-
tacks) if an attacker can not retrieve the password from its
hash more efficiently than by performing a brute-force at-
tack over the dictionary. Therefore, security definitions for
password hashing and dictionary attack resistance rely on
the notion of min-entropy β.
The dictionary D, from which the passwords are chosen,

has min-entropy β such that efficient sampling of the dictio-
nary allows retrieving the password from its hash with prob-
ability in β. Although passwords in cryptographic research
are often assumed to be uniformly at random distributed
low-entropy secrets, we consider a somewhat more realistic
password model. In particular, we use passwords as char-
acter strings where the distribution of characters depends
on the used character sets ω, character positions and the
password string itself. We thus use a definition of password
min-entropy commonly used in password security research
[37, 27, 30], which captures the difficulty of brute-force at-
tacks on passwords chosen from certain dictionaries. As dis-
cussed in [37, 27], this definition can capture many realistic
password creation models. Let Dω denote the probability
distribution in password pw of characters from a character
set ω ∈ {Σ, d, u, l, s}. Min-entropy for pw = (c0, . . . , cn−1)
is then defined according to Shannon [36] as

βDf,l = − max
pw∈Df,l

n−1∑
i=0

[DΣ(ci) lg(DΣ(ci))].

Note that definitions for min-entropy of D and Df are equiv-
alent to the definition for Df,l. While this may be surprising
at first glance, one has to consider that while the policy re-
stricts the character space, it does not restrict the positions
where these characters appear, i.e. an adversary cannot ex-
clude any characters at any position. (Note that we exclude
the special case where every character in a password is sig-
nificant and the policy expression R does not use all four
available character sets.)

2.3 Building Blocks
In this section we define building blocks and give defini-

tions that are used in the remainder of this work. Due to
space limitations more well known definitions can be found
in the full version of this work.

2.3.1 Commitments

Pedersen commitments [35].
The Pedersen commitment scheme [35] is perfectly hid-

ing and additively homomorphic. Its CSetup(λ) algorithm
outputs (q, g, h, λ), where g and h are generators of a cyclic
group G of prime order q of length λ and the discrete log-
arithm of h with respect to g is unknown. Com(x; r) for

x, r ∈ Z∗q outputs commitment C = gxhr and decommit-
ment d = (x, r). Open(C, d) returns x iff C = gxhr.

2.3.2 Password Hashing
A password hashing scheme H consists of the following

five algorithms:

• PSetup(λ) generates password hashing parameters pP.
These parameters contain implicit descriptions of ran-
dom salt spaces SP and SH .

• PPHSalt(pP) generates a random pre-hash salt sP ∈R
SP .

• PPreHash(pP, pw, sP) outputs the pre-hash value P .

• PHSalt(pP) generates a random hash salt sH ∈R SH .

• PHash(pP, P, sP , sH) outputs the hash value H.

We write H ← HashP(pw, r) to denote H ← PHash(pP, P, sP ,
sH) with P ← PPreHash(pP, pw, sP), where r = (sP , sH)
combines the randomness used in PHash and PPreHash. See
Appendix [11, 25] for security definitions of password hash-
ing.

Password hashing from Pedersen commitments [25].
We use the following algebraic password-hashing scheme

from [25]: PSetup(λ) generates pP = (q, g, h, λ) where g,
h are independent generators of a cyclic group G of prime
order q of length λ. PPHSalt(pP) generates a pre-hash salt
sP ∈R Z∗q . PPreHash(pP, π, sP) outputs the pre-hash value
P = gsP π. PHSalt(pP) generates a hash salt sH ∈R Z∗q .
PHash(pP, P, sP , sH) outputs hash value H = (H1, H2) =
(gsP , PhsH).

3. BLIND PASSWORD REGISTRATION
Blind Password Registration (BPR) allows a user to reg-

ister a password verifier at a VPAKE server and prove that
it contains a password that complies with the server’s policy
without disclosing the password. A BPR protocol is thus ex-
ecuted between a client C and a server S, both holding the
server’s password policy f . (The policy can be exchanged
before the actual protocol with other general information
about the registration.) After choosing a policy compliant
password pw, C engages in a protocol with S to prove policy
compliance of pw, i.e. f(pw) = true, and sends a password
verifier to the server, which can later be used in VPAKE
protocols. VPAKE protocols that can be used with veri-
fiers set-up with our protocol are discussed in [25]. Blind
password registration is formally defined as follows.

Definition 1 (Blind Password Registration) A BPR pro-
tocol is executed between a client C and a server S with
server’s password policy f as a common input. At the end
of the protocol the server eventually outputs the password
verifier vC for a policy compliant, client chosen password
pw.

3.1 Security of Blind Password Registration
We consider two security properties for BPR protocols to

capture the requirement that the server learns nothing about
the password in the verifier and that the password verifier
vC belongs to a policy compliant password. The first se-
curity notion regarding the server, called Dictionary Attack

41

Resistance (DAR), considers a passive attack in which the
adversary must not be able to retrieve the password from
the password verifier faster than with a brute-force attack
over the used dictionary. The second security notion regard-
ing the client, called Policy Compliance (PC), considers an
active attack where the adversary plays the role of the client
and tries to register a non-compliant password at a server.
We propose a game-based security model for BPR protocols
over dictionaries Df,n. Recall that a policy dictionary Df
contains all passwords pw with f(pw) = true and a dic-
tionary Df,n contains all passwords pw with f(pw) = true
and |pw| = n. We work in the semi-honest server model
where the client can be malicious, but the server is honest
in its execution. Note that security of BPR protocols can
only be assessed with respect to the used password hashing
scheme HashP since the attackers ability to recover the pass-
word from a compromised server depends on the pre-image
resistance of the hashing scheme.

Participants and Parameters.
A BPR protocol is executed between a client C from a uni-

verse of clients C and a server Sf chosen from the universe
of servers S. The universe of servers S contains servers Sf
such that for every policy f , there exists a server Sf . Note
that we usually omit f and write S instead. Both protocol
participants have common inputs, necessary for the execu-
tion of the protocol, and the password policy f . Instances
of protocol participants C or S are denoted Ci or Si. Pro-
tocol participants without specified role are denoted by P .
A client can only register one password with one server, but
can register passwords at an arbitrary number of servers.
Further, a server only allows a single registration from a
client such that any attempt to register a password with a
server that already stores a verifier from this client is re-
jected by the server. The client C is unique and is used as
identifier on the server, i.e. as username to store alongside
the password verifier vC for later VPAKE executions. An
entry (C, vC) is only stored on the server if the BPR proto-
col is successful. To interact with protocol participants, the
adversary has access to an Execute and a Send oracle.
• Execute(C, S) models a passive attack and executes a
BPR protocol between new instances of C and S. If
there exists a verifier vC for client C on server S, the
oracle aborts. Otherwise, it returns the protocol tran-
script and the internal state of the server S.

• Send(Ci, Si,m) models an active attack and sends mes-
sage m, allegedly from client instance Ci, to server in-
stance Si (a new server instance with a unique index
i is created if it does not exist yet). If there exists a
verifier vC for client C on server S, the oracle aborts.
Otherwise, it returns the server’s answer m′ if there
exists any.

Note that we allow the adversary to register passwords with
servers such that we do not require the existence of a client
C after a successful registration of (C, vC) on a server (client
identities C are unique but not secret and can therefore be
used by the adversary).
Policy compliance is the first natural security property

of BPR protocols, requiring that a password set up with a
BPR protocol is compliant with the server’s policy f . The
attacker here plays the role of the client and tries to register
a password pw on a server that is not policy compliant.

Definition 2 (Policy Compliance) Let A denote a PPT
adversary with access to Execute and Send oracles. The
probability that a server instance Si exists after A terminated
that accepted (C, vC) with vC = HashP(pw; r) and f(pw) =
false is negligible in λ.

To model the second security property, Dictionary Attack
Resistance (DAR), we define another oracle, which models
the offline dictionary attack on the password verifier vC .
DAR models server compromise and requires that it is im-
possible for an attacker to recover the client’s password from
the password verifier vC in a more efficient way than travers-
ing the used dictionary. Note that it is always possible for
an attacker to brute-force a password verifier such that the
defined definition of DAR is the strongest possible notion.

• Finalise(C, S, pw) takes a client, server pair (C, S)
and a password pw as input, and returns 1 iff there
exists a server instance Si that accepted (C, vC) with
vC = (H1, H2, sH) and (H1, H2) ← HashP(pw; r) and
Si is a passive session, i.e. no Send was queried for
(C, S) on session Si. Otherwise, return 0.

The adversary in the DAR experiment outputs a (C, S, pw)
triple after interacting with the Execute and Send oracle.
This triple is handed over to Finalise such that the ex-
periment is successful if and only if Finalise returns 1, i.e.
the adversary is able to compute the password pw from a
password verifier vC stored on server S. Since this is al-
ways possible, we have to restrict the time the adversary
is allowed to take to compute the correct password, i.e. he
must not be more efficient in computing the password than
performing a brute force attack. We formalise the notion of
dictionary attack resistance in the following definition.

Definition 3 (Dictionary Attack Resistance) A BPR pro-
tocol using password hashing scheme H is dictionary attack
resistant if for all PPT adversaries A running in time t
(excl. time for oracle computations) and all dictionaries Df
there exists a negligible function ε(·) such that:

Pr[(C, S, pw)← AExecute,Send(λ); Finalise(C, S, pw) = 1]

≤ 2−βDf,|pw| · t
tPPreHash

+ ε(λ),

with tPPreHash being the running time of PPreHash.

Note that t used in the above definition measures time that
is spend by A on the actual computation of pw. This time
can be estimated as t = tA − tq,E − tq,S , where tA is the
overall running time of A, tq,E is the time for processing qE
Execute queries, and tq,S is the time for processing qS Send
queries.
Our definition of dictionary attack resistance seems a rea-

sonable compromise between the desired security and ef-
ficiency for BPR protocols. Nonetheless, it is possible to
change the balance between security and efficiency by aim-
ing at a stronger form of dictionary attack resistance that
would further hide the password length, or at a weaker form
of dictionary attack resistance that would disclose the sets
of significant characters to the adversary. We discuss both
variants in the following.

42

3.1.1 A Note on Relation to ZKPPC
Our model defines a complete blind password registration

procedure for VPAKE protocols, in contrast to [25] that de-
fined only zero-knowledge password policy checks (ZKPPC)
and used them as a building block for VPAKE registration
procedure, without modeling the latter. We observe that ac-
cording to our security definitions of BPR protocols, ZKPPC
proofs do not necessarily lead to secure BPR constructions.
As mentioned in the previous paragraph the generic blind
password registration procedure based on ZKPPC from [25]
leaks positions and sets of significant characters. While this
is tolerable in [25] where the actual time needed to retrieve
the password from the verifier is not restricted, in our model
this protocol would not satisfy dictionary attack resistance
because an attacker would be able to retrieve passwords
from verifiers significantly faster than required by Defini-
tion 3. Furthermore, a zero-knowledge property in the con-
text of password verifiers seems an unnecessarily strong re-
quirement since offline dictionary attacks can always be per-
formed on the server side. By dropping the zero-knowledge
requirement and focusing on the entire registration process
we thus obtain a more realistic security model and are able
to construct more efficient BPR protocols. Note that Def-
inition 3 models the intrinsic VPAKE requirement that a
server, holding a password hash and used random salt, must
not be able to recover the password faster than by brute-
forcing the dictionary. While this requirement also applies
to ZKPPC-based BPR protocols it was not explicitly mod-
eled in [25].

4. AN EFFICIENT BPR PROTOCOL IN THE
STANDARD MODEL

A high-level overview of our BPR protocol is given in
Figure 1. The client starts the registration procedure by
choosing an ASCII-based password pw ∈R Df of length n,
which is then mapped to an integer π ← PWDtoINT(pw). The
client maps each password character ci ∈ pw to an integer
πi ← CHRtoINT(ci) and computes Pedersen commitments Ci
and C′i for πi whereby each C′i is a re-randomised version
of Ci. The client builds vector C = {Ci}, shuffles commit-
ments in C′ = {C′i}, and proves that C′ contains commit-
ments to ASCII characters, including those that are signifi-
cant to fulfil the password policy f . This proof is performed
using an appropriate proof of membership PoM. The client
also computes the randomised password hash (H1, H2) using
π, sends (H1, H2) with the hash salt sH to the server, and
proves that π used to compute (H1, H2) is the same as in
the product of shifted commitments Cb

i

i . This proof is per-
formed using an appropriate proof of equivalence PoE. The
product of Cb

i

i used in the verification can be computed by
the server using shift base b and the received commitments
Ci ∈ C. Finally, the client proves to the server that C′ is a
shuffle of C using an appropriate proof of shuffle PoS. The
purpose of this proof is to link the proof that pw contains
ASCII characters and fulfils policy f (PoM) with the pass-
word hash (H1, H2) of π (PoE) without leaking positions
and ASCII subsets of characters that are significant for f
(as discussed in Section 3.1). The server, after successful
verification of all proofs, stores the client’s password verifier
vC = (H1, H2, sH) in its protected password database and
terminates the registration protocol. For remote registration
of the password verifier we assume that the BPR protocol is

executed over a server-authenticated secure channel in order
to protect transmission of vC ; otherwise an eavesdropping
adversary would be able to recover the password by brute-
forcing the dictionary. For example, our BPR protocol can
be executed on top of the TLS channel established between
the client and the server (cf. [29] for the technique on how
to securely bind password-based protocols in the application
layer to the TLS channel).

4.1 Detailed Protocol Specification
While the high-level idea of the protocol is intuitive, the

actual specification becomes somewhat technical. Note that
the three proofs PoM, PoE and PoS can be performed in
parallel. Further note that all sets are ordered in the follow-
ing and set operations are assumed to use elements from the
correct positions. We first describe local pre-computation
steps of the client such as password encoding and hashing
before giving a detailed specification of the proofs. The pro-
tocol uses a cyclic group G of prime order q with generator
g. Let h, fi ∈R G for i ∈ [−4,m] where m is at least |pw|
denote random group elements whose discrete logarithms
with respect to g are assumed to be unknown. In practice,
m can be chosen sufficiently large in order to accommodate
all reasonable password lengths. The public parameters of
the protocol are (q, g, h, f) with f = {fi}. We let n = |pw|
and count indices i ∈ [0, n− 1] when dealing with password
characters from pw, whereas for the indices of other sets we
mostly use the interval [1, x], x ∈ N. Note that index ranges
change frequently in the description of the protocol.

4.1.1 Pre-Computations
The client chooses a password string pw = (c0, . . ., cn−1) ∈R
Df compliant with the policy f , encodes it π ← PWDtoINT(pw)
using the appropriate shift base b, and iterates over all pass-
word character positions i ∈ [0, n−1] to perform the follow-
ing computations:

• encode the character as πi ← CHRtoINT(ci)

• commit to πi by computing Pedersen commitments
Ci = gπihri , C′i = Cih

r′ for ri, r′i ∈R Z∗q

• choose a unique random index ki ∈R [1, n] to shuffle
each C′i ← C′ki

• if πi is significant for any Rj ∈ R, set ωki ← Rj ,
otherwise ωki ← Σ

• let li ∈ N denote the index in ωki such that ci = ωki [li]

Note that values (Ci, C′i, ωki , ki, li, πi, ri, r′i) will be used in
the proofs of knowledge. The client then generates random
salts sP , sH ∈R Zp for the password hashing scheme and
computes the password verifier vC = (H1, H2, sH) where
(H1, H2)← (gsP , Hπ

1 h
sH). Further, the client combines pre-

viously computed values C = {Ci}. The shuffled commit-
ments and sets ωki are combined in specific order according
to the chosen index ki, i.e. C′ = {C′ki} and ω = {ωki}.
With these values the client can start the computation of
the three proofs PoM, PoE and PoS. In the following we
describe these three proofs and define their messages. Note
that we do not mention standard checks such as checks for
group membership in our description.

43

Client (C, S, f)
Choose pw = (c0, . . . , cn−1) ∈ Df ; compute π ← PWDtoINT(pw);
For all i ∈ [0, n− 1] compute:
πi ← CHRtoINT(ci); Ci = gπihri ; C′i = Cih

r′i ;
Shuffle C′i ← C′ki and define sets C = {Ci}, C′ = {C′i}
Compute the randomised password hash:

(H1, H2)← HashP(π) = (gsP , Hπ
1 h

sH)

For each ci ∈ pw identify appropriate set ωki ;
Execute the following protocols with the server:

PoE: ZKPoK{(π, r̂) : H2/h
sH = Hπ

1 ∧
∏n−1
i=0 C

bi

i = gπhr̂}

PoM: ZKPoK{{πi, ri}i : C′ki = gπihri ∧ πi ∈ ωki}

PoS: ZKPoK{{ki, r′ki}i : C′i = Ckih
r′
ki }

Server (C, S, f)

If |C| = |C′| ≥ nmin:
choose
ChPoM,ChPoM,ChPoS

If PoM, PoE, PoS
succeed, store (C, vC)
with vC = (H1, H2, sH)

C,C′,ω, H1, H2, sH ,
ComPoM,ComPoE,ComPoS

ChPoM,ChPoE,ChPoS

ResPoM,ResPoE,ResPoS

Figure 1: Our BPR Protocol — A High-Level Overview

4.1.2 Proof of Membership (PoM)
This protocol proves that every password character cki ∈

ωki using the shuffled set of commitments C′, i.e.

ZKPoK{({πi, ri}i∈[0,n−1]) : C′ki = gπihri ∧ πi ∈ ωki},

(we use πi ∈ ωki as a short form of ci ∈ ωki with πi ←
CHRtoINT(ci) here). Note that C′ki ∈ C′.

1. To prove that every C′ki commits to a value in the cor-
responding set ωki the client computes the following values
for the first move of the proof:

∀πj ∈ ωki ∧ πj 6= πi : sj ∈R Z∗q , cj ∈R Z∗q
tj = gπjhsj (C′ki/g

πj)cj

kρi ∈R Z∗q ; tlki = gπihkρi

Values (tki , ski , cki , kρi), with tki = {tj , tlki }, ski = {sj},
and cki = {cj} are stored for future use.1 After com-
puting the proof for every C′ki the client sets the message
ComPoM = t = {tki}.
2. The server stores received values, checks them for group
membership, chooses a random challenge c ∈R Z∗q and sets
ChPoM = c.
3. After receiving the challenge c from the server, the
client computes the following verification values for all com-
mitments C′ki (note that sj and cj for all j 6= lki are chosen
already):

clki = c⊕
|ωki |⊕

j=1,j 6=lki

cj ; slki = kρki − clki (ri + r′ki),

where i is the index of C′ki before shuffling. The client then
combines s = {ski ∪ {slki }} and c = {cki ∪ {clki }}.

2 The
response message ResPoM is then set to (s, c).
4. To verify the proof, i.e. to verify that every commit-
ment C′ki in C′ commits to a character ci from either a
subset Rj of Σ if significant or Σ if not, the server verifies
the following for every set ωi ∈ ω with i ∈ [1, n]:
1Note that tlki has to be added at the correct position (lki)
in tki .
2Note again that the set union has to consider the position
of lki to add the values at the correct position.

• Let cj ∈ ci for ci ∈ c and verify c ?=
⊕|ωi|

j=1 cj

• Let πj ∈ ωi, si ∈ s, ti ∈ t, and ci ∈ c, and verify
ti[j]

?= gπjhsi[j](C′i/gπj)ci[j] for all j ∈ [1, |ωi|]

The verification of the proof is successful iff all equations
above are true and ω contains all significant characters for
f .

4.1.3 Proof of Equivalence (PoE)
This protocol proves that the password hash H2 contains

the same encoded password π as the product of the shifted
commitments

∏n−1
i=0 C

bi

i and that the client knows the dis-
crete logarithm sP of H1 to base g, in particular:

ZKPoK{(π, r̂) : H2/h
sH = Hπ

1 ∧
n−1∏
i=0

Cb
i

i = gπhr̂}.

1. The first client message ComPoE is set to (tsP , tH , tC∗)
for tsP = gksP ; tH = Hkπ

1 ; tC∗ = gkπhkr∗ with ksP , kπ, kr∗ ∈R
Z∗q .

2. The server stores received values and sets ChPoE = c.

3. After receiving challenge c from the server, the client
computes the following verification values

ssP = ksP − csP ; sπ = kπ − cπ; sr∗ = kr∗ − c
n−1∑
i=0

biri

and sets ResPoE = (ssP , sπ, sr∗) as response.

4. To verify the proof, i.e. the product of shifted commit-
ments Cbii for Ci ∈ C contains the same password π as the
password hash H2, the server verifies the following:

tsP
?= gssP Hc

1 ; tH
?= Hsπ

1 (H2/h
sH)c;

tC∗
?= gsπhsr∗

(
n−1∏
i=0

Cb
i

i

)c
.

The server accepts the proof iff those verifications succeed.

4.1.4 Proof of Shuffle (PoS)
Let φ denote a function such that φ(i) = ki shuffles the set

C to C′. We use the efficient proof for correct shuffling for

44

ElGamal ciphertexts from [16], which is an optimised ver-
sion of [17], and adapt it to Pedersen commitments, which
translates

ZKPoK{({ki, r′ki}i) : C′i = Ckih
r′
ki }

into

ZKPoK{Aji : C′i = hA0i ·
n∏
v=1

CAviv }

for permutation matrix Aji.
1. In the first move, the client (prover) builds a permu-
tation matrix and commits to it. First he chooses random
A′j ∈R Z∗q for j ∈ [−4, n]. Let Aji denote a matrix with
j ∈ [−4, n] and i ∈ [0, n], i.e. of size n + 5 × n + 1, such
that a n × n sub-matrix of Aji is the permutation matrix.
Further, let φ denote the permutation function that, on in-
put index i, returns the index ki of the according shuffled
element and φ−1 its inverse. This allows us to write the
shuffle as C′i =

∏n

j=0 C
Aji
j = Cκih

r′κi with C0 = h and
κi = φ−1(i) for i ∈ [1, n]. The matrix Aji is defined with
Aw0 ∈R Z∗q , A−1v ∈R Z∗q and A0v = r′φ(v) with w ∈ [−4, n]
and v ∈ [1, n]. The remaining values in Aji are computed
as follows for v ∈ [1, n]:

A−2v =
n∑
j=1

3A2
j0Ajv; A−3v =

n∑
j=1

3Aj0Ajv;

A−4v =
n∑
j=1

2Aj0Ajv

The client then commits toAji and sets his output ComPoS =
(C′0, f̃ , f ′, w, w̃) for f ′ = {f ′v} with v ∈ [0, n].

f ′v =
n∏

j=−4

f
Ajv
j ; f̃ =

n∏
j=−4

f
A′j
j

C′0 = g

∑n

j=1
πjAj0

h
A00+

∑n

j=1
rjAj0

w =
n∑
j=1

A3
j0 −A−20 −A′−3; w̃ =

n∑
j=1

A2
j0 −A−40

Note that C′0 has the form
∏n

j=0 C
Aj0
j = hA00

∏n

j=1 C
Aj0
j ,

but our way of computing it saves n− 1 exponentiations.
2. The server chooses c = {cv} with cv ∈R Z∗q for v ∈
[1, n] and sets ChPoS = c.
3. After receiving challenges c from the server, the client
computes the following verification values and sets ResPoS =
(s, s′) for s = {sv} and s′ = {s′v} with v ∈ [−4, n]. Let
c0 = 1.

sv =
n∑
j=0

Avjcj ; s′v = A′v +
n∑
j=1

Avjc
2
j

4. Finally, the server checks the following equations for a
randomly chosen α ∈R Z∗q and C0 = h:

n∏
v=−4

f
sv+αs′v
v

?= f ′0f̃
α

n∏
j=1

f ′j
cj+αc2

j ;
n∏
v=0

Csvv
?=

n∏
j=0

C′j
cj

n∑
j=1

(s3
j − c3j)

?= s−2 + s′−3 + w;
n∑
j=1

(s2
j − c2j)

?= s−4 + w̃

The server accepts the PoS proof if all verifications succeed.

4.2 Security Analysis
The security of our BPR protocol is established by the

following theorem using Lemma 1.

Theorem 1 (BPR Security) The protocol from Section
4.1 is BPR-secure, i.e. policy compliant and dictionary at-
tack resistant, if the discrete logarithm problem is hard in
the used group G.

To prove Theorem 1, we start with the security of the adopted
shuffling approach and prove that PoS is a zero-knowledge
proof of knowledge for the shuffle of C to C′. The following
Lemma 1 is proven in [16] for ElGamal ciphertexts.

Lemma 1 (PoS is a ZKPoK) The PoS protocol from Sec-
tion 4.1 is an honest verifier zero-knowledge proof of knowl-
edge of the following statement if the discrete logarithm prob-
lem in the used group is hard,

ZKPoK{Aji : C′i = hA0i ·
n∏
v=1

CAviv },

where a n × n sub-matrix of Aji is the used permutation
matrix and A0i the used re-randomiser.

Proof of Theorem 1. Policy Compliance To prove
policy compliance of the construction we first show that the
three proofs in the protocol are sound. This allows us to
argue that every attacker winning the policy compliance ex-
periment allows us to build an attacker against one of the
three proofs in the protocol.

Claim 1 (PoE Soundness) PoE is sound, i.e. for every
client using H2 = Hπ

1 h
sH and

∏n−1
i=0 C

bi

i = gπ
′
hr̂ with π 6=

π′ and r̂ =
∑n

i=1 ri the probability that the server accepts
PoE is negligible.

Proof. Soundness of PoE holds if the probability that

tH
?= Hsπ

1 (H2/h
sH)c and tC∗

?= gsπhsr∗

(
n−1∏
i=0

Cb
i

i

)c
holds for H2 = Hπ

1 h
sH and

∏n−1
i=0 C

bi

i = gπ
′
hr̂ with π 6= π′

and r̂ =
∑n

i=1 ri is negligible. To show that this holds we
assume w.l.o.g. that sπ and sr∗ are chosen such that the
second equation holds. In particular sπ = x − cπ′ for an
appropriate value of x. However, we see now that for the first
equation to hold, the adversary would have to compute tH =
gsP sπ (H2h

−sH)c, which implies computing y = logg(sPx −
sP cπ

′ + βc) for some β. By assumption β 6= sPπ
′ such that

computation of y is impossible under the discrete logarithm
assumption. Note that the additional proof for knowledge
of sP ensures that the client knows the discrete logarithm
to basis g of H1, which allows us to define the equation tH
as Hsπ

1 (H2h
−sH)c = gsP sπ (H2h

−sH)c.

Soundness of PoS is proven in the full version. Note that we
require that PoS is a proof of knowledge for re-randomiser

45

r′ and permutation matrix. Given soundness of the three
proofs it is easy to construct a reduction from the policy
compliance adversary to the soundness properties of the
proofs. Let A denote a policy compliance attacker that has
non-negligible probability to register a non-compliant pass-
word pw 6∈ Df . We construct a successful attacker B on the
soundness of PoM by simulating Execute queries honestly
for A. Send queries are all simulated honestly, except for
one session, in which B outputs the first part of PoM in
a random Send query as its first message. This Send query
returns the challenge that B receives. The second part of
PoM in the second Send query of this session is output by
B, which results in a success probability of SuccA/q, where
q is the number of active sessions invoked by A.
Knowing that the set membership PoM is sound we show

how to construct a successful extractor B′ on the permuta-
tion PoS using a successful attacker A on the policy com-
pliance experiment. To this end B′ simulates all Execute
oracles honestly. Send queries are simulated honestly, ex-
cept for one session, in which B′ stores the first part of PoS
in a random Send query and responds with n + 1 linearly
independent challenges c for PoS and a random challenge
c for PoM and PoE. Gathering the n + 1 messages in the
second Send query from A on that session, B′ can extract
r′i and the permutation matrix. Building an attacker on the
soundness of PoE using a successful attacker A on the pol-
icy compliance experiment is similar to building B on PoM.
Considering security of PoM and PoE and the soundness
of PoS policy compliance follows.
Dictionary Attack Resistance First note that the used

password hashing scheme that computes (H1, H2) = (gsP ,
gsP πhsH) with sP , sH ∈R Z∗q is secure, cf. [25]. We show
in the following that a successful attacker A on the dictio-
nary attack resistance of the BPR protocol would be able to
distinguish between identical distributions of real and simu-
lated values. It is easy to see that PoM and PoE on its own
are zero-knowledge proofs. The zero-knowledge property of
PoS can be found in the full version.
We start by observing that breaking the dictionary at-

tack resistance of the protocol implies that A is able to
find a password pw from a BPR transcript and the server’s
information, i.e. the password verifier vC = (H1, H2, sH),
using less than 2βDf,|pw| exponentiations (pre-hash compu-
tations). This implies that there exists at least one in-
dex i such that PoM leaks the shuffled character cj ∈
pw for j = φ(i), or PoS exposes the relationship between
C′j and the according Ci and therefore the set Rj from
which ci is chosen. Let i denote the index of such a char-
acter. If A can identify index i, he can distinguish be-
tween Xi = (ti = gπihkρi , si = kρi − ci(rφ−1(i) + r′i), ci) and
X0 = (to = gπohso(C′φ(i)/g

πo)co , so, co) with c, so, co ∈R Z∗q
and ci = c ⊕

⊕
co for o ∈ [1, n], o 6= i. This however is

impossible since Xi and all Xo are identically distributed.
Similarly, we can argue that distinguishing between a real
and a simulated proof of shuffle is impossible. Considering
that PoM and PoS do not offer any attack possibilities we
see that if A is able to win the dictionary attack resistance
game, we can distinguish between a real and a simulated
PoE. However, this is impossible due to the zero-knowledge
property of PoE, i.e. values tsP , tH and tC∗ are identically
distributed in both cases.

Claim 2 (PoM Soundness) PoM is sound, i.e. for ev-

ery client C using pw 6∈ Df the probability that the server
accepts PoM is negligible.

Proof. Note that while PoM is a proof of knowledge,
we are not actually interested in the knowledge soundness as
this comes implicitly under the discrete logarithm assump-
tion. Instead it is sufficient in our case that client C can
not make the server accept PoM with a password pw 6∈ Df .
Soundness of PoM implies that if there exists a commit-
ment C′ki that commits to an encoded character πi not in
the respective set ωki , then

ti[j]
?= gπjhsi[j](C′ki/g

πj)ci[j]

does not hold with overwhelming probability for given val-
ues. This holds under the assumption that the discrete log-
arithm problem is hard in G and cki [l] ∈ c is uniformly
distributed in Z∗q . The first assumption is clear and the sec-
ond one holds as long as c ?=

⊕|ωi|
j=1 ci[j] holds for a uni-

formly at random chosen c ∈R Z∗q . Note that this also
holds for our case in which we use the same c in all n
proofs. Assuming that the client can convince the server
that the equation holds in case πi is not in ωki it is easy
to see that this is equivalent to breaking the discrete log-
arithm problem in G, i.e. the client can either compute r̂
such that C′ki = gπih(r+r′) = gπjhr̂, or he can compute
si[j] = πj logh(g) − logh(t) + c logh(C′kig

−πj). Therefore,
the claim follows since the client can not fool the server in
accepting a set membership proof for a character ci 6∈ ωki
in pw and the server additionally verifies that sets ωi are
necessary and sufficient to fulfil policy f .
4.3 Performance
In the implementation of the BPR protocol we can adopt

several tricks aiming to improve its performance. First, we
can pre-compute and reuse values gπi on the client and
server side. The computation of bi can be performed in
a way that allows to re-use previously calculated values and
the implementation of the proof can be optimised allowing
the client to use π. Considering this, we can estimate the
performance of the BPR protocol by counting the number of
exponentiations as follows. Note that we do not count expo-
nentiations with exponents smaller than 5. The client in our
BPR protocol performs 4n+2

∑
i
|ωi|+113 exponentiations.

The server must perform 5n+2
∑

i
|ωi|+16 exponentiations

if gπi is pre-computed and re-used. In contrast, the generic
approach for ZKPPC from [25] requires 3n + 3

∑
i
(|ω∗i | −

1) + 7 exponentiations on the client side and 3
∑

i
|ω∗i | + 8

on the server side. Note that ω∗i in [25] depends on the max-
imum password length and thus contains all characters from
ωi plus all characters from ωi shifted by j = 1, . . . , nmax posi-
tions. Therefore, the costs of the protocol from [25] are given
by 3n+ 2nmax

∑
i
(|ωi| − 1) + 7 exponentiations on the client

side and 2nmax
∑

i
|ωi| + 8 on the server side. The protocol

from [25] is thus much less efficient than our BPR protocol:
in the optimal case where n = nmax the difference can be
estimated by 2(n − 1)

∑
i
|ωi| − 2n2 − n − 106 additional

exponentiations for the client and 2(n− 1)
∑

i
|ωi| − 5n− 8

for the server.

Implementation.
We implement an unoptimised prototype of the BPR pro-

tocol over the NIST P-192 elliptic curve [34] in Python us-
ing the Charm framework [5] and measure its performance.

46

To this end we set b = 105 in order to achieve security
guarantees for all reasonable password lengths and policies.
We also implement the ZKPPC approach from [25] in order
to compare its performance with our BPR implementation.
The performance tests (completed on a laptop with an Intel
Core Duo P8600 at 2.40GHz) underline the theoretical find-
ings from the previous paragraph. In particular, execution
of the proposed BPR protocol with a password of length 10
and policy (dl, 5) needs 0.72 seconds on the client and 0.67
seconds on the server side while the ZKPPC execution re-
quires 9.1 seconds on the client and 8.9 seconds on the server
side with a maximum password length of 10. Increasing the
maximum password length to 20 slows down the client to
22.7 and the server to 22.2 seconds. Our measurements show
that our BPR protocol is at least 10 times faster than the
ZKPPC-based registration approach from [25]. With the
overall running time of 1.5 seconds for 10-character pass-
words, 2.5 seconds for 15-character passwords, and 3.3 sec-
onds for 20-character passwords the proposed BPR protocol
can be deemed practical.

4.4 Discussion
Our BPR protocol is proven secure in a strong security

model, but does not hide the length of the password from
the server. Arguably, this is a strong security requirement
(cf. Section 3.1) that may not be needed in many practi-
cal scenarios since password policies usually aim at offering
some minimum password strength such that every password
of the required minimum length or longer is considered to be
secure. With this in mind, it makes no difference whether
the password length is known to an attacker or not since the
password is assumed to be strong enough.
Nonetheless, an attacker knowing the password length can

try passwords of the given length and thus use the reduced
search space to speed up the dictionary attack. An initial
idea for hiding the password length in our BPR protocol
could be to combine commitments for non-significant pass-
word characters into a single commitment and use only nmin

commitments in the proof. This, however, would allow a ma-
licious client to register passwords that do not comply with
the policy unless the client can prove that the exponent of
the combined commitment is of the form

∑
biπj , which is

only possible when the length of the polynomial (and there-
fore the password length) is known. Our BPR protocol can
be modified to hide the password length at the cost of its ef-
ficiency. This can be achieved by defining a constant length
l ∈ N larger than any practical n = |pw|, e.g., l = 50 or
l = 100, and apply the following modifications. First, we
change the way shuffling is performed. In particular, C is
still randomly shuffled to C′, but it is ensured that the first
|R| commitments C′i are for characters that are significant
for the policy f . All computations in the protocol are now
performed over the password π∗ = π||0 . . . 0, where π is the
original client-chosen, encoded password, and |π∗| = l. This
allows to define set ωi for character commitment C′i as ei-
ther some Rj if significant, or Σ if i ≤ nmin and the char-
acter in C′i is not significant, or Σ ∪ {0} otherwise. The
remaining protocol steps remain unchanged. Through these
modifications the original password length remains hidden
so that stronger flavour of dictionary attack resistance can
be proven for the modified BPR protocol using min-entropy
βDf = −maxpw∈Df

∑n−1
i=0 [DΣ(ci) lg(DΣ(ci))] for the dictio-

nary Df containing all policy-compliant passwords of length

up to l. Note that this modification trades off stronger secu-
rity for efficiency due to the use of l for all shorter passwords.
Our BPR protocol can also be made more efficient if we

are willing to sacrifice privacy of character positions for sig-
nificant characters and reveal information about correspond-
ing character sets (as in [25]). In this case the proof PoS be-
comes redundant and all steps related to it can be removed.
This would significantly reduce the number of exponentia-
tions to about 2n on the client and 4n on the server side.
The resulting BPR protocol would still offer a weaker flavour
of dictionary attack resistance that does not hide positions
and sets of significant password characters as discussed in
Section 3.1 yet remain more efficient than the ZKPPC-based
registration protocol from [25], which seems to offer com-
parable security guarantees.

5. REFERENCES
[1] M. Abdalla, E. Bresson, O. Chevassut, B. Möller, and

D. Pointcheval. Provably secure password-based
authentication in tls. In ASIACCS ’06, pages 35–45,
New York, NY, USA, 2006. ACM.

[2] M. Abdalla, E. Bresson, O. Chevassut, B. Möller, and
D. Pointcheval. Strong password-based authentication
in TLS using the three-party group Diffie Hellman
protocol. Int. J. Secur. Netw., 2(3/4):284–296, Apr.
2007.

[3] M. Abdalla, D. Catalano, C. Chevalier, and
D. Pointcheval. Efficient two-party password-based
key exchange protocols in the uc framework. In
CT-RSA’08, volume 4964 of LNCS, pages 335–351.
Springer, 2008.

[4] M. Abdalla, P.-A. Fouque, and D. Pointcheval.
Password-based authenticated key exchange in the
three-party setting. In PKC’05, volume 3386 of LNCS,
pages 65–84. Springer, 2005.

[5] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano,
M. Rushanan, M. Green, and A. D. Rubin. Charm: a
framework for rapidly prototyping cryptosystems.
Journal of Cryptographic Engineering, 3(2):111–128,
2013.

[6] S. Bayer and J. Groth. Efficient Zero-Knowledge
Argument for Correctness of a Shuffle. In
EUROCRYPT’12, volume 7237 of LNCS, pages
263–280. Springer, 2012.

[7] M. Bellare, D. Pointcheval, and P. Rogaway.
Authenticated key exchange secure against dictionary
attacks. In EUROCRYPT’00, volume 1807, pages
139–155. Springer, 2000.

[8] S. M. Bellovin and M. Merritt. Encrypted Key
Exchange: Password-Based Protocols Secure Against
Dictionary Attacks. In IEEE S&P’92, pages 72–84.
IEEE, 1992.

[9] S. M. Bellovin and M. Merritt. Augmented Encrypted
Key Exchange: A Password-Based Protocol Secure
against Dictionary Attacks and Password File
Compromise. In ACM CCS’93, pages 244–250. ACM,
1993.

[10] F. Benhamouda, O. Blazy, C. Chevalier,
D. Pointcheval, and D. Vergnaud. New Techniques for
SPHFs and Efficient One-Round PAKE Protocols. In
CRYPTO’13, volume 8042 of LNCS, pages 449–475.
Springer, 2013.

47

[11] F. Benhamouda and D. Pointcheval. Verifier-Based
Password-Authenticated Key Exchange: New Models
and Constructions. IACR Cryptology ePrint Archive,
2013:833, 2013.

[12] Boyko, MacKenzie, and Patel. Provably secure
password-authenticated key exchange using
diffie-hellman. In EUROCRYPT’00, volume 1807 of
LNCS, pages 156–171. Springer, 2000.

[13] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and
P. MacKenzie. Universally Composable
Password-Based Key Exchange. In EUROCRYPT’05,
pages 404–421. Springer, 2005.

[14] S. Chiasson, P. C. van Oorschot, and R. Biddle. A
usability study and critique of two password
managers. In Proceedings of the 15th USENIX
Security Symposium, Vancouver, BC, Canada, July 31
- August 4, 2006. USENIX Association, 2006.

[15] Dan Goodin. Hack of Cupid Media dating website
exposes 42 million plaintext passwords.
http://goo.gl/oeT6Mp, 2014. Accessed: 25/03/2015.

[16] J. Furukawa. Efficient and Verifiable Shuffling and
Shuffle-Decryption. IEICE Transactions,
88-A(1):172–188, 2005.

[17] J. Furukawa and K. Sako. An Efficient Scheme for
Proving a Shuffle. In CRYPTO’01, volume 2139 of
LNCS, pages 368–387. Springer, 2001.

[18] C. Gentry, P. D. MacKenzie, and Z. Ramzan. A
Method for Making Password-Based Key Exchange
Resilient to Server Compromise. In CRYPTO’06,
volume 4117 of LNCS, pages 142–159. Springer, 2006.

[19] F. Hao and P. Ryan. J-PAKE: authenticated key
exchange without PKI. Transactions on
Computational Science, 11:192–206, 2010.

[20] D. Harkins and G. Zorn. RFC 5931 - Extensible
Authentication Protocol (EAP) Authentication Using
Only a Password, aug 2010.

[21] P. Inglesant and M. A. Sasse. The true cost of
unusable password policies: password use in the wild.
In CHI, pages 383–392. ACM, 2010.

[22] D. P. Jablon. Extended Password Key Exchange
Protocols Immune to Dictionary Attacks. In
WETICE’97, pages 248–255. IEEE Computer Society,
1997.

[23] J. Katz, R. Ostrovsky, and M. Yung. Efficient
password-authenticated key exchange using
human-memorable passwords. In EUROCRYPT0́1,
volume 2045 of LNCS, pages 475–494. Springer, 2001.

[24] J. Katz and V. Vaikuntanathan. Round-optimal
password-based authenticated key exchange. In
Proceedings of the 8th conference on Theory of
cryptography, TCC’11, pages 293–310. Springer, 2011.

[25] F. Kiefer and M. Manulis. Zero-knowledge password
policy checks and verifier-based PAKE. In
ESORICS’14, volume 8713 of LNCS, pages 295–312.
Springer, 2014. (The proceedings version is superseded
by the updated full version in
http://eprint.iacr.org/2014/242).

[26] T. H. Kim, H. C. Stuart, H. Hsiao, Y. Lin, L. Zhang,
L. Dabbish, and S. B. Kiesler. YourPassword:
applying feedback loops to improve security behavior
of managing multiple passwords. In ASIACCS’14,
pages 513–518. ACM, 2014.

[27] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek,
L. Bauer, N. Christin, L. F. Cranor, and S. Egelman.
Of passwords and people: measuring the effect of
password-composition policies. In Proceedings of the
International Conference on Human Factors in
Computing Systems, CHI 2011, Vancouver, BC,
Canada, May 7-12, 2011, pages 2595–2604. ACM,
2011.

[28] D. Kuegler and Y. Sheffer. RFC 6631 - Password
Authenticated Connection Establishment with the
Internet Key Exchange Protocol version 2 (IKEv2),
jun 2012.

[29] M. Manulis, D. Stebila, and N. Denham. Secure
modular password authentication for the web using
channel bindings. In 1st International Conference on
Security Standardization Research (SSR 2014), volume
8893 of LNCS, pages 167–189. Springer, 2014.

[30] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, P. G. Kelley, R. Shay, and
B. Ur. Measuring password guessability for an entire
university. In CCS’13, pages 173–186. ACM, 2013.

[31] nakedsecurity. Anatomy of a password disaster -
Adobe’s giant-sized cryptographic blunder.
http://goo.gl/enB4Oi, 2014. Accessed: 25/03/2015.

[32] A. Narayanan and V. Shmatikov. Fast dictionary
attacks on passwords using time-space tradeoff. In
ACM Conference on Computer and Communications
Security, pages 364–372. ACM, 2005.

[33] Nik Cubrilovic. RockYou Hack: From Bad To Worse.
http://goo.gl/oJqj4D, 2014. Accessed: 25/03/2015.

[34] NIST. National Institute of Standards and
Technology. Recommended elliptic curves for federal
government use. http://csrc.nist.gov/groups/ST/
toolkit/documents/dss/NISTReCur.pdf, 1999.

[35] T. P. Pedersen. Non-Interactive and
Information-Theoretic Secure Verifiable Secret
Sharing. In CRYPTO’91, volume 576 of LNCS, pages
129–140. Springer, 1991.

[36] C. Shannon. A mathematical theory of
communication. Bell System Technical Journal,
27:379–423, 623–656, July, October 1948.

[37] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon,
M. L. Mazurek, L. Bauer, N. Christin, and L. F.
Cranor. Encountering stronger password requirements:
user attitudes and behaviors. In SOUPS’10, volume
485. ACM, 2010.

[38] S. Shin and K. Kobara. Efficient Augmented
Password-Only Authentication and Key Exchange for
IKEv2. RFC 6628 (Experimental), June 2012.

[39] M. Weir, S. Aggarwal, M. P. Collins, and H. Stern.
Testing metrics for password creation policies by
attacking large sets of revealed passwords. In CCS’10,
pages 162–175. ACM, 2010.

48

http://goo.gl/oeT6Mp
http://eprint.iacr.org/2014/242
http://goo.gl/enB4Oi
http://goo.gl/oJqj4D
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

	Introduction
	Preliminaries
	Passwords, Dictionaries and Policies
	Password Distributions and Min-Entropy
	Building Blocks
	Commitments
	Password Hashing

	Blind Password Registration
	Security of Blind Password Registration
	A Note on Relation to ZKPPC

	An Efficient BPR Protocol in the Standard Model
	Detailed Protocol Specification
	Pre-Computations
	Proof of Membership (PoM)
	Proof of Equivalence (PoE)
	Proof of Shuffle (PoS)

	Security Analysis
	Performance
	Discussion

	Conclusion
	References

