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Abstract. Privacy-preserving techniques are increasingly important in
our highly computerized society where privacy is both precious and elu-
sive. Affiliation-Hiding Authenticated Key Exchange (AH-AKE) proto-
cols offer an appealing service: authenticated key agreement coupled with
privacy of group memberships of protocol participants. This type of ser-
vice is essential in privacy-conscious p2p systems, mobile ad hoc net-
works and social networking applications. Prior work has succeeded in
constructing a number of secure and efficient AH-AKE protocols which
all assume full trust in the Group Authority (GA) — the entity that
sets up the group as well as registers and (optionally) revokes members.
In this paper, we argue that, for many anticipated application scenarios,
the trusted GA model should be relaxed to allow for certain types of
malicious behavior. We examine the consequences of malicious GAs and
explore the design of stronger AH-AKE protocols that withstand GA
attacks. Our results demonstrate that such protocols are both feasible
and practical.

1 Introduction

Privacy-Preserving Authentication. Secret Handshakes (SH) [2,8,23,22,21,
1,16,17] and Affiliation-Hiding Authenticated Key Exchange (AH-AKE) proto-
cols [14,15] offer privacy-preserving authentication among members of the same
group. A user joins a group and obtains its membership credential by registering
with the Group Authority (GA). In some schemes, the GA can later revoke these
credentials [2, 8, 23, 15, 17]. Possession of valid credentials by both participants
is a requirement for a successful handshake. Privacy of the authentication pro-
cess is defined as the requirement to hide the affiliations (group memberships)
of protocol participants from outsiders, as well as from each other, unless their
respective affiliations match. Since the authentication process is usually followed
by a communication session, AH-AKE protocols [14, 15] combine secret hand-
shakes with session key establishment. Although session keys are also provided
by many secret handshake schemes, the distinguishing feature of AH-AKE pro-
tocols is ensuring that session key leakage does not reveal any information about
affiliations of session participants. Additionally, AH-AKE protocols guarantee
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the usual security requirements, i.e., authenticated key exchange security with
forward secrecy [7].

Both secret handshakes and AH-AKE protocols can be linkable or unlink-
able, depending on whether sessions of the same group member can be related.
Linkable secret handshakes and AH-AKE protocols [2, 8, 14, 15] are useful if
participants wish to be recognized across different sessions, while keeping their
affiliations hidden. This property is typically realized via reusable pseudonyms
obtained by members during the registration process. Unlinkable secret hand-
shakes and AH-AKE protocols [23,16,1,17] prevent any correlation among mul-
tiple sessions.

Untrusted Group Authorities. Current secret handshakes and AH-AKE
protocols assume that group authorities are trusted. This assumption is appar-
ent in the security models of [16,15,17] where corruptions of GAs are not consid-
ered. We believe that there are two main reasons for the trusted GA assumption:
(a) anticipated applications of secret handshakes were in the domain of home-
land security (e.g. intelligence agencies, police) where GA trustworthiness is not
questioned, and (b) the GA’s role has been considered as being similar to that of
a certification authority (CA) in classical PKI-based scenarios where such cor-
ruptions are counter-intuitive as they would allow the CA to certify new users
at will. However, we consider a more general context of open and commercial
applications, such as p2p systems or social networks that allow for the creation
of multiple groups, each administrated by its own GA.

In such settings, unconditional trust in the GA is problematic because, unlike a
CA only trusted with security, a GA is trusted with both security and privacy. We
argue that it is reasonable to trust a GA not to register members frivolously or
fraudulently, whereas trusting a GA to maintain and respect privacy of members
is a matter that should be treated separately. We now informally discuss the
impact of untrusted GAs on security of AH-AKE protocols.

In general, a malicious GA might attempt any of the following: generate pub-
lic group parameters in a rogue way, create phantom group members, misbehave
during the registration process of honest members, and mount active attacks
on sessions involving honest members. The resulting challenge is: Which secu-
rity requirements of AH-AKE protocols can be preserved in a meaningful way?
For example, if a malicious GA creates a phantom member and participates on
its behalf in an AH-AKE protocol with another party, then this GA would be
able to check whether that someone is a member of its group. Moreover, if the
protocol succeeds, the GA would also compute the corresponding session key.
However, this is an unavoidable consequence of trusting the GA with the security
of registration. In fact, it is conceivable that all registration processes are logged
and are auditable by some higher authority, thus dis-incentivizing the GA from
registering phantom members.

Therefore, we claim that it is meaningful to restrict GA misbehavior to attacks
on affiliation-hiding and key secrecy for sessions involving honest members. To
this end, our goal is to explore approaches to preserve both of these properties
even in the face of a misbehaving GA. In linkable AH-AKE protocols, hiding
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affiliations of participants appears to be especially challenging due to the use of
pseudonyms created during the registration phase. Indeed, none of the linkable
AH-AKE protocols we are aware of can attain this goal. There are also some
protocols, e.g. [2,8,1], where knowledge of GA secrets would immediately reveal
session keys. Additionally, consideration of malicious GAs leads us to a new
privacy goal, which we call untraceability — the infeasibility for a malicious
GA to learn real identities of honest members through their AH-AKE sessions.
This requirement is beneficial even for sessions executed with phantom members
introduced by the GA. Intuitively, untraceability is related to the GA’s ability to
obtain information during the registration phase of an honest member that allows
it to later link AH-AKE sessions of that member to the registration process,
and thus, to the real identity. We observe that many current linkable protocols
[2, 8, 22, 15] do not provide this property. This may have serious impact on user
privacy. Consider for example an anti-government social network that operates in
an oppressive regime. The social network controls the GA and issues credentials
to its members. Members can then identify each other and hold discrete meetings
and conversations. However, if the government raids the social network and
confiscates the GA, then all parameters and records become exposed and the
government can thereafter trace and identify all members.

Contributions and Organization. In this paper, we address the challenge
posed by untrusted GAs in linkable AH-AKE (LAH-AKE) protocols. This re-
search direction is particularly interesting, since it is counter-intuitive to tolerate
linkability of AH-AKE sessions and provide meaningful support for revocation,
while offering untraceability against malicious GAs. Our work models untrusted
GAs in LAH-AKE protocols and yields stronger LAH-AKE schemes with mean-
ingful security guarantees. Specifically, we extend work by Jarecki, et al. [15],
which constructed a LAH-AKE protocol in the trusted GA model.

In Section 2, we propose some updates to the syntax of LAH-AKE protocols
and to their security model in order to accommodate corruptions of GAs. More
precisely, we extend the adversary model to allow adversarial control of GAs,
and define the aforementioned untraceability property. We also update former
definitions of authenticated key exchange (AKE) security and linkable affiliation-
hiding (LAH) security from [15] to take into account malicious GAs.

In Section 3, we show how the protocol from [15], with security proven under the
RSA assumption on safe moduli [13, 12] in the random oracle model (ROM) [4],
can be fortified to provide new security properties without increasing the round
complexity of the original protocol. Our modifications involve several “tricks”.
First, the initial generation of group parameters is extended with slightly modi-
fied (non-interactive) zero-knowledge proofs from [6] to prevent rogue values from
being chosen by the GA. Second, we construct an anonymized registration pro-
cess using the blind RSA signature scheme [9, 3] to ensure privacy of obtained
pseudonyms and membership credentials. This modification is essential to achieve
untraceability. In order to prevent impersonation attacks in AH-AKE sessions
we link pseudonyms to public keys of some existentially-unforgeable signature
scheme. The idea is to let new members choose their corresponding private
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signature keys during the registration process and use them during each AH-AKE
session to sign key confirmation messages. This allows us to ensure that each mem-
ber proves ownership of the pseudonym used during protocol execution. By link-
ing pseudonyms to public signature keys we also allow members to use the same
pseudonym in different groups. Similar to [15], we can still support revocation of
pseudonyms via revocation lists.

The security and efficiency analysis of our protocol is given in Section 4. We
stress that security of our scheme no longer relies solely on the RSA problem
(since GA knows the factors of the modulus n) but also on the Decisional Diffie-
Hellman assumption [5] in subgroups of Z∗

n of maximal order.

Related Work. Early secret handshake schemes [2,8,22] provided group mem-
bers with pseudonyms and secret credentials, as part of the registration process.
Such schemes are linkable since the same pseudonym is used in multiple hand-
shakes. Unlinkability can be trivially obtained by using one-time pseudonyms;
however, this is clearly unscalable. In [2], a credential is a secret element of a
bilinear group; [8] uses special CA-oblivious PKI-enabled encryption realized via
Schnorr signatures; and [22, 15] use blinded verification of RSA signatures.1 As
the next step, [15] introduced an LAH-AKE protocol that offers both linkable
affiliation-hiding and key exchange security with forward secrecy.

Unlinkable secret handshake schemes [1,16,21,17] support reusable credentials
while precluding correlation of multiple sessions involving the same participant.
However, [1] does not support revocation; [16] requires users to synchronize re-
vocation epochs, and [21] is a complex scheme based on group signatures and
broadcast encryption, which complicates revocation. Another flavor of unlinka-
bility (k-anonymity) was explored in [23]. Based on some group signature-related
techniques, Jarecki and Liu [17] recently proposed another construction with re-
vocation and unlinkable reusable credentials. However, this scheme is hardly
practical as it is based on pairings and has linear computation complexity in the
number of revoked users.

The only current work on privacy-protection against group authorities is due
to Kawai, et al. [18], who deviate from the classical setting and split the role of
the group authority among two entities: the issue authority responsible for the
registration of users and issue of certificates, and the tracing authority that can
trace users from their handshakes. Of particular interest is the new notion of co-
traceability, which is supposed to prevent authorities from identifying users upon
their handshake sessions. The crucial assumption for this property in [18] is that
the issue and tracing authorities do not collude. In contrast, our setting is more
consistent with prior work, since we treat the group authority as a monolithic
entity. Also, our model considers security of session keys and their impact on user
privacy, whereas, [18] builds upon [8] where these issues are not modeled. [18]
requires group signatures with message recovery and its operation is based on
pairings, which significantly decreases the efficiency of the scheme (note that no
performance analysis is given in [18]).
1 Note that the protocol in [22] was shown to be insecure in [15].
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2 Untrusted GA Model for Linkable AH-AKE Protocols

We now define and model the security of LAH-AKE protocols while considering
malicious GA behavior.

2.1 Linkable Affiliation-Hiding Key Exchange Syntax

An LAH-AKE scheme is a four-tuple {CreateGroup, AddUser, Handshake, Revoke}
with components defined as follows:

CreateGroup(1κ). This probabilistic algorithm sets up a new group G and is
executed by the corresponding GA. On input of the security parameter 1κ it
generates a public/private group key pair (G.pk, G.sk), initializes the group’s
pseudonym revocation list G.prl to ∅ and outputs public group parameters
G.par = (G.pk, G.prl) and private key G.sk.

AddUser(U, G). This protocol is executed between the prospective group mem-
ber U and the GA of G. The algorithm on U ’s side is denoted AddUserU(U, G.
par), the algorithm on GA’s side by AddUserG(U, G.sk). Let π be a session
of either the AddUserU or the AddUserG algorithm. The state of π is de-
fined through the session variable π.state and can take running, accepted,
or rejected values. For both algorithms initially π.state = running. Once
AddUserU session π reaches π.state = accepted its variable π.result contains
a pair (id, id.cred) where id is a pseudonym and id.cred is a membership cre-
dential enabling U to authenticate as id in group G in future Handshake
sessions. A user can have several registered pseudonyms in the same group,
and the same pseudonym may be registered in different groups.

Handshake(params1, params2). This is a protocol (handshake) executed between
two users U1 and U2 on inputs paramsi = ((idi, idi.cred), Gi.par, ri), i ∈ {1, 2},
with Gi.par = (Gi.pk, Gi.prl), r1 = init and r2 = resp. We assume that
each Ui executes the corresponding interactive algorithm Handshake′(parami).
Note that idi is the pseudonym previously registered to group Gi using the
AddUser algorithm. The protocol verifies that both users are affiliated to the
same group (i.e. G1 = G2) and possess valid membership credentials. If so,
the protocol accepts with an established shared session key. Otherwise, it re-
jects. Users keep track of the state of created Handshake protocols π through
session variables that are initialized as follows: π.state← running, π.key← ⊥,
π.id← id (where id is the pseudonym used) and π.partner← ⊥. At some point,
the protocol will complete and π.state is then updated to either rejected or
accepted. In the latter case π.key is set to the established session key (of length
κ) and the pseudonym of the handshake partner is assigned to π.partner. The
accepted state cannot be reached if the protocol partner is revoked from the
group (π.partner ∈ G.prl).

Revoke(G.sk, G.prl, id). This algorithm is executed by the GA of G and results
in the update of G’s pseudonym revocation list: G.prl← G.prl ∪ {id}.
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Definition 1 (Correctness of LAH-AKE). Assume that two users, U1 and
U2, register as members of groups G1 and G2, and obtain their credentials (id1,
id1.cred) and (id2, id2.cred), respectively, through corresponding AddUser execu-
tions. Assume that U1 and U2 participate in a Handshake protocol and let π1 and
π2 denote the corresponding sessions of U1 and U2. The LAH-AKE scheme is
called correct if (a) π1 and π2 complete in the same state, which is accepted iff
G1 = G2 and id1 �∈ G2.prl and id2 �∈ G1.prl and r1 �= r2, and (b) if both sessions
accept then (π1.key, π1.partner, π1.id) = (π2.key, π2.id, π2.partner).

2.2 Security Model and Extended Goals

We now present our security model that takes into account malicious GAs. After
describing adversarial queries we define three security properties: authenticated
key exchange (AKE) security (with forward secrecy), linkable affiliation-hiding
(LAH) security, and untraceability. Our model and definitions build upon [15],
which considered the first two properties in the trusted GA model.

Adversary Model. The adversary A is modeled as a PPT machine that inter-
acts with protocol participants via the set of the following basic queries. Unless
explicitly noted, we assume that A always has access to up-to-date exhaustive
(system-wide) lists of groups GLi and pseudonyms IDLi (these lists do not disclose
the mapping between pseudonyms and groups).

CreateGroup(). This query sets up a new group G and publishes its public pa-
rameters G.par. The group is added to GLi.

AddUserU(U, G.par). This query models the actions of U initiating the AddUser
protocol with given target group G. A new protocol session π is started.
Optionally, a first protocol message M is output. G is also added to GLi
if it is a new group; this allows A to create its own groups with arbitrary
(possibly malicious) public parameters.

AddUserG(G, U). This query differs from AddUserU in that it models GA’s ac-
tions on the AddUser protocol. We require that G has been already estab-
lished through the CreateGroup query.

Handshake(id, G.par, r). This query lets pseudonym id start a new session π of the
Handshake protocol. It receives as input the public parameters of the group
G wherein the handshake shall take place (given that id has credentials for
that group) and a role identifier r ∈ {init, resp} that determines whether
the session will act as protocol initiator or responder. Optionally, this query
returns a first protocol message M .

Send(π, M). Message M is delivered to session π. After processing M , the even-
tual output is given to A. This query is ignored if π is not waiting for input.
Note that π is either an AddUserU, an AddUserG or a Handshake protocol
session. If π is an AddUserU session and accepts after processing M then id
from π.result is added to IDLi.

Reveal(π). This query is defined only if π is a handshake session. Then, if π.state �=
running it returns π.state and π.key; otherwise the query is ignored.
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Corrupt(∗). The input is either a pseudonym id or a group identifier G:
Corrupt(id): If id ∈ IDLi then, for any group G where id is registered, the
corresponding credential id.cred is given to A.
Corrupt(G): For a group G created by CreateGroup() this query hands G’s
long term secret G.sk and control over G’s revocation list G.prl over to A.

Revoke(G, id). This query lets the GA of G include id ∈ IDLi in its pseudonym
revocation list G.prl.

Definition 2 (Honest Generation of Pseudonyms and Groups). A pseu-
donym id is called honestly generated if it was established through an AddUserU
query. It is called honest if thereafter no Corrupt(id) query has been asked.
Similarly, group G is called honestly generated if it was established through
a CreateGroup query. It is called honest if thereafter no Corrupt(G) query has
been asked.

Definition 3 (Session IDs and Partnered Sessions). Session id π.sid of a
Handshake session π that was initiated by pseudonym id and is in state accepted
is a value that uniquely identifies π in the set of all protocol sessions of id. Two
Handshake sessions π, π′ are called partnered if π.state = π′.state = accepted
and (π.sid, π.id, π.partner) = (π′.sid, π′.partner, π′.id).

Authenticated Key Exchange Security. AKE-security of LAH-AKE pro-
tocols is determined by analyzing the statistical distribution of resulting session
keys: A’s task is to distinguish a key established in a protocol run from a ran-
domly generated value of the same length.

In order to formalize the corresponding indistinguishability game we first in-
troduce two new flags π.revealed and π.tested, that are initially set to false, and
define the Reveal∗ query (as a slightly modified version of Reveal) and the aux-
iliary Test query with secret parameter b ∈ {0, 1}.

Reveal∗(π). This query is answered as the regular Reveal(π) query (and π.revealed
is set to true) unless π.tested = true or π′.tested = true for any session π′

that is partnered with π. In the latter case the query is ignored.
Test(π). This query is ignored if π is not fresh (see Definition 4). Otherwise

π.tested is set to true and a key is returned, obeying the following rule: Let
b ∈ {0, 1} denote a bit chosen in advance. In case b = 1 π.key is returned.
In case b = 0 a random element drawn uniformly from {0, 1}κ is returned
instead. The Test query may be invoked at most once.

The following notion of freshness is useful to exclude trivial attacks and simplify
the definition of AKE-security.

Definition 4 (Session Freshness). A session π that is invoked in response to
Handshake(id, G.par, r) for an honestly generated id is called fresh if all of the
following hold:
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(a) π.state = accepted and π.revealed = false;
(b) for any existing session π′ that is partnered with π, π′.revealed = false and

Corrupt(π′.id) was not invoked prior to setting π′.state = accepted. Note that
in this case π′.id = π.partner;

(c) π.partner was honestly generated and Corrupt(π.partner) was not invoked
prior to setting π.state = accepted OR π.partner was not honestly gener-
ated and prior to setting π.state = accepted both G was honest and no
AddUserG(G, ·) has been asked;

We now provide some rationale: Conditions (a) and (b) prevent A from reveal-
ing the session key computed by π or its partnered session π′ and also model
forward secrecy by allowing A to corrupt the corresponding members after the
computation of the session key. Condition (c) states meaningful requirements
on π.partner: on the one hand, it prevents the corruption of honestly generated
π.partner during the execution of the handshake (otherwise A can trivially act
in the session on behalf of π.partner and compute the key); on the other hand,
it prevents the trivial attack where π.partner was introduced either by the mali-
cious GA of G or as a consequence of the AddUserG query with which A could
otherwise obtain regular credentials for G. Note that we allow A to corrupt π.id
at any time (even before protocol acceptance) without considering π as not fresh.
Essentially this also models resilience against Key Compromise Impersonation
(KCI) attacks [19]. We are now ready to formally define AKE-security.

Definition 5 (AKE-Security with Forward Secrecy). Let LAH-AKE =
{CreateGroup, AddUser, Handshake, Revoke}, b be a bit chosen at random, and
Q = {CreateGroup, AddUserU, AddUserG, Handshake, Send, Reveal∗, Test, Corrupt,

Revoke} denote the set of queries available to A. By Gameake,b
A,LAH-AKE(κ) we denote

the following game:

– AQ(1κ) interacts with all participants using the queries in Q;
– at some point AQ asks Test(π∗) to a session π∗ which is fresh;
– AQ continues interacting via queries until it terminates and outputs bit b′,

which is the output of the game.

We define: Advake
A,LAH-AKE(κ) :=

∣
∣
∣2 Pr[Gameake,b

A,LAH-AKE(κ) = b]− 1
∣
∣
∣

and denote with Advake
LAH-AKE(κ) the maximum advantage over all PPT adver-

saries A. We say that LAH-AKE is AKE-secure if this advantage is negligible.

In contrast to [15] we do not assume that GAs remain uncorrupted. We do not
even restrictA from setting up a group on its own (presumably by choosing some
‘odd’ parameters) or from letting honest users register in such groups. Thus, we
allow A to invoke Test query to a session of an honest user that registered with
some malicious GA (as long as that session satisfies the freshness conditions).
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Linkable Affiliation-Hiding Security. In order to define linkable affiliation-
hiding (LAH) security we adopt the simulation-based approach from [15]. The
idea is to require that the real protocol execution remains indistinguishable from
an idealized one performed by a simulator SIM that simulates handshake ex-
ecutions without knowing participants’ affiliation. This indistinguishability can
be defined through a game played between A and the challenger Cb initialized
with a secret bit b ∈R {0, 1}. C1 answers all queries of A honestly following the
real protocol specification. C0 answers the queries of A with help of SIM as
shown below.

We call a group G trivially intrudable if G was not setup honestly through a
CreateGroup( ) query or if an AddUserG(G, ·) query has been posed by A or if A
corrupted some pseudonym id′ generated in response to some AddUserU(·, G.par)
query. This means that for all trivially intrudable groups A can obtain valid
membership credentials in a trivial way. Therefore, the idea is to let SIM simu-
late sessions on behalf of honest pseudonyms only if they belong to groups that
are not trivially intrudable.

CreateGroup(), AddUserU(U, G.par), Revoke(G, id). These queries are answered
honestly without involving SIM.

AddUserG(G, U),Corrupt(). These queries are answered honestly without involv-
ing SIM unless there exists some still running handshake session π invoked
for a group G which is not trivially intrudable. In this latter case AddUserG
and Corrupt queries are ignored if their input is such that after processing
these queries the group G would become trivially intrudable.

Handshake(id, G.par, r). We distinguish between two cases:
Case 1 if G is trivially intrudable then C0 correctly answers the query. We
call the invoked session a Case 1-session.
Case 2 if G is not trivially intrudable then C0 invokes SIM.Handshake(id, r)
and relays its reply. Note that, in this case, SIM doesn’t learn the group
parameters G.par from this query. We call the invoked session a Case 2-
session.

Send(π, M). If π is an AddUserU or AddUserG session then C0 answers the query
itself. If π is a Case 1-session then C0 correctly answers the query, whereby,
if after processing M session π accepts then C0 sets the corresponding π.key
as follows: If there exists a session π′ partnered to π then π.key← π′.key is
set; Otherwise, if “π is fresh”, i.e., if π.partner was honestly generated and
Corrupt(π.partner) was not asked OR π.partner was not honestly generated
and both G is honest and AddUserG(G, ·) was not asked, then pick π.key ∈R

{0, 1}κ; Otherwise, set π.key according to the protocol specification. If π is
a Case 2-session then C0 invokes SIM.Send(π, M) and relays its reply.

We let C0 create sessions π and process corresponding Send(π, ·) queries correctly,
without involving SIM (Case 1-sessions), in all cases for which A would be able
to break the secrecy of π.key in the real protocol execution (during the interaction
with C1) anyway, by the means of some trivial attack. In cases where A is not
supposed to break the secrecy of π.key in the real protocol (the conditions are
equivalent to those for session freshness in Definition 4) π.key is chosen randomly.
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Before describing how C0 answers the Reveal(π) queries of A we define the
auxiliary notion of compatible sessions.

Definition 6 (Compatible Sessions). Two protocol sessions π, π′ initiated
by Handshake queries are called compatible if the groups associated with π, π′

are identical, and the concatenation of the messages received by π is a prefix of
the concatenation of messages sent by π′ and vice versa. If π is a session that
received enough messages to complete and there exists a compatible session π′

then π.id and π.partner are set to the pseudonyms of the initiators of π and π′.

Reveal(π). If π is a Case 1-session and π.state = accepted then C0 replies
with (accepted, π.key), however if π.state = rejected then C0 replies with
(rejected,⊥).

If π is a Case 2-session then C0 first checks whether π received all mes-
sages to complete the protocol (C0 knows this since it observes the messages
passed to SIM). If not, C0 ignores the query. Otherwise, let Handshake(id, G.
par, r) be the query which invoked π. C0 checks whether there exists a session
π′ which is compatible to π. If no such session π′ exists then C0 replies with
(rejected,⊥). Otherwise, C0 replies with (accepted, π.key) according to the
following rules: If π.key is not set but π′.key is then π.key← π′.key. If both
π.key and π′.key are not set then π.key ∈R {0, 1}κ is chosen randomly.

Compatibility of sessions π and π′ means that the corresponding members id
and id′ satisfy all requirements for the acceptance in the handshake protocol. In
this case, it is clear that, by revealing the session key, A will learn that id and
id′ belong to the same group. As noticed in [15], this is unavoidable and, even in
this case, A is not supposed to learn the affiliation of these members. Now we
are ready to formally define LAH-security.

Definition 7 (LAH-Security). Let LAH-AKE = {CreateGroup, AddUser,
Handshake, Revoke}, b a randomly chosen bit, and Q = {CreateGroup, AddUserU,

AddUserG, Handshake, Send, Corrupt, Reveal, Revoke}. Let Gamelah,b
A,LAH-AKE(κ) de-

note the interaction of AQ(1κ) with the challenger Cb via queries until AQ out-
puts bit b′ which is the output of the game.

We define: Advlah
A,LAH-AKE(κ) :=

∣
∣
∣2 Pr[Gamelah,b

A,LAH-AKE(κ) = b]− 1
∣
∣
∣

and denote with Advlah
LAH-AKE(κ) the maximum advantage over all PPT adver-

saries A. We say that LAH-AKE is LAH-secure if this advantage is negligible.

Untraceability. The idea behind untraceability is that, even in the presence of
a malicious GA, any member remains untraceable throughout its AH-AKE ses-
sions. As discussed in Section 1, this is a new (individual) privacy requirement,
distinct from AKE- and LAH-security. We formalize it using the indistinguisha-
bility approach: we let A specify group parameters for a group G and pick two
users U0 and U1 that are then enrolled into G by the challenger that obtains
their respective pseudonyms id0 and id1. Untraceability means the inability of
A, given idb for b ∈R {0, 1}, to identify user Ub.
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Definition 8 (Untraceability). Let LAH-AKE = {CreateGroup, AddUser,
Handshake, Revoke}, b a randomly chosen bit, and Q = {CreateGroup, AddUserU,
AddUserG, Handshake, Send, Reveal, Corrupt, Revoke} the set of queries available
to A. By Gametrace,b

A,LAH-AKE(κ) we denote the following interaction of A with par-
ticipants, where, for obvious reasons, we prevent A from accessing the up-to-date
pseudonym list IDLi:

– AQ(1κ) interacts with all participants using the queries in Q and outputs a
triple (G.par, U0, U1) where G.par are public parameters of a group G and U0

and U1 are two distinct users.
– U0 and U1 are admitted to G through the execution of AddUser(U0, G) and

AddUser(U1, G) protocols such that the corresponding pseudonyms id0 and
id1 are generated. Note that, during this process, the protocol sessions on
behalf of G (AddUserG) can be executed by A, however, the game does not
proceed until the corresponding protocol sessions executed on behalf of U0 and
U1 (AddUserU) accept.

– A is given idb and continues to interact with all participants via queries until
it terminates and outputs bit b′, which is also the output of the game.

We define: Advtrace
A,LAH-AKE(κ) :=

∣
∣
∣2 Pr[Gametrace,b

A,LAH-AKE(κ) = b]− 1
∣
∣
∣

and denote by Advtrace
LAH-AKE(κ) the maximum advantage over all PPT adversaries

A. We say that LAH-AKE is untraceable if this advantage is negligible (in κ).

In game Gametrace,b
A,LAH-AKE(κ) the corruption of idb is not forbidden. Therefore,

untraceable LAH-AKE schemes hide the real identity of group members even if
their membership credentials are leaked.

Revocation and its Relationship to Untraceability and Affiliation-
Hiding. Our model raises some concerns about the relationship between the
revocation procedure and the untraceability property. We notice that in linkable
AH-AKE and SH protocols such as [15, 8], where GA learns the pseudonym id
of a user U during the registration phase, revocation can be understood in two
ways: The first approach is what we call revocation of users, i.e., GA may want
to revoke some particular user U . The second approach is what we call revo-
cation of pseudonyms, i.e., GA may want to revoke some pseudonym id. In the
trusted GA model [15], i.e. without untraceability, there is no difference between
these two approaches, since GA knows the mapping between U and its id, and
can add id in both cases to G.prl. In contrast, our model with untraceability
ensures that, during the registration of U , GA does not get any information
about the pseudonym id. Therefore, revocation of users is no longer possible.
However, users participate in group applications via pseudonyms. Therefore, if
some misbehavior is noticed, the responsible pseudonym can be identified and
revoked. This type of revocation is still meaningful, since, if GA revokes some
pseudonym id that is owned by some user U , then U cannot communicate in that
group anymore, unless it obtains a new pseudonym. To do so, U would have to
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re-register to the same group, which might be forbidden by the admission policy
of the GA.

3 LAH-AKE Protocol Secure against Malicious GAs

We now describe our LAH-AKE scheme that provides security against malicious
GAs. Our construction is based on the scheme from [15]. The modifications apply
to the generation of group parameters, the registration process, and the actual
key exchange protocol. Revocation of pseudonyms is handled via revocation lists
similar to [15].

3.1 Number-Theoretic Assumptions and Building Blocks

Definition 9 (RSA Assumption on Safe Moduli). Let RSA-G(κ′) be a prob-
abilistic algorithm that outputs pairs (n, e) where (a) n = pq for random κ′-bit
(safe) primes p �= q, (b) p = 2p′+1, q = 2q′+1 for primes p′, q′, and (c) e ∈ Zϕ(n)

is coprime to ϕ(n). The RSA-success probability of a PPT solver A is defined as

Succrsa
A (κ′) := Pr

[

(n, e)← RSA-G(κ′); z ←R Z∗
n; m← A(n, e, z) with me = z

]

.

The RSA assumption on safe moduli states that the maximum RSA-success prob-
ability Succrsa(κ′) (defined over all PPT solvers A) is negligible in κ′.

Definition 10 (CDH Assumption in QR(p)). Let QR(p) denote the group of
quadratic residues modulo a safe prime p = 2p′+1 of length κ′. The CDH-success
probability of a PPT adversary A is defined as

Succcdh
A (κ′) := max

safe prime p
|p|=κ′,〈g〉=QR(p)

Pr
[

x, y ←R Zp′ ; h← A(p, g, gx, gy) with h = gxy
]

.

The CDH assumption in QR(p) states that the maximum CDH-success probabil-
ity Succcdh(κ′) (defined over all PPT solvers A) is negligible in κ′.

Our scheme uses the following additional building blocks. Let κ, κ′ be security
parameters. We use cryptographic hash functions modeled as random oracles:
H1 : {0, 1}∗ → {0, 1}2κ and, for any n ∈ N with |n| = 2κ′, a specific hash
function Hn : {0, 1}∗ → Zn. Note that Hn can be constructed as Hn(x) :=
H(n ‖ x)mod n using some hash function H : {0, 1}∗ → {0, 1}2κ′+κ. By Σ :=
(KGen, Sign, Verify) we denote a digital signature scheme which is assumed to be
existentially unforgeable under chosen message attacks (EUF-CMA).

Camenisch and Michels [6] show how to prove in zero-knowledge (ZK) the
correct generation of an RSA modulus n = pq for some safe primes p and q,
including the necessary primality tests and without revealing any further infor-
mation about the factors. We use an extended version of these ZK proofs: In
Appendix A we show how to additionally prove in ZK that an element g ∈ Z∗

n

has maximum order in Z∗
n.
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3.2 New LAH-AKE Scheme

We now proceed with the description of algorithms and protocols.

Algorithm CreateGroup(1κ). This algorithm generates parameters for a new
group G as follows: it picks two κ′-bit primes p, q with p = 2p′+1 and q = 2q′+1
for prime numbers p′ and q′, sets n = pq, picks an exponent e ∈ Zϕ(n) which is
coprime to ϕ(n) = (p − 1)(q − 1) = 4p′q′, and computes d = e−1 (mod ϕ(n)).
Note that n is a Blum integer, i.e., p ≡ q ≡ 3 (mod 4).

As Z∗
n
∼= Z∗

p×Z∗
q the largest element order in Z∗

n is lcm(ϕ(p), ϕ(q)) = 2p′q′ =
ϕ(n)/2, and hence Z∗

n is not cyclic. For elements g ∈ Z∗
n with ord(g) ≥ p′q′ and

gp′q′ �= ±1 it follows that ord(g) = 2p′q′ and that −1 �∈ 〈g〉. In this case, we have
Z∗

n
∼= 〈−1〉 × 〈g〉. Let the CreateGroup algorithm pick such an element g. Since

about a half of the elements in Z∗
n has the desired properties [15], g can easily

be found by just random sampling and testing.
Our security model treats GAs as untrusted parties. This even includes lack of

trust in the honest generation of group parameters. Appendix A sketches a tech-
nique based on [6] that constructs a ZK proof for (n, g) showing that n is a safe
RSA modulus and that Z∗

n = 〈−1〉 × 〈g〉. By Πn,g we denote its non-interactive
version that can be obtained via the classical Fiat-Shamir transformation [11].

Finally, the algorithm sets G.prl = ∅ and outputs G.par = (G.pk, G.prl, Πn,g)
with G.pk = (n, e, g) and the private key G.sk = d.

Protocol AddUser(U, G). Member admission is implemented using a proto-
col between U and GA, as specified in Figure 1. Communication between U
and GA is assumed to be authentic, yet it does not need to be confidential as
in [15], mainly because membership credentials in our registration process are not
transported from GA to U but computed through interaction, which need not be
private. Some details follow. It is assumed that U obtains public group parame-
ters G.par = (G.pk, G.prl, Πn,g) prior to the protocol execution. Then, in a first
step, U examines the validity of the group parameters (n, e, g) by checking the
NIZK proof Πn,g. Then, U generates a signature key pair (pk, sk)← Σ.KGen(κ).
The verification key pk is hereafter used by U as its pseudonym id in group G,
i.e., we set id := pk. Using the standard blind RSA signature scheme [9, 3] U
obtains an RSA signature σid = Hn(id)d on Hn(id), as depicted in Figure 1 (all
computations are modn). Note that the blinding factor re effectively hides id
and Hn(id) from G. The output of U is (id, id.cred) with id.cred = (σid, sk).

Protocol Handshake((idA, idA.cred, GA, init), (idB, idB.cred, GB, resp))
The handshake protocol is executed between two users, say A and B, hold-
ing pseudonyms idA and idB, public group keys GA.pk = (nA, eA, gA) and
GB.pk = (nB , eB, gB), and credentials idA.cred = (σidA , skA) and idB.cred =
(σidB

, skB), respectively. The protocol is specified in Figure 2. We assume that
all computations are performed modnA on the left and modnB on the right,
except the assignments containing the padding function pad (line 5). The aim of
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1
2
3
4
5
6
7
8
9

User U
validate (n, e, g)
(id, sk) ← Σ.KGen(κ)
r ←R Z

∗

n

m1 ← Hn(id)re

σid ← m2/r
ˆ
= Hn(id)d

˜

abort if (σid)
e �= Hn(id)

id.cred ← (σid, sk)
output (id, id.cred)

m1
−−−−−−→

m2
←−−−−−−

Authority G

m2 ← (m1)
d

ˆ
= Hn(id)dr

˜

Fig. 1. Specification of AddUser(U, G)

the latter is to hide the moduli nA and nB from observers. The technique dates
back to [10]. A leakage could allow A to make conclusions about the players’ af-
filiations. The padding function pad is a probabilistic mapping that transforms
θ′ ∈ Zn into an integer θ in the interval [0, 22κ′+κ − 1] by choosing a random
k ←R [0, �22κ′+κ/n�− 1] and returning θ ← θ′ + kn. Note that θ ≡ θ′ mod n and
that

{

(−1)bgt | (b, t) ∈ {0, 1} ×Zn/2

}

= Zn.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

User A (Initiator)
let (nA, eA, gA) = GA.pk
let (σidA

, skA) = idA.cred
(bA, tA) ←R Z2 ×ZnA/2

θ′

A ← (−1)bA (gA)tAσidA

θA ← pad(θ′

A, nA, κ, κ′)

sidA ← m1 ‖m2

rA ←
`
(θB)eAHnA

(idB)−1
´2tA

(KA, cA) ← H1(rA ‖sidA)
sA ← Σ.Sign(skA, cA ‖sidA ‖ init)

vA ← Σ.Verify(idB, sB , cA ‖sidA ‖ resp)
if idB �∈ GA.prl and vA = true then
(key, partner, state) ← (KA, idB, accepted)
else (key, partner, state) ← (⊥,⊥, rejected)

m1 = (idA, θA)
−−−−−−−−−−−→
m2 = (idB , θB)
←−−−−−−−−−−−−

sA
−−−−→

sB
←−−−−

User B (Responder)
let (nB , eB , gB) = GB .pk
let (σidB

, skB) = idB .cred
(bB, tB) ←R Z2 ×ZnB/2

θ′

B ← (−1)bB (gB)tB σidB

θB ← pad(θ′

B , nB , κ, κ′)

sidB ← m1 ‖m2

rB ←
`
(θA)eB HnB

(idA)−1
´2tB

(KB, cB) ← H1(rB ‖sidB)
sB ← Σ.Sign(skB, cB ‖sidB ‖ resp)

vB ← Σ.Verify(idA, sA, cB ‖sidB ‖ init)
if idA �∈ GB.prl and vB = true then
(key, partner, state) ← (KB, idA, accepted)
else (key, partner, state) ← (⊥,⊥, rejected)

Fig. 2. Specification of Handshake((idA, idA.cred, GA, init), (idB , idB .cred, GB , resp))

Remark 1. There is an important difference between our Handshake protocol and
that from [15]: The key confirmation message sent in the second round of our
protocol is a signature; its validity confirms not only the equality of the session
key but also serves as a proof for the ownership of claimed id by the partici-
pant (i.e. through the knowledge of the corresponding secret key). This way we
thwart active impersonation attacks where A exploits the blinding feature of the
AddUser protocol and obtains credentials for ids of honest users. Note that the
possibility of such pseudonym impersonation by insiders (group members) would
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violate AKE security as defined in Section 2.2 (see part (c) of Definition 4). In
contrast, the handshake protocol in [15] computes key confirmation messages as
hash values computed using the established session key.

Algorithm Revoke(G.sk, G.prl, id). Revocation of pseudonyms is handled by
the GA of G by placing the pseudonym into the corresponding pseudonym re-
vocation list G.prl. We assume that this list is distributed using authenticated
channels.

4 Security and Efficiency

Correctness of the described LAH-AKE protocol follows by inspection. Note that
the intermediate values rA and rB have the form

rA =
(

(θ′B)2eAHn(idB)−2
)tA =

(

(gB)2eAtB (σidB
)2eAHn(idB)−2

)tA

=
(

(gB)2eAtB Hn(idB)2eAdAHn(idB)−2
)tA = (gB)2eAtAtB (mod nA)

and, analogously, rB = (gA)2eBtBtA . Presuming that (nA, eA, gA) = (nB, eB, gB),
i.e. that users A and B are members of the same group, rA and rB evaluate to
the same value, and KA = KB follows.

Remark 2. Protocol correctness requires that the Hn(id) values are indeed in-
vertible mod n. In fact, this is not the case for Hn(id) ∈ Zn \ Z∗

n and then the
protocol will fail. However, this occurs with negligible probability. We stress that
this remark also applies to the original protocol in [15].

We now state that our LAH-AKE construction satisfies the AKE- and LAH-
security and untraceability goals defined in Section 2.2. The corresponding proofs2

(with estimated attack probabilities) are provided in the full version of this
paper.

Theorem 1 (AKE-Security). Our LAH-AKE scheme is AKE-secure (Def. 5)
in the random oracle model under the RSA (Def. 9) and CDH (Def. 10) assump-
tions if Πn,g is sound and zero-knowledge, and Σ is EUF-CMA secure.

Theorem 2 (LAH-Security). Our LAH-AKE scheme is LAH-secure (Def. 7)
in the random oracle model under the RSA (Def. 9) and CDH (Def. 10) assump-
tions if Πn,g is sound and zero-knowledge, and Σ is EUF-CMA secure.

Theorem 3 (Untraceability). Our LAH-AKE scheme is untraceable (Def. 8)
in the random oracle model if Πn,g is sound.
2 It might initially seem, that, due to the utilization of blind signatures in the AddUser

protocol, security of LAH-AKE cannot be shown without relying on the hardness of
some One-More RSA-Inversion problem [3]. However, careful examination of the
constraints for session freshness in Definition 4 shows that the AddUserG query (i.e.
the adversary’s access to the blind signature oracle) is available only in cases where
the corresponding GA may be corrupted anyway. Hence, the RSA assumption suffices
to prove the protocol’s security.
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Efficiency. The cost of our handshake protocol is dominated by the computa-
tions of θ′A/B, rA/B , generation of sA/B and verification of sB/A. The first two
involve exponentiations (of size log n = 2κ′) and the cost of the last two depends
on the balance between Σ.Sign and Σ.Verify. Many current signature schemes
involve either low verification and high generation costs (e.g, RSA) or vice versa
(e.g., DSA). In any case, suffice it to say that, for each participant, the overall
computation cost amounts to approximately 3 full-blown exponentiations. Con-
sidering the high degree of security offered by our scheme, the overhead is very
low.

The NIZK proof Πn,g in the AddUser protocol is the most expensive opera-
tion. In fact, the verifier would have to compute about 24κt logn (multi-) ex-
ponentiations, where 2−t is the error-probability for the primality tests (see [6],
Sections 4.3 and 5.1). Note that [6] suggests two optimizations on the protocol:
the first one in [6, Section 5.2] that effectively removes factor t from the above
equation; and the second one [6, Section 2.2] that is applicable only to interactive
ZK proofs and eliminates factor κ. Nevertheless, the complexity for verifying the
correctness of the group parameters remains relatively high. However, this proof
is necessary (in theory) for the security in our model. In practice, it is conceivable
to completely omit the verification of Πn,g, since the set of public parameters
of a group is fixed once, upon the initialization. Therefore, its verification by
a single trusted auditing authority would suffice. An appropriate (weaker) se-
curity model is easily derived from that given in Section 2.2 by modifying the
AddUserU query such that only group parameters G.par are accepted that were
established by a CreateGroup query before. Note that, in this relaxed model, the
untraceability of our LAH-AKE scheme becomes unconditional (since there is no
longer any need to assume soundness of Πn,g in Theorem 3).

5 Conclusion

AH-AKE protocols are powerful privacy-preserving authentication mechanisms
usable in various collaborative and group-based applications, such as p2p sys-
tems, mobile ad-hoc groups, and social networks. Prior protocols require a high
degree of trust in the GA. In this work, we considered untrusted GAs in linkable
AH-AKE protocols. We developed a model containing meaningful definitions of
security and designed a concrete protocol for mitigating GA misbehavior, guar-
anteeing the valuable privacy goals for the users.
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A About the Construction of Πn,g

Camenisch and Michels [6] describe a cryptographic protocol where a prover P
holding the factorization n = pq of a public safe RSA modulus n proves in Zero-
Knowledge to a verifier V that n is indeed a safe RSA modulus. This is done by
sending randomized Pedersen commitments [20] C(p), C(q), . . . of p, q and some
intermediate variables to V , and by proving in ZK arithmetical relationships
between them. Within others, probabilistic primality tests for p and q are run
and ZK-verified step by step by V . In the full version of this paper we describe
the deployed techniques in more detail.

The protocol given in [6] is not directly applicable to the CreateGroup/AddUser
algorithms of our AH-AKE scheme (see Section 3.2) as not only the fact that n
is a safe RSA modulus has to be proven, but in addition also the equality Z∗

n =
〈−1〉 × 〈g〉. A necessary condition for the latter is that ord(g) = ϕ(n)/2 = 2p′q′

and gp′q′ �= ±1. As n is a Blum integer there are exactly four elements a ∈ Z∗
n

with a2 = 1, namely ±1 and ±ω for some ω ∈ Z∗
n. It is hence sufficient if P

proves to V that gp′q′
= ±ω. In the following, we sketch how this can be done.

The Euclidean algorithm finds integers x, y satisfying px + qy = 1. For ω =
px− qy (mod n) the Chinese Remainder Theorem shows that ω2 = 1 (mod n). In
a first step, P publishes commitments C(x), C(y) for x and y, respectively, and
proves (in ZK) C(1) = C(p) ·C(x) + C(q) · C(y). It then computes ω, publishes
C(ω) and proves C(ω) = C(p) · C(x) − C(q) · C(y). After computing g′ = gp′q′

,
it publishes C(g′) and proves C(g′) = C(g)C(p′)·C(q′), concluding the proof by
revealing either C(g′) = C(ω) or C(g′) = C(−ω).
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