
Property-Based Taming of Lying Mobile Nodes

Mark Manulis∗ Ahmad-Reza Sadeghi

Horst-Görtz Institute, Ruhr-University of Bochum
D-44801 Bochum, Germany

mark.manulis@rub.de,sadeghi@crypto.rub.de

Abstract

Intelligent security protocols can verify whether the in-
volved principals have properties that are defined based
on certain functional and security policies. The property
we focus on is the performance of mobile devices partici-
pating in a security protocol. In this context, the proto-
col should distribute the computation, communication and
storage costs fairly among all devices. However, the proto-
col should foresee against cheating participants who may
lie about their properties to gain advantage.

1. Introduction
Many security applications in practice are based on in-

teractive computation among mistrusting parties. Basically,

each party inputs own secrets to the protocol and receives

the (secret) output at the end. The protocol has to guaran-

tee the security requirements which can vary depending on

the application. In this context it is important to ensure the

trustworthiness of the involved principals with respect to

certain (security) policies. More concretely, we want to en-

force that a mobile device taking part in the security proto-

col has the desired property, otherwise the principal should

not be granted access to the output of the protocol.

In this paper, we consider a group key agreement for

heterogeneous mobile ad-hoc groups [6]. These are groups

where principals are equipped with different kinds of mo-

bile devices such as cell phones, PDAs, laptops. Obviously,

performance capabilities vary among devices due to differ-

ent hardware and software configurations. Taking this into

account we are interested in a fair distribution of the com-

putational load among the devices. The protocol in [6] dis-

tributes computation costs non-uniformly, i.e., more power-

ful devices have to bear higher costs for computation, com-

munication and memory. Imaginable attacks in this sce-

nario are that principals may cheat on the performance of

their devices in order to save own resources at the expense

of those devices that are less powerful, e.g. a kind of a

DoS attack. In order to resist such attacks [6] introduces

a new security requirement, called performance honesty.

However, the protocol in [6] does not provide this require-

ment and is therefore vulnerable to this kind of attacks.

∗ Both authors were supported by the European Commission through
IST-2002-507932 ECRYPT.

In this paper we propose a system model for mobile de-

vices based on Trusted Computing (TCG specification [8])

which can be used to enforce the performance honesty in

[6]. The idea is to distribute protocol operations within a

device between trusted and non-trusted components. Note

that as for PCs it is expected that in near future a wide range

of mobile devices will be equipped with trusted hardware

features.

2. Related Work
The solution in [6] assumes that every user is honest con-

cerning his device’ performance. Although [6] mentions

two possible approaches against cheating, it does not pro-

vide any concrete realization.

The first approach is based on ”incentives” and aims to

discourage selfish behaviour of participants by making co-

operation more attractive, e.g., [1] and [7]. Two flavours

of such approaches have been introduced for packet for-

warding: reputation-based and pricing-based schemes. In

reputation-based schemes a misbehaving device looses its

reputation that depends on the rate of the forwarded pack-

ets. Devices with lower reputation receive less services

(punishment). In pricing-based schemes packet forward-

ing is treated as a service that may be priced, e.g., using

virtual currency as in [2] or specific micro-payment sys-

tems as in [3]. Incentive-based approaches require high

communication overhead to compute and update reputa-

tions of devices, or to handle the accounting. Besides that

some pricing-based schemes still require tamper-resistant

hardware components or virtual banks (trust authorities).

Another problem with incentive-based approaches is that

the performance can only be measured by the device itself

(to the contrary, the packet forwarding ratio is measured

by other devices during the communication with the chal-

lenged device).

Therefore, the second suggestion based on the trusted

computing hardware, e.g., Trusted Platform Module (TPM)

[8] seems more suitable and is also more efficient and ef-

fective.

3. Model
3.1. Basic Definitions and Conventions

We denote the set of devices (users) with

M := {M1, . . . , Mn}. The performance ratio μi quan-

tifies the performance capability of a mobile device Mi,

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

and is the output of a benchmarking mapping that per-

forms protocol specific network and cryptographic op-

erations. A mobile device Mi is considered to be more

powerful than Mj if μi > μj . A performance ratio or-
der, denoted by P , of a mobile ad-hoc group is a sorted list

of devices such that μi ≥ μi+1 holds for any Mi, Mi+1

with 1 ≤ i < n. A signature scheme is denoted by a tu-

ple (Sign, Verify) (the key generation algorithm is omit-

ted). With σ ← SignSKX
(m) we denote the signa-

ture of a party X on a message m using the signing key

SKX . The verification algorithm ind ← VerifyPKX
(σ) re-

turns ind ∈ {true, false}. By Hash() we denote a cryp-

tographic hash function. The deployed cryptographic

primitives are assumed to be secure.

3.2. Requirements

The underlying security protocol should fulfill the spec-

ified security requirements stated for that protocol and the

performance honesty requirement, i.e., that no principal is

able to cheat on the performance ratio of its device. The fol-

lowing protocol is considered as a use case for our system

model.

4. Short Review of μSTR-H Protocols

μSTR-H [6] is a contributory group key agreement pro-

tocol based on [4]. It computes the group key as a function

of public contributions of all participants. μSTR-H consists

of five main protocols: setup, join, leave, merge, and parti-

tion, that can be used to initialize the entire group and to

handle dynamic events, respectively. These protocols pro-

vide semantic security against passive adversaries, i.e. it is

computationally infeasible to distinguish between bits of

the group key computed by μSTR-H and random bits. Ad-

ditionally, assuming that all participants do not cheat on

the performance of their devices μSTR-H protocols achieve

cost fairness in heterogeneous environment, i.e., protocol

costs are distributed between mobile devices according to

their performance ratios.

μSTR-H protocols assume a public, reliable and authen-

ticated broadcast channel within the group. Reliability can

be achieved, for example, using reliable multicast proto-

cols for ad-hoc networks, like RDG [5]. Authentication can

be achieved using public key certificates, i.e., every partic-

ipant Mi has its own private/public key pair (skeyi, pkeyi)
which is used for message authentication. The public key

pkeyi should be certified. In the following description we

omit the indication of the authentication procedure, i.e., of

signature generation and verification.

μSTR-H sorts all group members (devices) according to

the performance ratio order P . For a better efficiency all

operations in μSTR-H are done in a cyclic group <G> of

prime order t of points of an elliptic curve E over a prime or

binary finite field Fq. Every group member Mi has its own

secret session random ri ∈R {1, . . . , t − 1}. The corre-

sponding blinded value Ri = riG (scalar-point multiplica-

tion equivalent to modular exponentiation in Z
∗
q) is public.

Every Mi saves a list Ri = {Ri, . . . , Rn}. During the pro-

tocol every member Mi computes a set {ki, . . . , kn} where

kn is the desired shared group key. For each ki there exists

a public key Ki = kiG. Note that k1 = r1 and K1 = R1.

Each secret key ki (i > 1) can be computed in two differ-

ent ways: ki = map(riKi−1) or ki = map(ki−1Ri) where

map is a point-to-integer mapping function. Every member

Mi computes and saves a list ki = {ki, . . . , kn} (note M1

saves {k2, . . . , kn}). In order to handle dynamic events ev-

ery member Mi (i > 1) has also to save Ki−1.

Initialization: Figure 1 provides a full description of the

setup protocol of μSTR-H based on the above preliminar-

ies. For simplicity i corresponds to member’s Mi position

in P , and μi can be obtained from P .

• Mi selects ri, computes Ri, and broadcasts (Ri, μi)

• Mi computes P = (M1, . . ., Mn), finds own index i, and

saves Ri = (Ri, . . ., Rn). Additionally, M1 computes k1 =

(k2, . . ., kn), and broadcasts (K2, . . ., Kn−1).

• Mi (i > 1) computes ki = (ki, . . ., kn), and saves Ki−1.

Figure 1. μSTR-H Setup

Due to the cost fairness requirement, less powerful de-

vices have to compute less secret keys and save less blinded

session randoms than more powerful devices that are lo-

cated in the head of P . Figure 2 shows an example of a

group of 5 members. Member M3 uses its session random

r3, public key K2 and blinded session randoms R4, R5 to

compute secret keys k3, k4, and the group key k5.

K2 K3 K4

k2 k3 k4 k5

R1 R2 R3 R4 R5

r1 r2 r3 r4 r5

M1 M2 M3 M4 M5

Figure 2. Example of μSTR-H

Dynamic Events: A sponsor is used in μSTR-H to han-

dle dynamic events. The sponsor Ms is temporarily cho-

sen from the group according to the actual state of P . Ms

changes own session random rs to achieve the freshness

of the updated group key and broadcasts public keys that

are required by other members to update the group key.

There always exists at least one member who can verify

information sent by the sponsor. In case of join the new

member is inserted in P . The sponsor of join is the highest-

numbered member below the position j of the new member.

If j = 1 then the sponsor is M2. In case of leave the leav-

ing member is excluded from P . The sponsor of leave is the

highest-numbered member below the position d of the leav-

ing member. If d = 1 then the sponsor is M2. For more de-

tails on μSTR-H protocols for join, leave, merge and parti-

tion, as well as its security analysis we refer to [6].

4.1. Attacks against Perfomance Honesty

In the following we consider attack scenarios against

performance honesty in μSTR-H. Members trying to cheat

on performance ratios of their devices are called lying mem-
bers.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Individual Attacks: The adversary Mi pretends that its

device has a lower μi than it really does in order to get

a better position in P and save own costs during the pro-

tocol. Note that pretending to have a higher value for μi

makes no sense, since it comes at adversary’s expense. An-

other thinkable variation is that Mi has several mobile de-

vices with different performance ratios. Mi’s goal is to use

a higher-performance device for the protocol computations

but obtain a better position in P by submitting the perfor-

mance ratio of its lower-performance device.

Collusion Attacks: Collusion may consist of different

lying members so that at least one of them is able to ob-

tain an advantageous position in P . It is also imaginable

that some members of the collusion submit correct perfor-

mance ratio parameters whereas other members cheat. In

case of additive dynamic events (e.g., join) current mem-

bers may collude in order to place new members on disad-

vantageous positions in P .

We require from μSTR-H to be resistant against all kinds

of individual and collusion attacks.

5. Trusted Components
In this section, we propose an abstract system model

based on TCG’s (Trusted Computing Group) specifications

([9], [8]) that provide a practical solution to the missing link

between the properties offered by a device platform and

its configuration. Note that our system model uses trusted

computing functionalities as black box.

Figure 3 illustrates this abstract model for a device M .

Device M

TPM

TSC

Common OS

Hardware

Application

Platform
PCR2

. . .

PCR1

PCRl

S

Figure 3. Abstract Model of M

The Trusted Computing Base (TCB) of a device consists

of a Trusted Platform Module (TPM) and Trusted Software

Component (TSC) described in the following.

Trusted Platform Module (TPM): The TPM pro-

vides a secure random number generator, non-volatile

tamper-resistant storage, key generation algorithms, sev-

eral cryptographic functions, amongst others a crypto-

graphic hash function. A set of Platform Configuration
Registers (PCR) are used in TPM to store hash val-

ues. The value of a PCR can only be modified as fol-

lows: PCRi+1 ← Hash(PCRi|I), with the old value

PCRi, the new value PCRi+1, and the input I (e.g.,

a SHA-1 hash value). This process is called extend-
ing a PCR. The main task of the TPM is to bind relevant

secrets used in the protocol to the properties of the de-

vice. For this purpose, the following set of the TCG secu-

rity mechanisms can be applied.

Integrity Measurement and Platform Configuration: In-

tegrity measurement is done during the boot process by

computing a hash value of the initial platform state. For

this purpose TPM computes a hash of (measures) the code

and parameters of the BIOS and extends the first PCR reg-

ister by this result. A chain of trust can be established if an

enhanced BIOS and bootloader also measure the code they

are transferring control to as next, e.g., to the operating sys-

tem (OS). The security of the chain relies strongly on ex-

plicit security assumptions about the TPM. Thus, the PCR

values PCR0, . . . ,PCRl provide evidence of the system’s

state after boot. We call this state the platform’s configura-
tion, denoted by S := (PCR0, . . . ,PCRl).

Attestation: The TCG attestation protocol is used to give

assurance about the platform configuration Si to a remote

party. To guarantee integrity and freshness, this value and

a fresh nonce provided by the remote party are digitally

signed with an asymmetric key pair (SKAIK ,PKAIK)
called Attestation Identity Key (AIK) that is under the sole

control of the TPM.

Sealing: Data D can be cryptographically bound to a

certain platform configuration Si using an asymmetric key

pair (SK ,PK) generated by the TPM. By sealing D under

S we mean the encryption of D using PK and S. The un-

seal command releases the decrypted data D only if for the

current configuration S′ holds S′ = S.

Trusted Software Component (TSC): The TSC in-

cludes elementary properties of a security kernel such as

protecting its memory from being accessed and manipu-

lated by unauthorized processes/programs and isolation of

processes (e.g., common OS is isolated from the applica-

tion). Since TSC is a software component it can be used to

process operations that are too expensive for the TPM.

In our system model the operating system (OS) of the

device and the application software such as μSTR-H proto-

col run on top of the TSC. Note that OS and the application

software are not trusted components.

6. TCG Meets μSTR-H
6.1. A Concrete System Model

Based on the abstract model in Section 5 we propose

a concrete model of a device in the context of the μSTR-

H protocols in Figure 4. Each device Mi is the host of a

Device Mi with performance ratio μi

TPMi

TSCi

Common OS

Hardware

μSTR-H

Platform PCR Si

ki, . . . , kn

ri

Figure 4. A Concrete System Model of Mi

TPMi. TPMi is supposed to bind the secret session ran-

dom ri to the performance ratio μi using the sealing func-

tion. Hence, the host can only access ri if μi is valid, i.e., if

Mi generates ri using one device he cannot use ri for the

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

computations on another device. The computation of se-

cret keys kj , i ≤ j ≤ n and corresponding public keys

Kj , i ≤ j ≤ n − 1 are performed by TSCi. However,

TSCi should not be able to perform certain security crit-

ical actions without involving the TPMi, or simply break

the underlying security protocol by leaking the secret val-

ues ki. Since TSCi is a part of TCB, its measurement Si

(e.g., a hash of TSCi’s code which is computed at the boot

time) will be included in the system configuration stored in

PCRs, and hence the sealing functionality can be used to

bind the secrets also to Si. Since TCB represents a “con-

stant” part of the device, any attempt to manipulate it by

patches changes PCR values making unsealing impossible.

Note that the trust assumption on TSCi concerns only

software attacks and not attacks that attempt to read out the

memory content by using hardware devices. The untrusted

component of μSTR-H which runs on top of TSCi and is

isolated from other processes is responsible for the commu-

nication with other devices and performs operations which

do not explicitly require the knowledge of device’s secrets,

e.g., verification of received signatures.

6.2. Modified Protocols
Every TPMi chooses ri ∈R {1, . . . , t − 1} and com-

putes Ri = riG. To enforce performance honesty TPMi

seals ri under μi and the measurement Si of TSCi. TPMi

computes also the signature σi ← SignSKAIKi
(Ri, μi) tes-

tifying that Ri is generated in a way that it is bound

to μi and Si. Signatures of TPMi can be verified

VerifyPKAIKi
(Ri, μi, σi) using its certificate CertTPMi

that confirms the validity of TPMi and the valid-

ity of its AIK, and is attached to the message. Note

that CertTPMi can be used instead of public key certifi-

cates of users, i.e., device authentication instead of member

authentication. ri remains inside TPMi, and is used (un-

sealed) by TPMi only if μi and Si are correct. The user Mi

(untrusted μSTR-H component on top of TSCi) gains ac-

cess to Ri, μi and σi.

Given Ki−1 TSCi computes ki = map(riKi−1) and

(ki+1, . . . , kn) and (Ki, . . . , Kn−1) after it obtains the

value riKi−1 from TPMi. Mi gains access to the pub-

lic keys while the secret keys (including kn) remain in the

memory of TSCi. This is an important observation for the

performance honesty. For simplicity we omit explicit no-

tation of the interaction between Mi, TPMi, and TSCi ac-

cording to Figure 4 in the following description of our pro-

tocols assuming that required data is transmitted over de-

fined interfaces. Further, we assume that it is possible to

obtain μi, σi and CertTPMi using i and P .

If in μSTR-H a sponsor Ms has to change rs then TPMs

chooses a new value for rs, computes Rs, seals rs under the

configuration (μs, Ss) and generates a signature on Rs, μs

using AIK.

μSTR-H Setup: Let M1, . . . , Mn be participants wish-

ing to initialize a mobile ad-hoc group.

• TPMi selects ri, computes Ri and σi. Mi broadcasts

(Ri, μi, σi, CertTPMi).

• Mi verifies σj for all 1 ≤ j ≤ n, computes P , and stores

Ri.

Additionally: TSC1 computes k1 = (k2,. . .,kn),

(K2,. . .,Kn−1). M1 broadcasts (K2,. . .,Kn−1).

• For all i > 1: Mi stores Ki−1. TSCi computes ki =

(ki,. . .,kn).

Note that after the completion of the protocol the perfor-

mance ratio order P contains only devices with verifiable

TPM’s signatures.

μSTR-H Join: A new member Mj is inserted in P ac-

cording to its performance ratio μj . The new group key is

denoted kn+1.

• New member’s TPMj selects rj , computes Rj and σj . Mj

broadcasts (Rj , μj , σj , CertTPMj).

• After successful verification of σj every Mi inserts Mj

in P , renumbers all Mi (i > j) to Mi+1, and adds Rj

to Ri. (note if verification of σj fails then the proto-

col stops).

Additionally: TPMs selects new rs, computes Rs and σs.

TSCs recomputes ks = (ks,. . .,kn+1) and (Ks,. . .,Kn).

Ms broadcasts (P , σs, Rs, (Rj+1, . . . , Rn+1),

(Ks,. . .,Kn), CertTPMs).

• Mj after successful verification of σi for all

1 ≤ i ≤ n + 1 stores P , finds own index j, stores Ks and

Rj = (Rj ,. . .,Rn+1). TSCj computes kj = (kj ,. . .,kn+1).

For all i < s: After successful verification of σs Mi up-

dates Rs in Ri. TSCi recomputes (ks,. . .,kn+1) in ki.

For all i > s: Mi updates Ki−1. TSCi recomputes

(ki,. . .,kn+1).

μSTR-H Leave: A leaving member Md is removed

from P . The new group key is denoted kn−1.

• Mi deletes Md from P , if i < d also Rd from Ri, and kd

from ki, and renumbers all Mi (i > d) to Mi−1.

Additionally: TPMs selects new rs, computes Rs and σs.

TSCs recomputes ks = (ks,. . .,kn−1) and (Ks,. . .,Kn−2).

Ms broadcasts (Rs, σs, CertTPMs , (Ks,. . .,Kn−2).

• For all i < s: Mi after successful verification of σs updates

Rs in Ri. TSCi recomputes (ks,. . .,kn−1) in ki.

For all i > s: Mi updates Ki−1. TSCi recomputes ki =

(ki,. . .,kn−1).

μSTR-H Merge: Two groups, G′ of size n′ and G′′ of

size n′′, are merging to a common group G. The resulting

P is computed by merging P ′ and P ′′. The new group key

is denoted kn′+n′′ .

• M ′
1 and M ′′

1 broadcast (P ′, (R′
1, . . . , R

′
n′)) and (P ′′,

(R′′
1 , . . . , R′′

n′′)), respectively.

• Every member Mi verifies signatures σj for all

1 ≤ j ≤ n′ + n′′, merges P ′ and P ′′ to P , and

stores Ri = (Ri,. . .,Rn′+n′′).

Additionally: TPMs selects new rs, computes Rs

and σs. TSCs recomputes ks = (ks,. . .,kn′+n′′)

and (Ks,. . .,Kn′+n′′−1). Ms broadcasts (Rs, σs,

(Ks,. . .,Kn′+n′′−1)).

• For all i < s: Mi after successful verification of σs updates

Rs in Ri. TSCi recomputes (ks,. . .,kn′+n′′) in ki.

For all i > s: Mi updates Ki−1. TSCi recomputes ki =

(ki,. . .,kn′+n′′).

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

μSTR-H Partition: A subgroup G′ of size v leaves

group G of size n. The new group key is denoted kn−v .

• Mi deletes all M ′
j from P , if i < j also R′

j from

Ri and k′
j from ki, and renumbers all survived

members Mi accordingly. Additionally: TPMs se-

lects new rs, computes Rs and σs. TSCs recomputes

ks = (ks,. . .,kn−v) and (Ks,. . .,Kn−v−1). Ms broad-

casts (Rs, (Ks,. . .,Kn−v−1)).

• For all i < s: Mi after successful verification of σs updates

Rs in Ri. TSCi recomputes (ks,. . .,kn−v) in ki.

For all i > s: Mi updates Ki−1. TSCi recomputes ki =

(ki,. . .,kn−v).

6.3. Security Analysis

In this section we informally analyse the performance

honesty of our modifications to μSTR-H. Note that other

security issues of μSTR-H are still valid since our modifi-

cations concern only internal computations within the de-

vice.

In the modified protocols every Mi is able to compute

P and check own position in P by verifying the TPMs’

signatures σj , 1 ≤ j ≤ n of other devices. σi ensures

that Ri has been generated within the device those perfor-

mance ratio is μi. Since TPMi is trusted ri never leaves

its memory. The secret keys ki = (ki, . . ., kn) are com-

puted by TSCi. Since ki = map(riKi−1) and TSCi does

not know ri TPMi must be involved in the computation.

Since TSCi is trusted secret keys ki = (ki, . . ., kn) never

leave its memory. Also, ri is bound to TSCi, i.e., any ad-

versarial modification of TSCi would make unsealing im-

possible. Hence, Mi does not get any direct access to the

group key kn or to any other secrets that needed to compute

it. Therefore, Mi must use the same device throughout the

protocol and ask TSCi to perform application specific op-

erations using kn. Since the signature scheme is assumed to

be secure Mi cannot forge σi and cheat on μi. Thus, mod-

ifed μSTR-H provides performance-honesty. For complete-

ness, we consider the security against individual and collu-

sion attacks from Section 4.1.

Security against individual attacks: User Mi cannot

lie on its performance ratio μi because μi and Ri are signed

by TPMi. Since the signature scheme is secure Mi cannot

forge σi for another value of μi. If Mi submits a signa-

ture that cannot be verified by other users then Mi’s con-

tribution Ri is dropped and Mi cannot compute the group

key. If Mi replays a valid signature σi then it is assigned

to a position in P , but cannot compute the group key be-

cause it does not know ri. Similarly, if Mi submits σi of

its lower-performance device but wishes to use its higher-

performance device to compute the group key it fails be-

cause ri remains inside TPMi of the lower-performance de-

vice.

Security against collusion attacks: Consider a collu-

sion C = {Mi1 , . . . , Mik
}. Assume that all members in

C lie on their performance ratios. Since they cannot forge

TPMs’ signatures there should be at least one honest mem-

ber Mj �∈ C. Mj is able to identify all lying members, be-

cause Mj verifies the order of P by proving the TPMs’ sig-

natures. Assume that all members in C submit correct per-

formance ratios. Let H ⊂ C be a set of collusion mem-

bers who wish to save own costs and obtain the group key

from members in C−H. As described above ri remains in-

side TPMi and all ki = (ki, . . ., kn) in the memory of

TSCi. Therefore, even if members in C − H compute kn

they do not get any direct access to it or to any other se-

cret value (e.g., ri or ki). Hence, they cannot provide mem-

bers inHwith the required secret information. Assume that

during the communication session all group members col-

lude in order to assign joining members to disadvantageous

positions in P . Every new member checks own position in

the updated P by verifying the TPMs’ signatures of all de-

vices, and is, therefore, able to identify all lying members.

7. Conclusion

In this paper we have considered the deployment of

trusted computing technology to control the access of mo-

bile devices to the input/output of a security protocol de-

pending on the devices’ properties. In the context of se-

cure group communication (μSTR-H protocol) we have de-

signed a system model for mobile devices to achieve this

control considering the performance of every involved mo-

bile device as a property.

References

[1] S. Basagni, M. Conti, S. Giordano, and I. Stojmenović, edi-

tors. Mobile Ad Hoc Networking. Wiley-IEEE Press, 2004.

[2] L. Buttyan and J.-P. Hubaux. Enforcing service availability

in mobile ad-hoc wans. In MobiHoc ’00: Proceedings of the
1st ACM international symposium on Mobile ad hoc network-
ing & computing, pages 87–96, Piscataway, NJ, USA, 2000.

IEEE Press.

[3] M. Jakobsson, J.-P. Hubaux, and L. Buttyan. A micro-

payment scheme encouraging collaboration in multi-hop cel-

lular networks. In Financial Cryptography 2003, volume

2742 of Lecture Notes in Computer Science, pages 15–33.

Berlin: Springer-Verlag, 2003.

[4] Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient

group key agreement. In Information Systems Security, Proc.
of the 17th International Information Security Conference,
IFIP SEC’01, 2001.

[5] J. Luo, P. T. Eugster, and J.-P. Hubaux. Route driven gossip:

Probabilistic reliable multicast in ad hoc networks. In INFO-
COM, 2003.

[6] M. Manulis. Key Agreement for Heterogeneous Mobile Ad-

Hoc Groups. In Proceedings of 11th International Confer-
ence on Parallel and Distributed Systems Volume 2 Interna-
tional Workshop on Security in Networks and Distributed Sys-
tems, pages 290–294. IEEE Computer Society, 2005.

[7] P. Michiardi and R. Molva. A game theoretical approach to

evaluate cooperation enforcement mechanisms in mobile ad

hoc networks. In Proceedings of Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks (WiOpt’03), 2003.

[8] Trusted Computing Group (TCG). TPM

main specification, Version 1.2, http://www.
trustedcomputinggroup.org, November 2003.

[9] Trusted Computing Platform Alliance (TCPA). TCPA main

specification, Version 1.1.b, February 2002.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

