
Pseudonym Generation Scheme for Ad-Hoc Group
Communication Based on IDH

Mark Manulis and Jörg Schwenk

Network and Data Security Group,
Department of Electrical Engineering & Information Sciences,

IC 4/158, Ruhr-Universität Bochum, D-44801, Germany
{mark.manulis, joerg.schwenk}@rub.de

Abstract. In this paper we describe the advantages of using iterative Diffie-
Hellman (IDH) key trees for mobile ad-hoc group communication. We focus on
the Tree-based Group Diffie-Hellman (TGDH) protocol suite, that consists of
group key agreement protocols based on IDH key trees. Furthermore, we consider
the anonymity of members during group communication over a public broadcast
channel that provides untraceability of messages. The main goal of the proposed
pseudonym generation scheme is to allow group members to generate their own
pseudonyms that can be linked to their real identities only by a democratic deci-
sion of some interacting group members. The real identities are bound to public
keys used in the group key agreement. The communication and computation costs
as well as the security of the scheme can be optimized with respect to the charac-
teristics of involved mobile devices.

1 Introduction

In this paper we describe the communication and computation advantages of the iter-
ative Diffie-Hellman (IDH) key agreement for ad-hoc group communication scenarios
and propose a new pseudonym generation scheme with threshold revocation which can
be embedded in the IDH process. We are using IDH key agreement protocols of the
Tree-based Group Diffie-Hellman (TGDH) suite, proposed recently in [7]. As commu-
nication infrastructure we consider a public broadcast channel between mobile devices
that provides untraceability of messages, where only the attached identity values serve
as identification of the sender. In our scenario members agree on a group key using
the TGDH protocols and then compute their own pseudonyms using our pseudonym
generation scheme, which is an extension to TGDH. These pseudonyms are unlinkable
to the real identities of members used in the group key agreement. The real identity can
be revealed only upon interaction of a certain number of group members in a demo-
cratic decision. Besides that, we propose a new communication and computation costs
optimizing strategy given by the structure of the key trees established by the iterative
Diffie-Hellman key agreement. It allows to choose the optimization cost factor that is
common for all mobile devices that take part in ad-hoc communication. The strategy
is based on the fact that keys assigned to IDH-tree nodes are shared between members
assigned to leaves of the subtree rooted at that node. The optimization of costs is very

C. Castelluccia et al. (Eds.): ESAS 2004, LNCS 3313, pp. 107–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 M. Manulis and J. Schwenk

important for ad-hoc communication, since mobile devices are often limited in their
power ressources.

Motivation. Different appliance scenarios can be considered for the ad-hoc group com-
munication with pseudonyms, e. g. members of directing board of a company might want
to communicate securely and anonymously in order to perform an anonymous election
process, without having to trust into a third party. If at least one of members breaches the
communication rules by broadcasting some misleading information, then other mem-
bers might want to reveal her identity. The decision whether such dispute case has been
occured is democratic since none of group members is obliged to take part in the reveal-
ing process. This is the main difference to communication scenarios with a designated
group manager that decides when dispute case has occured. To achieve such democratic
decision our scheme allows a subset of k members to trace any pseudonym to its holder,
with k being a power of 2. Another example is an ad-hoc analogon to the GSM TMSI
(Temporary Mobile Subscriber Identity) that would allow users to hide the real identity
of their mobile devices by generating pseudonyms. In this case users are interested in
generating such pseudonyms, since otherwise it would be possible to track their mobile
devices.

Organization. The rest of the paper is organized as follows. Section 2 describes the
IDH key agreement protocols of the TGDH suite. Section 3 outlines computation and
communication costs of the TGDH protocols and shows their advantages in a mobile
ad-hoc environment. Section 4 specifies the communication model and requirements
defined for the proposed pseudonym generation scheme, that is presented in Section 5.
We describe first a special case, when all group members have to interact in order to link
a pseudonym to its real identity. Further, we give a generalized pseudonym generation
scheme, that uses the structure of the IDH key tree, and mention additional optimizations
for the limited power ressources of the mobile devices.

2 Iterative Diffie-Hellman (IDH) Key Agreement

Iterative Diffie-Hellman key agreement was originally proposed in [2] and later more
specific in [5] and [7]. In [7] Kim et. al. introduce the Tree-based Group Diffie-Hellman
(TGDH) protocol suite which allows group members to establish and maintain a group
key through a contributory agreement, where each member contributes her own share
to the common group key. There is no group manager or any other trusted authority
required for this agreement. In the following, we give a brief description of the main
protocols of the TGDH suite.

2.1 IDH Key Tree

The IDH key tree used in the TGDH protocol suite is a logical binary tree, referred to
as T . It consists of nodes 〈l, v〉, the v-th node at level l, 0 ≤ v ≤ 2l − 1 and 0 ≤ l ≤ h
where h is the height of T . Group members are represented by leaf nodes. Node 〈0, 0〉
is the root of T . Each node 〈l, v〉 is associated with a key K〈l,v〉 and a blinded key

Pseudonym Generation Scheme for Ad-Hoc Group Communication Based on IDH 109

(bkey) BK〈l,v〉 = f(K〈l,v〉), where f is an exponentiation function f(k) = gk in a
multiplicative cyclic prime order group G with generator g. If we assume that leaf node
〈l, v〉 hosts member M , then M knows the keys of all nodes on the path from node 〈l, v〉
to 〈0, 0〉, referred to as the key path. Keys associated with leaves are chosen by the group
members. The keys K〈l,v〉 in T , where 〈l, v〉 is not a leave, are computed iteratively
using the Diffie-Hellman key exchange as follows:

K〈l,v〉 = (BK〈l+1,2v+1〉)K〈l+1,2v〉

= (BK〈l+1,2v〉)K〈l+1,2v+1〉

= gK〈l+1,2v〉K〈l+1,2v+1〉

= f(K〈l+1,2v〉K〈l+1,2v+1〉)

Member M can compute key K〈l,v〉 of any node 〈l, v〉 on her key path only if she
knows the key of its preceeding node 〈l + 1, 2v〉 or 〈l + 1, 2v + 1〉 and the bkey of
the sibling node of that preceeding node (〈l + 1, 2v + 1〉 or 〈l + 1, 2v〉, respectively).
Every blinded key BK〈l,v〉 is sent over the broadcast channel after being computed
by one of the group members in the subtree of a node. Every member M knows her
position in T and can therefore determine which blinded keys are needed to compute
the keys on her key path. The computation of a key path is finished with the calculation
of the group key K〈0,0〉. For security reasons K〈0,0〉 should not be used directly for
the purpose of encryption, authentication or data integrity, but some derived key (e.g.
Kgroup = h(K〈0,0〉), where h is a strong hash function).

For example, in Fig. 1, M2 can compute K〈2,0〉, K〈1,0〉 and K〈0,0〉 using K〈3,1〉,
BK〈3,0〉, BK〈2,1〉 and BK〈1,1〉.

Fig. 1. IDH Key Tree of TGDH Protocol Suite

To establish and maintain such an IDH key tree the TGDH suite provides JOIN,
LEAVE, PARTITION and MERGE protocols. Due to space limitations we describe
only JOIN and LEAVE.

2.2 TGDH Protocol Suite: JOIN

For a set of group members M = {M1, . . . , Mn} and a new member Mn+1 Fig. 2
describes the JOIN protocol of the TGDH suite. The insertion point of the new member

110 M. Manulis and J. Schwenk

1. Mn+1 chooses her own key Kn+1, computes bkey BKn+1 and broadcasts the latter as
request for join

2. Every member Mi, 1 ≤ i ≤ n
– calculates the insertion point of Mn+1 in T
– updates T by adding two leaf nodes for Mn+1 and for the sponsor at the insertion point

node
– removes (invalidates) all keys and bkeys along the key path of the new leaf nodes

The sponsor Ms additionally
– computes all (key, bkey) pairs on her key path
– broadcasts an updated tree T̂ including bkeys of all its nodes

3. Every member Mi, 1 ≤ i ≤ n + 1 updates her copy of T with the new bkeys and computes
new keys for all the nodes of her key path intersecting the sponsor node key path, including
the group key K〈0,0〉

Fig. 2. TGDH JOIN Protocol

is the rightmost node, where (if possible) JOIN does not increase the height of T (and
else in a completely balanced tree simply the rightmost node). The sponsor is the group
member initially located at the insertion point; he will move to the left leave node which
will be added to T during the JOIN operation. The right leave node will be inhabited by
the new group member. The sponsor shares the first Diffie-Hellman key with the new
member, updates the tree and broadcasts the changed blinded key(s).

Fig. 3 shows an example of member M4 joining a group M = {M1, M2, M3} at
insertion point 〈1, 1〉. Member M3 is hosted by node 〈1, 1〉 and is therefore the sponsor.
She renames her leaf node 〈1, 1〉 to 〈2, 2〉, then adds new intermediate node 〈1, 1〉 and
new member’s leaf node 〈2, 3〉 to T , computes keys K〈1,1〉 and K〈0,0〉 on her key path
using her own key K〈2,2〉 and bkeys BK〈2,3〉 and BK〈1,0〉. After M3 broadcasts the

updated tree T̂ every member can compute keys on her key path too.

Fig. 3. Example of JOIN Protocol

2.3 TGDH Protocol Suite: LEAVE

For a set of group members M = {M1, . . . , Mn} let Md be a member who leaves the
group. Fig. 4 shows the LEAVE protocol of the suite. The sponsor is the rightmost leaf
node of the subtree rooted at the sibling node of Md. Fig. 5 shows an example of member
M3 leaving the group. Every remaining member deletes nodes 〈2, 2〉 and 〈1, 1〉 from
T .Sponsor M5 computes changed keys K〈1,1〉 and K〈0,0〉 on her key path using her own

Pseudonym Generation Scheme for Ad-Hoc Group Communication Based on IDH 111

1. Every member Mi, 1 ≤ i ≤ n, i �= d
– updates T by removing the member node of Md and replacing its parent node with the

sibling node of Md

– removes (invalidates) all keys and bkeys along the key path of the leaving member node
The sponsor Ms additionally

– computes all (key, bkey) pairs on her key path
– broadcasts an updated tree T̂ including bkeys of all its nodes

2. Every member Mi, 1 ≤ i ≤ n − 1 updates her copy of T with the new bkeys and computes
new keys for all the nodes of her key path intersecting the sponsor node key path, including
the group key K〈0,0〉

Fig. 4. TGDH LEAVE Protocol

Fig. 5. Example of LEAVE Protocol

key K〈2,3〉 and bkeys BK〈2,2〉 and BK〈1,0〉. After M5 broadcasts the updated tree T̂
every remaining member can compute keys on her key path too.

3 IDH Key Agreement in Ad-Hoc Networks

Let us summarize some properties of the TGDH protocols that make them suitable for
mobile ad-hoc group communication scenarios. When designing protocols for wireless
ad-hoc communication, several factors should be considered.

– The relationship between communication participants in mobile networks is highly
dynamical and temporary. Communication can be interrupted at any time due to the
mobility of nodes. Especially for secure group communication in such environments
fault tolerance and efficient dynamic maintenance are required for the group key
agreement.

– Another property of mobile ad-hoc networks is the absence of trusted nodes. Any
node can be a potential adversary. Therefore a decentralized and cooperative partic-
ipation of all nodes having equal rights must be provided to achieve desired security
for the group key establishment.

112 M. Manulis and J. Schwenk

– Mobile stations are limited in their computational capability compared to other
stationary devices.

Protocols of the TGDH suite fulfill the described requirements. The dynamical and
temporary nature of the interaction of group members prohibits the use of symmetric key
cryptography, which needs a secure channel to establish cryptographic keys. Amongst
the published solutions for public key group key agreement schemes, the TGDH pro-
tocols offer the best performance for JOIN and LEAVE operations. Computation and
communication costs of the specified protocols are shown in Table 1. The height of the
current IDH key tree, number of merging groups and leaving members are denoted by:
h, k and p, respectively.

Table 1. Computation and Communication Costs of the TGDH Protocols

Computation Communication
Exponentiations Signatures Verifications Rounds Messages

JOIN 3h
2 2 3 2 3

LEAVE 3h
2 1 1 1 1

MERGE 3h
2 log2 k + 1 log2 k log2 k + 1 2k

PARTITION 3h min(log2 p, h) min(log2 p, h) min(log2 p, h) 2h

Kim et. al. [7] compare the TGDH protocols to other existing contributory group
key agreement protocols like GDH.3 [8], BD (Burmester-Desmedt) [3], and STR [6].
Despite the higher cost of partition, the TGDH suite shows the best performance on low
and medium delay networks. In [1] is shown, how delay in wireless ad-hoc networks can
be kept low without trading off the throughput while capacity of a network increases.
This confirms the possibility of efficient usage of the TGDH protocols for wireless
ad-hoc communication. Mobile peers with limited power can perform the protocols
due to their low computation costs. The contributory nature of the protocols allows to
compute the group key in a decentralized and cooperative manner without trusted parties.
The sponsor in the protocols is not a privileged entity. She is chosen according to the
actual tree structure and her messages can be verified by other participants, so that no
compromisation of the key agreement is possible. Additionally, we outline some points
about fault tolerance.

Suppose that a new member Mn+1 wants to join the group and looses her connection
after sending her blinded key BKn+1 in step 1 of the JOIN protocol. Despite that,
remaining group members can still perform steps 2 and 3 and agree on a new group
key. If Mn+1 restores her connection to the group, she would only need to verify the
knowledge of her corresponding own key Kn+1.After receiving the updated tree, she can
compute the group key according to step 3 of the protocol without additional interaction.

Network failures that lead to more partitions of the group can be managed using
the PARTITION protocol. With the MERGE protocol different groups can be efficiently
merged to a common group.

Pseudonym Generation Scheme for Ad-Hoc Group Communication Based on IDH 113

4 Communication Model and Problem Specification

In this section we specify the communication model and define some requirements for
our pseudonym generation scheme.

Communication Model: A set M = {M1, . . . , Mn} of n network participants, called
members, communicates over a public broadcast channel, that provides untraceability
of messages. The sender of the message can only be identified upon some identity value
id attached to a message.

We consider that members communicate in order to form a dynamic group whithout
having any privileged members or trusted parties. Especially, there is no group manager
with extended rights. Each member has a unique real identity, which she attaches to
messages of the key agreement protocol. Our main goal is to give members pseudonyms,
that can be used as id values in messages in order to hide the real identities once the
group key is established. Pseudonyms should fulfil the following requirements:

– Each pseudonym can be linked to the real identity of Mi only through the efficient
interaction of k members, where k is a fixed value

– The pseudonym of any member Mi must be computed efficiently with respect to
the given computational and communicational ressources

– Any member must be able to choose her own pseudonym

5 Pseudonym Generation Scheme Based on IDH Key Trees

5.1 Pseudonym Generation Scheme (Special Case k = n)

Our main aim is to embed pseudonym generation in the IDH key agreement. Therefore
computations of our scheme are done in the same group G, that is used by the TGDH
protocols. Recall that G is a multiplicative cyclic prime order group with generator g and
keys of the IDH key tree are computed using some exponentiation function f(k) = gk.

Remark 1. We remark at this point, that our scheme works also in any other cyclic group,
where the Computation Diffie-Hellman Problem is hard. Therefore G can also be a group
of points of an elliptic curve E over a finite field Fp with prime p or F2m . Such groups
are appropriate for use in mobile ad-hoc networks because of the low computation costs
of the group operations.

First we describe how our pseudonym generation works using a given IDH key tree T
for a set of current group members M = {M1, . . . , Mn}. Pseudonyms generated by
our scheme can be linked to the real identities only upon the interaction of k members.
In this section we describe a special case of k = n. In Section 5.2 we then show how k
and computational costs can be optimized with respect to the limited ressources of given
ad-hoc devices using the structure of the IDH key tree.

As mentioned in Section 2 a member M is represented by a leaf node 〈l, v〉 with
private key K〈l,v〉 and blinded key BK〈l,v〉. For simplicity we denote them as Ki and

114 M. Manulis and J. Schwenk

BKi respectively, for a member Mi ∈ M, i ∈ {1, . . . , n}. Blinded keys BKi are public
and computed as

BKi = gKi

Let Ms perform our pseudonym scheme. Ms computes the shared keys

skeysj = BKKs
j = gKjKs

for j ∈ {1, . . . , n}, j �= s. For a chosen pseudonym pss and each shared key skeysj ,
Ms constructs the secret share

ssj = skeypss

sj = gKjKspss

and uses it to compute the public share

Ss = g
∑

j ssj = g
∑

j gKjKspss

Ms broadcasts the public share and uses pseudonym pss as her identity value id in her
further group messages.

Remark 2. Although, our scheme allows any value to be chosen for the pseudonym ps,
a better choice is to chose some secret random value xs and compute ps = gxs. This
would allow the holder of the pseudonym to use (xs, ps) as a public-key pair during the
communication, e. g. to sign or encrypt messages using own pseudonym.

In the following, we describe how all n group members interact to link the pseudonym
pss to its holder.

Every member Mi computes secret shares

sij = skeypss

ij = gKjKipss

for j ∈ {1, . . . , n}, j �= i and broadcasts hidden secret shares

rij = gsij = ggKjKipss

Mi can verify whether pseudonym pss is linked to member Ms by computing

Rs =
∏

j

rjs =
∏

j

ggKsKjpss

using hidden secret shares rjs, j ∈ {1, . . . , n}, j �= s and comparing the product to the
public share Ss of Ms.

Theorem 1 (Special Case k = n). If pseudonym pss was correctly used in the con-
struction of Ss by member Ms then Rs = Ss.

Proof.

Ss = g
∑

j ssj = g
∑

j gKsKjpss

=
∏

j

ggKsKjpss

=
∏

j

rjs = Rs

Member Mi does not know in advance who owns the pseudonym pss. Therefore, the
above computations should be done for all members simultaneously.

Pseudonym Generation Scheme for Ad-Hoc Group Communication Based on IDH 115

5.2 Generalized Pseudonym Generation Scheme

Our first requirement on a pseudonym in Section 4 is, that it can be linked to the owner
only by interaction of k members, where k is fixed. So far, we have presented the special
case k = n, that is all group members must exchange their hidden secret shares in
order to link a pseudonym. In the following we give the generalized form of the scheme.
Recall from Section 2, that members are hosted by leafs of the IDH key tree T . Using
the structure of T , k can be varied by choosing different levels for the public keys to be
used in the construction of secret shares. Let Ms perform the generalized scheme for a
chosen level l and pseudonym pss. Ms first computes the shared keys

skeys〈l,v〉 = (BK〈l,v〉)Ks = gK〈l,v〉Ks

for 0 ≤ v ≤ 2l − 1 and the corresponding secret shares

ss〈l,v〉 = skeypss

s〈l,v〉 = gK〈l,v〉Kspss

and then builds her public share

Ss = g
∑

v ss〈l,v〉 = g
∑

v g
K〈l,v〉Kspss

and broadcasts it. The linking process requires the interaction of k members, referred
to as set K ⊆ M. K should consist of at least one representative member from all
subgroups, that are rooted at nodes 〈l, v〉, 0 ≤ v ≤ 2l − 1, so that there is at least one
member, who knows the corresponding private key K〈l,v〉 of each secret share. Set K
can be generally defined as

K = {{MK〈l,0〉 , . . . , MK〈l,2l−1〉} | MK〈l,v〉 ∈ M
is a member of a subgroup rooted at node 〈l, v〉}

The following dependency is given between k = |K| and chosen level l:

k ≤ 2l , 0 ≤ l ≤ h

In order to link pseudonym pss to its owner Ms, every member MK〈l,v〉 ∈ K must
compute secret shares using private key K〈l,v〉 and public key BKi of every other
member Mi ∈ M as follows

s〈l,v〉i = skeypss

〈l,v〉i = BK
K〈l,v〉pss

i = gKiK〈l,v〉pss

and broadcast the hidden secret shares

r〈l,v〉i = gs〈l,v〉i = gg
KiK〈l,v〉pss

for 0 ≤ v ≤ 2l − 1. Any member Mi ∈ M can prove whether pseudonym pss is owned
by member Ms upon computing the product

Rs =
∏

v

r〈l,v〉s =
∏

v

gg
KsK〈l,v〉pss

using hidden secret shares r〈l,v〉s, 0 ≤ v ≤ 2l −1 and comparing it with the public share
Ss of Ms.

116 M. Manulis and J. Schwenk

Theorem 2 (Generalized Case k ≤ 2l). If pseudonym pss was correctly used in the
computation of Ss by member Ms, then Rs = Ss.

Proof.

Ss = g
∑

v ss〈l,v〉 = g
∑

v g
K〈l,v〉Kspss

=
∏

v

gg
KsK〈l,v〉pss

=
∏

v

r〈l,v〉s = Rs

The generalized pseudonym scheme is useful in ad-hoc networks, because the choice of
level l and that is of k can be used to optimize costs, with respect to limited ressources
of given mobile devices. In order to keep down computation costs, a lower level l should
be chosen. There is more on computation and communication costs in Section 5.5.

Fig. 6 shows an example of the IDH key tree T for a set of five members M = {M1,
M2, M3, M4, M5}. Assume, that with respect to their computation ressources members

Fig. 6. Example: T ready for Pseudonym Generation

agree for pseudonyms generation to use public keys of level 1, that are BK〈1,0〉 and
BK〈1,1〉. Public shares Si are computed and broadcasted by members according to
Table 2. Pseudonym psi can then be used as identity value for the messages of Mi.

To link pseudonym psi set K should consist of at least 2 members. One of them
should know K〈1,0〉 and another K〈1,1〉. Set K is defined as

K = {{MK〈1,0〉 , MK〈1,1〉}|MK〈1,0〉 ∈ {M1, M2, M3}, MK〈1,1〉 ∈ {M4, M5}}

We assume that K = {M1, M4} and pseudonym ps2 should be linked to its owner. As
shown in Table 3, members of K compute and broadcast hidden secret shares r〈1,v〉i for
v = {0, 1}.

Members M1, M2, and M3 belong to the subgroup routed at node 〈1, 0〉, thus they
all can compute hidden secret shares r〈1,0〉i for every Mi ∈ M. Therefore, if M1 sends
falsified hidden secret shares, this would be noticed by other subgroup members. For the

Pseudonym Generation Scheme for Ad-Hoc Group Communication Based on IDH 117

Table 2. Example: Computation of public share Si

Member Mi ∈ M Public share Si

M1 g
BK

K1ps1
〈1,0〉 +BK

K1ps1
〈1,1〉

M2 g
BK

K2ps2
〈1,0〉 +BK

K2ps2
〈1,1〉

M3 g
BK

K3ps3
〈1,0〉 +BK

K3ps3
〈1,1〉

M4 g
BK

K4ps4
〈1,0〉 +BK

K4ps4
〈1,1〉

M5 g
BK

K5ps5
〈1,0〉 +BK

K5ps5
〈1,1〉

Table 3. Example: Broadcasted hidden secret shares r〈1,v〉i

Member Mi ∈ K r〈1,v〉1 r〈1,v〉2 r〈1,v〉3 r〈1,v〉4 r〈1,v〉5

M1 gBK
K〈1,0〉ps2
1 gBK

K〈1,0〉ps2
2 gBK

K〈1,0〉ps2
3 gBK

K〈1,0〉ps2
4 gBK

K〈1,0〉ps2
5

M4 gBK
K〈1,1〉ps2
1 gBK

K〈1,1〉ps2
2 gBK

K〈1,1〉ps2
3 gBK

K〈1,1〉ps2
4 gBK

K〈1,1〉ps2
5

same reason members M4 and M5, that belong to the subgroup rooted at node 〈1, 1〉,
can prove hidden secret shares being broadcasted by each other.

For computation of the product Ri every member Mj ∈ M has to multiply broad-
casted hidden secret shares r〈1,0〉i and r〈1,1〉i. After Mj builds the products R1, R2, R3,
R4, and R5, she compares them to public shares. Comparing R2 = S2, Mj can figure
out, that member M2 owns the pseudonym ps2.

5.3 Embedding the Pseudonym Generation Scheme in TGDH

In this section we show how the generalized pseudonym scheme can be embedded in
group key agreement protocols of the TGDH suite. Every new member generates her
pseudonym upon joining the group. Every former group member should change her
pseudonym, otherwise the pseudonym of the new member can be easily figured out. We
change the last point of step 2 and extend step 3 of the original JOIN protocol of Section
2 to be conform with our pseudonym generation scheme, as described on Fig. 7. Our
modifications are marked bold. Our protocols do not specify how to agree on value k in
advance, however one possibility is to calculate an optimal value k for each participating
mobile device and then to choose the lowest in order to allow the least powerful device
to take part in communication. Another possibility is to publish optimal values for k
and corresponding mobile device properties so that members can look up and set values
in advance. Step 4 prevents any member from having more than one pseudonym and
specifies which pseudonyms are valid for communication. If less or more than n + 1
pseudonyms are received, pseudonym generation can be repeated without changing the
group key. A member, who permanently compromises the generation, can be figured
out upon revealing pseudonyms of all members. The compromising member can then
be excluded from the group communication.

118 M. Manulis and J. Schwenk

2. . . .
The sponsor Ms additionally

– computes all (key, bkey) pairs on her key path
– broadcasts an updated tree T̂ including bkeys of all its nodes

3. Every member Mi, 1 ≤ i ≤ n + 1
– updates her copy of T and computes new group key K〈0,0〉
– chooses new pseudonym psi, computes new secret shares s〈l,v〉i and broadcasts

public share Si with attached real identity
– builds keyed-hashing value of psi using new group key K〈0,0〉 and broadcasts it

anonymously
4. Every member verifies received hash values and ensures that there are n+1 pseudonyms

Fig. 7. GENERATION Protocol as Extension to TGDH JOIN Protocol

1. Every member MK〈l,v〉 ∈ K
– computes n hidden secret shares r〈l,v〉i, using ps
– combines all r〈l,v〉i to a single message and builds its keyed-hashing value using K〈0,0〉
– broadcasts the message and its keyed-hashing value with attached real identity

2. Every member Ms ∈ M
– verifies keyed-hashing values of received messages and extracts values r〈l,v〉i

– computes product Ri for every other member Mi ∈ M, i �= s
– finds public share Si = Ri and determines member Mi as owner of ps

Fig. 8. Basic LINKING Protocol

In order to link pseudonym ps to its holder, members perform the Basic LINKING
protocol from Fig. 8. This protocol uses set K, that consists only of one member of each
subgroup rooted at node 〈l, v〉, which public key was used in the computation of the
secret share s〈l,v〉i. The Basic LINKING protocol has higher computation costs than the
GENERATION protocol (see Section 5.5). However, that can be acceptable, because
the linking of a pseudonym is a rare case.

Anyway, there is a possibility of optimizing the Basic LINKING protocol. The opti-
mization uses the fact, that all members of a subgroup rooted at node 〈l, v〉 can compute
the same secret shares s〈l,v〉i. Therefore, the computation of n hidden secret shares
r〈l,v〉i in the first step of the Basic LINKING protocol can be done in parallel by several
members of the same subgroup. The possible computation gain is linear proportional to
the number of involved members of each subgroup, that we denote as t. This number
depends on the chosen level l and height h of T , and is calculated as

t ≤ 2h−l

Therefore, the possible maximal computation gain varies between 1, for l = h, and
n, for l = 0. This optimization can be applied upon the redefinition of the set K from
the previous section, thus

K = {MK〈l,0〉 ∪ . . . ∪ MK〈l,2l−1〉 | MK〈l,v〉 ⊆ M is a set of t members,

who all belong to a subgroup rooted at node 〈l, v〉}

Pseudonym Generation Scheme for Ad-Hoc Group Communication Based on IDH 119

The number of members, that participate in the Optimized LINKING protocol is
|K| = k·t, where k is the number of participants in the Basic LINKING protocol. Each
of these members sends her own hidden secret shares during the linking process. This
means, that during the optimized protocol every member of M receives t times more
messages, compared to the basic protocol. However, the total length of these messages
remains the same, because overall n hidden secret shares must be sent in both protocols.
Fig. 9 shows the Optimized LINKING protocol. The computation costs are optimized
by factor t.

1. Every member MK〈l,v〉 ∈ MK〈l,v〉
– computes n

t
hidden secret shares r〈l,v〉i, using ps

– combines all r〈l,v〉i to a single message and builds its keyed-hashing value using K〈0,0〉
– broadcasts the message and its keyed-hashing value with attached real identity

2. Every member Ms ∈ M
– verifies keyed-hashing values of received messages and extracts values r〈l,v〉i

– computes product Ri for every other member Mi ∈ M, i �= s
– finds public share Si = Ri and determines member Mi as owner of ps

Fig. 9. Optimized LINKING Protocol

5.4 On Security of the Pseudonym Generation Scheme

In this section we consider different attacks on the Pseudonym Generation Scheme and
show its resistance against them. In order to link pseudonym psi to the real identity
of its holder, adversary must be able to recompute the public share Si or to compute
the corresponding product Ri. Recomputing Si requires knowledge of all secret shares
s〈l,v〉i. The security of each secret share is however based on the Computational Diffie-
Hellman Problem (CDH), since only members, who know the corresponding private key
K〈l,v〉 or Ki can recompute s〈l,v〉i, that is except for Mi only MK〈l,v〉 can recompute
s〈l,v〉i. Thus, passive adversary is not able to compute all secret shares unless the CDH
problem can be solved in polynomial time. To compute product Ri, one must know
all hidden secret shares r〈l,v〉i. Hidden secret shares can only be computed through
exponentiation of g with the corresponding s〈l,v〉i, that is protected as stated above.
Therefore, only shareholders can compute secret shares, thus interaction between all
shareholders is required, to be able to link psi to its owner Mi.

A possible security risk is given, when adversary Ma knows a secret share s〈l,v〉i
between MK〈l,v〉 and Mi for some pseudonym ps. Ma can compute the inverse value

ps−1 and the shared key skey〈l,v〉i = sps−1

〈l,v〉i. Using this shared key, Ma can compute
secret share s〈l,v〉i for any other pseudonym ps′. As already mentioned, the security of
single secret shares is given by the hardness of the CDH problem.

An adversary that aims to forge a pseudonym of the member requires all her shared
keys in order to compute the correct public share. As stated above any shared key can
only be computed by members that share it. Therefore, the only way for the adversary
to forge a pseudonym of the member is to collude with k other members that share keys
with the victim.

120 M. Manulis and J. Schwenk

During the GENERATION protocol every member Mi computes and broadcasts her
public share Si. In the next round she broadcasts her pseudonym psi anonymously. Since
authentication of broadcasted pseudonyms is not provided, any group member adversary
can broadcast a false value for Si or psi. In the linking process none of calculated products
Rj would match such Si. Thus it would be not possible to find out which member
has broadcasted the false public share or pseudonym, unless all members reveal their
pseudonyms and prove the correctness of their signed shares. Any member, who fails
to provide this proof, is an adversary and should be excluded from the communication.
In this case every member decides on her own whether to reveal her pseudonym to the
others and get free of accusations or to continue hiding her pseudonym and not allow
other members to identify her previously broadcasted messages. Therefore, the proposed
scheme is applicable in scenarios where members are interested in the linking of their
pseudonyms at the end of communication, e. g. auctions or polls.

This weakness of the scheme can be repaired if every member Ms would prove
the knowledge of a corresponding link (pss ↔ Ss) without revealing it to other group
members. In Appendix A we describe a protocol that can be used to prove the knowledge
of such link.

At last we discuss some risks given by the collusion of some group members. If all
group members that know the secret key K〈l,v〉 collude then they can bar the group from
the linking process for a pseudonym psi by broadcasting the same false value for the
hidden secret share r〈l,v〉i. In this case other group members are not able to compute
the correct value of the product Ri, thus link psi to Si. Our scheme allows optimization
against the collusion risk by choosing a lower level l. It is trivial that the lower l is the
more group members know the secret key K〈l,v〉, thus more group members have to
collude.

5.5 On Complexity of the Pseudonym Generation Scheme

In this section we discuss computation and communication costs of our scheme without
considering the complexity of the TGDH suite protocols. Let M = {M1, . . . , Mn} be a
set of members participating in the TGDH key agreement protocol, T the associated IDH
key tree with height h, and k, k = 2l and 0 ≤ l ≤ h, a number of required interacting
members in the linking process of a pseudonym. The complexity of our scheme for each
member is summarized in Table 4.

Table 4. Computation and Communication Costs of the Pseudonym Generation Scheme

Computation Communication
Exponentiations Rounds Messages

GENERATION k + 1 2 2
Basic LINKING 2n 2 1

Optimized LINKING 2n
t 2 1

GENERATION is performed every time a join event occurs or pseudonyms have
to be changed after the linking process. In order to save computational power k shared
keys skeys〈l,v〉 should be computed and stored by Ms after any dynamic event that

Pseudonym Generation Scheme for Ad-Hoc Group Communication Based on IDH 121

causes GENERATION protocol to start. Each member has to perform k group expo-
nentiations to compute all secret shares, and one more to compute her public share.
Public shares and pseudonyms should be sent in two separate messages, because the
latter requires sender anonymity. Table 4 shows costs of both LINKING protocols. The
basic protocol from Fig. 8 requires 2n exponentiations, done by every of k partici-
pating members. Every member MK〈l,v〉 ∈ K first computes n hidden secret shares
r〈l,v〉i, 1 ≤ i ≤ n, that require two exponentiations each, and then sends them com-
bined in one message. Every Mj ∈ M receives these k messages from members
of K and computes the product Ri. The optimized protocol from Fig. 9 requires 2n

t
exponentiations, where 1 ≤ t ≤ n. Every of t members in MK〈l,v〉 ⊆ K com-
putes only n

t hidden secret shares and sends them combined in one message. Ev-
ery Mj ∈ M receives these k · t messages from members of K and computes the
product Ri.

The computation costs of the GENERATION protocol vary upon choosing appro-
priate values for k, according to power limitations of the mobile devices. Because T is
a binary tree, k may only be chosen as a power of two.

6 Conclusion

This paper contains two different contributions concerning the usage of the computation
and communication efficient iterative Diffie-Hellman (IDH) protocol for dynamic group
key agreement in mobile ad-hoc networks that we have shown on the example of the
Tree-based Group Diffie-Hellman (TGDH) protocol suite [7]. The first main result is the
proposed communication efficient pseudonym generation scheme that allows members
to generate pseudonyms without trusting in any third parties. This scheme can be used
in different mobile scenarios, like in director board meetings or spontaneous auctions.
Another major contribution is the proposed method of optimization by choosing an
appropriate level of the IDH key tree with respect to power limitations of involved mobile
devices. This method can be used separately from the pseudonym generation scheme
for optimization in other security schemes that are based on threshold revocation.

References

1. N. Bansal and Z. Liu. Capacity, delay and mobility in wireless ad-hoc networks. In Infocom
2003 (IEEE), 2003.

2. C. Becker and U. Wille. Communication complexity of group key distribution. In ACM
Conference on Computer and Communications Security. ACM Press, NY, November 1998.

3. M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. In
Advances in Cryptology (EUROCRYPT ’94),Lecture Notes in Computer Science, volume 950,
pages 275–286. Springer-Verlag Berlin, May 1994.

4. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended
abstract). In Proceedings of the 17th Annual International Cryptology Conference on Advances
in Cryptology, Lecture Notes in Computer Science, volume 1294, pages 410–424. Springer-
Verlag, 1997.

122 M. Manulis and J. Schwenk

5. Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agreement for dynamic
collaborative groups. In ACM Conference on Computer and Communications Security ’00,
pages 235–244. ACM Press, NY, 2000.

6. Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient group key agreement. In Informa-
tion Systems Security, Proc. of the 17th International Information Security Conference, IFIP
SEC’01, 2001.

7. Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key agreement. ACM Transactions on
Information and System Security, 7(1):60–96, 2004.

8. M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups. IEEE
Transactions on Parallel and Distributed Systems, 11(8), 2000.

A Proving Public Shares for Pseudonym Generation Scheme

After GENERATION protocol is completed every member Ms knows the set of signed
public shares S = {Si| 1 ≤ i ≤ n} and the set of broadcasted pseudonyms PS =
{psi| 1 ≤ i ≤ n}. Only Ms knows the corresponding link (pss ↔ Ss). In order to
provide the authenticity of broadcasted pseudonyms, for every psi ∈ PS it has to be
shown that it was used to compute one of known public shares Si ∈ S without revealing
that share.

Protocol in Fig. 10 is a proof for this relation. The idea behind the proof is that prover
P makes all known public shares Si ∈ S indistinguishable by building corresponding
blinded public shares S′

i = (Si)rpsp
using randomly chosen value r and broadcasting

them as a random permutation.
During one run of the protocol P proves depending on the challenge of the verifier V

with the probability of 1
2 either that all S′

i were built as described above using all known
Si or that she knows how a certain pseudonym psp relates to one of the broadcasted
S′

i. The role of the prover should be taken by a member Ms, that knows the relation
between her pseudonym pss and public share Ss. The role of the verifier V should be
taken separately by all existing group members except for Ms. All verifiers have to agree
on the same challenge that P has to respond to, or P has to prove her knowledge to every
verifier in a separate protocol run. All messages that P broadcasts are signed using her
pseudonym pss. Function π : N → N specifies a random permutation. The protocol
uses zero-knowledge proof techniques SKROOTLOG and SKLOGLOG described
by Camenisch et. al. in [4]. SKROOTLOG[α : y = gαe

] proves the knowledge of an
e-th root of the discrete logarithm of y to the base g, where e, g and y are commonly
known values. SKLOGLOG[α : y = g(aα)] proves the knowledge of a double discrete
logarithm of y to the bases g and a, where a, g and y are commonly known values.

Conjecture 1. Protocol in Figure 10 fulfils requirements on completeness and sound-
ness.

Sketch of Proof. Completeness: We consider that both P and V are honest. The com-
pleteness of the protocol is obvious for case c = 0, since rpss was used in step 1 as
exponent to compute blinded public shares S′

i in the broadcasted permutation. There-
fore, in step 4 the verifier computes the correct values. In order to show the correctness
for the case c = 1 we examine first zero-knowledge proofs given by values Z1 and Z2.

Pseudonym Generation Scheme for Ad-Hoc Group Communication Based on IDH 123

1. P chooses random r ∈R G, computes

{S′
1, . . . , S

′
n} = {Srpss

1 , . . . , Srpss

n }

and broadcasts S ′ = {S′
π(1), . . . , S

′
π(n)}.

2. V broadcasts chosen challenge c ∈R {0, 1}.
3. Case c = 0: P broadcasts

X0 = r

Case c = 1:
– P computes

X1 = grpss
, X2 = {x2v | x2v = X

(
g

K〈l,v〉pss
)Ks

1 , 0 ≤ v ≤ 2l − 1}
Z1 = SKROOTLOG[r : X1 = grpss

]

Z2 = {z2v | z2v = SKLOGLOG[Ks : x2v = X
(

g
K〈l,v〉pss

)Ks

1], ∀x2v ∈ X2}

– broadcasts (X1, X2, Z1, Z2)
4. Case c = 0: V checks

{S
Xpss

0
1 , . . . , S

Xpss
0

n } ?= S ′

Case c = 1:
– V checks the correctness of Z1 and computes

X3 = {x3v | x3v = gK〈l,v〉pss , 0 ≤ v ≤ 2l − 1}

– checks the correctness of every z2v ∈ Z2

– checks ∏

x2v ∈X2

x2v

?
∈ S ′

Fig. 10. Proof of Si in Pseudonym Generation Scheme

The correctness of Z1 shows that pss is the root of the discrete logarithm of X1 to the
base g. Set Z2 consists of hidden secret shares r〈l,v〉s that are blinded with the random
value rpss . In order to prove the correctness of each z2v

∈ Z2 verifier has to compute
set X3 using known public keys of all nodes at level l. The correctness of Z2 shows that
every public key gK〈l,v〉 at level l was used in the computation of blinded hidden secret
shares. At last verifier builds a product of all values x2v ∈ X2. This product corresponds
to the blinded public share S′

s of the prover as shown in the following identity:

∏

x2v ∈X2

x2v
=

∏

v

X
(

g
K〈l,v〉pss

)Ks

1

=
∏

v

X g
K〈l,v〉Kspss

1

=
∏

v

grpss g
K〈l,v〉Kspss

= g

∑
v

(

grpss g
K〈l,v〉Kspss

)

124 M. Manulis and J. Schwenk

= (g
∑

v (gK〈l,v〉Kspss))rpss

= (Ss)rpss

= S′
s

Soundness: We consider information-theoretical soundness of the protocol and show that
a cheating proverP ∗ cannot convince a correct verifierV with more than an exponentially
small probability. Consider P ∗ broadcasting a set of blinded public shares {S′

1, . . . , S
′
n}

for some chosen pseudonym pss. In order to respond to challenge c = 1 correctly P ∗

should be able to compute the sets X2 and Z2. This can be done if P ∗ knows the private
key Ks used in the computation of secret shares for the corresponding public share Ss.
Since P ∗ does not have this knowledge he can convince V only on challenge c = 0, that
is with probability at most 1

2 . Hence, the probability with that P ∗ convinces V after σ
iterations is at most 2−σ .

The protocol in Figure 10 does not have a zero-knowledge property since the simulator
guessing case c = 1 should output set S ′SIM

1 that must be computationally indistinguish-
able to the set S ′SIM

0 in case c = 0. This is obviously impossible unless the simulator
can recompute at least one public share Si and provide correct values for X2 and Z2.

	Introduction
	Iterative Diffie-Hellman (IDH) Key Agreement
	IDH Key Tree
	TGDH Protocol Suite: JOIN
	TGDH Protocol Suite: LEAVE

	IDH Key Agreement in Ad-Hoc Networks
	Communication Model and Problem Specification
	Pseudonym Generation Scheme Based on IDH Key Trees
	Pseudonym Generation Scheme (Special Case k=n)
	Generalized Pseudonym Generation Scheme
	Embedding the Pseudonym Generation Scheme in TGDH
	On Security of the Pseudonym Generation Scheme
	On Complexity of the Pseudonym Generation Scheme

	Conclusion
	Proving Public Shares for Pseudonym Generation Scheme

