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Information aggregation is an important operation in wireless sensor networks (WSNs) executed for

the purpose of monitoring and reporting environmental data. Due to the performance constraints of

sensor nodes the in-network form of the aggregation is especially attractive since it allows saving

expensive resources during frequent network queries. Easy accessibility of networks and nodes

and almost no physical protection against corruptions raise high security challenges. Protection

against attacks aiming to falsify the aggregated result is considered to be of prime importance.

In this article we design the first general framework for secure information aggregation in

WSNs focusing on scenarios where aggregation is performed by one of its nodes. The framework

achieves security against node corruptions and is based solely on the symmetric cryptographic

primitives that are more suitable for WSNs in terms of efficiency. We analyze performance of the

framework and unlike many previous approaches increase confidence in it by a rigorous proof of

security within the specially designed formal security model.
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1. INTRODUCTION

Monitoring and reporting of the physically measured data to some querying
device represented by a sink, base station, or mobile reader is one of the main
goals for the deployment of wireless sensor networks (WSNs). This task is es-
pecially important in scenarios where high confidence in the integrity of the
reported information becomes an indispensable part of the application security.
For the purpose of performance optimization the reporting phase is frequently
combined with the in-network processing resulting in the in-network informa-
tion aggregation. The following two aggregation scenarios have been described
in the literature. The single aggregator scenario is usually applied in cases
where the aggregation process is independent of the network topology. In such
scenarios the aggregator role is typically assigned to one of the nodes based
on the execution of the underlying aggregator election protocol (e.g. Sirivianos
et al. [2007]). Moreover, this role is usually temporary and randomly changed
between nodes in order to distribute the increasing costs for the aggregation
operation over the whole lifetime of the WSN. On the other hand, hierarchical
aggregation scenarios usually assume a certain aggregation topology computed
in the underlying protocol (e.g. Madden et al. [2002]). In such scenarios, nodes
located closest to the query device form the highest level of the aggregation
hierarchy. Both scenarios are useful and may have their own advantages in
terms of efficiency, security, and administration. In this article we focus on
the single aggregator scenario and address one of the most important issues—
security.

Due to the usually missing physical protection, deployed sensor nodes may
easily become subject to an adversarial attack. In addition to active network
attacks, node corruptions are one of the highest security threats. Especially
assuming that all nodes have equal physical properties, without any rigorous
protection mechanisms such as tamper-resistance, designing secure informa-
tion aggregation solutions becomes even more challenging. Thus, designing
and adequate formal security model together with some general (in the crypto-
graphic sense) provably secure practical solution appears to be an interesting
task.

1.1 Related Work

Currently, there exist few scientific results in the area of secure information
aggregation dealing with security of the aggregation process in the presence
of corrupted nodes. Hu and Evans [2003] designed a protocol for hierarchical
information aggregation between a set of nodes and the sink. This was the
first solution based on symmetric cryptography that considered active attacks
by compromised sensor nodes. It is remarkable that previous solutions like
Estrin et al. [1999], Madden et al. [2002], Intanagonwiwat et al. [2002], and
Deshpande et al. [2003] addressed the scenario with only honest communica-
tion participants and are therefore not of much interest in the context of this
work. The protocol in Hu and Evans [2003] requires an underlying protocol for
the construction of the aggregation tree (e.g. Madden et al. [2002]), as well as
shared individual keys possibly predeployed in sensor nodes, and an authentic
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unidirectional communication channel between the sink and the involved nodes
(e.g. Perrig et al. [2001, 2002] and Liu and Ning [2004]). As for the corruption
of nodes, we observe that if a node and a parent node in the aggregation tree
are compromised, then the adversary can significantly modify the aggregated
result. For instance, corruption of the root node and both of its children would al-
low complete falsification of the final aggregated value. Przydatek et al. [2003]
proposed a Secure Information Aggregation (SIA) framework for sensor net-
works, which provides better resilience against malicious sensor nodes than
the process in Hu and Evans [2003]. SIA addresses the single aggregator sce-
nario. The main drawback of SIA in the cryptographic sense, is its probabilistic
security. In general the probability of the query device (sink) accepting some
falsified aggregation result can be minimized by increasing the communication
and computation between the sink and the aggregator node, which constructs a
Merkle hash commitment tree [Merkle 1990] for the received individual inputs
and proves the correctness of some parts of this tree during the subsequent in-
teraction with the sink. Przydatek et al.’s protocol considers aggregation func-
tions whose outputs can be approximated by uniform sampling of the input
values, for example, computation of the MIN/MAX, AVERAGE, and MEDIAN.
Recently, Chan et al. [2006] described a solution for the hierarchical in-network
aggregation that prevents active attacks aiming to modify and falsify the ag-
gregation result. One of the core requirements in their approach builds the
notion of optimal security—a property that no adversary can induce the sink to
accept any aggregation result, which is not achievable by so-called direct data
injection, wherein the attacker reports biased data on behalf of nodes under its
control. Their approach extends the previous one mainly by a fully distributed
result-checking phase without relying on probabilistic security. Similar to Hu
and Evans [2003] it requires the construction of the aggregation tree structure
(e.g. Madden et al. [2002]). Optimal security is achieved via interactive compu-
tation of Merkle hash commitment trees. Chan et al. focus on the function SUM
and show how to use it for the computation of AVERAGE and �-QUANTILE
(the value at the �n-th position in a sorted list).

1.2 Contributions and Organization

Definitions of security in the aforementioned solutions are intuitive rather than
formal. Therefore designing a formal security model to allow cryptographically
sound security proofs is an important work. In addition, previous solutions
are not general since they have been designed for some concrete aggregation
functions (e.g. SUM) and then extended to deal with further functions. A more
general approach would be to give an abstract definition of the aggregation
function and its security relevant properties. In this article we contribute in
two different ways; in Section 2 we develop a formal security model for the in-
network aggregation process and formalize for the first time, the aggregation
function in a very abstract way. In Section 3 we show how this abstraction can be
used in practice. After the introduction of the required building blocks in Section
4, we focus on the description of our general aggregation framework InAP1agg

in Section 5, where we also evaluate its performance and prove its security in
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our formal model with well-known cryptographic proving techniques. In terms
of performance our framework relies on the efficient primitives of symmetric
cryptography without any costly public-key operations.

2. FORMAL MODEL FOR IN-NETWORK AGGREGATION IN WSNS

In the following we propose an end-to-end model for in-network aggregation in
WSNs. We focus on the single aggregator scenario, however remark that the
model is modular and thus, extendable. We start by describing the communi-
cation model, continue with the formal definition of an abstract aggregation
function, and conclude with the adversarial model and security definitions.

2.1 Communication Model and Participants

2.1.1 Protocol Participants. By S:={S1, . . . , Sn}, n ∈ N we denote the set of
all sensor nodes in the network. We assume that all nodes have identical phys-
ical properties. By A ∈ S we denote the role of the aggregator. This role is tem-
porary and assigned by an underlying random aggregator election protocol. By
R we denote a digital device that is assumed to be more powerful than any node
in S. R is usually represented by a sink, base station, or some mobile reader,
and is assumed to be the party that is supposed to obtain the aggregated result.

2.1.2 Protocol Sessions and Participating Instances. In order to distin-
guish between different protocol executions we use the notion of a session. Every
execution results in a new session identified by some value s, that is unique for
each new session. In order to model entities Si ∈ S and R as participants of
some session s we consider that each entity may have an unlimited number of
instances, denoted Ss

i and Rs.

2.1.3 Secret Keys. For the purpose of authentication we consider that ev-
ery sensor node Si and R is in possession of some secret key denoted ki and
kR , respectively, whereby the notation k is used for generality. This key should
be seen as a place holder, that is any k can in practice consist of several secret
values, for example, R may possess kR , composed of the secret key for broadcast
authentication and secret keys shared between R and Si. By 1κ , κ ∈ N, we de-
note the security parameter of the protocol, assuming that all security relevant
parameters are polynomially related to 1κ . In this work we apply symmetric
secret keys aiming to avoid the use of costly asymmetric cryptography.

2.2 Aggregation Function

In the following we abstractly define the aggregation function agg operating on
real numbers in R, however extension to other domains is straightforward. We
define agg with two inputs and consider its symmetry and associativity to deal
with multiple inputs. We also allow one of the inputs to be empty (ε); then agg
is the identity function. For the purpose of generality we require an additional
auxiliary input space A.

Definition 2.1 (Aggregation Function). Let agg : R∪{ε}×R∪{ε}×A∪{ε} →
R ∪ {ε} be an aggregation function, ε an empty element, and A some auxiliary
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information space. By convention agg(ε, ε; aux) = ε for any aux ∈ A. For any
v1, v2, v3 ∈ R and specific aux ∈ A the aggregation function should satisfy:

Identity agg(v1, ε; aux) = v1

Symmetry agg(v1, v2; aux) = agg(v2, v1; aux)

Associativity agg(agg(v1, v2; aux), v3; aux) = agg(v1, agg(v2, v3; aux); aux)

Let v:={v1, . . . , vn}, n > 2. By agg(v; aux) we mean the output;

ai+1:=agg(ai, vi+2; aux),

after i = 1, . . . , n − 2 iterations where a1:=agg(v1, v2; aux). For simplicity we
will omit the indication of aux as one of the inputs.

Many widely used aggregation functions such as SUM, PRODUCT, additive/
multiplicative AVERAGE, MIN/MAX, and so forth satisfy the properties of
identity, symmetry and associativity. Note that AVERAGE agg(v; aux) can be
computed correctly only if n is known during each iteration (as part of aux);
otherwise the associativity may not always hold. This emphasizes the need of
A in the abstract definition of agg.

Additionally, we define Boolean predicates: Bv for the inputs and Ba for out-
puts of the aggregation function agg. Briefly speaking, Bv evaluated on the
inputs of agg and auxiliary information auxv returns true only if these inputs
are legal values. On the other hand, Ba evaluated on some aggregation result of
agg and auxiliary information auxa should return false if no legal inputs for the
computation of this result exist. In both cases, the auxiliary information, auxv

and auxa, may contain further, not necessarily equal parameters needed to per-
form the verification. Both predicates, Bv and Ba, will be used in our definition
of security in order to handle node corruptions in a reasonable way.

Definition 2.2 (Aggregation Input/Output Predicates). By Bv(v; auxv) and
Ba(a; auxa) we denote a Boolean predicate for any input v ∈ R and output
a ∈ R of agg where auxv and auxa is some auxiliary information. Let v and
a be sets/lists of possible inputs and outputs of agg. By Bv(v; auxv) we mean
Bv(v[1]; auxv)∧ . . .∧ Bv(v[n]; auxv). By Ba(a; auxa) we mean Ba(a[1]; auxa)∧ . . .∧
Ba(a[n]; auxa).

Additionally, we require that agg, with corresponding predicates Bv and Ba,
satisfies the following properties for any v:

Correctness. If Bv(v; auxv) = true for all v ∈ v then Ba(agg(v); auxa) = true; and

If Bv(v; auxv) = false for all v ∈ v then Ba(agg(v); auxa) = false.

Consistency. If Ba(agg(v); auxa) = false then there exists NO v with Bv(v) =
true.

For simplicity we will use Bv(v) instead of Bv(v; auxv), and Ba(a) instead of Ba(a;
auxa).

The predicates Bv and Ba, can be used to restrict inputs and outputs of agg, for
example., for the SUM function, one can require that every input v ∈ R, is within
a certain bound [vmin, vmax] (whereby vmin and vmax become part of auxv and auxa).
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Then, one would typically require that every output a, should be in the interval
between nvmin and nvmax, where n (as part of auxa) is the maximal number of
inputs to be aggregated (added) at once. It is easy to see that in this case the
properties of correctness and consistency are satisfied for any v of size n. The
predicates Bv and Ba, play an essential role in our security definition and their
correct specification for a particular aggregation function is necessary. Finally,
one important observation is that we do not assume that if a strict subset of
inputs does not satisfy Bv then the output does not satisfy Ba either. This opens
doors for actual attacks. For example, let agg be the SUM function, [0, 10] the
allowed interval for its inputs, and number 3 the total allowed number of inputs
for a single aggregation. Consequently the output should lie in the interval
[0, 30]. Assume that two inputs are 5 and 8. Obviously, it is possible to choose
the third input as 15 (which is not in the input interval) and still satisfy the
output interval, namely 5 + 8 + 15 = 28 < 30.

2.3 Definition of In-Network Aggregation and its Correctness

In the following we provide an abstract definition of the in-network aggregation
protocol InAP1agg focusing on the single aggregator scenario.

Definition 2.3 (In-Network Aggregation Protocol InAP1agg). In session s of
the in-network aggregation protocol InAP1agg each sensor node instance Ss

i ∈ Ss\
As, |Ss| = ns communicates to As own aggregation input vi ∈ R. As computes the
aggregation result a∗ := agg(v1, . . . , vns ) and communicates it to the instance Rs,
which terminates either with or without accepting a∗ (possibly after additional
interaction with the instances in Ss).

Definition 2.4 (Correctness of InAP1agg). We say that an in-network aggre-
gation protocol InAP1agg is correct if Rs accepts a∗ := agg(v1, . . . , vns ), where each
vi, i ∈ [1, ns] is the original input of Ss

i ∈ Ss such that Bv(vi) = true; in any other
case Rs rejects.

2.4 Adversarial Model

Next we specify the adversarial setting for the in-network aggregation proto-
cols. The whole communication is assumed to be controlled by the probabilistic
polynomial-time (PPT) adversary I: I is able to replay, modify, delay, drop, and
deliver protocol messages out of order as well as inject own messages. Since
I can always refuse to deliver protocol messages our model does not address
any denial-of-service attacks (similar to Przydatek et al. [2003], and Chan et al.
[2006]), which aim to prevent R from obtaining any result at all. In WSNs such
attacks would normally be recognized and reveal the information about the
presence of I. Thus our security model aims to recognize an occurring attack
and prevent R from accepting a biased value.

2.4.1 Adversarial Queries. The protocol execution in the presence of I is
modeled based on queries to the instances of the participants. By Send we
denote a query type that allows I to send a message m, to any instance involved
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in the protocol execution. This query can be used by I not only to inject its own
messages, but also to replay or modify those sent by the instances, or simply
forward them honestly, without any changes.

Send (Si, Ss
j , m). I sends m to the node instance Ss

j , claiming that it is from
some instance of Si.

Send (Si, Rs, m). I sends m to the sink instance Rs, claiming that it is from
some instance of Si.

Send (R, Ss
i , m). I sends m to the node instance Ss

i , claiming that it is from
some instance of R.

In response to a Send query, I receives the outgoing message that the receiv-
ing instance would generate after processing m. This outgoing message might
be an empty string if m is unexpected or if a failure occurred. Further, there
are two special Send queries of the form Send (Ss

i , ′start′, Ss, As, Rs, m) and
Send (Rs, ′start′, Ss, As, m). The first query allows I to invoke the protocol exe-
cution at instance Ss

i . It contains instances of other participating sensor nodes
in Ss \ Ss

i , reference on the aggregator instance As (note that As ∈ Ss), and the
sink instance Rs. Similarly, the second query invokes the protocol execution
at Rs. Both queries may contain auxiliary message m, which may be needed
to invoke the protocol execution. In response to these queries, I receives the
first message generated by the requested instance according to the protocol
specification.

In addition to the active protocol participation of I, we consider node corrup-
tions. We do not assume any tamper-resistance property. Upon corrupting Si,
the adversary obtains full control over Si and reveals all information kept in Si

including its secret key ki. We also allow corruptions of R. However, our secu-
rity definition will exclude the meaningless case where R is corrupted during
the session in which I wishes to falsify the aggregation result. Using queries
Corrupt(Si) respectively Corrupt(R) the adversary can obtain the secret key ki

respectively kR .

Definition 2.5 (Strong Corruption Model). For any PPT adversary I we say
that I operates in the strong corruption model if it is given access to the queries
Send and Corrupt.

2.4.2 Protocol Execution in the Presence of I. We assume that each secret
key is generated during the initialization phase and is implicitly known to all
instances of the entity. The protocol execution for one particular session, s, in the
presence of the adversary I, proceeds as follows. After I, operating in the strong
corruption model, invokes the protocol execution for session s, all its queries
are answered until Rs terminates either with or without having accepted the
aggregation result. If Rs terminates without having accepted, then a failure
has occurred or an attack has been recognized. Consequently, the goal of I is to
influence Rs accepting some biased aggregation result. After its termination,
the instance, cannot be invoked for any new session so that a new instance,
with new s, should be invoked instead.
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2.5 Definition of Optimal Security

Prior to the definition of security of InAP1agg we need to exclude the case where
R is controlled by I in the attacked session. This is done by the following
definition of freshness.

Definition 2.6 (Freshness of R). Let Rs be the instance that has accepted in
session s of InAP1agg, and I, a PPT adversary operating in the strong corruption
model. We say that Rs is fresh if no Corrupt(R) queries have been previously
asked.

Basically, whenever I corrupts R, all its instances that have not yet terminated
can be controlled by I. As already mentioned, any sensor node, including the
aggregator node, can be corrupted. Hence, we can even consider the case where
all sensor nodes are corrupted and R is the only honest party. There is one
general remark on the consideration of corrupted sensor nodes, which equally
holds for our protocol and the protocols in Przydatek et al. [2003] and Chan et al.
[2006]. Namely, corrupted nodes can report data that strongly deviates from
the actual. Even actual restricting input intervals would not provide security
against such attacks. For example, if nodes measure temperature, and reported
values should lie between 5 and 100 degrees, then any corrupted node can report
100 degrees although the real measured value is 30. It is clear that such attacks,
denoted in Chan et al. [2006] as direct data injection, cannot be prevented unless
one completely disallows node corruptions in the adversarial setting; but then
this setting would be weak. Nevertheless, damage from such attacks can be
decreased if one ensures the overwhelming majority of uncorrupted nodes at
any time during the network lifetime. Our security definition, similar to the
informal definition of optimal security in Chan et al. [2006], does not aim to
detect such attacks. Instead, it focuses on the modification of the aggregated
result based on attacks in which corrupted nodes try to report semantically
incorrect inputs to the aggregation function, that is inputs vi with Bv(vi) = false.
In the single aggregator scenario such stealthy attacks [Przydatek et al. 2003]
are possible only if A is corrupted (unless A does not check predicates for all
received original inputs). Obviously, verification of the input predicates by A is
an indispensable part of any secure protocol in the strong corruption model.

Definition 2.7 (Optimal Security of InAP1agg). Let I be a PPT adversary op-

erating in the strong corruption model and Gameopt−sec
InAP1agg

(I, κ) denote the inter-
action where I interacts via queries with instances of parties in S , |S | = ns and
instances of R participating in the in-network aggregation protocol InAP1agg

such that at the end of this interaction there is a fresh instance Rs, which has
accepted with the aggregation result a∗. Let Ss

h ⊆ Ss be a subset of sensor node
instances for which no Corrupt queries have been asked prior to the acceptance
of a∗ by Rs. Let vh be a set/list of size nh ∈ [1, ns] containing original inputs of
instances in Ss

h and ah := agg(vh).
We say that I wins in Gameopt−sec

InAP1agg
(I, κ) if there exists NO set/list vc of size

nc = ns − nh with Bv(vc) = true such that a∗ = agg(ah, vc).
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Let Succopt−sec
InAP1agg

(κ) denote the maximal probability, over all adversaries I
running within time κ, of winning in the above interaction:

Succopt−sec
InAP1agg

(κ) = max
I

∣∣∣Pr[I wins in Gameopt−sec
InAP1agg

(I, κ)]
∣∣∣ .

We say that InAP1agg is optimally secure if Succopt−sec
InAP1agg

(κ) is negligible.

In the following we provide some explanations. The main goal is to require
that I should be unable to exclude contributions (inputs) of uncorrupted nodes
from the aggregated result. For example, if agg is SUM then the aggregated
result should be at least the sum of inputs of uncorrupted nodes, denoted by
ah. On the other hand, falsification of the input data by corrupted nodes is
not considered as an attack as long as their aggregation result, say some ac,
satisfies the Boolean predicate Ba (in spirit of direct data injection), note that in
this case the result a∗ := agg(ah, ac) would also satisfy Ba due to the correctness
of agg. Therefore, as an attack we consider the opposite case, where the receiver
instance accepts a∗ such that ac does not satisfy Ba. The only general condition
for Ba(ac) = false is when all inputs vc with ac := agg(vc) do not satisfy Bv:
if Bv(vc) = false (due to the correctness of agg). Hence, in our definition we
require that there exists no set/list of possible inputs vc with Bv(vc) = true, in
addition to the inputs of uncorrupted users vh. That is why nc = ns − nh should
hold.

3. SPECIFICATION OF BOOLEAN PREDICATES FOR COMMON
AGGREGATION FUNCTIONS

In the following we give practical examples that illustrate specification of rea-
sonable input/output predicates Bv/Ba for several commonly used aggregation
functions. In order to achieve reasonable settings one usually needs to restrict
possible input intervals, otherwise any I could provide any input value of its
choice and would still satisfy the requirement of optimal security (as also men-
tioned in Chan et al. [2006]).

3.1 MIN, MAX

Let agg be a MIN (or MAX) function: on input v := {v1, . . . , vn}, vi ∈ R, i ∈ [1, n],
n ∈ N the aggregated result agg(v) corresponds to the minimal (or maximal)
value in v. Restricting each vi to a value in the interval between [vmin, vmax]
(vmin ≤ vmax) we obtain Bv(v) = true if and only if vmin ≤ v ≤ vmax whereby vmin
and vmax are part of auxv. Consequently, Ba(a) = true if and only if vmin ≤ a ≤ vmax
whereby auxv = auxv.

3.2 SUM, COUNT, �-QUANTILE

Let agg be a SUM function: on input v := {v1, . . . , vn}, vi ∈ R, i ∈ [1, n], n ∈ N

the aggregated result agg(v) corresponds to
∑n

i=1 vi. Assuming that each vi is
restricted to [vmin, vmax] as in MIN/MAX Ba(a) = true if and only if nvmin ≤ a ≤
nvmax whereby n, vmin, and vmax are part of auxa. If agg is COUNT then vi ∈ [0, 1],
vi ∈ N. Chan et al. [2006] show how to implement φ-QUANTILE based on
COUNT.
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3.3 PRODUCT

Let agg be a PRODUCT function: on input v := {v1, . . . , vn}, vi ∈ R, i ∈ [1, n],
n ∈ N the aggregated result agg(v) corresponds to

∏n
i=1 vi. Let vi be restricted

to the interval [vmin, vmax] as in MIN/MAX. For the specification of the output
predicate, we need to take into account that vmin and vmax may have different
signs and that the number of inputs for the single aggregation can be even or
odd. Let |v| denote the absolute value of v. It is easy to check that the following
specification of Ba provides the required consistency:

if vmax ≤ 0 then
if n even then Ba(v) = true if and only if vn

max ≤ a ≤ vn
min

if n odd then Ba(v) = true if and only if vn
min ≤ a ≤ vn

max

if vmin < 0 and vmax > 0 then
if |vmin| ≤ |vmax| then Ba(v) = true if and only if vminvn−1

max ≤ a ≤ vn
max

if |vmin| > |vmax| then
if n even then Ba(v) = true if and only if vn−1

min vmax ≤ a ≤ vn
min

if n odd then Ba(v) = true if and only if vn
min ≤ a ≤ vn−1

min vmax
if vmin ≥ 0 then Ba(v) = true if and only if vn

min ≤ a ≤ vn
max

3.4 Additive and Multiplicative AVERAGE

Let agg be an additive AVERAGE function: on input v := {v1, . . . , vn}, vi ∈ R, i ∈
[1, n], n ∈ N the aggregated result agg(v) corresponds to (

∑n
i=1 vi)/n. Assuming

that vi ∈ [vmin, vmax], as in MIN/MAX Ba(a) = true if and only if vmin ≤ a ≤ vmax.
Let agg be a multiplicative AVERAGE function: on input v := {v1, . . . , vn},

vi ∈ R, i ∈ [1, n], n ∈ N the aggregated result agg(v) corresponds to (
∏n

i=1 vi)/n.
Again, we assume that vi ∈ [vmin, vmax] as in MIN/MAX. The output predicate
can then be defined exactly as in PRODUCT for the difference that all bounds
should be divided by n, for example, if vmin ≥ 0 then Ba(v) = true if and only if
vn
min

n ≤ a ≤ vn
max

n .

4. BUILDING BLOCKS OF THE InAP1AGG FRAMEWORK

In this section we describe main building blocks of our framework, distinguish-
ing between cryptographic primitives and technical utilities.

4.1 Background on used Symmetric Cryptographic Primitives

Definition 4.1 (Collision-Resistant Hash Function). Let H : {0, 1}∗ →
{0, 1}κ , κ ∈ N be a hash function. We say that H is collision-resistant if the
following success probability over all PPT adversaries I running within time
κ, is negligible:

SucccrH (κ) := max
I

∣∣∣∣Pr

[
x1, x2 ← I(1κ ) :

x1 
= x2∧
H(x1) = H(x2)

]∣∣∣∣ .
Definition 4.2 (EUF-CMA Secure Message Authentication Code). Let MAC

:= (Gen, Sign, Verify) be a message authentication code consisting of the fol-
lowing algorithms:
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Gen A probabilistic algorithm that on input of a security parameter 1κ , outputs
a secret key k∈R{0, 1}κ .

Sign A deterministic algorithm that on input k and a message m ∈ {0, 1}∗,
outputs a MAC value μ.

Verify A deterministic algorithm that on input k, m ∈ {0, 1}∗ and a candidate
MAC value μ, outputs 1 or 0, indicating whether μ is valid or not.

We say that MAC is existentially-unforgeable under chosen message attacks (EUF-
CMA) if the following success probability over all PPT forger algorithmsF given
access to the signing oracle Sign(k, ·) and running within time κ, is negligible:

Succeuf−cma
MAC (κ) := max

F

∣∣∣∣Pr

[
k∈R{0, 1}κ ;

(m, μ) ← FSign(k,·)(1κ )
:
Verify(k, m, μ) = 1∧

¬Sign(k, m)

]∣∣∣∣ .
4.2 List Structures

In the following, we define lists, their operations, and further notations used in
the description of our protocol.

Definition 4.3 (Lists and Operations). By convention we use bold letters to
denote lists. For any list x by |x| we denote its size. By x[i], i ∈ [1, |x|] we
denote the element at its ith position. An empty element is denoted ε. Upon
initialization, each list x is empty, that is x = {ε} and by convention |x| = 0. Let
y be an element to be inserted into x. We use y .x to say that y is prepended
to x resulting in x[1] = y . Similarly, we use x. y to say that y is appended to x
resulting in x[|x|] = y .

The defined lists can also be represented via binary trees and vice versa, for
example, using the pre-oder notation, that is the root vertex of the tree followed
by its child vertices, is recursively appended to the empty list. In general lists
reduce implementation overhead compared to binary trees.

Definition 4.4 (Paths, Siblings, Co-Paths, Child and Parent Elements). Let
x := {x1, . . . , xn} be a list and p ∈ [2, n] any position within it. By{

x
[ p

2

]
, . . . , x

[ p
2�log2 p� = 1

]}
,

we denote the path of x[p] (note that x[p] does not belong to its path). If p is
even then x[p+1], otherwise x[p−1], is said to be the sibling of x[p]. By copath
of x[p] we denote the list consisting of its sibling and of siblings of all elements
in the path of x[p] except for x[1]. For any p ∈ [1, n] by x[2p] we denote the
first and by x[2p+1] the second child element of x[p]. Consequently, x[p] is the
parent element of x[2p] and x[2p + 1].

5. SPECIFICATION OF THE InAP1AGG FRAMEWORK

Our InAP1agg framework consists of a protocol that proceeds in three stages:
UPFLOW, DOWNFLOW, and VERIFICATION. In the UPFLOW stage the aggregator node,
A, collects individual inputs of other nodes, Si ∈ S, computes the aggregation
result, and forwards it together with some additional authentication informa-
tion to R. In the DOWNFLOW stage every Si receives information that it then uses
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in the VERIFICATION stage to check and confirm that the aggregation result
contains its individual input. Finally, R checks that every Si, is confirmed and
accepts the aggregation result in the positive case. We first give a high level
overview of the framework and introduce useful notations before going into the
specification of details.

5.1 High Level Description

5.1.1 Assumptions. We assume that prior to the execution of the aggrega-
tion protocol, all sensor nodes in S know the identity of the previously chosen
aggregator node, A ∈ S. Additionally, we assume that there is an authenti-
cated broadcast channel between R and nodes in S, and that R knows how
many nodes exist (are alive) and should participate in the protocol, and what
their identities are. Finally, we assume that unique sensor node identities are
used for the purpose of addressing and that every received message reveals the
identity of its sender.

5.1.2 Protocol Invocation. The aggregation protocol is invoked by R, whose
invocation message is sent over the authenticated broadcast channel and con-
tains a random nonce r (chosen freshly for every new invocation) and the ex-
pected number of nodes ns (so many nodes, including A are expected to partic-
ipate and contribute their data). Only after the successful verification of this
invocation message, each sensor node starts with the first stage of the protocol.
The random nonce will be part of every authenticated protocol message. In this
way, the framework prevents any replay attacks on these messages from other
protocol executions and achieves security among different sessions.

5.1.3 Reference Lists. All stages of the framework make use of four refer-
ence lists described in the following, and exemplified for a better understanding
in Figure 1 for a network of seven nodes S := {S1, . . . , S7}, where S3 plays the
role of A.

Each list can be visualized as a binary tree, as shown in the figure. The
binary tree structure is useful for the explanation of the framework but is not
needed for the implementation. We stress that prior to the protocol execution
no party knows what the contents of these lists are, so that the reader may
think of these lists as being empty in the beginning of the protocol. Also it is
not necessary that the lists correspond to a balanced tree, as in the figure. Our
protocol works for any number of nodes, not only for a power of 2.

The first list, denoted id, contains the identities of the nodes; the second
list, denoted v, contains the initial data values of the nodes (the goal of the
framework is to aggregate these values); the third list, denoted a, contains
the intermediate aggregation values (whereby a[1] represents the final result
of the aggregation which should be accepted or rejected by R); the fourth list,
denoted h, contains the intermediate hash commitments. The composition of the
contents of each list is self-explanatory from the figure. The specific computation
of entries of a and h is used in the framework to allow individual verification
by sensor nodes and ensure optimal security.
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Fig. 1. List structures and notations of the framework for S := {S1, . . . , S7}, A = S3. Left side:

Visualization of node assignments in a binary tree structure. Right side: Reference lists id, v, a,

and h, computed by A. Some exemplary notations: sibling of S7 (id[5]) is S2 (id[4]); path of S7

consists of S5 and A (id[2] and id[1]); copath of S7 consists of S2 and S6 (id[4] and id[3]); first child

of S6 is S1 (id[6]); second child of S6 is S4 (id[7]); parent of S2 is S5.

5.1.4 The UPFLOW Stage. This is the first stage of the protocol. Immediately
after the stage is invoked every sensor node Si sends its individual data value,
vi, to the aggregator, A, which starts filling the initially empty lists, id and v,
with the identities and data values of nodes from which it receives the mes-
sages. The first position in both lists belongs to A. The order in which messages
arrive is reflected in the positions of the node identities in id, and of their in-
dividual data values in v. For example, in Figure 1 node S5 is in the second
position because its message was the first that the aggregator S3 received. The
aggregator aborts the protocol if it does not receive messages from all ns ex-
pected nodes within some time period controlled by the aggregator’s timer. The
abortion prevents waste of further costs and is done by sending an authenti-
cated error message to R. If all messages have been received, then A computes
lists a and h in an iterative manner. The initial inputs for the iterative compu-
tations are individual data values of nodes that appear as leaves when the lists
are visualized as a binary structure. The values a[1] and h[1] are then sent by
A to R in an authenticated way, whereby a[1] is the final aggregation result
whose secure computation is the goal of the protocol. The random nonce r, is
used as part of this authenticated message. Except for A, no other sensor node
knows the contents of the four computed lists. After R receives the aggregator’s
message it checks whether it is valid, even though R has not yet ensured that
a[1] is not biased as requested by the optimal security definition. Therefore, R
needs to verify a[1], whcih this is done through both subsequent protocol stages,
DOWNFLOW and VERIFICATION. To invoke the DOWNFLOW stage, R broadcasts a tuple
(r, a[1], h[1]) and every node checks the authenticity of this broadcast.

5.1.5 The DOWNFLOW and VERIFICATION Stages. For explanatory reasons,
we first proceed with the high level description of the VERIFICATION stage. Con-
sidering reference lists as binary tree structures, the verification process will
require from each sensor node that it recompute intermediate aggregation re-
sults from a, and hash commitments from h starting with its own position in the
tree. The goal here is to let every node recompute and compare values for a[1]
and h[1], as broadcast by R. The matching values at the end of the verification
process provide each node the assurance that its own input has been correctly
aggregated and that the aggregation result is optimally secure so that, at the
end, every node can send its positive acknowledgement indicating its confirma-
tion for the result.
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For example, in Figure 1, node S6 needs to compute intermediate aggregation
values a[3] = agg(v6, v1, v4) and a[1] = agg(v3, a[2], a[3]) as well as, hash com-
mitments h[3] = H(r, a[3], h[6], h[7]) and h[1] = H(r, a[1],h[2], h[3]) that belong
to its path. The only information S6 knows after the UPFLOW stage is v6, r, and
ns. V1 and V4 are required in order to compute a[3]; and for a[1]: v3 and a[2]. Ob-
serve, that knowledge of v1 and v4 will allow Si to recompute h[6] and h[7] and
so to compute h[3]. Thus, the node still needs to learn a[2] and h[2]. For security
reasons, it would not be enough if S6 just receives a[2] and h[2], since it would
not be able to verify whether the received a[2] has been used in the computation
of h[2]. However, h[2] = H(r, a[2], h[4], h[5]). Thus, it is sufficient if S6 receives
a[2], h[4], and h[5] to perform these computations. Beside computing the val-
ues in its path, S6 additionally checks whether the input or output predicates
are true for the corresponding values that the node receives: input predicates
should be checked for v1, v4, and v3, whereas the output predicate should be
checked for a[2]. There is no need to check predicates for values computed by
S6 itself—for a[3] and a[1]—due to the correctness of the predicates. In order
to perform checks of the output predicate for a[2], node S6 may need to know
the total number of the aggregated inputs for a[2]. Due to the binary tree struc-
ture, it can easily figure this out using own position, p, in this tree and the total
number of nodes ns. Hence, it is important that S6 also learns its position, p.

The idea of the DOWNFLOW stage is that the information required by every
node to recompute a[1] and h[1] and to perform predicate checks comes directly
from its parent node. Thus, the aggregator, which knows all list contents after
the UPFLOW stage starts the dissemination process of the DOWNFLOW stage by
sending two messages, one for each of its both children: nodes with identities
id[2] and id[3]. Then, each of these children extracts information that it in
turn sends to its own children: grandchildren of the aggregator. In order to
forward the extracted information, every node obviously needs the identities of
its child nodes or it will not be able to correctly address them. Therefore, needed
identities are also sent together with other values. The dissemination process
is terminated after each sensor node has received the information needed to
perform the VERIFICATION stage. In general, the dissemination process requires
a logarithmic number of rounds, with each node sending at most two messages.
It can be easily verified that messages sent at the end of the dissemination
process, by nodes located towards the bottom of the tree, are in general shorter
than messages sent by the aggregator and nodes that are close to it.

Summarizing our example-based description of the DOWNFLOW stage, we list
all values that are sent from A to S6 and then forwarded by S6 to S1 and S4. A
sends the following content to S6: id1, id4, v1, v4, v3, a[2], h[4], h[5], and p = 3.
S6 forwards to S1: v4, v6, v3, a[2], h[4], h[5], and p = 6 (to compute the position
of the first child node the parent’s node position should be doubled). S6 forwards
to S4: v1, v6, v3, a[3], h[6], h[7], and p = 7 (to compute the position of the second
child node, the parent’s node position should be doubled and increased by one).

5.2 Specification of the UPFLOW Stage

The main goal of the stage is that the aggregator collects individual inputs
from all expected sensor nodes, then computes the final aggregation result and
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Fig. 2. UPFLOW stage specification for the aggregator A.

the final hash commitment through an iterative evaluation of the aggregation
function, agg, and the hash function, H, (these iterative executions are part of a
separate function Commit). The formal specification of the aggregator’s calcula-
tions during the UPFLOW stage is given in Figure 2 so that we focus on the brief
description of its most important parts in the following.

Assuming that the verification of the invocation message is successful, the
aggregator A initializes the node counter denoted c, the timer t, as well as the
first two mentioned reference lists, id and v. It assigns own identity, idA, to the
first position of id and its own data value, vA to the first position of v; whereas
every other node, Si, sends own initial data value, vi, to A. Upon receiving
a corresponding value from Si, the aggregator extends id with the identities
of Si and v with the input of Si. This extension is performed until A obtains
messages from all other ns − 1 nodes; otherwise it sends an error message, ERR,
to R indicating that a failure has occurred.

Under the assumption that messages arrive in the order that is correlated
with their physical distance to A, the identities and initial data values of closer
nodes would appear in the beginning of both lists. As already mentioned during
the high level description, this improves the communication efficiency of the
DOWNFLOW stage.

An important observation here is that if not all expected nodes send their
inputs during this stage, then R will not be able to verify the result and will
thus reject the value anyway. Therefore, we let A abort the protocol by sending
the authenticated error message to save further costs.

After having received all required inputs, A computes the last two reference
lists, a and h, using the auxiliary Commit function specified in Figure 3. The
same function will also be used by other nodes in the DOWNFLOW stage. The com-
putations of the Commit function start with nodes whose identities and initial
data values are assigned to the later positions in the corresponding lists, id and
v (note that both lists have identical sizes and that the data stored in the same
position in both lists belongs to the same sensor node).

Figure 1 also specifies the output of the Commit function for the example with
seven sensor nodes, S := {S1, . . . , S7}, where S3 plays the role of A. Let id[i] be a
sensor node’s identity. Then, a[i] is the output of the aggregation function agg,
on inputs v[i] and every data value v[ j ], of node id[ j ], which has id[i] in its
path. In Figure 1, for i = 2 we have a[2] = agg(v5, v2, v7), since nodes S2 and
S7 have S5 in their paths.

Further, h[i] is a hash commitment computed on r, a[i], h[2i], and h[2i + 1].
The latter two values are included in the hash commitment only if they really
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Fig. 3. Commit function.

exist; otherwise they are treated as empty elements. In Figure 1, for i = 4 the
positions 2i = 8 and 2i + 1 = 9 are empty, so that h[4] = H(r, a[4]). Equation
2cv ≥ n with the running variable cv allows checking whether positions 2i and
2i + 1 exist. Per construction it is also possible that only position 2i exists but
not 2i + 1 (checked through 2cv ≤ n and 2cv + 1 > n), however, it is not possible
that 2i + 1 is filled without 2i, due to the subsequent extension of lists id and
v by A during the UPFLOW stage.

The construction of a ensures that a[1] gives the aggregation result
agg(v[1], . . . , v[ns]). Similarly, the construction of h ensures that h[1] is the final
hash commitment value, which depends on all intermediate commitments.

At the end of the UPFLOW, stage A forwards (r, a[1], h[1]) to R, which verifies
that r is correct and checks whether Ba(a[1]) = true. R terminates if ERR
is received or if Ba(a[1]) = false. Otherwise, R broadcasts authenticated
(r, a∗, h∗), with a∗ = a[1] and h∗ = h[1], to all nodes in the network, initiating
the DOWNFLOW stage.

5.3 Specification of the DOWNFLOW Stage

The DOWNFLOW stage of our protocol is a distributed process requiring communi-
cation between the sensor nodes. Its goal is to provide every node with sufficient
information that will be used by the node during the VERIFICATION stage to
individually recompute the intermediate aggregation values and hash commit-
ments along the path (in the spirit of Chan et al. [2006]). However, unlike the
tree structure in Chan et al. [2006] all lists computed during the UPFLOW stage
including the positions of the nodes within these lists are first known to A, but
not to the other nodes. However, for a successful execution of the VERIFICATION
stage, each node must receive additional information, as mentioned in the high
level description of the stage. A is the first to start the dissemination process
specified in Figure 4 and described in the following. First, (honest) A must check
that the message received from R contains the same values that have been sent
by A at the end of the UPFLOW stage; otherwise the verification process would
fail. Therefore, if A notices the mismatch it sets its boolean variable acc := false
and immediately turns into the VERIFICATION stage, where it will send its error
message to R. If no mismatch is found, A, whose identity is assigned to id[1]
sends one message to each of its child nodes, id[2] (left child node) and id[3]
(right child node). Whether any child nodes exist or not, is checked via ns ≥ 2.
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Fig. 4. DOWNFLOW stage specification for the aggregator A.

Fig. 5. SplitIdV function.

The message addressed to id[2] (id[3]) contains: (1) a list of identities idL (idR),
which consists of elements from id that have id[2] (id[3]) in their paths, (2) a
list of initial data values vL (vR), which consists of elements from v which have
v[2] (v[3]) in their paths, (3) position value p = 2 (p = 3), (4) a list of initial data
values vP consisting of vA, (5) a list of intermediate aggregation values aco

L (aco
R ),

which contains a[3] (a[2]), and (6) a list of intermediate hash commitments hco
L

(hco
R ), which contains h[6] and h[7] (h[4] and h[5]), if such values exist.
In, our, example from Figure 1 the aggregator A = S3 sends to its left

child node, S5, the following contents: idL := {id2, id7}, vL := {v2, v7}, p = 2,
vP := {v3}, aco

L := {agg(v6, v1, v4)}, and hco
L := {H(r, v1), H(r, v4)}. Similarly, A sends

idR := {id1, id4}, vR := {v1, v4}, p = 3, vP := {v3}, aco
R := {agg(v5, v2, v7)}, and

hco
R := {H(r, v2), H(r, v7)} to its right child node S6.
In order to compute the required lists we specify two functions, SplitIdV

and SplitAH, described in the following. The auxiliary function SplitIdV (Fig-
ure 5) is used by A to build the corresponding idL and vL as well as idR

and vR.
First to be mentioned is that SplitIdV is executed only if ns ≥ 4, that is if

id[2] and id[3] have in turn, further child nodes. SplitIdV function splits the
initial list of identities id into the sublists idL, and idR, and the initial list of
original data values, v, into the sublists, vL and vR. Lists indexed with L: idL and
vL contain identities and original data values of sensor nodes that have id[2]
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Fig. 6. SplitAH function.

and v[2] in their paths. Lists indexed with R contain identities and original data
values of sensor nodes that have id[3] and v[3] in their paths. Recall that id[2]
identifies the first child node, whereas id[3] identifies the second child node of
A; thinking of a binary tree we may say left and right child nodes, hence, the
indices L and R. The idea behind the SplitIdV function is to move along the
reference lists, id and v, and insert their elements into either idL or idR and
into vL or vR, based on the condition y < x

2
, which says whether id[x + y] has

id[2] or id[3] in its path.
The SplitAH function (Figure 6) is used by A to compute lists of intermediate

aggregation values, aco
L and aco

R , as well as hash commitments, hco
L and hco

R ,
in the copaths of its left and right child nodes. First, the SplitAH function is
executed only if A has at least one child node (the left one). Therefore, the first
check made during SplitAH is to see whether the second child node (the right
one) exists. This is done by c ≥ 3. In this case both lists aco

R and aco
L need to

be updated; otherwise, only aco
R . The conditions of the form c ≥ α for α from 7

to 4, point out how many grandchild nodes exist in order to ensure the correct
contents of hco

L and hco
R .

Calculations performed by any other Si during the DOWNFLOW stage (Figure 7)
are similar to that of A, except that Si has to wait for the message containing
(id, v, p, vP, aco, hco).

Before, Si performs computations of the DOWNFLOW stage, it prepends idi to
id and vi to v. This results in id[1] = idi and v[1] = vi. Before Si proceeds with
the computation it checks whether the received parameters are well-formed.
The equality cp = �log2 p� ensures consistency between the node’s position, p,
and the number of nodes in its path. If any of these verifications fails, Si sets
its Boolean variable acc to false and turns directly into the VERIFICATION stage.
In this case child nodes of Si will not receive any messages. Thus, a negative
acknowledgement will be sent to A and then forwarded to R. Otherwise, Si (with
id[1]) invokes the Commit function, which outputs intermediate aggregation
values, a, and hash commitments, h. Then Si checks whether there are any
further child nodes via the condition c ≥ 2. If so, Si splits id respectively v
into idL and idR respectively vL and vR using the SplitIdV function, updates
aco
L and aco

R respectively hco
L and hco

R based on the previously computed lists, a
and h, using the SplitAH function, extends vP

′ := vP.vi (note that the received
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Fig. 7. DOWNFLOW stage specification for the sensor node, Si .

vP remains unchanged since it will be needed in the VERIFICATION stage), and
sends appropriate messages to its existing child node(s).

According to the example in Figure 1, node S5 sends to S2, the follow-
ing contents: idL := {ε}, vL := {ε}, p = 4, vP := {v3, v5}, aco

L := {agg(v6, v1, v4), v7},
and hco

L := {H(r, v1), H(r, v4)}; and to S7: idR := {ε}, vR := {ε}, p = 5, vP := {v3, v5},
aco
R := {agg(v6, v1, v4), v2}, and hco

R := {H(r, v1), H(r, v4)}. The dissemination process
of the DOWNFLOW stage is executed until everyone of (ns − 1) nodes obtains the
required information and turns into the VERIFICATION stage.

5.4 Specification of the VERIFICATION Stage

As mentioned in the high level description, during the VERIFICATION stage ev-
ery Si recomputes a∗ and h∗ and checks whether these values match those
received from R. Every Si is in possession of its own intermediate aggregation
value, a[1], and its corresponding hash commitment, h[1]. Furthermore, every
Si (and A) knows its own data value, vi (and vA), data values in its path, given
by vP, intermediate aggregation values in its copath, given by aco, hash com-
mitments in its copath given by hco, as well as the aggregation result a∗ and
hash commitment its h∗ from the broadcast message of R. Additionally, every
Si knows its own position p, which it can use to recognize whether it is the first
(p is even) or the second (p is odd) child node. In addition, every Si maintains
a Boolean variable, acc, indicating whether the node will confirm the obtained
final values or not. During the DOWNFLOW stage, acc could possibly be changed
to false. Figure 8 describes calculations of Si. According to the construction of
id by A in the UPFLOW stage for every node id[p] with odd position p > 1, there
exists a sibling node id[p − 1]. However, if p is even, additional verification
via p + 1 ≤ ns becomes necessary to ensure that id[p + 1] exists. The iterative
division �p/2� can further be used to find out whether id[p] is the first or the
second child node of id[�p/2�]. If acc is already set to false no further checks are
necessary and Si replies to A with a negative acknowledgement in the form of
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Fig. 8. VERIFICATION stage specification for the sensor node Si .

an error message, ERR, which it authenticates using a MAC value, μi, computed
with ki, which is shared with R. Otherwise, Si recomputes the aggregation
result a and the hash commitment value h and compares them to a∗ and h∗,
received from R. To perform these computations, Si initially sets a := a[1] and
h := h[1]. Recall that a and h have been computed by Si via the Commit func-
tion during the DOWNFLOW stage. In each iteration, Si updates a respectively h to
the aggregation value respectively hash commitment corresponding to the next
position in its path using the auxiliary aggregation value aco[cp] and hash com-
mitment h̄ from its copath. h̄ is computed by Si from the received commitments
and aco[cp], whereas aco[cp] is taken directly from the parent node’s message.
It is easy to check that after the final iteration, a respectively h should (ide-
ally) match, a∗ respectively h∗. If these values match, then Si sends a positive
acknowledgement, OK, to A, together with the MAC value, μi.

Figure 9 specifies operations of A.The aggregator, does not need to recompute
the final aggregation result and hash commitment, as it knows them since the
UPFLOW stage, and has already compared them to the values received from R in
the beginning of the DOWNFLOW stage. In the case, of mismatch, acc is already
set to false. In this case, A sends an error, ERR, to R, together with its own MAC
value, μA. If acc is true at the beginning of the stage, then A checks whether it is
the only node participating in the protocol. In this case it simply replies with the
positive acknowledgement OK and its MAC value μA. Otherwise, A initializes
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Fig. 9. VERIFICATION stage specification for aggregator A.

timer t and starts waiting for the acknowledgements of other nodes. A counts
the number of received acknowledgements until every node has replied. In
our protocol (unlike Chan et al. [2006]) any node Si, can reply with the error
message. In this case A simply aborts and forwards this error message and the
MAC value μi, to R. Otherwise, A aggregates MAC values from all positive
acknowledgements using the XOR function as in Chan et al. [2006] and sends
the result to R. On the other hand, the case where some acknowledgements
are still missing is considered as a failure, so that A replies to R with its own
error message.

Finally, we provide a description of the operations performed by R upon re-
ceiving the verification result (m, μ) from A. R accepts the aggregation result
a∗ only if m = OK and the received value μ is valid: it matches the value recom-
puted by R using individual keys of all ns nodes. In all other cases (including
the case where R receives any authenticated error message m = ERR), R termi-
nates without accepting. Note that at the end of the UPFLOW stage R has already
verified that Ba(a∗) = true. It is easy to check that the proposed framework is
correct according to Definition 2.4.

Remark 5.1. In Chan et al. [2006], a node replies either with a positive
acknowledgement or does not reply at all. Obviously, in this case A would need
some timer; otherwise it would not know whether or not it still needs to wait
for further acknowledgements. Furthermore, the solution in Chan et al. [2006]
does not explicitly abort further protocol execution in cases where failures are
identified before all nodes receive the required information and recompute the
final hash value. By introducing authenticated error messages we can abort
the protocol execution at any time (also during the DOWNFLOW process) saving
further processing costs. Any node that identifies a failure aborts and reports
an error to A. Its a failure is identified and reported by some parent node before
the required information is sent to its child node(s), then sending this informa-
tion becomes obsolete. Thus, error messages prevent wasting computation and
communication costs.

5.5 Relationship between a Node’s Position and the Total Number of Nodes

Recall that for the aggregation functions described in Section 3, in order to
verify the output predicate Ba for some intermediate aggregation value a[p] it
is necessary to know how many individual data inputs have been aggregated
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to obtain a[p]. Let np be the number of these inputs. In the following we show
how to efficiently compute np based solely on the knowledge of the position p
and the total number of nodes, ns.

Definition 5.2 (Relative Distance of Two List Elements). Let x be a list of
size n and p, q ∈ [1, n] two positions from x. The relative distance δ(p, q) be-
tween the list elements x[p] and x[q] is defined as:

δ(p, q) := �log2 p� − �log2 q�.
Visualizing the list x as a binary tree, the relative distance δ(p, q) equals the
difference between the levels of the vertices in that tree that correspond to
the elements x[p] and x[q], for example, if δ(p, q) = 0 then both vertices that
represent elements x[p] and x[q] in the binary tree are located at the same
level.

In order to compute np one first computes the relative distance
δ(ns, p) := �log2 ns� − �log2 p� and two auxiliary values pr := (p + 1)2δ(ns, p) − 1
and p� := p2δ(ns, p). Then, np can be estimated as follows:

if pr ≤ ns then np := 2δ(ns, p)+1 − 1

else if p� ≤ ns < pr then np := 2δ(ns, p)+1 − (pr − ns)

else np := 2δ(ns, p).
For example, in Figure 1, given ns = 7 and p = 2 we obtain np = 3, that is the
intermediate aggregation value a[2] is the output of agg on 3 individual data
inputs. Assuming that the tree is unbalanced such that ns = 4 and p = 2 we
obtain np = 2.

The computed value np is also useful for the following analysis of individ-
ual computation and communication costs of the nodes during the protocol
execution.

5.6 Performance of InAP1agg

In the following we analyze the exact and asymptotic complexity of computation
and communication costs of the proposed framework. Although our evaluation
of performance is theoretical, we stress that the framework seems to be practical
enough to be deployed on the currently available hardware platforms for sensor
nodes. For the practical evaluation of symmetric cryptographic primitives used
in the framework we refer to the survey in Roman et al. [2007].

5.6.1 Computation Costs. Our analysis of computation costs is given from
the perspective of the required cryptographic operations since their costs prevail
over the simple calculations of the aggregation function agg and verification of
the input and output predicates, Bv and Ba.

In the UPFLOW stage every node Si, including the A, verifies the authenticated
broadcast message of R. Assuming that the deployed mechanism is based on
the message authentication codes (e.g., Perrig et al. [2002] and Liu and Ning
[2004]) we consider costs for this verification equal to the computation of a MAC
value. Additionally, A computes the hash commitment list, h, or if a failure has
occurred then the MAC value on the error message ERR. The computation of h
requires 2ns − 1 executions of the hash function, H, where ns denotes the total
number of sensor nodes.
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Table I. Asymptotic Computation Costs of InAP1agg

Computation Costs

Hash values MAC values

InAP1agg UPFLOW

Aggregator A O(ns) O(1)

Sensor node Si — O(1)

InAP1agg DOWNFLOW

Aggregator A — O(1)

Sensor node Si O(ns) O(1)

InAP1agg VERIFICATION

Aggregator A — O(1)

Sensor node Si O(log2 ns) O(1)

InAP1agg Total
Aggregator A O(ns) O(1)

Sensor node Si O(ns) O(1)

In the DOWNFLOW stage every sensor node needs to verify the authenticated
broadcast message of the sink R, which corresponds to the computation of the
MAC value. Additionally, every Si, except for A, assigned to the position p,
1 < p ≤ ns, in the identity list, id, computed by A must compute one hash
value for each value in id that has id[p] in its path, as part of the executed
Commit function. The total number of such values corresponds to the value np

computed from p and ns using the relative distance δ(ns, p), as described in
Section 5.5.

In the VERIFICATION stage every node Si, except for A, assigned to position p
in id computed by A must compute one hash value for each position in its own
path. The total number of these values is given by �log2 p�. Additionally, every
Si, including A, computes one MAC value.

Table I summarizes computation costs for InAP1agg in terms of its asymp-
totic complexity while considering the worst case for every type of the required
computation costs. Obviously, per each sensor node the number of hash compu-
tations is linear in ns and the number of the computed MAC values is constant.

5.6.2 Communication Costs. In a similar way we analyze the communica-
tion complexity of the proposed framework, InAP1agg. In our analysis we focus
on the total number of communication rounds (considering all messages that
can be sent in parallel as part of the same round), as well as the total num-
ber of sent messages per sensor node and the total size of sent messages per
sensor node. The total size of transmitted messages is given in the size of a
single hash value, denoted |h|, assuming that it prevails over other information
types, for example, measured data or sensor node identity. Moreover, the size
of the hash value is usually similar to that of a MAC value since many message
authentication codes (e.g., HMAC) are constructed based on the hash functions.

In the UPFLOW stage every sensor node Si sends exactly one message. Only the
aggregator’s message to the sink contains the hash value (final hash commit-
ment). In the DOWNFLOW stage there are at most �log2 ns� communication rounds.
Furthermore, every sensor node Si sends at most two messages, one to its left
and one to its right child node. The total size of the messages sent by Si assigned
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Table II. Asymptotic Communication Costs of InAP1agg

Communication Costs

Rounds Messages per Si Message size per Si (in |h|)
InAP1agg UPFLOW O(1)

Aggregator A O(1) O(1)

Sensor node Si O(1) —

InAP1agg DOWNFLOW O(log2 ns)

Aggregator A O(1) O(ns)

Sensor node Si O(1) O(ns)

InAP1agg VERIFICATION O(1)

Aggregator A O(1) O(1)

Sensor node Si O(1) O(1)

InAP1agg Total O(log2 ns)

Aggregator A O(1) O(ns)

Sensor node Si O(1) O(ns)

to position p within identity list id computed by A, is given by up to np hash
values, where np (computed using δ(ns, p) as described in Section 5.5) is the
total number of values in id that have id[p] in their paths. Therefore, sensor
nodes whose positions are closer to the aggregator node (i.e., id[1]) generally
send larger messages than nodes located further away. In the VERIFICATION
stage every node sends at most one MAC value.

Table II summarizes communication costs for InAP1agg in terms of its asymp-
totic complexity, based on the measurements for the worst case. The number
of rounds is given per protocol stage, the number of messages, and their size
per each sensor node. The protocol requires a logarithmic number of communi-
cation rounds and a constant number of messages with linear overall message
size per each sensor node. The overall exact message size additionally depends
on the position of the sensor node in identity list id, which in turn reflects the
physical distance to the aggregator node.

5.7 Security of InAP1agg

Security of our framework can be proved in the formal model from Section 2
using the classical cryptographic proving technique called sequence of games
[Shoup 2006].

THEOREM 5.3. Let H be collision-resistant and MAC secure in the sense of Def-
initions 4.1 and 4.2. Assuming the existence of an authentication broadcast
channel between R and the sensor nodes in S, and individual secret keys ki,
shared between each Si ∈ S and R, the InAP1agg framework from Section 5 is
optimally secure in the sense of Definition 2.7.

PROOF. We define a sequence of games Gi, i = 0, . . . , 4, with adversary I
against the optimal security of InAP1agg. In each game we denote Wini, the event

that I breaks the optimal security of InAP1agg (wins in Gameopt−sec
InAP1agg(I, κ)), that

is there exists session s in which Rs accepts the aggregation result a∗ and there
exists NO list vc of size nc = ns−nh with Bv(vc) = true such that a∗ = agg(ah, vc).
In our framework the unique session id, s, is given by the random nonce, r,
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chosen by R. The classical idea behind the sequence of games technique is to
start with the adversarial game (interaction) described in the original security
definition (here Definition 2.7) and construct subsequent games via small incre-
mental changes until the resulting adversarial probability matches the desired
value (in our case 0). Upon estimating the probability difference between two
consecutive games in the sequence (using the Difference Lemma [Shoup 2006,
Lemma 1]) one can upper-bound the total probability of a successful attack.

Game G0. This game is the real interaction between I and instances of R
and of sensor nodes in S according to the description of Gameopt−sec

InAP1agg(I, κ) within

Definition 2.7, where instances of all uncorrupted parties are replaced by the
simulator, 	, which has a global view, of all simulated computations. 	 also an-
swers all queries of I as defined in the adversarial model. Some explanations
follow. For example, upon asking Send (Rs, ′start′, Ss, As) the simulator creates
a new instance of R, which is supposed to execute the protocol with the nodes in
S and aggregator A. The simulator, 	, then acts according to the protocol specifi-
cation: it chooses a random nonce r, sets ns := |S|, and returns an authenticated
broadcast message (r, ns, α) to I, where α denotes the authentication part of the
message. In order to invoke the protocol at the instances of the sensor nodes inS,
the adversary queries 	 with a separate Send (Ss

i , ′start′, Ss, As, Rs, (r, ns, α))
query for each instance Ss

i . This query contains (r, ns, α) needed by Ss
i in order

to start with the UPFLOW stage. In this way I can execute the protocol with the
simulator. In order to recognize possible attacks in the later games of the se-
quence (in particular to recognize possible forgeries of authenticated messages
in Games G2 and G3) we assume that the simulator keeps track of each message
returned to I on behalf of any honest party. Additionally, 	 should keep track
of every computed hash value in order to be able to find possible hash collisions
in Game G4.

Of course, I is not restricted to executing the protocol honestly, to just for-
warding, messages in the form of its Send queries. For example, I could ask
Send (Ss

j ,
′start′, Ss, As, Rs, (r ′, ns, α)) for one of the instances, Ss

j , where the
original random nonce r is replaced by some other value r ′. In this way the
adversary can try to mount an attack on the honest protocol execution. Addi-
tionally, the adversary may ask a Corrupt(Si) query at any time. In response
to it, I receives from 	 every secret value known to Si—in particular its keys
used to produce valid MAC values; note that 	 initially knows all secrets of
every sensor node and of R and is, therefore, able to answer the query. From
that time, point 	 stops simulating all instances of the corrupted node Si, since
its behavior is then controlled by I.

These were just examples to show the relationship between the queries de-
fined in the model and this security proof. The idea behind the sequence of
games technique is to consider this initial simulation and make small changes
to this simulation in order to exclude all potential attacks. These changes ap-
pear in the form of further games. Finally, we mention that in order to mount
a successful attack, R must accept the biased aggregation result. The event
of the simulation failure used in subsequent games of the proof means that
the simulation will not finish, and thus R will not accept, so that no attack
occurs. In fact the probability given in each game is the probability that the
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simulation does not fail in that game and this probability in turn is bound to
some specific action of the adversary. In fact all relevant actions of the adver-
sary can be eliminated so that the probability of the successful attack in the
final game becomes zero.

Game G1. This game is identical to Game G0 with the only exception being
that the simulation fails if an equal nonce r is generated by R in two different
sessions. Considering qs as the total number of protocol sessions, the probability
that a randomly chosen nonce appears twice is bounded by qs

2/2κ . Hence,

| Pr[Win1] − Pr[Win0]| ≤ qs
2

2κ
. (1)

This game implies that as long as R remains uncorrupted its choices of r are
always different in this and all subsequent games of the proof.

Game G2. This game is identical to Game G1 with the only exception being
that the simulation fails if any instance, Ss

i , successfully verifies any broadcast
message which has not been previously output by the corresponding instance,
Rs

i . Since 	 simulates all uncorrupted protocol parties it can easily detect this
event. Let SuccufBC(κ) denote the maximal probability of the successful forgery
attack on the applied broadcast authentication mechanism, BC. By assumption
SuccauthBC (κ), is negligible. Considering two broadcast messages in each session
we get:

| Pr[Win2] − Pr[Win1]| ≤ 2qsSuccauthBC (κ). (2)

Having excluded collisions of random nonces and attacks against the broad-
cast messages of R, this game excludes any forgeries and replay attacks on
the messages of R. Thus, in this and all subsequent games of the proof ev-
ery authenticated message of R received by the nodes is neither injected, nor
generated, by the adversary, but is the original message sent by R.

Game G3. This game is identical to Game G2 with the only difference being
that the simulation fails if there exists an instance, Ss

i , of an uncorrupted node,
Si, which has not output its positive acknowledgement (OK, μi), but Rs has
accepted. The only condition for the acceptance of the aggregation result by Rs

is a correct verification of the received acknowledgement, μ, by recomputing
individual μi, and aggregating them using the XOR function. Since Si and
R are uncorrupted, the individual key ki remains unknown to I. Hence, the
simulation fails if I output a successful forgery (OK, μi). The simulator can notice
whether or not a forgery has occurred, since it keeps track of all messages that it
generated on behalf of the uncorrupted parties. Considering EUF-CMA security
of MAC and at most ns participating sensor nodes and qs protocol sessions, we
obtain:

| Pr[Win3] − Pr[Win2]| ≤ nsqsSucceuf−cma
MAC (κ). (3)

Similar to Game G2, this game excludes any forgeries and replay attacks on
the acknowledgements of sensor nodes.

Game G4. This game is identical to Game G3 with the only exception that the
simulation fails immediately after computing any hash commitment collision
on behalf of uncorrupted parties. The simulator is easily able to detect this
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event since it computes hash commitments for all uncorrupted parties. Note
that computation of equal hash commitments on equal data values (e.g., two
or more sensors report equal data) does not count as a collision. Considering
collision-resistance of H and at most ns computed hash commitments for each
executed session, we obtain:

| Pr[Win4] − Pr[Win3]| ≤ nsqsSucccrH (κ). (4)

Having excluded collisions of hash commitments and due to the fact that ev-
ery sensor node verifies predicates Bv and Ba for every received value in v, vP,
and aco during the protocol execution we follow that in this game every uncor-
rupted node outputs own positive acknowledgement only if its contribution has
been correctly included in the aggregation result, a∗, and all checked predicates
are true. Successful verification of predicates implies that for ac corresponding
to the aggregation value of all adversarial inputs, Ba(ac) = true should hold.
Hence, due to the correctness property of agg, there exists a tuple vc of size
ns − nh such that Bv(vc) = true. Therefore,

Pr[Win4] = 0. (5)
Considering, Equations (1) to (5) we can upper-bound the total probability of a
successful attack as follows:

Succopt−sec
InAP1agg(κ) ≤ qs

2

2κ
+ 2qsSuccufBC(κ) + nsqsSucceuf−cma

MAC (κ) + nsqsSucccrH (κ),

which is negligible according to the assumptions made in the theorem.

6. CONCLUSIONS AND FUTURE WORK

Along the lines of this article, we have presented a formal communication and
security model as well as a novel framework for in-network aggregation in
WSNs, focusing on the single aggregator scenario. The rigorously derived secu-
rity model provides formal definition of the optimal security requirement intro-
duced earlier in Chan et al. [2006]. Our InAP1agg framework is provably secure
in the cryptographic sense, and also seems practical. The practical relevance
results from the use of symmetric cryptographic primitives whose computation
is supported by the technology in today’s sensor nodes [Roman et al. 2007]. Fu-
ture work on the framework may address extended evaluation of performance,
for example, power consumption and simulation.

Another advantage of our security model and framework is the modular
construction, which provides, basis for further extensions (e.g., towards a hi-
erarchical scenario [Chan et al. 2006] or concealed data aggregation processes
[Castelluccia et al. 2005; Westhoff et al. 2006]). The abstract definition of the
aggregation function agg and its input and output predicates (Bv and Ba) allow
tailoring the specification of the integrity checks that become necessary for the
optimal security of the aggregation process.
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