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Abstract. Signcryption simultaneously offers authentication through
unforgeability and confidentiality through indistinguishability against
chosen ciphertext attacks by combining the functionality of digital sig-
natures and public-key encryption into a single operation. Libert and
Quisquater (PKC 2004) extended this set of basic requirements with the
notions of ciphertext anonymity (or key privacy) and key invisibility to
protect the identities of signcryption users and were able to prove that
key invisibility implies ciphertext anonymity by imposing certain condi-
tions on the underlying signcryption scheme.

This paper revisits the relationship amongst privacy notions for sign-
cryption. We prove that key invisibility implies ciphertext anonymity
without any additional restrictions. More surprisingly, we prove that key
invisibility also implies indistinguishability against chosen ciphertext at-
tacks. This places key invisibility on the top of privacy hierarchy for
public-key signcryption schemes.

On the constructive side, we show that general “sign-then-encrypt”
approach offers key invisibility if the underlying encryption scheme sat-
isfies two existing security notions, indistinguishable against adaptive
chosen ciphertext attacks and indistinguishability of keys against adap-
tive chosen ciphertext attacks. By this method we obtain the first key
invisible signcryption construction in the standard model.

1 Introduction

Signcryption methods. The concept of signcryption was introduced by Zheng
in 1997 [26], with the initial goal to achieve performance increase for simulta-
neous signing and public-key encryption. His idea was to derive the combined
functionality by optimizing computations at the algorithmic level rather than
considering joint execution of two different signing and encryption procedures.
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This idea was reflected in various signcryption constructions, including those
based on discrete logarithms [4, 21, 25], factoring assumptions [18, 22], and hard
problems in groups with bilinear maps [15, 16]. Some of these designs were less
successful, e.g. [4,25] were cryptanalyzed in [21], a problem in [15] was identified
in [23] and repaired in [9].

A more general approach to signcryption was initiated by An, Dodis, and Ra-
bin [1]. They considered different methods for obtaining the signcryption func-
tionality through a black-box composition of arbitrary signature and public-key
encryption schemes, in particular showing that “encrypt-then-sign” (EtS) and
“sign-then-encrypt” (StE) lead to secure singcryption schemes (as opposed to
the symmetric-key setting [6]). They also introduced another approach, termed
“commit-then-sign-and-encrypt” (CtS&E) that admits parallelization of the sign-
ing and encryption operations, motivated by the insecurity of the plain “sign-
and-encrypt” (S&E) method. Dent et al. [10] recently proved security of S&E
in the setting of high-entropy messages, assuming the confidentiality property
of signatures. Alternative generic methods for (parallel) signcryption were intro-
duced by Pieprzyk and Pointcheval [19] based on secret sharing techniques, by
Dodis et al. [11] using trapdoor permutations and probabilistic padding schemes,
and by Malone-Lee [17] from the hybrid KEM/DEM framework.

Privacy notions for signcryption. The first formal security model for signcryp-
tion in the public-key setting was introduced by Baek et al. [3], encompassing
the requirements of message confidentiality (indistinguishability against adaptive
chosen ciphertext attacks) and unforgeability against chosen-message attacks in
the multi-user setting. This model has been strengthened by An, Dodis, and
Rabin [1] towards the insider security setting that admits corruptions of senders
and receivers, as opposed to the outsider security guarantees from [3] in which
all involved parties must remain uncorrupted. The insider security setting be-
came the de facto standard security setting for modern public-key signcryption
schemes.

Libert and Quisquater [15], inspired by Boyen’s work [7] on identity-based
signcryption and the earlier definition of key privacy for public-key encryption
schemes by Bellare et al. [5], formalized the notions of ciphertext anonymity (or
key privacy) for public-key signcryption. This requirement, modeled within the
insider security framework, prevents the adversary that is not in possession of
the recipient’s decryption key from obtaining information about the sender and
the recipient of the signcrypted message. Libert and Quisquater also introduced
the notion of key invisibility, for which they could prove that it implies cipher-
text anonymity as long as signcryption ciphertexts have uniform distribution for
random recipients’ public keys.

1.1 Our Contribution

In this paper we focus on privacy notions for signcryption schemes and aim at
closing gaps from previous work.
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Relations among privacy notions. Using public-key signcryptionnotions from [15],
namelykey invisibility (SC-INVK-CCA), ciphertext anonymity (SC-INDK-CCA),
and indistinguishability against chosen ciphertext attacks (SC-IND-CCA), we in-
vestigate their relationships and come to the following surprising results (cf. Figure
1): first, we show that key invisibility implies ciphertext anonymity without re-
quiring uniformity of ciphertexts for random public keys (as opposed to the proof
from [15]). Our proof of this implication involves a two-step approach: we first
give a new definition of ciphertext anonymity, which we term SC-ANON-CCA
and for which we prove the equivalence to SC-INDK-CCA from [15], before prov-
ing that SC-ANON-CCA is implied by SC-INVK-CCA. Even more surprising, we
prove that SC-INVK-CCA implies SC-IND-CCA, that is key invisible signcryption
schemes readily providemessage confidentiality.Our analysis thus implies that key
invisibility is strictly stronger than ciphertext anonymity and message confiden-
tiality.

SC-IND-CCA   SC-INDK-CCA   

SC-INVK-CCA   

L2 

L1 

Fig. 1. Relationships among privacy notions for signcryption. An arrow de-
notes an implication while a barred arrow denotes a separation. T and L stand for
Theorem and Lemma, respectively.

Key invisibility of “Sign-then-Encrypt”. As observed in [15], parallel signcryp-
tion methods (incl. S&E and CtS&E) do not satisfy ciphertext anonymity —
the recipient needs to know who is the sender in order to verify the signature.
The key invisible signcryption scheme from [15], which has been revised in [9]
following the analysis in [23], is a concrete construction based on bilinear maps
and random oracles. As a second contribution we explore the key invisibility
of the StE signcryption method, showing that it achieves SC-INVK-CCA (and
by this SC-INDK-CCA and SC-IND-CCA) provided that the underlying pub-
lic key encryption scheme satisfies two existing requirements, which are named
indistinguishability against adaptive chosen ciphertext attacks (IND-CCA) and
indistinguishability of keys against adaptive chosen ciphertext attacks (IK-CCA),
respectively. It is well-known that Cramer-Shoup encryption scheme [8] offers
both IND-CCA and IK-CCA security. In this way we readily obtain the first key
invisible signcryption scheme in the standard model.
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2 Preliminaries

2.1 Digital Signatures

SYNTAX. A signature scheme S comprises four efficient algorithms: S = (Setup,
KGen, Sig,Ver). The setup algorithm Setup takes as input a security parameter
1k and outputs the public parameters λS . The key generation algorithm KGen
takes as input λS and outputs a signing key sk and a verification key vk. The
signing algorithm Sig takes as input a signing key sk and a message m from
the associated message space M, and outputs a signature σ ← Sigsk(m). The
verification algorithm Ver takes a message m, a signature σ and a verification
key pk and outputs either a valid symbol � or an invalid symbol ⊥. We require
that Vervk(m, Sigsk(m)) = �, for any m ∈M.

SECURITY. We consider a standard security notion for signatures: existential
unforgeability under adaptive chosen message attacks [13], denoted by UF-CMA.
Intuitively, we require that an adversary is not able to generate a signature on a
new message on behalf of a target signer. We define the adversary A’s advantage
AdvUF-CMA

S,A (k) as

Pr

[
S.Vervk(m,σ) = �

∣∣∣∣λS ← Setup(1k), (sk, vk)← S.KGen(λS),

(m,σ)← AOSig(·)(vk), m �∈ Query(A, OSig(·))
]
,

where A is allowed to make a sequence of queries to the signing oracle OSig(·),
and Query(A, OSig(·)) is the set of queries made by A to oracle OSig(·). S is said

to be UF-CMA-secure, if the advantage function AdvUF-CMA
S,A (k) is negligible in k

for any PPT adversary A.

2.2 Public-Key Encryption

SYNTAX. A public key encryption scheme E comprises four efficient algorithms:
E = (Setup, KGen,Enc,Dec). The setup algorithm Setup takes as input a security
parameter 1k and outputs the public parameters λE . The key generation algo-
rithm KGen takes as input λE and outputs a decryption key dk and an encryption
key ek. The encryption algorithm Enc takes as input an encryption key ek and
a message m from the associated message space M, and outputs a ciphertext
c ← Encek(m). The decryption algorithm Dec takes a decryption key dk and a
ciphertext c to return the corresponding message m; we write m ← Decdk(c).
We require that Decdk(Encek(m)) = m, for any m ∈ M.

SECURITY. We consider indistinguishability against adaptive chosen cipher-
text attacks [20], denoted by IND-CCA, and indistinguishability of keys against
adaptive chosen ciphertext attacks [5], denoted by IK-CCA. Intuitively, IND-CCA
means that given a properly generated encryption key, no adversary A can dis-
tinguish encryptions of any two-equal length messages m0, m1 under this key.
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IND-CCA security captures strong message (data)-privacy property and guaran-
tees that, given a challenge ciphertext, no valid information about the underlying
message (plaintext, or data) will be leaked. On the other hand, IK-CCA captures
strong key-privacy property. It means that given two randomly selected encryp-
tion keys ek1 and ek2, no adversary A can distinguish encryptions of a same
message m under the two different keys. Given a challenge ciphertext, no valid
information about the underlying key will be leaked in an IK-CCA-secure en-
cryption scheme. For b = 0, 1 and an adversary A = (A1,A2), which runs in two
stages of find and guess, consider the experiments

Experiment ExpIND-CCA,b
E,A (k) :

λE ← E .Setup(1k)
(dk, ek)← E .KGen(λE )

(m0,m1, ω)← ADdk(·)
1 (λE , ek, find)

cb ← Encek(mb)

d← ADdk(·)
2 (cb, ω, guess)

Experiment ExpIK-CCA,bE,A (k) :

λE ← E .Setup(1k)
(dk0, ek0)← E .KGen(λE
(dk1, ek1)← E .KGen(λE )

(m,ω)← ADdk0
(·),Ddk1

(·)
1 (λE , ek0, ek1, find)

cb ← Encekb
(m)

d← ADdk0
(·),Ddk1

(·)
2 (cb, ω, guess)

where |m0| = |m1|, ω is some state information and A is allowed to invoke
the decryption oracle Ddk(·) (or Ddk1(·) and Ddk2(·)) at any point with the only
restriction that cb is not queried during the guess stage. We define the advantages
AdvIND-CCA

E,A (k) and AdvIK-CCAE,A (k), respectively, as follows:

AdvIND-CCA
E,A (k) =

∣∣Pr[ExpIND-CCA,0
E,A (k) = 1]− Pr[ExpIND-CCA,1

E,A (k) = 1]
∣∣

AdvIK-CCAE,A (k) =
∣∣Pr[ExpIK-CCA,0E,A (k) = 1]− Pr[ExpIK-CCA,1E,A (k) = 1]

∣∣.
E is said to be IND-CCA (resp. IK-CCA) secure, if the advantage function
AdvIND-CCA

E,A (k) (resp. AdvIK-CCAE,A (k)) is negligible in k for any PPT adversary A.

2.3 Signcryption Syntax

We will review the signcryption syntax used in [14, 15, 24]. A signcryption
scheme is formalized by five PPT algorithms SC = (Setup, KeyGen, SignCrypt,
UnSignCrypt, Verify). The setup algorithm generates public parameters λsc ←
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Setup(1k). Taking as input the public parameters λsc, the key-generation al-
gorithm outputs a key pair (skU , pkU ) ← KGs(λsc). On input a message
m from the associated message space M, a private key skU , and a public
key pkR, the signcryption algorithm outputs a signcryption ciphertext C ←
SC.SignCrypt(m, skU , pkR). On input a private key skR and a signcryption ci-
phertext C, the unsigncryption algorithm UnSignCrypt (skR, C) outputs either
a tuple (m, s, pkU ) where m ∈ M, s is auxiliary non-repudiation information
(allowing to convince a third party of the origin of the message) and pkU is a
public key, or a special symbol ⊥ indicating failure. The verification algorithm
Verify(m, s, pkU ) taking as input a message m, additional information s, and
a public key pkU , outputs either � if the additional information s authenti-
cates the message m for the sender pkU , or ⊥ otherwise. The correctness re-
quires that for any m ∈ M, any correctly generated key pairs (skU , pkU ) and
(skR, pkR), we have (m, s, pkU ) ← UnSignCrypt(skR, SignCrypt(m, skU , pkR))
and Verify(m, s, pkU ) = ⊥.
Remark 1. Note the slightly different syntax in comparison to [1]. The difference
is that the unsigncryption algorithm takes as input sender’s public key pkS ,
receiver’s secret key skR, and signcryption ciphertext C, and outputs either
message m or ⊥. In this paper, we will adopt the signcryption syntax reviewed
above since we intend to study various privacy notions in which the sender’s
identity may be unknown prior to the execution of the unsigncryption algorithm.

3 Security Notions for Signcryption Schemes

The existing security notions cover four aspects: existential unforgeability against
chosen-message attacks, indistinguishability against chosen ciphertext attacks,
ciphertext anonymity and key invisibility, which we recall in the following.

3.1 Unforgeability

A fundamental notion for signcryption schemes is existential unforgeability
against chosen-message attacks [1]. This property prevents the adversary from
forging a signcryption ciphertext on a new message or with respect to a new
receiver on behalf of the target sender, and is formalized in the following exper-
iment

Experiment ExpUF-CMA
SC,A (k) :

λsc ← SC.Setup(1k)

(skU , pkU )← SC.KeyGen(λsc)

(C, skR, pkR)← ASC.SskU
(·,·),SC.DskU

(·)(λsc, pkU )

success of A := [(m, s, pkU )← SC.UnSignCrypt(skR, C)

∧ Verify(m, s, pkU ) = �
∧ (m, pkR) �∈ Query(A, SC.SskU (·, ·))]
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where the signcryption oracle SC.SskU (·, ·) takes as input (m′, pk′R) and outputs
a signcryption ciphertext, the unsigncryption oracle SC.DskU (·) takes as input a
signcryption ciphertext and outputs either ⊥ or a tuple (m′, s′, pk′U ) such that
Verify(m′, s′, pk′U ) = �, and Query(A, SC.SskU (·, ·)) is the set of queries made
by A to oracle SC.SskU (·, ·).
Definition 1. A signcryption scheme is existentially unforgeable against chosen-
message attacks (SC-UF-CMA), if for all PPT adversaries A the following ad-
vantage function is negligible in k:

AdvUF-CMA
SC,A (k) := Pr[A success].

We remark existence of a stronger notion named strong existentially unforge-
ability against chosen-message attacks (SC-SUF-CMA), c.f. [14, 15, 24], which
requires that the challenge signcryption ciphertext C was not previously output
by the signcryption oracle SC.SskU (·, ·) on input (m, pkR). However, as pointed
out in [1] and similar to the signature setting in [13], the conventional (i.e. non-
strong) unforgeability is sufficient for most scenarios in practice.

3.2 Confidentiality

The notion of indistinguishability against chosen ciphertext attacks [15] cap-
tures confidentiality of messages. That is, given a signcryption ciphertext, no
valid information about the message that was signcrypted will be exposed to an
adversary without the designated receiver’s private key. Formally, for b = 0, 1
we consider the following experiments

Experiment ExpIND-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skU , pkU )← SC.KeyGen(λsc)

(m0,m1, skS , ω)← ASC.SskU
(·,·),SC.DskU

(·)
1 (λsc, pkU )

Cb ← SC.SignCrypt(mb, skS , pkU )

d← ASC.SskU
(·,·),SC.DskU

(·)
2 (Cb, ω)

where |m0| = |m1|, ω is some state information, and oracles SC.SskU (·, ·) and
SC.DskU (·) are the same as in the previous experiment ExpUF-CMA

SC,A (k) with the
only limitation of A2 not querying the challenge ciphertext Cb to the unsign-
cryption oracle SC.DskU (·).
Definition 2. A signcryption scheme is semantically secure against chosen ci-
phertext attacks (SC-IND-CCA), if for all PPT adversaries A = (A1,A2) the
following advantage function is negligible in k:

AdvIND-CCA
SC,A (k) := |Pr[ExpIND-CCA,0

SC,A (k) = 1]− Pr[ExpIND-CCA,1
SC,A (k) = 1]|.
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3.3 Ciphertext Anonymity

Intuitively, a signcryption scheme has ciphertext anonymity property [15] if sign-
cryption ciphertexts reveal no information about the identities of the sender and
receiver. Formally, consider the following experiment

Experiment ExpINDK-CCA
SC,A (k) :

λsc ← SC.Setup(1k)

(skR,0, pkR,0)← SC.KeyGen(λsc)

(skR,1, pkR,1)← SC.KeyGen(λsc)

O := {SC.SskR,0(·, ·), SC.SskR,1(·, ·), SC.DskR,0(·), SC.DskR,1(·)}
(m, skS,0, skS,1, ω)← AO

1 (λsc, pkR,0, pkR,1)

(b, b′)← {0, 1}
C ← SC.SignCrypt(m, skS,b, pkR,b′)

(d, d′)← AO
2 (C, ω)

where ω is some state information and A can have access to the signcryption
and unsigncryption oracles at any point with the two limitations that A2 does
not query C to the unsigncryption oracles SC.DskR,0(·) and SC.DskR,1(·).
Definition 3. A signcryption scheme is said to satisfy ciphertext anonymity
(SC-INDK-CCA), if for all PPT adversaries A = (A1,A2) the following advan-
tage function is negligible in k:

AdvINDK-CCA
SC,A (k) := |Pr[(d, d′) = (b, b′)]− 1

4
|.

3.4 Key Invisibility

The notion of key invisibility for signcryption was formalized by Libert and
Quisquater in [15]. It can be viewed as an extension of the invisibility concept
proposed by Galbraith and Mao [12] for undeniable signatures. Intuitively, this
notion captures that given a receiver, a specific signcryption ciphertext gener-
ated with respect to a chosen message, a chosen sender and a given receiver is
indistinguishable to a random ciphertext uniformly chosen from the signcryption
ciphertext space. Formally, for b = 0, 1 we consider the following experiments

Experiment ExpINVK-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skR, pkR)← SC.KeyGen(λsc)

(m, skS , ω)← ASC.SskR
(·,·),SC.DskR

(·)
1 (λsc, pkR)

C0 ← SC.SignCrypt(skS , pkR,m)

C1 ← C
d← ASC.SskR

(·,·),SC.DskR
(·)

2 (Cb, ω)
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where ω is some state information, C is the signcryption ciphertext space, C1 is
uniformly chosen at random from C, and A can have access to the signcryption
and unsigncryption oracles at any point with the two limitations that A2 does
not query Cb to the unsigncryption oracle SC.DskR(·).

Definition 4. A signcryption scheme is said to satisfy key invisibility (SC-
INVK-CCA), if for all PPT adversaries A = (A1,A2) the following advantage
function is negligible in k:

AdvINVK-CCA
SC,A (k) := |Pr[ExpINVK-CCA,0

SC,A (k) = 1]− Pr[ExpINVK-CCA,1
SC,A (k) = 1]|.

4 Relations among Privacy Notions for Signcryption

We now define anonymity, an equivalent notion for ciphertext anonymity of sign-
cryption schemes. This notion is conceptually simpler in comparison to ciphertext
anonimity from [15] in that the adversary only needs to distinguish between two
cases, depending on a single bit b = 0, 1, rather than between four cases in [15].
Formally, we consider the following experiments

Experiment ExpANON-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skR,0, pkR,0)← SC.KeyGen(λsc)

(skR,1, pkR,1)← SC.KeyGen(λsc)

O := {SC.SskR,0(·, ·), SC.SskR,1(·, ·), SC.DskR,0(·), SC.DskR,1(·)}
(m, skS,0, skS,1, ω)← AO

1 (λsc, pkR,0, pkR,1)

Cb ← SC.SignCrypt(m, skS,b, pkR,b)

d← AO
2 (Cb, ω)

where ω is some state information and A can have access to the signcryption
and unsigncryption oracles at any point with the two limitations that A2 does
not query Cb to the unsigncryption oracles SC.DskR,0(·) and SC.DskR,1(·).

Definition 5. A signcryption scheme is said to satisfy anonymity (SC-ANON-
CCA), if for all PPT adversaries A = (A1,A2), the advantage function is neg-
ligible in k:

AdvANON-CCA
SC,A (k) := |Pr[ExpANON-CCA,0

SC,A (k) = 1]− Pr[ExpANON-CCA,1
SC,A (k) = 1]|.

We now show that ciphertext anonymity and anonymity are equivalent.

Theorem 1 (SC-INDK-CCA ⇔ SC-ANON-CCA). For signcryption
schemes, anonymity is equivalent to ciphertext anonymity.

Proof of Theorem 1 is presented in the full version of this paper. �
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4.1 Separation between Ciphertext Anonymity and SC-IND-CCA

Intuitively, ciphertext anonymity captures identity privacy and indistinguisha-
bility against chosen ciphertext attacks captures message privacy. The goals of
ciphertext anonymity and indistinguishability against chosen ciphertext attacks
are orthogonal. Formally, Lemmas 1 and 2 proven in the full version of this
paper, separate the two notions.

Lemma 1 (SC-IND-CCA � SC-INDK-CCA). Let SC = (Setup, KeyGen,
SignCrypt,UnSignCrypt) be a signcryption scheme. If the scheme SC satisfies
indistinguishability against chosen ciphertext attacks, then it may not satisfy
ciphertext anonymity.

Lemma 2 (SC-INDK-CCA � SC-IND-CCA). Let SC = (Setup, KeyGen,
SignCrypt,UnSignCrypt) be a signcryption scheme. If the scheme SC satisfies
ciphertext anonymity, then it may not satisfy indistinguishability against chosen
ciphertext attacks.

4.2 Relationship between Key Invisibility and Ciphertext
Anonymity

Next, we investigate the relationship between key invisibility and ciphertext
anonymity. We shall use anonymity instead of ciphertext anonymity in our anal-
ysis, as these two are equivalent by Theorem 1.

Theorem 2 (SC-INVK-CCA ⇒ SC-ANON-CCA). Let SC be a signcryp-
tion scheme. If the scheme SC satisfies key invisibility, then it satisfies anonymity.

Proof of Theorem 2 is presented in the full version of this paper. �

Note that Libert and Quisquater [15] were only able to prove implication of ci-
phertext anonymity by key invisibility for a class of signcryption schemes satisfy-
ing a particular property, namely that for a given message and a given sender’s
private key, the output of the signcryption algorithm must be uniformly dis-
tributed in the ciphertext space when the receiver’s public key is random. Our
results in Theorems 1 and 2 lift this restriction.

4.3 Relationship between Key Invisibility and SC-IND-CCA

Our next result shows that key invisibility, which originally was viewed as a
notion for protecting privacy of user identities [15], is in fact a much stronger
notion that implies indistinguishability against chosen ciphertext attacks.

Theorem 3 (SC-INVK-CCA ⇒ SC-IND-CCA). Let SC be a signcryption
scheme. If the scheme SC satisfies key invisibility, then it satisfies indistinguisha-
bility against chosen ciphertext attacks.
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Proof of Theorem 3 is presented in the full version of this paper. �

From Theorem 1, Lemma 1, Lemma 2, Theorem 2 and Theorem 3, we can safely
conclude that key invisibility is strictly stronger than both indistinguishability
against chosen ciphertext attacks and ciphertext anonymity.

5 Sign-then-Encrypt Generic Construction

In this section, we revisit the generic construction of signcryption schemes based
on the sign-then-encrypt method [1,2]. We show that the resulting signcryption
schemes can achieve key invisibility when appropriate encryption schemes are
employed.

5.1 Scheme

Let S = (Setup,KGen, Sig,Ver) be a signature scheme and E = (Setup, KGen,Enc,
Dec) be a public key encryption scheme. Signcryption schemes based on the sign-
then-encrypt method can be constructed as follows:

– Setup(1k): On input a security parameter k, this algorithm runs λS ←
S.Setup(1k) and λE ← E .Setup(1k), respectively. The public parameters are
set as λsc := (λS , λE).

– KeyGen(λsc): The user Ui runs S.KGen(λS)→ (ski, vki) and E .KGen(λE ) →
(dki, eki), respectively. The secret and public key pair is set as (skUi , pkUi) :=
((ski, dki), (vki, eki)).

– SignCrypt(m, skUi , pkUj ): To signcrypt a message m for the receiver Uj ,
Ui first produces a signature σ on m||pkUj , i.e., σ ← S.Sigski

(m||pkUj ),
and then encrypts m||σ||pkUi under receiver Uj ’s encryption key, i.e. c ←
E .Encekj (m||σ||pkUi). The signcryption ciphertext is set as C := c.

– UnSignCrypt(skUj , C): On receiving a signcryption ciphertext C, receiver
Uj firstly decrypts it using its own decryption key dkj , i.e., m||σ||pkUi ←
E .Decdkj (C), and then checks if S.Vervki (m||pkUj , σ) = �. If so, it outputs
(m, s, pkUi) where s = (pkUj , σ); otherwise, it returns ⊥.

– Verify(m, s, pkUi): This algorithm parses s and pkUi as (pkUj , σ) and (vki, eki),
respectively, and outputs S.Vervki(m||pkUj , σ).

5.2 Security of the Generic Construction

From the relations discussed in Section 4, we only need to show that the above
generic construction results in signcryption schemes that are existentially un-
forgeable against chosen-message attacks and satisfy key invisibility. The former
requirement has already been proven in [1], who stated the following theorem:

Theorem 4 ([1]). Let SC be the above generic signcrypiton scheme. If the sig-
nature scheme S is UF-CMA-secure, then SC is existentially unforgeable against
chosen-message attacks.
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We thus focus on key invisibility, for which we need to specify how to uniformly
sample signcryption ciphertexts from the ciphertext space. Here we will adopt
the very natural method for uniform sampling, i.e., uniformly and independently
choosing a messagem ∈M , a sender’s secret key skUi , and a receiver’s public key
pkUj , and returning a signcryption ciphertext C ← SC.SignCrypt(m, skUi , pkUj ).

Theorem 5. Let S be a signature scheme, E be a public-key encryption scheme
that is both IND-CCA-secure and IK-CCA-secure. Then the above generic sign-
crypiton scheme SC satisfies key invisibility.

Proof. To show the security, we first define two games, and then show in Claims
1 and 2 that no adversary A can break the key invisibility property of SC.

Game 0. This is the real experiment between the challenger and an adver-
sary A. This means that the challenger firstly correctly generates the target
receiver’s key pairs (skR, pkR) := ((sk0, dk0), (vk0, ek0)), forwards pkR to the
adversary A, and then provides accesses to signcryption oracle SC.SskR(·, ·)
and unsigncryption oracle SC.DskR(·). In the challenge phase, after A submits
(m∗, skS = (sk1, dk1)), the challenger randomly flips a coin b ∈ {0, 1}. If b = 0,
the challenger produces a signature σ0 on m∗||pkR under the signing key sk1,
i.e., σ0 ← S.Sigsk1

(m∗||pkR), encrypts m∗||σ0||pkS under the receiver’s encryp-
tion key, i.e. C0 ← E .Encek0(m

∗||σ0||pkS), and returns C0 to A. If b = 1, the
challenger independently and uniformly chooses m′ ∈ M, a sender’s secret key
sk′S := (sk′1, dk′1) and a receiver’s public key pk′R := (vk′0, ek′0), produces a sig-
nature σ1 on m′||pk′R, i.e., σ1 ← S.Sigsk′

1
(m′||pk′R), encrypts m′||σ1||pk′S under

the receiver’s encryption key, i.e. C1 ← E .Encek′
0
(m′||σ1||pk′S), and returns C1

to A. Besides, the challenger provides access to signcryption oracle SC.SskR(·, ·)
and unsigncryption oracle SC.DskR(·).
Game 1. This is the same as Game 0, with the exception that in the challenge
phase, the challenger computes C1 ← E .Encek0(m

′||σ1||pk′S), and returns C1 to
A when b = 1.

Next we link the probability that A wins in Game 0 and Game 1. Let S1 be
the advantage that A wins in Game 1. Thus Pr[S1] = |Pr[ExpGame 1,0

SC,A (k) =

1]−Pr[ExpGame 1,1
SC,A (k) = 1]|, where ExpGame 1,b

SC,A (k) is the output of A in Game
1 when the challenge ciphertext is Cb.

Claim 1

|AdvINVK-CCA
SC,A (k)− Pr[S1]| = 2 · AdvIK-CCAE,B (k), (1)

where AdvIK-CCAE,B (k) is the advantage of an adversary B that breaks the IK-CCA
security of the encryption scheme E .

We show that any difference between AdvINVK-CCA
SC,A (k) and Pr[S1] can be par-

layed into an algorithm B = (B1,B2) that breaks the IK-CCA security of the
encryption scheme E . Recall that B1 gets (λE , ek, ek′) as input and has access to
decryption oraclesDdk(·) andDdk′(·). B1 runs λS ← S.Setup(1k), S.KGen(λS)→
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(sk0, vk0) and sets λsc := (λS , λE) and pkR := (vk0, ek). B1 runs A1 as a sub-
routine by forwarding (λsc, pkR).

When A1 makes a signcryption query (m, pkU = (vkU , ekU )) to SC.SskR(·, ·),
B1 first produces a signature σ on m||pkU under the signing key sk0, i.e.,
σ ← S.Sigsk0

(m||pkU ), and then encrypts m||σ||pkR under the encryption key
ekU , i.e. c← E .EncekU (m||σ||pkR). The signcryption ciphertext is set as C := c,
and returned to A1 as the reply. When A1 makes a unsigncryption query C
to SC.DskR(·), B1 submits C to its own decryption oracle Ddk(·). If the reply
is not of the form m||σ||pkU where pkU is a public key, then B1 returns ⊥ to
A1. Otherwise, B1 decomposes pkU as (vkU , ekU ), and further checks whether
S.VervkU (m||pkR, σ) = �. If so, B1 returns (m, (pkR, σ), pkU ) to A1, and other-
wise ⊥ is returned.

At some time, A1 submits (m∗, skS = (sk1, dk1)). B1 randomly flips a coin
b̃ ∈ {0, 1}. If b̃ = 0, B first produces a signature σ0 on m∗||pkR under the signing
key sk1, i.e., σ0 ← S.Sigsk1

(m∗||pkR), encrypts m∗||σ0||pkS under the receiver’s

encryption key, i.e. C0 ← E .Encek(m∗||σ0||pkS), and returns C0 to A. If b̃ = 1,
B independently and uniformly chooses m′ ∈ M, a sender’s secret key sk′S :=
(sk′1, dk′1) and a public verification key vk′0, sets pk′R := (vk′0, ek′), produces a
signature σ1 on m′||pk′R using the signing key sk′1, i.e., σ1 ← S.Sigsk′

1
(m′||pk′R),

and submits m′||σ1||pk′S where pk′S is the corresponding public key of sk′S to its
own challenger. Let C1 denote the reply of B’s own challenger. B returns C1 to
A. B2 simulates the oracles in the same way as B1 did.

Note that A2 never makes an unsigncryption query Cb where b ∈ {0, 1} to
SC.DskR(·), thus B2 does not make the query Cb to its decryption oracles Ddk(·)
or Ddk′(·). Finally A2 outputs a bit d. B2 outputs d when b̃ = 1, and returns
failure when b̃ = 0. When C1 is the encryption of m′||σ1||pk′S under ek, the
environment simulated by B is exactly the same as in Game 1. While C1 is the
encryption of m′||σ1||pk′S under ek′, the environment simulated by B is exactly
the same as in Game 0. Thus we have

AdvIK-CCAE,B (k) =
∣∣Pr[ExpIK-CCA,0E,B (k) = 1]− Pr[ExpIK-CCA,1E,B (k) = 1]

∣∣
=

∣∣Pr[b̃ = 1] · Pr[ExpGame 1,1
SC,A (k) = 1]

− Pr[b̃ = 1] · Pr[ExpINVK-CCA,1
SC,A (k) = 1]

∣∣
=

∣∣(1
2
· Pr[ExpGame 1,0

SC,A (k) = 1]− 1

2
· Pr[ExpGame 1,1

SC,A (k) = 1])

− 1

2
· Pr[ExpINVK-CCA,0

SC,A (k) = 1]

+
1

2
· Pr[ExpINVK-CCA,1

SC,A (k) = 1]
∣∣ (2)

=
1

2
· ∣∣Pr[S1]− AdvINVK-CCA

SC,A (k)
∣∣.

Equation (2) follows from the fact that Pr[ExpGame 1,0
SC,A (k) = 1] equals to

Pr[ExpINVK-CCA,0
SC,A (k) = 1], as the experiments are exactly the same.
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Claim 2
Pr[S1] ≤ AdvIND-CCA

E,C (k), (3)

where AdvIK-CCAE,C (k) is the advantage of an adversary C that breaks the IND-CCA
security of the encryption scheme E .

To show this, we build an algorithm C that employs the adversary A in Game
1 to break the IND-CCA security of the encryption scheme E . Recall that C gets
(λE , ek) as input and has access to a decryption oracle Ddk(·). C runs λS ←
S.Setup(1k), S.KGen(λS) → (sk0, vk0) and sets λsc := (λS , λE) and pkR :=
(vk0, ek). C runs A1 as a subroutine by forwarding (λsc, pkR).

When A1 makes a signcryption query (m, pkU = (vkU , ekU )) to SC.SskR(·, ·),
C first produces a signature σ on m||pkU , i.e., σ ← S.Sigsk0

(m||pkU ), and then
encrypts m||σ||pkR under the encryption key ekU , i.e. c← E .EncekU (m||σ||pkR).
The signcryption ciphertext is set as C := c, and returned to A1 as the reply.
When A1 makes a unsigncryption query C to SC.DskR(·), C submits C to its
own decryption oracle Ddk(·). If the reply is not of the form m||σ||pkU where
pkU is a public key, then C returns ⊥ to A1. Otherwise, C decomposes pkU as
(vkU , ekU ), and further checks whether S.VervkU (m||pkR, σ) = �. If so, C returns
(m, (pkR, σ), pkU ) to A1, and otherwise ⊥ is returned.

At some time, A1 submits (m∗, skS = (sk1, dk1)). C first produces a signature
σ0 on m∗||pkR under the signing key sk1, i.e., σ0 ← S.Sigsk1

(m∗||pkR). Then
C independently and uniformly chooses m′ ∈ M, a sender’s secret key sk′S :=
(sk′1, dk′1) and a receiver’s public pk′R, produces a signature σ1 on m′||pk′R under
the signing key sk′1, i.e., σ1 ← S.Sigsk′

1
(m′||pk′R). C sets m̄0 := m∗||σ0||pkS ,

m̄1 := m′||σ1||pk′S where pkS and pk′S are the corresponding public keys of skS
and sk′S respectively, and submits m̄0 and m̄1 to its own challenger. Let Cb

denote the reply of C’s own challenger. C returns Cb to A. C then simulates the
oracles in the same way as it did before.

Note that A2 never makes an unsigncryption query Cb to SC.DskR(·), thus B2
does not make the query Cb to its decryption oracle Ddk(·). Finally A2 outputs
a bit d. C outputs d. The environment simulated by C is exactly the same as in
Game 1. Thus we have AdvIND-CCA

E,C (k) = Pr[S1].

As a sequence of equations (1), (3) gained above, we have AdvINVK-CCA
SC,A (k) ≤

2 · AdvIK-CCAE,B (k) + AdvIND-CCA
E,C (k) . This concludes the proof. �

6 Conclusion

In this paper, we first revisited the existing privacy notions of signcryption
schemes, namely indistinguishability against chosen ciphertext attacks, cipher-
text anonymity and key invisibility. We demonstrated the separation between
indistinguishability against chosen ciphertext attacks and ciphertext anonymity,
and showed that both notions are implied by key invisibility. Finally we pro-
posed the first generic construction for key invisible signcryption schemes in the
standard model.
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