
Provably Secure
Group Key Exchange

MARK MANULIS

Dissertation
for the Degree of Doktor-Ingenieur (Dr. Ing.)

Department for
Electrical Engineering and Information Technology

Ruhr University Bochum (Germany)

Network and Data Security (NDS) Group
Supervisor: Prof. Dr. rer. nat. Jörg Schwenk

External Referee: Prof. Dr. David Pointcheval

Bochum, 2007

Author contact information:
mark.manulis@gmail.com

This thesis was submitted to the Department for Electrical Engineering and Information Tech-
nology of Ruhr University Bochum on February 7, 2007 and defended on June 26, 2007.

Examination committee:

Prof. Dr.-Ing. Heinz G. Göckler (Ruhr University Bochum - committee chair)
Prof. Dr. rer. nat. Jörg Schwenk (Ruhr University Bochum - supervisor)
Prof. Dr. David Pointcheval (École Normale Supérieure Paris - external referee)
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (Ruhr University Bochum)
Prof. Dr.-Ing. Thomas Herrmann (Ruhr University Bochum)

mark.manulis@gmail.com

“The secret to strong security: less reliance on secrets.”

Whitfield Diffie
(born 1944, pioneer of the public-key cryptography and
co-inventor of the fundamental key exchange protocol)

To my wife Katja.
To my parents Elena and Igor.

For their unconditional love and support.

Abstract

The rapid and promising development of applications and communication systems designed
for groups of participants like groupware, computer supported collaborative work systems, or
digital conference systems implies exigence of mechanisms providing adequate security prop-
erties. These mechanisms can be designed based on the foundations of cryptography. Group
key exchange protocols are multi-party cryptographic protocols those participants compute a
shared secret key that can then be used in conjunction with other cryptographic constructions
like encryption schemes and message authentication codes for the purpose of privacy, confiden-
tiality and authentication. Security confidence of modern cryptographic constructions can be
increased via adequate security proofs. The paradigm of provable security gains in importance
for all kinds of cryptographic constructions, including group key exchange protocols those se-
curity issues represent the scope of this dissertation. We give an analytical overview of the
state-of-the-art research in this area and identify strengths and weaknesses of many previous
approaches. We suggest a new approach in form of a security model those stronger definitions
provide background for more confident security analyzes and proofs. Additionally, we present
a number of generic solutions (compilers) that can be applied to independently designed group
key exchange protocols in order to enhance security thereof with respect to various goals con-
sidered by our security model. Finally, we present a concrete group key exchange protocol
that provably satisfies the apparently strongest currently available formally specified security
requirements.

Abstract (in German)

Die schnelle und vielversprechende Entwicklung der für Gruppen von Teilnehmern konzip-
ierten Anwendungen und Kommunikationssysteme, wie z.B. Groupware, Systeme für die com-
putergestützte Gruppenarbeit oder digitale Konferenzsysteme, schafft die Notwendigkeit von
Mechanismen zur Gewährleistung ausreichender Sicherheitseigenschaften. Der Entwurf dieser
Mechanismen basiert größtenteils auf den Grundlagen der Kryptografie. Gruppen-Schlüssel-
Austauschprotokolle (engl. group key exchange protocols) sind kryptografische Mehrparteien-
Protokolle, die es den Teilnehmern ermöglichen, sich auf einen gemeinsamen geheimen Schlüs-
sel zu einigen, der in Verbindung mit weiteren kryptografischen Verfahren, wie z.B. Verschlüs-
selungs- und Nachrichtenauthentisierungsverfahren, für die Geheimhaltung, Vertraulichkeit
und Authentisierung eingesetzt werden kann. Das Vertrauen in die Sicherheit der modernen
kryptografischen Verfahren kann heutzutage nur mittels eines ausreichenden Sicherheitsbe-
weises erzielt werden. Das Paradigma der beweisbaren Sicherheit gewinnt immer mehr an Be-
deutung für alle kryptografischen Verfahren, einschließlich der Gruppen-Schlüssel-Austausch-
protokollen, deren Sicherheitsaspekte den Hauptbestandteil dieser Dissertation darstellen. Wir
geben einen analytischen Überblick über den aktuellen Stand der Forschung in diesem Bere-
ich und heben Stärken und Schwächen vieler bekannter Ansätze hervor. Ausgehend von den
durchgeführten Analysen und gefundenen Mängeln der vorhandenen Ansätze und Verfahren
schlagen wir einen neuen Ansatz vor, in Form eines Sicherheitsmodells für Gruppen-Schlüssel-
Austauschprotokolle, das weitaus stärkere Sicherheitsanforderungen umfasst und die Basis für
tiefere Sicherheitsanalysen und Beweise bereit stellt. Zusätzlich, stellen wir eine Reihe von all-
gemeinen Lösungen zur Verbesserung der Sicherheit (im Rahmen unseres Modells) von unab-
hängig konzipierten Gruppen-Schlüssel-Austauschprotokollen vor. Abschließend beschreiben
wir ein neues Gruppen-Schlüssel-Austauschprotokoll, dessen beweisbare Sicherheit den derzeit
stärksten formalen Anforderungen entspricht.

Acknowledgements

This dissertation is the result of three years of research in the area of provable security and group
key exchange protocols during my work as researcher at Horst Görtz Institute for IT Security
(HGI) at Ruhr University Bochum (RUB). Though writing it was sometimes a lonely and iso-
lated process, full of sleepless nights, yet it could never be completed without professional and
emotional support of many wonderful people I want to thank.

First of all I want to express my deepest gratitude to my supervisor and the head of network
and data security (NDS) group at RUB, Prof. Jörg Schwenk. His guidance, encouragement, and
vision were of great help for accomplishing this serious undertaking. I am also thankful to Jörg
for giving me freedom of choosing own research directions, reading my articles, commenting
on my views and helping me enrich my ideas.

I am grateful to my defence committee, especially to Prof. David Pointcheval, the head of
crypto team at École Normale Supérieure (ENS) in Paris, for taking the time to review my
dissertation and travel to Bochum for my defence as well as for giving me valuable suggestions
and comments.

Further, I would like to thank Prof. Ahmad-Reza Sadeghi, the head of system security group
at RUB, for his encouragement, motivation, and practical advice, as well as for the joint work
on various cryptographic protocols resulting in several published papers. In particular, I admire
Ahmad-Reza for his high efficiency in work and extraordinary commitment to research.

Special thanks go to Emmanuel Bresson from Direction Centrale de la Sécurité des Systèmes
d’Information (DCSSI Crypto Lab) in Paris for numerous discussions and intensive joint work
on security models and protocols for group key exchange as well as for the time spent with me
during my research visit at CELAR / Université de Rennes in June 2006.

Additionally, I would like to thank Christian Cachin from IBM Research Lab in Zürich,
and once again Emmanuel Bresson, Prof. David Pointcheval, and Prof. Jörg Schwenk for their
active support and participation in the organization of the 1st International Workshop on Group-
Oriented Cryptographic Protocols (GOCP) in July 2007.

During my participation in the ECRYPT NoE project (PROVILAB group) I had a pleasure
to meet many wonderful people whom I want to thank for the interesting discussions and valu-
able comments on my work and simply for the nice time spent during the project meetings,
especially Olivier Pereira from Université Catholique de Louvain-la-Neuve (UCL) in Belgium,
Prof. Jesper Buus Nielsen from Århus Universitet in Denmark, Prof. Giuseppe Persiano and
Prof. Ivan Visconti from Università degli Studi di Salerno (UNISA) in Italy, Prof. Berry Schoen-
makers from Technische Universiteit Eindhoven (TU/e) in the Netherlands, and once again our
PROVILAB leader Christian Cachin.

My participation in the UbiSec&Sens project gave me opportunity to learn many high quality
researchers in the area of wireless communication security. Thanks to many fruitful discussions
with Dirk Westhoff and Alban Hessler from NEC Labs in Germany, Claude Castelluccia from
INRIA in France, and Prof. Levente Buttyán from Budapest University of Technology and Eco-
nomics in Hungary I could get quick on board and provide own contribution to the project.

8 Acknowledgements

Further, I am thankful to my colleagues and friends at NDS for their support and creative
working atmosphere. Special thanks to the colleagues from the “first hour”: André Adelsbach
(meanwhile at Telindus, Luxembourg) for commenting my first scientific papers, Ulrich Grev-
eler (meanwhile professor at Fachhochschule Münster) for interesting discussions, cheerful dis-
position as well as unforgettable barbecue parties and whiskey-tasting evenings, Michael Psar-
ros for various practical security tips and delicious self-cooked Greek food, Sebastian Gajek for
the discussions on future research directions during our “everyday after-dinner” coffee breaks as
well as occasional cocktail parties, Lijun Liao for having chosen me to advise his Master thesis
before joining NDS, which resulted in several publications, Petra Winkel for keeping a number
of administrative tasks off my shoulders, Klaus Skudlarski and Jürgen Weide for providing var-
ious technical support and supply on hardware and software. Not to forget about Sven Schäge,
Kristina Altmann and Tibor Jager who joined our group a short time ago, and Alexander Amelin
who spent a year at NDS as a visiting researcher.

Also my thanks go to the colleagues from other research groups at HGI. Especially, to Prof.
Christoph Paar, head of the communication security group at RUB, for his general interest in my
work, Andre Weimerskirch (meanwhile at escrypt GmbH) and Axel Poschmann for the smooth
joint work on the UbiSec&Sens project and the nice time spent in Grenoble and Budapest during
the project meetings, Hans Löhr and Alberto Escalante for fruitful discussions and joint work
on unsplittable multi-coupon schemes, and Jan Pelze (meanwhile at escrypt GmbH) for the joint
professional courses on cryptography for the specialists from the industry.

I wish all researchers at HGI all the success in their hard work and achievement of further
excellent scientific results.

Finally, I am grateful to Prof. Dietmar Wätjen from Technical University Braunschweig and
Prof. Stefan Fischer from University of Lübeck for their interesting lectures on cryptography
and IT security during my graduate studies and supervision of my Master thesis.

Last but not least I would like to thank my wife, my parents, and other family members for
their unconditional love and support.

Mark

Contents

List of Figures . 13

List of Tables . 15

List of Symbols and Notations . 17

Overview and Organization . 19

Part I Group Applications and Key Establishment

1 Group Applications and Security . 23
1.1 Group Applications . 23

1.1.1 Digital Conferences . 24
1.1.2 Text-Based Group Communication . 24
1.1.3 File and Data Sharing . 24
1.1.4 Replication and Synchronization Systems . 24
1.1.5 CSCW Systems and Groupware . 25

1.2 Membership Dynamics . 25
1.3 Security Issues in Group Applications . 26

1.3.1 Confidentiality . 26
1.3.2 Authentication . 27
1.3.3 Integrity . 28

1.4 Group Membership . 29
1.4.1 Group Admission and Membership Control . 29
1.4.2 Group Authority . 30
1.4.3 Group Admission Policy . 30
1.4.4 Group Membership Certificates and Admission Process 30

2 Group Key Establishment . 33
2.1 Classification . 33
2.2 Group Key Transport/Distribution . 34
2.3 Group Key Exchange/Agreement . 35
2.4 Session Keys . 35
2.5 Security Requirements on Group Key Establishment Protocols 35
2.6 Generic Security-Enhancing Solutions - Compilers . 37

3 Provable Security in Group Key Establishment . 39
3.1 The Notion of Provable Security . 39
3.2 Information-Theoretic Security in Group Key Establishment 40

10 Contents

3.3 Computational Security in Group Key Establishment . 41
3.3.1 Reductionist Security Proofs . 42
3.3.2 Proofs Based on Simulatability/Indistinguishability . 42
3.3.3 Non-Standard Assumptions in Computational Security Proofs 43

3.4 Symbolic Security in Group Key Establishment . 44

4 Dissertation Focus and Summary of Research Contributions 47
4.1 Dissertation Focus and Objectives . 47
4.2 Summary of Research Contributions . 47

4.2.1 Two Surveys . 48
4.2.2 A Stronger Computational Security Model for GKE Protocols 48
4.2.3 Seven Security-Enhancing GKE Protocol Compilers 48
4.2.4 A Constant-Round GKE Protocol . 49

Part II Provably Secure Group Key Exchange

5 Background on Cryptography . 53
5.1 Negligible Functions . 53
5.2 One-Way Permutations . 53
5.3 Pseudo-Random Functions . 54
5.4 Number-Theoretic Assumptions . 56

5.4.1 Discrete Logarithm Assumption . 56
5.4.2 Diffie-Hellman Assumptions . 56

5.5 Digital Signatures . 58
5.6 Techniques used in Security Proofs . 59

5.6.1 The “Sequence of Games” Technique . 59
5.6.2 The “Hybrid Technique” . 61

6 Analytical Survey on Security Requirements and Models for Group Key
Exchange Protocols . 63
6.1 Survey on Informal Security Definitions . 63

6.1.1 Semantic Security and Known-Key Attacks . 64
6.1.2 Impersonation Attacks . 64
6.1.3 Key Confirmation and Mutual Authentication . 65
6.1.4 Perfect Forward Secrecy . 66
6.1.5 Key Control and Contributiveness . 66

6.2 Analytical Survey on Formal Security Models . 67
6.2.1 Models by Bellare and Rogaway (BR, BR+) . 67
6.2.2 Model by Bellare, Canetti, and Krawczyk (BCK) . 69
6.2.3 Model by Bellare, Pointcheval and Rogaway (BPR) . 70
6.2.4 Model by Canetti and Krawczyk (CK) . 71
6.2.5 Model by Shoup . 73
6.2.6 Model by Bresson, Chevassut, Pointcheval, and Quisquater (BCPQ) 74
6.2.7 Models by Bresson, Chevassut, and Pointcheval (BCP, BCP+) 78
6.2.8 Modifications of the BCPQ, BCP, and BCP+ Models 80
6.2.9 Models by Katz and Shin (KS, UC-KS) . 82
6.2.10Model by Bohli, Vasco, and Steinwandt (BVS) . 83

Contents 11

6.3 Summary and Discussion . 84

7 Security-Focused Survey on Group Key Exchange Protocols 87
7.1 Preliminaries . 87

7.1.1 Two-Party Key Exchange Protocol by Diffie and Hellman 87
7.1.2 Three-Party Key Exchange Protocol by Joux . 88
7.1.3 A Comment on Relationships between the Protocols 88

7.2 Group Key Exchange Protocols with Heuristic Security Arguments 90
7.2.1 Protocol by Burmester and Desmedt . 90
7.2.2 Protocol by Ingemarsson, Tang, and Wong . 91
7.2.3 Protocols by Steiner, Tsudik, and Waidner . 92
7.2.4 Protocols by Ateniese, Steiner, and Tsudik . 93
7.2.5 Protocol by Steer, Strawczynski, Diffie, and Wiener . 95
7.2.6 Protocol by Becker and Wille . 95
7.2.7 Protocols by Kim, Perrig, and Tsudik . 97
7.2.8 Protocol by Lee, Kim, Kim, and Ryu . 98
7.2.9 Protocols by Barua, Dutta, and Sarkar . 99

7.3 Provably Secure Group Key Exchange Protocols . 99
7.3.1 Protocol by Katz and Yung . 99
7.3.2 Protocol by Abdalla, Bresson, Chevassut, and Pointcheval 100
7.3.3 Protocol by Kim, Lee, and Lee . 101
7.3.4 Protocols by Barua and Dutta . 102
7.3.5 Protocols by Bresson and Catalano . 103
7.3.6 Protocols by Bresson, Chevassut, Pointcheval, and Quisquater 104
7.3.7 Protocols by Dutta, Barua, and Sarkar . 107

7.4 Summary and Discussion . 108

8 A Modular Security Model for Group Key Exchange Protocols 111
8.1 Execution Parameters and Definitions . 111

8.1.1 Protocol Participants, Instance Oracles . 111
8.1.2 Long-Lived Keys . 112
8.1.3 Internal State Information . 112
8.1.4 Session Group Key, Session ID, Partner ID . 113
8.1.5 Instance Oracle States . 113
8.1.6 Static GKE Protocol . 114
8.1.7 Dynamic GKE Protocol . 114

8.2 Adversarial Model and Security Requirements . 115
8.2.1 Queries to the Instance Oracles . 115
8.2.2 Correctness . 116
8.2.3 Forward Secrecy . 117
8.2.4 Backward Secrecy . 117
8.2.5 Freshness . 118
8.2.6 Corruption Models . 119
8.2.7 Adversarial Setting . 119
8.2.8 (A)KE-Security . 119
8.2.9 MA-Security . 120
8.2.10t-Contributiveness . 121

12 Contents

8.3 Unifying Relationship of MA-Security and t-Contributiveness 123
8.4 A Comment on Backward Secrecy . 124

9 Seven Security-Enhancing Compilers for GKE Protocols . 127
9.1 Compilers and their Goals . 127
9.2 Preliminaries . 128

9.2.1 On Separation of Long-Lived Keys and Internal States 128
9.2.2 Changes in Notation . 128

9.3 Compiler for AKE-Security . 128
9.4 Compiler for MA-Security . 135
9.5 Compiler for n-Contributiveness . 142
9.6 Multi-Purpose Compilers . 149

9.6.1 Compiler for AKE-Security and n-Contributiveness . 150
9.6.2 Compiler for AKE- and MA-Security . 157
9.6.3 Compiler for MA-Security and n-Contributiveness . 163
9.6.4 Compiler for AKE-, MA-Security and n-Contributiveness 170

9.7 Summary . 178

10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions 179
10.1Number-Theoretic Assumptions . 179

10.1.1Algebraic Group . 179
10.1.2Tree Decisional Diffie-Hellman Assumption . 180

10.2Short Overview of TDH1 . 184
10.2.1Static and Dynamic TDH1.Setup . 185
10.2.2TDH1.Join+ . 185
10.2.3TDH1.Leave+ . 186

10.3Static TDH1 . 186
10.3.1Authentication Functions . 186
10.3.2Tree Management Function . 186
10.3.3Key Exchange Functions . 187
10.3.4Key Confirmation and Derivation Functions . 187
10.3.5Protocol Execution . 188
10.3.6Security Analysis of Static TDH1 . 189

10.4Dynamic TDH1 . 198
10.4.1Additional Tree Management Functions . 198
10.4.2Additional Key Exchange Functions . 198
10.4.3Protocol Execution . 199
10.4.4Security Analysis of Dynamic TDH1 . 204

10.5Summary . 208

Conclusions and Further Research Directions . 209

References . 211

List of Figures

6.1 Example: Honest Execution of Protocols in [41, 42, 43, 46] 76
6.2 Example: SID(Πsi

i) in the Honest Protocol Execution . 76
6.3 Example: Protocol Execution with Impersonation Attack . 76
6.4 Example: SID(Πsi

i) in the Attacked Protocol Execution . 76
6.5 Example: Execution of the Protocol in [46] with Three Participants 78

7.1 Two-Party Key Exchange Protocol by Diffie and Hellman [79] 88
7.2 Three-Party Key Exchange Protocol by Joux [109] . 88
7.3 Example: Balanced and Linear Trees for n = 4 . 89
7.4 Example: Balanced Ternary Tree for n = 8 . 90
7.5 Protocol by Burmester and Desmedt [50] . 90
7.6 Protocol by Ingemarsson, Tang, and Wong [107] . 91
7.7 Protocol GDH.1 [174] . 92
7.8 Protocol GDH.2 [174] . 92
7.9 Protocol GDH.3 [174] . 92
7.10 Protocol SA-GDH.2 [13] . 94
7.11 Protocol by Steer, Strawczynski, Diffie, and Wiener [171] . 95
7.12 Example: Main Building Block of Protocols Octopus and Hypercube[17] 96
7.13 Protocols Octopus and Hypercube [17] . 96
7.14 Protocol by Perrig [147] . 97
7.15 Protocol STR [118] . 97
7.16 Protocol by Lee, Kim, Kim, and Ryu [123] . 98
7.17 Protocol by Katz and Yung [112] . 100
7.18 Protocol by Abdalla, Bresson, Chevassut, and Pointcheval [5] 101
7.19 Protocol by Kim, Lee, and Lee [114] (Setup Operation) . 101
7.20 Protocol by Dutta and Barua [83] (Unauthenticated Setup Operation) 102
7.21 Protocol by Dutta and Barua with Password-Based Authentication [86] 103
7.22 Protocol by Bresson and Catalano [40] (Generalized Version) 104
7.23 Protocol by Bresson, Chevassut, Pointcheval, and Quisquater [46] 104
7.24 Protocol by Bresson, Chevassut, and Pointcheval with Password-Based

Authentication [45] . 106
7.25 Protocol by Dutta, Barua, and Sarkar [87] . 107

10.1 Example: Tree_Init . 187
10.2 Example: Operation TDH1.Setup (Static Case) . 188
10.3 Example: Tree_Join+ . 199
10.4 Example: Tree_Leave+ . 199
10.5 Example: Operation TDH1.Setup (Dynamic Case) . 200
10.6 Example: Operation TDH1.Join+ . 201
10.7 Example: Operation TDH1.Leave+ . 203

List of Tables

6.1 Analysis of Security Models for Group Key Exchange Protocols 85

7.1 Analysis of Provably Secure Group Key Exchange Protocols 109

9.1 Summary of the Generic Security-Enhancing Compilers for GKE Protocols 178

List of Symbols and Notations

N, R a set of natural numbers (≥ 0), a set of real numbers

Zp, Z∗p a set of integers modulo p ∈ N, i.e. {0, . . . , p − 1}, a multiplicative
group of Zp

G cyclic (multiplicative) group with generator g

∈, ∈R choice, random choice

[1, n] interval between 1 and n

≡,⇐⇒ equivalence relationship

?
= equality check or verification

:=,← value assignment

x← f(y) x is the output of f() on input y

| divisor of, e.g. q|p− 1 for q divides p− 1, or concatenation of (binary)
strings, e.g. x|y (context-dependent)

|x| size or length of x or absolute value of x (context-dependent)

⊕ XOR operator

mod modulo operator

Pr[X] probability of event X

Pr[A1; . . . ;An : X] probability of event X after the sequential occurrence of A1, . . . ,An
(used mostly in definitions of security goals)

Gameprf−b
F (κ) adversarial game specified by bit b ∈ {0, 1} between a PPT algorithm

A in the attack against the pseudo-randomness of a function ensemble
F with the security parameter κ

18 List of Symbols and Notations

Game(a)ke−b
α,β,P (κ) adversarial game specified by bit b ∈ {0, 1} between a PPT algorithm

A in the attack against the (A)KE-security of a group key exchange
protocol P with the security parameter κ and the secrecy type α; (α, β)
denotes the adversarial setting against the (A)KE-security of P

Gamema
P (κ) adversarial game between a PPT algorithm A in the attack against the

MA-security of a group key exchange protocol P with the security pa-
rameter κ

Gamecon−t
P (κ) adversarial game between a PPT algorithm A in the attack against the

t-contributiveness of a group key exchange protocol P with the security
parameter κ

Advreqcc (κ) advantage probability of a PPT adversarial algorithm A in the attack
against the security requirement req of a cryptographic construction
cc with the security parameter κ

Succreqcc (κ) success probability of a PPT adversarial algorithm A in the attack
against the security requirement req of a cryptographic construction
cc with the security parameter κ

U , U , G user (protocol participant, group member), set of all possible protocol
participants (users, potential group members), set of actual protocol par-
ticipants (group members), i.e. G ⊆ U

Πs
U , Πsi

i a general notation for the s-th instance (oracle) of user U , a notation for
the si-th instance of one particular Ui ∈ U

sidsU , pidsU , ksU session id, partner id, secret key of Πs
U

LLi, (ski, pki) long-lived (long-term) key of Ui, private/public key pair of Ui

Tn, Tn binary tree with n leaf nodes, set of all binary trees with n leaf nodes,
i.e, Tn ∈ Tn

dTn depth of Tn

〈l, v〉 label of a node in Tn where l (0 ≤ l ≤ dTn) denotes node’s level and v
(0 ≤ v ≤ 2l − 1) its position within this level, 〈0, 0〉 denotes the root
node

Overview and Organization

Part I provides general information taking the reader beyond the actual scope of the disserta-
tion while assuming some basic knowledge of security and cryptography. In particular it pro-
vides introduction to group applications and their security issues, describes variants of group
key establishment techniques, outlines the notion of “provable security” in the context of cryp-
tographic constructions, specifies objectives of the dissertation, and summarizes its research
contributions. Part I consists of the following chapters:

• Chapter 1 provides a number of examples of widely deployed group applications and de-
scribes general aspects of their security. Additionally, it focuses on the notion of group mem-
bership and gives insight into the management of the group formation.

• Chapter 2 classifies techniques of group key establishment and specifies main differences
between the two major approaches – group key transport/distribution and group key ex-
change/agreement – from the perspective of security requirements and trust relationship
whereby the description of security requirements is kept general. Finally, this chapter de-
scribes the general idea behind generic security solutions – security-enhancing compilers –
and motivates their importance for group key establishment protocols.

• Chapter 3 gives a brief introduction on the issue of provable security and specifies how it
is currently understood in cryptography. Its general description focuses on the three main
classes – information-theoretic, computational, and symbolic security – and is carried out
in the context of group key establishment protocols. The high-level description considers
different aspects of security proofs and applied techniques including well-known auxiliary
methods of the Random Oracle Model and Ideal Cipher Model.

• Chapter 4 lists main objectives of the dissertation using the terminology introduced in the
previous chapters and summarizes main research contributions and obtained results. It also
provides more detailed overview of single chapters of the second part than the one given in
the following.

Part II is the main part of the dissertation and focuses on the issues of provable security in
the context of cryptographic group key exchange protocols. In particular it provides detailed
description of the state-of-the-art research in this area and contributes in different ways ranging
from the theoretical aspects concerning modeling of group key exchange protocols and their
security requirements up to practical issues including new protocols and generic constructions
with the adequate proofs of security. Part II consists of the following chapters:

• Chapter 5 provides theoretical background on cryptography while being limited to the issues
used throughout the dissertation.

20 Overview and Organization

Chapter 6 describes the state-of-the-art of the theoretical research on security requirements
and security models for group key exchange protocols and draws conclusions that provide
background for further theoretical research concerning security models for group key ex-
change protocols.

• Chapter 7 describes the state-of-the-art of the practical research considering currently known
group key exchange protocols and draws conclusions that provide background for the fur-
ther practical research on new group key exchange protocols and generic security-enhancing
solutions.

• Chapter 8 provides the main theoretical contribution of this dissertation in form of an ad-
vanced security model for group key exchange protocols that provides extended security
requirements considering a stronger adversarial setting compared to all currently available
security models.

• Chapter 9 provides our first practical research contribution in form of several generic tech-
niques – compilers – that can be used to enhance security of independently designed group
key exchange protocols. For each compiler (in total seven) we provide confidence by proving
its security in our theoretical model under standard cryptographic assumptions.

• Chapter 10 describes our second practical research contribution in form of a new group key
exchange protocol TDH1 which provides extended security properties compared to all cur-
rently known protocols. We describe two versions of the protocol for two different kinds
of groups (static and dynamic). Additionally, we provide a formal treatment of the crypto-
graphic assumption TDDH used in the security proof of TDH1 and show that it can be consid-
ered as a standard cryptographic assumption.

Part I

Group Applications and Key Establishment
– Introduction on Security Issues and Dissertation Focus –

Chapter 1

Group Applications and Security

This chapter provides introduction to group applications and related security issues. Its pur-
pose is to show that security in group applications is a large topic of research where cryptogra-
phy and its techniques play a very important role.

1.1 Group Applications . 23
1.1.1 Digital Conferences . 24
1.1.2 Text-Based Group Communication . 24
1.1.3 File and Data Sharing . 24
1.1.4 Replication and Synchronization Systems . 24
1.1.5 CSCW Systems and Groupware . 25

1.2 Membership Dynamics . 25
1.3 Security Issues in Group Applications . 26

1.3.1 Confidentiality . 26
1.3.2 Authentication . 27
1.3.3 Integrity . 28

1.4 Group Membership . 29
1.4.1 Group Admission and Membership Control . 29
1.4.2 Group Authority . 30
1.4.3 Group Admission Policy . 30
1.4.4 Group Membership Certificates and Admission Process . 30

1.1 Group Applications

The invention of integrated circuits and microprocessors in the second half of the last century
and subsequent digital revolution marked a significant progress in information processing and
gave every individual additional intelligent auxiliary tools in form of digital devices that are
able to analyze information and prepare it for private and business use.

In combination with networking, and especially, after the establishment of the Internet as
mass communication media, digital technology opened new extensive possibilities for private
and industrial information retrieval and exchange, pushed innovative business models and sim-
plified work processes within enterprizes. Recent developments in wireless technology and
portable devices provide additional flexibility in handling of information and interaction with
the environment. It is obvious that “connectivity” means nowadays much more than simply
bringing two or more individuals or systems together.

It is reasonable to expect that in near future thanks to further hardware and software devel-
opments as well as new communication standards people and systems will remain in contact
with each other regardless of time and location. This makes a very convenient atmosphere for
the deployment and progress of multi-party applications and all kinds of joint information pro-
cessing.

24 1 Group Applications and Security

Group applications represent a special case of multi-party applications where users (group
members) have some unifying relationship concerning their rights, responsibilities and appli-
cation goals. In the following we list some well-known forms of group applications without
claiming completeness. Interesting information on group applications can be also obtained in
the literature, e.g. proceedings of GROUP, CSCW, and ECSCW conferences, and via relevant
websites.

1.1.1 Digital Conferences

Digital conferences like audio/video/web conferences [187] are popular, especially in compa-
nies, since they allow a number of participants at different locations to arrange meetings and
collective discussions at low cost compared to those with physical presence of participants.
These real-time applications are useful in many communication scenarios, for example in busi-
ness scenarios digital conferences can be used by enterprizes with many branches spread over
different geographic locations for strategic discussions and reports, or in battlefield scenarios
they can be used for efficient coordination of the operation development.

1.1.2 Text-Based Group Communication

The most popular example of applications for the text-based group communication are surely
chat systems. These real-time applications allow a set of users to write messages in a public or
closed space. Many chat systems provide options for admission control and moderation. New
chat participants are usually able to observe past communication.

Another prominent example of the text-based group communication are discussion forums.
The main difference to the chat systems is that the communication is asynchronous and partici-
pants can leave and return later without missing parts of the communicated information.

Newsgroups and mailing lists are further favorite applications for information distribution.
The main difference to the previous examples is that subscription of participants is required
prior to the information receival. Mailing lists are often used in business scenarios to address
groups of employees of a company or inform customers about new developments.

1.1.3 File and Data Sharing

File and data sharing systems allow sharing and exchange of digital information among a group
of users. The most prominent example is a distributed approach in form of peer-to-peer file
sharing systems [10] where each user typically stores data intended for sharing in his own
device and provides other users with access rights to this data.

There exist also centralized approaches like OpenNAP [1] where information is stored at
some central logical or physical location, usually on a (distributed) database server, which can
be accessed by legitimate users who may add, alter or simply retrieve the stored information.

Note that revision control and concurrent versions systems [149, 179] which are frequently
used in companies and organizations to keep consistency of the information that may be modi-
fied concurrently by several users also belong to the class of file and data sharing applications.

1.1.4 Replication and Synchronization Systems

Sometimes it is desirable to store the same data at different physical locations, e.g. distributed
server systems, in order to achieve higher accessability and reliability compared to the cen-
tralized data storage with a single-point-of-failure. For example, different “mirror” web servers

1.2 Membership Dynamics 25

are often used to ensure access to the information in case that some of them are temporarily
not accessible or to decrease access time by balancing the number of requests to each server.
Obviously, it is important to ensure consistency of the distributed contents. Replication and syn-
chronization systems [178] provide automatic mechanisms that allow to keep consistency of the
distributed content upon occurring changes.

1.1.5 CSCW Systems and Groupware

Computer supported collaborative work (CSCW) systems and groupware applications [100,
101] allow a group of participants, each using own auxiliary digital device, to process some joint
task. Often CSCW systems and groupware applications are used to optimize workflow manage-
ment within a company. These applications consist usually of many different components each
designed for some special purpose. Some of these components enable group communication via
digital conferences [153] or text-based communication as described above.

However, there is a number of components which distinguish CSCW systems and groupware
applications from the others, e.g. multi-user editors that can be used for the collective editing
of documents. To this category belong also applications like shared white-boards and shared
screens working based on the WYSIWIS (What-You-See-Is-What-I-See) principle [172].

Furthermore, computer supported cooperative learning (CSCL) systems [183] and group
decision support (GDS) systems [155] also belong to this category.

1.2 Membership Dynamics

Some group applications assume that there exists a group G encompassing a set of members
U1, . . . , Un. However, this group may have its own dynamics. The number of members may
remain constant or change over the whole execution period of the application. Obviously, it
depends on concrete scenarios whether such changes have to be considered or not.

For example, if the executive board of an enterprise organizes a digital conference with the
managers of all its branches then it is likely that all group members are known in advance and
the group remains constant during the whole conference period. On the other hand if a chat
system or a discussion forum is set up in some public space then it is likely that the number of
participants will change and that these changes are rather spontaneous. A groupware application
can be used for a project development within a company with some fixed number of employees
assigned to the project or used within some project that welcomes new participants, e.g., open
source projects. In the latter case it is desirable to have mechanisms that handle dynamic group
changes.

Most of the group applications are designed and implemented in a way that allows them to
handle changes of the group formation. The following terminology is frequently used in the
literature to distinguish between groups with respect to the behavior of their members.

Static groups are groups where the initial group size remains constant over the life-time of
the group. In a group application this means that the number of users does not change until the
application is finished. Usually, in static groups participants are known in advance. On the other
hand, dynamic groups allow members to join or leave the group. Sometimes, dynamic groups
are built spontaneously so that application users may not be known in advance.

It is worth being mentioned that group membership dynamics may have consequences on
the efficiency of the application and also on its security. It is a wide-spread opinion that higher

26 1 Group Applications and Security

efficiency can be usually achieved at the expense of lower security and vice versa, so that in
practice one tries to find a reasonable trade-off between the both issues.

1.3 Security Issues in Group Applications

Beside usability, reliability, and cost/performance ratio security is a major factor for a broader
acceptance of an application and its successful deployment once put on the market. Security
becomes especially important in case that the application is used in critical scenarios concerning
military, politics, economics, etc.

In group applications, security is increasingly important since these applications involve
many users and each of them can be considered as a possible point of the attack (or even the
attacker himself). It is a challenging task to guarantee security if users are equipped with diverse
digital devices, located in different networks with inhomogeneous and sometimes insufficient
protection mechanisms, or have different experience with the application which may lead to
additional security risks.

Surely, each group application may have its own security requirements concerning access
control, communication, information storage and processing. However, most of them suit in
the following three common classes of the information security requirements - confidentiality,
authentication, and integrity [135, Chapter 1].

One of the main techniques to achieve these requirements is cryptography. However, cryp-
tography alone is not sufficient. Especially, in multi-user and group applications assumptions
on the trust relationship between participants is also of major importance. For each security
requirement it is important to specify the underlying trust assumption, and in most cases secu-
rity can only be guaranteed if all users during the application execution do not deviate from the
stated trust relationship.

1.3.1 Confidentiality

Confidentiality is a requirement on “keeping information secret from all but those who are
authorized to see it” [135, Chapter 1]. Confidentiality is often used as a synonym for privacy
and secrecy, and is related to information hiding.

In many group applications confidentiality plays an important role. Especially, in scenar-
ios where a group application is used for the purpose of the exchange or storage of sensitive
information which requires protection.

Cryptography provides appropriate methods in form of encryption mechanisms to achieve
confidentiality of the exchanged and stored information. There are two major types of encryp-
tion mechanisms - those based on symmetric cryptography and those based on asymmetric or
also known as public-key cryptography.

In symmetric encryption schemes [135, Chapters 6,7] all authorized users share some secret
value (secret key) k which serves as input to a symmetric encryption scheme for the purpose
of information encryption and decryption. Hence, in group applications symmetric encryption
schemes can be used if all authorized group members know the shared secret key k prior to the
execution of the application.

In asymmetric encryption schemes [135, Chapter 8] each user Ui has an individual key pair
(ski, pki) consisting of a public key pki and a mathematically related private key ski. If a user
Ui is supposed to decrypt a message then this message should have been previously encrypted
using the public key pki. For the decryption Ui applies own private key ski. Thus, in order to

1.3 Security Issues in Group Applications 27

exchange information securely within a group this information has to be encrypted indepen-
dently with the public key of each user. Obviously, this is less practical than using symmetric
encryption schemes which require information to be encrypted only once. Another approach is
to let group members share the same private/public group key pair (skG, pkG). However, this
implicitly assumes that users share a secret value (in form of the private group key skG), and
can, therefore, derive the shared key k required for symmetric encryption schemes. Note also
that symmetric encryption is more efficient than public-key encryption.

Thus, symmetric cryptography is more suitable to achieve confidentiality and privacy in
group applications, and in this case it is essential that group members learn the required secret
key k.

1.3.2 Authentication

Authentication has its roots in Greek and means “real” or “genuine”. In information security,
authentication is specific to some certain objective. Cryptography distinguishes between iden-
tification or entity authentication on the one hand, and data origin authentication or message
authentication on the other hand [135, Chapter 1]. Beside this group applications may have
additional authentication goals which we also mention in the following.

Identification and Entity Authentication

In case of identification or entity authentication a user Uj is assured of the identity of another
user Ui through the obtained information and that Ui was actively involved in the issue of this
information. An additional requirement called non-repudiation enables Uj to prove this fact to
some third party.

Identification and entity authentication with non-repudiation can only be achieved using
techniques of public-key cryptography, in particular via digital signature schemes. A digital
signature scheme [135, Chapter 11] consists of a key generation algorithm that outputs a pri-
vate/public key pair (sk, pk), a signature generation algorithm and an associate verification
algorithm. The signature generation algorithm takes as input binary data m which should be
signed and a private key sk known only to the signer. The verification algorithm takes as in-
put the binary data m, a candidate signature σ and the public key pk of the potential signer
and checks whether the verification is successful or not. In group applications each user Ui may
have own private/public key pair (ski, pki) and thus digitally sign information intended for other
group members in case that entity authentication is required by the application.

Data Origin Authentication, Message Authentication, Group Authentication

In case of data origin authentication or message authentication a user Uj is only assured of the
identity of another user Ui without being able to prove that Ui issued this information. Thus,
message authentication does not necessarily provide non-repudiation.

Message authentication can be achieved using techniques of symmetric cryptography, espe-
cially so-called message authentication codes (MACs) [135, Chapter 9] are often used for this
purpose. A MAC is a symmetric cryptographic algorithm which takes as input a binary data m
of an arbitrary length which should be authenticated and a secret key k, and outputs a binary
string µ (MAC value). The main security requirement on a MAC is that given zero or more
data/MAC value pairs (m,µ) it should be computationally infeasible to compute another pair
for some different data m′ 6= m. Obviously, this requirement also implies that the secret key k

28 1 Group Applications and Security

may not be recovered from one or more data/MAC value pairs. Data origin can be easily ver-
ified by recomputing a MAC value and comparing it to the original one. Note that in order to
recompute the MAC value it is essential to know the secret key k.

In two-user applications it is intuitively clear that if both users U1 and U2 share a secret key
k and one of them obtains information together with a valid MAC value but is not the issuer
of this information then the second user must be the issuer (as long as any third party does not
obtain the shared key). Thus, in two-user applications MACs can also be used to identify the
information issuer (without provability of this fact). Obviously, it is of great importance that
other parties do not obtain the secret key; otherwise, they can produce MAC values accepted by
both users. Thus, users have to trust each other not to reveal the shared key. Interesting is that if
the key is revealed then it must have been done by at least one of the both users (as long as the
MAC scheme is secure). Obviously, if one user, say U1, remains honest then it must be another
user U2 who has misused the trust. This may cause honest user U1 to cancel further cooperation
with the dishonest U2.

In group applications, however, we have a completely different situation. In case that the
secret key is shared between a group of users G := {U1, . . . , Un}, n > 2, it is no more possible
to identify the issuer since any user Ui ∈ G is a potential issuer. Hence, in group applications
the notions of data origin authentication and message authentication reduce to the so-called
requirement of group authentication [58] that guarantees only that the information is originated
or altered by a member of the group who knows the corresponding secret key. Thus, in case
that the application requires identification within the group then members have to use digital
signatures. Also, it is not possible to identify dishonest users if they misuse the trust and reveal
shared keys. Thus, in group applications the described trust relationship is more important than
in two-party applications.

Note also that group authentication is also implied in case that a symmetric encryption
scheme is used by group members for the purpose of confidentiality, since only group mem-
bers in possession of the shared key are able to encrypt and decrypt information.

1.3.3 Integrity

Integrity has its roots in Latin and means “wholeness” or “completeness”. Information integrity
is a security condition that the information remains identical during any operation, such as
transfer, storage, or processing [135, Chapter 1].

Information integrity in group applications may have certain constraints depending on the
required trust relationship. For example, in multi-user editors all authorized users are allowed
to alter shared documents. In the text-based communication scenarios it is, however, desirable
that exchanged messages are transferred to the users without being modified. In the following
we overview some cryptographic methods that can be used to achieve various kinds of integrity
in group application scenarios.

Collision-resistant hash functions [135, Chapter 9] can be used to achieve information and
data integrity in its plain form (without additional confidentiality or authentication). These func-
tions map binary strings of arbitrary length to binary strings of fixed length such that it is com-
putationally infeasible to find two or more different input strings that result in the same output
string (hash value). In order to provide information and data integrity it is necessary to protect
the hash value χ of the original information. Any attempt to alter this information would be
noticed by comparing the current hash value with χ. Hash functions are usually publicly known
and there is no secret information needed to evaluate them (this in contrast to MACs which

1.4 Group Membership 29

are sometimes called keyed hash functions). Therefore, hash functions can be applied for the
purpose of the integrity control only if a user knows the original hash value of the information.

This method can be used in group applications like file sharing or shared data storage in
case that only authorized users are allowed to alter the stored information. In order to achieve
integrity for any authorized modification of the information the updated hash value χ′ has to
be stored in addition to the modified data. Moreover, the application must ensure that integrity
is provided for that hash value too, and that only authorized users are allowed to alter it. Thus,
in group applications information integrity based on hash functions can only be achieved if
applications provide additional mechanisms for the authorized access control to the data and
associated hash values or if users trust each other not to alter information added by other users.

There is a number of cryptographic methods to achieve information integrity in conjunction
with the previously described requirements of confidentiality, authentication, or both of them.
For example, encryption schemes provide integrity for the encrypted information, however, only
in case that a user is able to verify that the decrypted information is a correct one, i.e., expected
by the user or satisfies some certain pattern. This follows from the security requirements on
encryption schemes stating that any modification of the ciphertext would necessarily result in
a different plaintext. Also, the kind of the encryption scheme used and the trust relationship
between group members has consequences on the integrity of the original information. If a
symmetric encryption scheme is used then any user Ui in possession of the secret key k is able
to alter data by re-encryption such that other users who decrypt this data later are not able to no-
tice its alteration. Thus, integrity of the original information in case that a symmetric encryption
scheme is used can be achieved only if users trust each other not to modify information issued
by other users. The same requirement holds for the asymmetric encryption schemes in case that
a single private/public key pair (skG, pkG) is used for the whole group. Only using individual
private/public key pairs (ski, pki) prevents any modification of the original information by any
other user Uj 6=i. Also, digital signatures (usually in combination with a hash function) and mes-
sage authentication codes imply integrity of the information. The only difference is that if MACs
are used then there are the same constraints as for the symmetric encryption schemes with re-
spect to the alteration of the original information by other group members and the required trust
relationship between group members.

1.4 Group Membership

In the previous sections we focused on group applications and their general security require-
ments and used termini like “group membership” or “authorized user”. Obviously, it is impor-
tant to specify how a user Ui becomes member of a group G and how group members can
distinguish whether a user belongs to the group or not?

1.4.1 Group Admission and Membership Control

The task of group membership assignment is handled by so-called group admission and mem-
bership control mechanisms [58, 115].

A group admission and membership control mechanism is a process or protocol whereby
a user obtains or looses group membership and is able to prove its possession to other group
members or third parties depending on the application scenario. The expression membership re-
vocation is often used to express the loss of the group membership. Note that group membership
may be revoked for a variety of reasons depending on concrete application scenarios.

30 1 Group Applications and Security

1.4.2 Group Authority

If a group is not open for the public use there are always some conditions which have to be
satisfied by an object or entity to obtain group membership. In dynamic groups a member may
also be excluded from the group or simply leave it.

The first main question in this context is who decides which conditions have to be satisfied
to obtain or loose group membership and who affirms or revokes it? This power is given to the
so-called group authority (GA) [115] which can be either centralized or distributed.

A centralized GA assumes the existence of one party that is solely in charge for the admission
to the group and revocation of the group membership. This party is often called group controller
or group owner [58, 115]. It can be either a special member of the group, or even some third
trusted party (TTP). The group controller alone specifies the required membership conditions,
approves the group membership and revokes it.

A distributed GA consists of several parties, usually a subset of group members or even the
whole group. Thus, group members have to negotiate conditions for the approval or revoca-
tion of the group membership, and are also in charge for the execution of the corresponding
procedures. Negotiation of membership conditions can be done for example by voting.

Obviously, the choice of the suitable form of the group authority depends on the trust re-
lationship between the group members, and is usually application- and situation-specific. It is
reasonable to assume that if group applications are deployed in companies or organizations
with a classical hierarchical structure then centralized GAs are likely to be used. In contrast, if a
group application is used in a different environment where such trust relationship is undesirable
then distributed GAs may be a better choice.

1.4.3 Group Admission Policy

The next important question, especially in case of dynamic groups, is how do prospective group
members obtain the list of conditions that they have to satisfy in order to get the group member-
ship approved? Note that in static groups the information about all prospective group members
is usually known in advance. Admission (and revocation) conditions can be specified in the
so-called group admission policies [115] that contain the description of the whole admission
process including the communication process with the GA. In turn, these policies may be part
of a global group security policy also called group charter [115] that provides additional infor-
mation about the group and GAs. A prospective group member must obtain these policies prior
to his group membership request.

1.4.4 Group Membership Certificates and Admission Process

As already noted GAs are in charge for the approval and revocation of the group membership. If
GA approves the group membership of an object or entity then it, usually, issues a group mem-
bership certificate which provides access to the application, or can be used to prove membership
possession to other parties (group members or third parties). Some admission protocols allow
the approved group members to compute certificates on their own upon receiving some required
information. The notion of the group membership certificate is rather abstract and opens differ-
ent ways for concrete realizations based on different admission processes. We describe some of
them in the following.

A popular way to approve group membership is to provide users with passwords that allow
access to the application and can be also used for the purpose of authentication. Passwords can

1.4 Group Membership 31

be either individual or shared. Individual passwords are realistic in groups with the centralized
admission control, e.g., a server acting as GA. Shared passwords can be used for the purpose of
group authentication but are practical in static groups because they have to be changed whenever
any group membership is revoked. If shared passwords are used in groups with a distributed GA
then members of the GA must trust each other not to introduce new members to the group,
unless explicitly allowed by the admission policy.

Similarly, admission process and membership certificates can be realized based on shared
secret keys. If GA approves the group membership of a prospective group member then this
member learns some secret key known to all other members. As already noted in Section 1.3.2
this shared secret key can then be used for the purpose of group authentication, and so for the
proof of group membership. It is important to change this key on every membership revocation.
This admission process works only if all GA members trust each other not to reveal the shared
key to prospective members unless these satisfy the conditions stated in the group admission
policy.

Another way to manage the admission process and create membership certificates is to use
digital signatures with public-key infrastructure (PKI) whereby GA acts as a certification au-
thority (CA) and digitally signs member’s credentials and further information such as validity
period of the certificate. Obviously, all group members are then able to verify the group mem-
bership using the corresponding public key of the GA. In case that a membership is revoked
classical mechanisms of certificate revocation via certificate revocation lists (CRLs) or Online
Certificate Status Protocol (OCSP) may be used. Obviously, this scenario suits well for groups
with centralized GAs.

If the above approach is applied directly in groups with distributed GAs then each GA mem-
ber has to sign each membership certificate resulting in linear costs for certificate generation and
verification. As noted in [115] it is also possible to use accountable subgroup multi-signatures
[143] that allow members of the GA (or a subset thereof) to create a digital signature testifying
that these members have actively participated in the signing process. In order to verify the va-
lidity of such membership certificates one must verify certificates of all GA members that have
signed. This is, however, practical only in static and small groups.

Other suggestions for the admission process with distributed GAs make use of the threshold
cryptography [78] which allows to share a power of a cryptographic system. In particular, mod-
ern threshold signature schemes as described in [115, 156, 157] may be used by GA members
to decide about the admission of prospective group members. The idea behind this technique is
that each GA member provides a partial threshold signature to a prospective group member. For
the approval of group membership this prospective group member must receive enough partial
signatures in order to derive a complete signature based on the techniques of threshold cryptog-
raphy. This complete signature represents the membership certificate of the group member. The
main drawback of these approaches is inefficient revocation of the group membership. Also,
group members cannot use obtained membership certificates to prove own membership to other
members.

Finally, we mention that research on group admission mechanisms, especially in groups with
distributed GAs, is currently in the beginning and that many of the available mechanisms have
drawbacks, especially with the revocation of the group membership. Still, an increasing interest
in this area can be expected along with the increasing interest in group applications.

Chapter 2

Group Key Establishment

As noted in the previous chapter many security requirements that are relevant for group appli-
cations, e.g. confidentiality, group authentication and integrity, can be achieved based on various
techniques of symmetric cryptography. In order to apply these techniques in a group setting it
is essential that group members obtain a common secret group key k. This chapter focuses on
the process of the group key establishment.

2.1 Classification . 33
2.2 Group Key Transport/Distribution . 34
2.3 Group Key Exchange/Agreement . 35
2.4 Session Keys . 35
2.5 Security Requirements on Group Key Establishment Protocols . 35
2.6 Generic Security-Enhancing Solutions - Compilers . 37

2.1 Classification

The establishment of group keys is fundamental for a variety of security mechanisms in group
applications. For example, group keys can be utilized by symmetric encryption schemes for
the purpose of confidentiality which is one of the most frequent security requirements in group
applications; also message authentication codes require group keys for the purpose of group au-
thentication and integrity. Thus, it is important to have mechanisms that provide group members
with shared secret keys. We classify possible mechanisms based on the following definitions
from [135, Chapter 12] which we adopted to a group setting.

Definition 2.1 (Group Key Establishment). Group key establishment is a process or protocol
whereby a shared secret becomes available to two or more parties, for subsequent cryptographic
use.

This general definition can further be shaped in two different classes: group key trans-
port/distribution and group key exchange/agreement.

Definition 2.2 (Group Key Transport/Distribution). A group key transport/distribution proto-
col or mechanism is a group key establishment technique where one party creates or otherwise
obtains a secret value, and securely transfers it to the other(s).

The main characteristic of group key transport protocols is that the group key k is chosen by
a single party and then securely transferred to all group members. This definition leaves open
whether a party which chooses the group key must be a group member. It is also imaginable to
have some trusted third party (TTP) that chooses group keys on behalf of the group. Also the
requirement on secure transfer of group keys forebodes the existence of secret communication
channels between the party that chooses group keys and other group members.

34 2 Group Key Establishment

Definition 2.3 (Group Key Exchange/Agreement). A group key exchange/agreement protocol
or mechanism is a group key establishment technique in which a shared secret is derived by
two or more parties as a function of the information contributed by, or associated with, each of
these, (ideally) such that no party can predetermine the resulting value.

Obviously, in group key exchange protocols all group members have to interact in order to
compute the group key. The main difference to group key transport techniques is that no party
is allowed to choose the group key on behalf of the whole group. Also, group key exchange
protocols do not require the existence of secure channels between participants since no secure
transfer takes place.

Note that regardless of which group key establishment technique is used by an application
the resulting group key must remain secret from unauthorized parties in order to guarantee the
expected requirements from the utilized cryptographic mechanisms, like encryption schemes or
message authentication codes.

Both group key establishment techniques can be analyzed in context of either static or dy-
namic groups. Of course it is always possible to establish the group key for the modified group
by re-starting the protocol. However, this may be inefficient if groups are large or the protocol
is computationally expensive. Therefore, many group key establishment protocols designed for
dynamic groups provide more efficient operations for addition and exclusion of group members.

2.2 Group Key Transport/Distribution

In group key transport/distribution protocols the party which chooses group keys on behalf of
the group is given enormous power and may, therefore, influence the security of the protocol.
Whether a group application allows this kind of trust relationship depends surely on its goals
and the environment in which it is executed. However, it seems evident that group key trans-
port protocols are primarily used in group applications with centralized control over the group
admission process. In these scenarios the party acting as group authority (GA) may also be in
charge for the choice of the group key and its distribution to other members.

Obviously, the most challenging task in group key transport protocols is its protection during
the protocol execution.

The following general mechanism is usually applied in group key transport protocols, e.g.
[50, 103]. After the party which is responsible for the choice of the group key chooses the key it
encrypts it via an appropriate encryption scheme and distributes it to all other group members.
Both, symmetric and public-key encryption schemes can be used for this purpose. In case that
the applied scheme is symmetric the existence of shared secret keys between this party and each
group member is indispensable. This means, that group members have to exchange secret keys
with that party pairwise before it proceeds with the group key distribution. Another solution is
to apply public-key encryption schemes which do not require any pre-shared secrets between
group members and the central party, e.g. in [133]. However, public-key encryption is usually
less efficient than symmetric encryption. Therefore, if group keys are distributed frequently, e.g.
due to frequent group membership changes, then symmetric cryptography performs better.

The core of many group key distribution protocols builds a mechanism called key hierarchy
[181, 186]. It arranges group members at the leaves of a logical tree and assigns some secret
value to each node of the tree. The secret value at the root of the tree represents the group key or
a secret material which can be used to derive the group key via some additional transformations.
The goal of the distribution process in key hierarchies is to provide each group member with

2.5 Security Requirements on Group Key Establishment Protocols 35

the information which it can use to compute all secret values in its path up to the root, including
the group key. Key hierarchies are popular in dynamic group key distribution protocols for
multicast and broadcast encryption, e.g. [47, 141, 163, 180, 181, 186], since they provide various
mechanisms based on modification of the logical tree structure to enhance protocol efficiency
upon dynamic group changes.

2.3 Group Key Exchange/Agreement

The only trust assumption in group key exchange protocols is that members trust each other not
to reveal any information which can be used to derive the group key to any third party which is
not a valid member of the group. Especially, group members do not trust each other during the
computation of the group key which should be composed of individual contributions of all group
members. Thus, in contrast to group key transport protocols the design of group key exchange
protocols is more challenging due to the distributed computation process of the group key.

Many group key exchange protocols (see Chapter 7) can be seen as modifications of the two-
party key exchange protocol proposed by Diffie and Hellman in their seminal paper [79]. This
protocol allows two parties upon exchange of information over a public channel to compute
the shared key using specific discrete mathematical constructions which prevent eavesdroppers
from learning the established key.

2.4 Session Keys

Usually, group keys returned by group key establishment protocols are not used directly in the
application. Instead, additional transformations are applied in order to derive further keys, so-
called session keys, which are used by different security mechanisms within the application. For
example, if an application requires confidentiality and group authentication then one session
key is derived for the encryption scheme and another session key is derived for the message au-
thentication code. Transformations which are used to derive session keys are usually one-way,
i.e., given the output of the transformation it is computationally infeasible to obtain the input.
Thus, even if a session key is leaked it is still hard to compute the original group key. The use of
different session keys provides additional security in terms of independence of applications and
deployed security mechanisms since leakage of one session key does not imply leakage of other
session keys. Thus for example, if a third party learns the session key used for group authen-
tication then it can authenticate itself as a group member but is not able to decrypt encrypted
group messages. Furthermore, session keys are ephemeral, i.e., they are valid for a short period
of time. For example, digital conferences should use a different session key for each communi-
cation session. The use of ephemeral keys decreases the chance of cryptanalytic attacks. Also
in dynamic groups any change of group membership should result in new session keys. In case
that the group is static but application execution lasts long, e.g., if groupware is used in some
long-term project, it is reasonable to refresh session keys periodically.

2.5 Security Requirements on Group Key Establishment Protocols

As already noted, the core security requirement on group key establishment process is to keep
the established group key out of reach of unauthorized parties [50, 171]. Whether the group

36 2 Group Key Establishment

key remains secret even if all group members take measurements to protect it from third parties
depends on a number of facts. In case that the established group key is used in a high-level
application (and this is the mostly common case) its secrecy must be protected by that applica-
tion. On the other hand, each group key establishment protocol must withstand attacks aiming
to compromise the key during the execution of the protocol.

However, group key secrecy is not the only security requirement. Another one is the indistin-
guishability of group keys from random values [119]. This requirement is stronger than group
key secrecy as long as the adversary is not able to verify the key by obtaining some information
where this key might have been used, e.g., a corresponding cipher text or a MAC value. There
are also some further security requirements based on the knowledge of the adversary. For ex-
ample security against known-key attacks [48, 189] requires that a group key used in a session
remains indistinguishable from a random value even in case that group keys of other sessions
are known to the adversary. This requirement is important especially in dynamic groups where
members may be excluded for a variety of reasons. This is because group members after their
exclusion must be treated as potential adversaries against the application which continues with
participation of remaining group members.

Further, in cryptographic protocols it is common to distinguish between passive and active
adversaries. Passive adversaries are limited to the attacks based on the eavesdropping of the
communication channels. Active adversaries are assumed to have more power since they can
modify and inject own protocol messages. In group key establishment protocols which are sup-
posed to provide security against active adversaries it is essential that participants distinguish
messages originated by valid participants from those originated by the adversary; otherwise,
an unauthorized user may participate in the protocol and learn the established group key. Ob-
viously, this requirement is related to authentication of group members during the protocol
execution. Also possible replay attacks caused by injection of messages from previous proto-
col executions or sessions have to be considered. These scenarios are covered by the class of
impersonation attacks [49, 50] against group key establishment protocols.

As noted in the previous chapter authentication of group members can be achieved using
techniques of symmetric and asymmetric cryptography. In both cases each group member uses
some secret information (in form of a password/shared key or private key related to some cer-
tified public key) such that other group members are able to verify this use. Usually, this secret
information is independent of one particular session and remains valid over a longer time period.
Therefore, it may become a potential subject of attacks. So, it is important to consider security
of a group key establishment protocol in case of the leakage of the authentication information
of its participants. Obviously, the knowledge of this information allows the adversary to imper-
sonate participants in subsequent protocol sessions. Therefore, it is reasonable to focus on the
security of preceding protocol sessions. These attack scenarios are covered by the requirement
called (perfect) forward secrecy [80, 102].

Another potential threat comes from the attacks against the correctness of a group key es-
tablishment protocol. In particular, the adversary may try to prevent protocol participants from
computing equal session keys. This may be considered as a kind of a denial-of-service attack
since it may prevent group members from using the application. For example, if the established
group key is used for the encryption of group messages then members holding different session
keys are not able to decrypt messages of each other. Surely, a successful attack of this form may
be discovered during the execution of the application, however, it is reasonable to take protec-
tive measures during the protocol without relying on the application. A class of requirements
including key confirmation [135] and mutual authentication [23] deals with this sort of attacks.

2.6 Generic Security-Enhancing Solutions - Compilers 37

It is worth being noticed that these attacks may also be carried out by valid group members
who participate in the protocol but those behavior deviates from its specification. Such protocol
participants are also called malicious participants or malicious insiders [111].

A different class of insider attacks concerns the computation process of the resulting group
key. Especially, in group key exchange protocols it is important that protocol participants equally
contribute to the resulting value of the group key without being able to influence it. This class
of security requirements includes contributiveness and unpredictability of group keys [13, 173],
and is of major importance for the trust relationship between the participants of a group key
exchange protocol. Note that in group key transport/distribution protocols such contributiveness
and unpredictability requirements have no substantiation because of the trust assumption on the
party which is allowed to choose group keys on behalf of other group members. One possible
threat covered by these attacks is that participants can be influenced to compute a session key
which has already been used in some previous session or another application. This may cause
various interference problems between different sessions or applications in which equal session
keys are used.

In addition to the attacks of passive/active adversaries and malicious insiders there is a class
of attacks aimed to reveal internal information used by participants during the protocol execu-
tion. These attacks can be carried out for example via malware. Such adversarial attacks are
usually called strong corruption attacks [42, 167, 173]. The revealed internal information con-
sists usually of ephemeral auxiliary secrets used by participants to compute the resulting session
group key. Especially in dynamic group key establishment protocols, where participants have to
save some auxiliary information in order to updated the group key on occurring group changes
more efficiently, it is challenging to provide security with respect to strong corruptions.

2.6 Generic Security-Enhancing Solutions - Compilers

In the light of a large number of different security requirements it is convenient to have generic
solutions that can be used to enhance security of any group key establishment protocol regard-
less of its original construction. Such security-enhancing solutions, called compilers [112], can
also be used to design group key establishment protocols in a modular way. It is simpler to de-
sign a protocol which satisfies only a subset of security requirements, and then apply a compiler
to enable additional security properties, which are not provided by the original construction.
Such modular construction of group key establishment protocols has advantages in situations
where a “black-box” implementation of a group key establishment protocol has to be adopted
for some particular group application that requires a higher degree of security than the one
currently available.

Chapter 3

Provable Security in Group Key Establishment

Security proofs are indispensable for any cryptographic protocol and provide strong arguments
in its favor. This chapter focuses on the notion of provable security and general techniques to
achieve it in the context of group key establishment protocols.

3.1 The Notion of Provable Security . 39
3.2 Information-Theoretic Security in Group Key Establishment . 40
3.3 Computational Security in Group Key Establishment . 41

3.3.1 Reductionist Security Proofs . 42
3.3.2 Proofs Based on Simulatability/Indistinguishability . 42
3.3.3 Non-Standard Assumptions in Computational Security Proofs . 43

3.4 Symbolic Security in Group Key Establishment . 44

3.1 The Notion of Provable Security

The notion of provable security is used in the modern cryptography to specify that a crypto-
graphic construction provides the required security goals if there exists a corresponding proof
of security in some mathematically indisputable way. In order to construct such proofs one usu-
ally requires a formal setting (security model) that takes into account involved participants, their
trust relationship, cryptographic parameters of the protocol, and communication environment,
and specifies the adversarial environment including definitions of some concrete security goals
that must be satisfied by the actual construction.

Security of earlier group key establishment protocols has been analyzed heuristically based
on informal definitions. Such intuitive analyses may provide a first feeling for the security of a
protocol but are insufficient to say that a protocol is provably secure. Indeed, many of group key
establishment protocols analyzed in this way were later shown to be insecure, e.g. [144, 146].

Provable security in cryptography comes currently in three different flavors: information-
theoretic (or unconditional), computational, and symbolic.

A cryptographic construction which is information-theoretic secure resists attacks of an ad-
versary which is not limited in computational power and resources. Therefore, this kind of
security is sometimes called unconditional.

The notion of computational security considers the adversary which is limited in its com-
putational power and resources. Computational security of a cryptographic construction relies
usually on some unproven (number-theoretic) assumptions which are widely believed to be true.

Finally, the symbolic security approach originated from formal methods and languages an-
alyzes security of a cryptographic construction based on a specified process calculus which is
applied to a formal description of the construction given in the syntax of the calculus. Secu-
rity proofs carried out using this approach can be automated using appropriately implemented
analyzers.

40 3 Provable Security in Group Key Establishment

In the following we give a brief overview of these approaches in the context of group key
establishment.

3.2 Information-Theoretic Security in Group Key Establishment

Information-theoretic security is considered as the strongest degree of security of a crypto-
graphic construction. Information-theoretic security strongly relies on the probabilistic behav-
ior of mechanisms used by a cryptographic system and statistics. The theoretical background
of this security type has its roots in Shannon’s research [162] on secrecy systems. Since that
it became the inherent part of the cryptographic research and has been applied to differ-
ent constructions including message authentication [93, 169, 182] and also key establishment
[6, 77, 128, 129, 130, 188]. The latter is especially interesting in the context of this work.

Information-theoretic secure key establishment is possible if the adversary can be limited
in its knowledge compared to the knowledge of participants. Thus, participants must share at
least some partially secret information initially. Such limitation of the adversarial knowledge
can be achieved by exploiting noise in communication channels [6, 77, 128, 188], limitations
of adversarial memory capacity (without limiting its computational resources) [54], quantum
entanglement [88] or Heisenberg uncertainty principle in quantum mechanics [25].

A significant drawback of information-theoretic secure key establishment protocols is their
limited practical deployment. For example, the protocol described in [130] (whose design is
exemplary for many information-theoretic secure key establishment protocols) assumes that a
satellite (which can be considered as a trusted third party) sends out randomly generated binary
signals which are received by both participants (and possibly by the adversary) over indepen-
dent binary-symmetric channels with own error probabilities, i.e., noisy channels where any
sent bit is received with its value being preserved with some probability which is independent
of the initial value. General assumptions are that the error rate of the potential adversary is lower
than that of the both protocol participants that are connected by a public but authentic channel.
In the first phase of the protocol, denoted advantage distillation, both participants exploit the
strength of the noiseless authentic communication channel to exchange information about the
received bits in order to identify the correctly received ones using parity checks. At the end
of the advantage distillation phase each participant holds a long binary string whereby strings
of both participants may be distinct (contain a small number of errors). Also, the adversary
may have partial information concerning these strings. The goal is, however, to achieve that
both participants hold identical secret strings. Therefore, both users continue with the infor-
mation reconciliation phase whose goal is to achieve that both strings are equal. The applied
technique is related to error-correction mechanisms. The interaction between both participants
in this phase may leak some information to the adversary. Therefore, in order to ensure se-
crecy of the established shared binary string participants execute privacy amplification phase
whereby the entire partially secret equal binary strings are reduced. Privacy amplification phase
makes use of “random-like” functions like universal hash functions [26]. As already mentioned
this construction is exemplary for many information-theoretic secure key establishment pro-
tocols. Note that in some protocols, e.g., [54, 77, 188], there is no need in a trusted party so
that one of the participants distributes the random bit sequence instead. Anyway, in terms of
our classification all information-theoretic secure key establishment protocols are based on the
one-way distribution of the random information sequences, implying that the party which dis-
tributes these sequences can also control their randomness. Thus, these protocols do not provide
exchange/agreement in the sense of Definition 2.3.

3.3 Computational Security in Group Key Establishment 41

All of the currently known information-theoretic secure key establishment protocols have
been designed for two participants. Their security has been analyzed with respect to the secrecy
of the established key in the presence of passive eavesdroppers like in [77, 128, 188] and also
of active adversaries like in [129, 184], however, without considering extended security goals
mentioned in the previous chapter. Furthermore, we are not aware of any information-theoretic
secure key establishment protocol for a group setting. Still, information-theoretic security of
key establishment protocols remains an interesting topic of research. For more details in this
research area we refer to [106, 132, 151, 152, 185].

3.3 Computational Security in Group Key Establishment

Computational security limits the adversary in computational power and resources and is, there-
fore, weaker than information-theoretic security. However, it allows design of more practical
constructions.

The core of the computational security is that all involved parties (including the adversary)
are modeled by probabilistic polynomial-time algorithms whose outputs follow some probabil-
ity distributions. In computational security each security goal is defined from the perspective of
the corresponding adversarial attack specified by interaction (game) between the adversary al-
gorithm and the environment, also called challenger or simulator, which is supposed to represent
the collection of honest parties. In such games the adversary is considered to be successful if a
certain event Win occurs with a probability which is non-negligibly greater than some “target
probability”. Thus, security goals provide definitions of what it means to “break” the construc-
tion whereas the security proof examines the probability of this to happen. From this point of
view it is clear that computational security considers only attacks that have been previously
specified (as part of the security model). Therefore, for a higher security degree of the con-
struction it is essential that the underlying security model is strong enough to encompass all
important security goals.

Provable security based on the computational approach relies on unproven assumptions and,
therefore, differs from the notion of provable security in mathematics where results of proven
theorems are taken “as is”. These unproven assumptions deal mostly with number-theoretic
cryptographic problems that are widely believed to be intractable in case that mathematical pa-
rameters used to specify these problems are chosen carefully. Intractability in this case means
that it is computationally infeasible to solve the problem even with the best known solving algo-
rithm, that is the required computation power and resources clearly exceed those (polynomially
bounded) of the adversary algorithm. We refer to [135, Chapter 3] for an overview of the most
frequently used cryptographic assumptions and problems.

Security proofs in computational (game-based) security models are mostly of reductionist
nature [18] and carried out by contradiction, i.e., the success probability of an adversary in
breaking a security requirement of the construction is usually reduced to the probability of
breaking one or more cryptographic problems which are believed to be intractable. The idea
behind the reduction is to show that the hardness of one problem P1 like breaking some in-
tractable cryptographic problem implies the hardness of another problem P2 like breaking some
construction specific security goal. For this purpose one usually shows that given a solving al-
gorithm for P2 it is possible to solve P1 with a polynomially bounded additional complexity
(polynomial reduction costs).

42 3 Provable Security in Group Key Establishment

3.3.1 Reductionist Security Proofs

Complex cryptographic protocols like those for group key establishment usually consist of dif-
ferent building blocks (cryptographic primitives). Security of such protocols may rely, therefore,
on more than just one cryptographic assumption. In this case each considered assumption should
have own reduction and all reductions must be related to each other in order to estimate the total
probability of the attack. Obviously, such security proofs may be complex and error-prone. The
technique called “sequence of games” [168] can usually be applied in order to reduce complex-
ity of the reductionist security proofs for complex constructions.

In the “sequence of games” approach one constructs a sequence of games (interactions be-
tween the adversary and the environment) G0,G1, . . . ,Gn starting with the original game as
defined in the underlying security model. As already mentioned, the original game usually spec-
ifies a certain event Win that must occur in case of a successful attack. Thus, in the security proof
for each game of the sequence one specifies events Wini, i = 0, . . . , nwhereby Win0 is the orig-
inal event Win and events Wini, i = 1, . . . , n are usually related to Win. Then, one tries to show
that the probability of Wini is negligibly close to that of Wini+1. Games are usually constructed
in such way that the probability of Winn (the event in the last game of the sequence) equals to
the “target probability” from the security goal definition in the underlying security model. In
order to simplify the relation of probabilities of subsequent events each game Gi, i = 1, . . . , n
is usually constructed by small changes to Gi−1.

Since [42] this technique became standard in the security proofs of group key establishment
protocols, e.g. [5, 84, 87, 114]. Recently several attempts to automate security proofs within the
computational approach have been proposed, e.g. [31, 75]. These approaches are currently at
the early stage of development and focus on automated security proofs for basic cryptographic
primitives like encryption schemes and digital signatures rather than on complex cryptographic
protocols.

There is a large number of the proposed group key establishment protocols that have been
proven computationally secure. However, not all protocols provide the same degree of security.
As already noted the security proof of a cryptographic construction based on the computational
(game-based) approach considers only attacks that have been specified in the underlying se-
curity model. The development of computational security models for group key establishment
protocols was initiated in [46] and further developed and refined in [42, 43, 87, 111, 112], and
the number of security goals increased from model to model. Therefore, group key establish-
ment protocols proven secure in the earlier models may loose on security in the later models. On
the other hand, there is a number of group key establishment protocols whose security proofs,
although based on the one of the proposed models, do not consider all security goals defined
by that model but rather a subset of them. This is because it is a challenging task to design a
protocol which satisfies all security requirements stated in a model, especially if that model is
strong.

3.3.2 Proofs Based on Simulatability/Indistinguishability

The technique of simulatability- or indistinguishability-based proofs originated in [97] and ex-
tended in [56, 148, 167] can be considered as a special type of the computational security ap-
proach where security of a cryptographic construction is derived from the indistinguishability
between the ideal execution of the construction and the real one. The ideal execution takes place
in the presence of some trusted party which receives inputs from all participants, computes ap-
propriate outputs and returns them to the participants. In this way, the ideal execution specifies

3.3 Computational Security in Group Key Establishment 43

which security requirements have to be provided by the construction, i.e., the security model of
the construction. In the real execution this party is replaced by the real communication environ-
ment between the participants who perform operations specified by the construction. In order
to show that a cryptographic construction satisfies the stated security requirements one has to
show that any damage caused by the adversary in the real execution can be simulated in the
ideal execution and that this simulation is indistinguishable by any observer.

There is a number of earlier proposals (e.g. [20, 62, 167]) concerning security models with
simulatability-based proofs for key establishment protocols. However, all of these models have
been defined for two participants and cannot be simply scaled to a group setting.

The latest development of the indistinguishability-based computational approach is the Uni-
versal Composability (UC) framework [57] that specifies an additional party called environment
which takes place of the observer representing “whatever is external to the current protocol ex-
ecution”. The security model is given by an ideal functionality which acts as a trusted party
mentioned above with the difference that it processes additional inputs occurring during the
execution and possibly depending on previously generated values, and maintains some local
state information. Security proof in the UC framework is performed by the simulation of the
real-world adversary such that the probability of the environment in being able to distinguish
between the interaction with the real-world adversary and the simulator (which represents the
ideal-world adversary) is negligible. The UC framework has its strength in the composition of
cryptographic protocols as described by the universal composition theorem [57] which can be
used to prove that the composition of secure sub-protocols realizing some sub-tasks results in a
secure protocol realizing the task which can be seen as a combination of all sub-tasks.

There is a number of works dealing with UC-security of key establishment protocols between
two participants (e.g. [60, 63, 64, 105]). The only currently published security model for UC-
secure group key establishment protocols is described in [111].

3.3.3 Non-Standard Assumptions in Computational Security Proofs

A higher confidence in a security proof of a cryptographic construction based on the computa-
tional approach can be achieved if the proof is carried out in the standard model which is “close
to” the practical execution environment. However, it is not always possible to prove security of
a protocol in the standard model; mostly, for the technical reasons. Therefore, some security
proofs can only be performed under auxiliary non-standard assumptions such as the Random
Oracle Model [23] and the Ideal Cipher Model [162].

Random Oracle Model

The Random Oracle Model (ROM) [23] is a non-standard methodology frequently applied in
the computational security proofs. It considers a cryptographic construction as an ideal system
in which all parties (including the adversary) can evaluate an ideal random function (called
random oracle) via adequate input queries. Security of the construction is then proven (mostly
using reductions) in this ideal setting. The main assumption in this approach is that the random
oracle used in the security proof can be replaced with some “good” cryptographic hash function
which can be directly evaluated by all parties (including the adversary). In this way one achieves
the implementation of the ideal system in the “real-world” scenario where such random oracles
do not exist.

There is a number of group key establishment protocols, e.g. [41, 46], whose security has
been analyzed using the methodology of ROM. However, in the cryptographic community the

44 3 Provable Security in Group Key Establishment

ROM methodology is currently under a controversy discussion motivated by a number of papers
describing cryptographic constructions whose security is provable in ROM but fails in practice,
e.g. [19, 59, 142]. On the other hand, all of these constructions are artificial and will hardly
be ever used in practice. In the opinion of some researchers, the practical irrelevance of the
proposed constructions aiming to undermine the validity of the ROM methodology for practical
cryptography achieves the opposed result [120].

In our opinion, designers of cryptographic constructions including group key establishment
protocols should try to achieve provable security under weaker assumptions in the standard
model rather than in ROM; at least until this controversy discussion is finished in favor of ROM.

Ideal Cipher Model

The Ideal Cipher Model (ICM) [162] is another non-standard methodology used in crypto-
graphic proofs. It assumes the existence of an ideal symmetric block cipher which should be
queried by all participants (including the adversary). Again having proved security of a crypto-
graphic construction under this assumption one instantiates the ideal cipher using some practical
block cipher. Note that ICM is assumed to be stronger than ROM since it is unknown whether
an ideal block cipher can be derived from a random oracle. For further discussion on the rela-
tionship between ICM and ROM we refer to [81].

There are some group key establishment protocols (e.g. [5]) where symmetric encryption
(with shared small entropy passwords) is used for the purpose of authentication. Security proofs
of such protocols require the non-standard assumptions of ICM.

Similar to the ROM methodology there are some cryptographic constructions (e.g. [27])
which remain secure in ICM and become insecure after the instantiation of the ideal block
cipher.

3.4 Symbolic Security in Group Key Establishment

The symbolic security approach originated in [82] and further developed in [2, 52, 89, 113, 134]
is characterized by an abstract view on the cryptographic scheme and the adversary which is
limited by constraints of used cryptographic primitives which are treated as ideal “black-boxes”
without considering details of their implementation. This approach makes stronger assumptions
on the adversary compared to the approach of computational security.

In the symbolic security approach cryptographic primitives are represented as operators of a
term algebra. The approach makes use of a process calculus with own syntax and operational
rules. A cryptographic construction, whose security has to be analyzed, is usually described
in the syntax of the given calculus and its security goals are represented by some appropriate
formal expressions. Security proofs are based on deductions, i.e., using a set of calculus rules
one tries to deduce the formal expression defined for a particular security goal from the initial
description of the protocol in the semantic of the calculus.

However, such symbolic analysis may not guarantee security of the construction if “black-
box” primitives are replaced by real implemented schemes. Thus, symbolic analysis alone pro-
vides a questionable degree of security. The actual strength of this approach is given by the
possibility to conduct automated security proofs (deductions) via so-called model checkers and
protocol analyzers [11, 30, 126, 170].

Latest works in this area of provable security originated in [3] try to combine strengths of
the symbolic approach, in particular its automatization, with the methods of computational se-

3.4 Symbolic Security in Group Key Establishment 45

curity. Especially, simulatability-based approaches with composition feature (e.g., [57, 148])
seem most suitable for this combination although some recent results [31] aim to automatize
reductionist proofs based on the “sequence of games” technique. When merging symbolic se-
curity analysis with the simulatability-based approach one considers symbolic terms describing
“black-box” cryptographic primitives as ideal functionalities and then using the composition
properties shows that the automated security proof is cryptographically sound. Several exam-
ples of this technique including a practical implementation of abstract models (ideal function-
alities) of some cryptographic primitives in the so-called composable cryptographic library are
[15, 57, 148].

A more direct use of the symbolic security analysis for the computationally sound security
proofs has been shown in [61] on the example of the protocols for mutual authentication and key
establishment where a public-key encryption scheme is the only used cryptographic primitive.

The described developments in merging symbolic security and computational security focus
currently on basic cryptographic primitives and simple protocols. However, we may expect
that continuous progress in this area will also consider complex cryptographic constructions
including protocols for group key establishment.

Chapter 4

Dissertation Focus and Summary of Research Contributions

Having provided general information on different aspects of security in group applications,
group key establishment protocols, and the issue of “provable security” we use this chapter to
specify the scope of the dissertation and prepare the reader for the contents of its main part.

4.1 Dissertation Focus and Objectives . 47
4.2 Summary of Research Contributions . 47

4.2.1 Two Surveys . 48
4.2.2 A Stronger Computational Security Model for GKE Protocols . 48
4.2.3 Seven Security-Enhancing GKE Protocol Compilers . 48
4.2.4 A Constant-Round GKE Protocol . 49

4.1 Dissertation Focus and Objectives

This dissertation focuses on provable security of group key exchange protocols while consider-
ing mainly its computational variant as introduced in Section 3.3. Design of a secure group key
exchange protocol is more challenging compared to that of a group key distribution/transport
protocol because of the missing trust between its participants during the protocol execution.
Recall from Section 2.3 that in group key exchange protocols the only trust assumption is that
group members do not reveal the established group key to third parties. To the contrary in group
key distribution/transport protocols there is an additional assumption that trusted parties are al-
lowed to choose group keys on behalf of other group members and this assumption reduces the
number of security requirements.

This dissertation has several objectives described in the following. First, we analyze the cur-
rent state of research on provable security of group key exchange protocols. For this purpose
we check whether currently available computational security models for group key exchange
protocols subsume all important security requirements, in particular those described informally
in the earlier literature. Second, we analyze whether currently known group key exchange pro-
tocols provide sufficient degree of security. Especially, we focus on strong corruption attacks
and attacks of malicious participants (both mentioned in Section 2.5) since these are the most
challenging classes of attacks. Third, we intend to use the obtained results in order to specify a
stronger security model that considers additional requirements missing in the previous models.
Fourth, we intend to propose practical constructions providing a higher degree of security and
prove their security in order to show soundness and feasibility of our new security definitions.

4.2 Summary of Research Contributions

In this section we briefly summarize main results obtained in the dissertation. The description
is done along the chapters of the second part.

48 4 Dissertation Focus and Summary of Research Contributions

4.2.1 Two Surveys

Our first survey in Chapter 6 describes evolution of security requirements and models concern-
ing group key exchange protocols. Beside the overview of informal definitions we consider all
previously proposed formal security models for group key exchange protocols (and also some
models for two/three-party protocols). We describe their constructions and provide analysis
based on the informal security requirements described in the earlier literature. In our analysis
we were able to identify some problems in the technical construction of the first published se-
curity model for group key exchange protocols in [46]. Further we were able to show that none
of the currently existing security models for group key exchange protocols provides sufficient
security definitions concerning strong corruption attacks and attacks of malicious protocol par-
ticipants, especially concerning contributiveness and unpredictability of computed group keys,
i.e., requirements that state the main difference between group key exchange and group key
distribution protocols.

Our second survey in Chapter 7 is dedicated to the existing static and dynamic group key
exchange protocols. For each mentioned protocol we briefly describe its degree of security
either based on the previously published results or using our own analysis. In general, static
protocols provide a higher degree of security than dynamic protocols. The reason behind this is
that in dynamic group key exchange protocols participants must, usually, save additional aux-
iliary information in order to handle dynamic group changes in subsequent protocol sessions
more efficiently whereas in static protocols the auxiliary information is chosen fresh for each
new protocol execution. Therefore, strong corruption attacks against dynamic protocols become
much more critical. In particular, there exists currently no dynamic group key exchange proto-
col with an adequate security proof (under standard cryptographic assumptions) that satisfies the
requirement of forward secrecy in case of the strong corruptions. Furthermore, current security
definitions concerning the issues of malicious participants, especially with respect to the re-
quirements of key control, contributiveness and unpredictability of computed group keys, need
further improvements.

4.2.2 A Stronger Computational Security Model for GKE Protocols

Having identified various weaknesses in previously proposed security models for group key ex-
change protocols we present in Chapter 8 a variation of security models in [32, 42, 111, 112].
Our proposed model is stronger since it provides security definitions concerning powerful ad-
versaries with respect to strong corruptions and attacks of malicious participants. In particular,
we provide new definitions of MA-security and n-contributiveness. We also extend the notion
of AKE-security from [42, 46, 112] with an additional adversarial setting (backward secrecy)
that considers damages occurred in past sessions of group key exchange protocols. Our defi-
nition of backward secrecy is symmetrically opposed to the well-known definition of forward
secrecy. We also consider different flavors of backward and forward secrecy with respect to
strong corruptions.

4.2.3 Seven Security-Enhancing GKE Protocol Compilers

As already mentioned in Section 2.6 it is desirable to have security-enhancing compilers that can
be used in conjunction with any group key exchange protocol regardless of its natural construc-
tion. In Chapter 9 we overview existing compilers and describe their drawbacks. Additionally,
we provide seven security-enhancing compilers: one for each of the three security goals (AKE-,

4.2 Summary of Research Contributions 49

MA-security and n-contributiveness) specified in our security model, and additional four com-
pilers for all combinations thereof. We prove security of each proposed compiler based on the
sequence of games technique using standard cryptographic assumptions. These proofs also in-
tend to show soundness and feasibility of our formal security definitions.

4.2.4 A Constant-Round GKE Protocol

In Chapter 10 we propose a novel group key exchange protocol TDH1. It appears in two ver-
sions: static and dynamic. We prove security of both versions in the standard model (without
relying on non-standard assumptions of ROM or ICM) with respect to the definitions of our
new security model. The static version of TDH1 achieves a higher degree of security since the
internal auxiliary information used by protocol participants to compute the resulting group key
is fresh in each new protocol execution. The dynamic version of TDH1 consists of operations
that handle addition and deletion of protocol participants. It can be considered as the first ever
proposed dynamic group key exchange protocol that is provably secure under standard cryp-
tographic assumptions with respect to the requirement of forward secrecy in the presence of
strong corruptions. Security of static TDH1 relies on the existence of one-way permutations
and the so-called Tree Decisional Diffie-Hellman (TDDH) assumption, whose equivalence to the
classical Decisional Diffie-Hellman assumption is also shown. Security of dynamic TDH1 relies
additionally on the so-called Square-Exponent Decisional Diffie-Hellman (SEDDH) assumption.

Part II

Provably Secure Group Key Exchange
– Foundations and Solutions –

Chapter 5

Background on Cryptography

In this chapter we describe various cryptographic issues which are used in our constructions
throughout this work. For the general introduction on cryptography we refer to the well-known
book by Menezes, van Oorschot, and Vanstone [135] whereas for the theoretical aspects of
cryptography we refer to the books by Goldreich [94, 95], and for its practical aspects to the
books by Ferguson and Schneier [90, 158].

5.1 Negligible Functions . 53
5.2 One-Way Permutations . 53
5.3 Pseudo-Random Functions . 54
5.4 Number-Theoretic Assumptions . 56

5.4.1 Discrete Logarithm Assumption . 56
5.4.2 Diffie-Hellman Assumptions . 56

5.5 Digital Signatures . 58
5.6 Techniques used in Security Proofs . 59

5.6.1 The “Sequence of Games” Technique . 59
5.6.2 The “Hybrid Technique” . 61

5.1 Negligible Functions

Definition 5.1 (Negligible Function [94]). A function ν : N → R is negligible if for every
positive polynomial p there exists an N ∈ N such that for all n > N ,

ν(n) <
1

p(n)
.

In other words any negligible function decreases faster than the reciprocal of any polynomial.
Note that the phrase “there exists an N ∈ N such that for all n > N” is, usually, replaced by
the shorter phrase “for all sufficiently large n”.

Another important issue concerning negligible functions is that for every negligible function
ν and any polynomial p, the function ν ′ := ν(n)p(n) is also negligible.

Negligible functions are typically used to quantify security of cryptographic constructions.

5.2 One-Way Permutations

Definition 5.2 (One-Way Permutation). A function π : {0, 1}κ → {0, 1}κ, κ ∈ N is called a
one-way permutation if the following three conditions hold:

• there exists an efficient algorithm that on input x outputs π(x);
• π is a permutation;

54 5 Background on Cryptography

• for every PPT algorithm A, the following success probability is negligible:

Succow
π (κ) := Pr

 x ∈R {0, 1}κ;y := π(x);
x′ ← A(1κ, y)

: π(x′) = y

 .
Remark 5.3. By a PPT algorithm we mean a probabilistic polynomial-time algorithm - a ran-
domized algorithm (modeled as a deterministic Turing machine with an additional random tape)
whose execution requires polynomial number of steps in the length of the input. We assume that
the reader is familiar with this terminology.

In other words it is computationally infeasible to invert any one-way permutation. One-way
permutations belong to the core cryptographic primitives. The assumption of the existence of
one-way permutations is considered as a standard cryptographic assumption. A large number
of number-theoretic problems like integer factorization or computation of discrete logarithms
(see Section 5.4.1) that are assumed to be intractable are conjectured to provide functions sat-
isfying the required one-way property. These conjectures are based on the absence of efficient
(polynomial-time) solving algorithms.

5.3 Pseudo-Random Functions

Informally, a pseudo-random function (PRF) is specified by a (short) random key k, and can be
easily computed given this key. However, if k remains secret, the input-output behavior of PRF
is, for any PPT algorithm, indistinguishable from that of a truly random function with the same
domain and range. This dissertation uses (efficiently computable) generalized pseudo-random
functions, defined in the following (see also [94, Definition 3.6.4]).

Definition 5.4 ((Efficiently Computable) Pseudo-Random Function Ensemble F). An en-
semble of finite functions F :=

{{
fk : {0, 1}p(κ) → {0, 1}p(κ)

}
k∈{0,1}κ

}
κ∈N where p : N → N

is upper-bounded by a polynomial, is called an (efficiently computable) pseudo-random func-
tion ensemble if the following two conditions hold:

1. Efficient computation: There exists a polynomial-time algorithm that on input k and x ∈
{0, 1}p(κ) returns fk(x).

2. Pseudo-Randomness: Choose uniformly k ∈R {0, 1}∗ and a function f in the set of all
functions with domain and range {0, 1}p(κ). Consider a PPT adversary A asking a polyno-
mially bounded (in κ) number of queries of the form Tag(x) and participating in one of the
following two games:
• Gameprf−1

F (κ) where a query Tag(x) is answered with fk(x),
• Gameprf−0

F (κ) where a query Tag(x) is answered with f(x).
At the end of the execution A outputs a bit b trying to guess which game was played. The
output ofA is also the output of the game. The advantage function ofA in winning the game
is defined as

Advprf
F (κ) :=

∣∣2 Pr[Gameprf−b
F (κ) = b]− 1

∣∣.
We say that F is pseudo-random if the advantage Advprf

F (κ) is negligible for all sufficiently
large κ.

By an (efficiently computable) pseudo-random function we mean a function fk ∈ F for some
random k ∈R {0, 1}∗.

5.3 Pseudo-Random Functions 55

In other words in the above definition the goal of the adversary A is to distinguish whether
replies on its Tag queries are generated by a pseudo-random function or by a truly random
function of the same range. Note that in the above definition the pseudo-randomness of the
ensemble is defined using a black-box setting where the adversary may indirectly (via Tag
queries) obtain the value of the function chosen in the corresponding games for any arguments
of its choice, but does not get any information (e.g., keys) which would allow it to evaluate the
pseudo-random function itself.

Additionally, we require the following notion of collision-resistance of pseudo-random func-
tion ensembles. This definition is essentially the one used by Katz and Shin [111]. The same
property has previously been defined in [91] and denoted there as fixed-value-key-binding prop-
erty of a pseudo-random function ensemble.

Definition 5.5 (Collision-Resistance of F). Let F be a pseudo-random function ensemble. We
say that F is collision-resistant if there is an efficient procedure Sample such that for all PPT
adversaries A the following success probability is negligible in κ:

Succcoll
F (κ) := Pr

x := Sample(1κ);
(k, k′)← A(1κ, x)

:
k, k′ ∈ {0, 1}κ∧

k 6= k′∧
fk(x) = fk′(x)

 .
Theorem 5.6 ([111]). If one-way permutations exist then there exist collision-resistant pseudo-
random functions.

Proof. We show that a collision-resistant pseudo-random function ensemble F :=
{{
fk :

{0, 1}p(κ) → {0, 1}p(κ)
}
k∈{0,1}κ

}
κ∈N can be derived via the tree-based construction proposed by

Goldreich, Goldwasser, and Micali [96] using a length-doubling pseudo-random generator [94,
Definition 3.3.1]G : {0, 1}κ → {0, 1}2κ based on a one-way permutation π : {0, 1}κ → {0, 1}κ
and its hard-core predicate [94, Definition 2.5.1] h : {0, 1}κ → {0, 1}. Let G : {0, 1}κ →
{0, 1}2κ be defined as follows:

G(k) := πκ(k)|h(πκ−1(k))| . . . |h(π(k))|h(k),

where πi(k), i ∈ [1, κ] denotes the i-fold execution of π and | denotes the concatenation of
binary strings. Let G0(k) denote the first κ bits of G(k), and let G1(k) denote the last κ bits of
G(k). For a binary input x = x1| . . . |xp(κ), xj ∈ {0, 1}, 1 ≤ j ≤ p(κ) let

fk(x) := Gxp(κ)
(· · · (Gx2(Gx1(k))) · · ·).

For the proof that F :=
{{
fk : {0, 1}p(κ) → {0, 1}p(κ)

}
k∈{0,1}κ

}
κ∈N is efficiently computable

pseudo-random we refer to [94, Theorem 3.6.6]. Further, note that fk(0p(κ)) = πp(κ)·κ(k).
Thus, the pseudo-random function g(k) := fk(0

p(κ)) is a permutation, and, therefore, collision-
resistant. ut
Remark 5.7. As noted in [94] there are some significant differences between using PRFs and
the Random Oracle Model (ROM) [23]. In ROM, a random oracle that can be queried by the
adversary is not keyed. Still, the adversary is forced to query it with chosen arguments instead
of being able to compute the result by itself. Later, in the implementation the random oracle
is instantiated by a public function (usually a cryptographic hash function) that can be evalu-
ated by the adversary directly. To the contrary, when using PRFs, the oracle contains either a

56 5 Background on Cryptography

pseudo-random function or a random function. The pseudo-random function is keyed and the
key is supposed to be kept secret from the adversary. This requirement is also preserved during
the implementation. Hence, in any case (theoretical or practical) the adversary is not able to
evaluate the pseudo-random function by itself as long as the key is kept secret. Thus, with PRFs
there is no difference between theoretical specification of the function and its practical instanti-
ation. This is one of the reasons why security proofs based on pseudo-random functions instead
of random oracles can be carried out in the standard model. Another reason is that existence
of pseudo-random functions follows from the existence of one-way permutations, which is a
standard cryptographic assumption.

5.4 Number-Theoretic Assumptions

5.4.1 Discrete Logarithm Assumption

In the following we recall the well-known Discrete Logarithm (DL) assumption. In all defini-
tions we assume that all algorithms (including adversarial) implicitly know the available public
information.

Definition 5.8 (Discrete Logarithm Assumption). Let G be a cyclic group of order q generated
by g ∈ G, and let y ∈ G. A discrete logarithm of y to the base g is the unique integer x ∈ Zq

with y = gx. A DL solver for G is a PPT algorithm A whose success probability

SuccDLG (κ) := Pr[x← A(g, y) : y = gx]

is non negligible. The DL problem is intractable if there exists no DL solver for G. The DL as-
sumption states that this is the case for all sufficiently large κ in appropriate groups.

There are many candidates for the appropriate choice of G. For example, G can be a multi-
plicative group Z∗p with p prime, or a cyclic subgroup G ⊂ Z∗p of prime order q with p = αq+1,
α ∈ N, or defined as a commutative group of points E(Fq) of an elliptic curve E over a finite
(prime or binary) field Fq. In the latter case one talks about elliptic-curve discrete logarithms
(ECDL). For a detailed description of the possible choices for G and for the complexity analysis
of the currently known solving algorithms for the DL problem we refer to [135].

5.4.2 Diffie-Hellman Assumptions

In the following we recall the well-known Diffie-Hellman assumptions. Let G be a group where
the DL problem is believed to be intractable, g and q as in Definition 5.8. For x1, x2 ∈R Zq the
Diffie-Hellman distribution is defined as

DH = (g, gx1 , gx2).

Definition 5.9 (Computational Diffie-Hellman Assumption). A CDH solver for G is a PPT
algorithm A whose success probability

SuccCDHG (κ) := Pr[z ← A(DH) : z = gx1x2]

is non negligible. The CDH problem is intractable if there exists no CDH solver for G. The CDH

assumption states that this is the case for all sufficiently large κ.

5.4 Number-Theoretic Assumptions 57

The following theorem shows that if the DL problem is solvable then so is the CDH problem.

Theorem 5.10 (CDH ≤ DL). The CDH problem is polynomial-time reducible to the DL problem
and

SuccDLG (κ) ≤ SuccCDHG (κ).

Proof. Assuming that there exists a DL solver for G denoted A′ we construct a CDH solver
for G denoted A as follows. On input the DH distribution (g, gx1 , gx2) the CDH solver A calls
the DL solver A′ on input (g, gx1) and obtains x1 with probability SuccDLG (κ). Then, A returns
z := (gx2)x1 . Obviously, SuccDLG (κ) ≤ SuccCDHG (κ). ut

Whether the DL problem is reducible to the CDH problem remains one of the open problems in
cryptography. There are some scientific results, e.g. [131], showing computational equivalence
of the CDH and the DL problems in certain groups. In particular, it remains an open question if
there could also be groups where the CDH problem is easy but the DL problem remains hard.

In order to define the decisional version of CDH we use the DH distribution to derive further
two distributions with r ∈R Zq:

DDH? := (DH, gx1x2) and DDH$:= (DH, gr).

Definition 5.11 (Decisional Diffie-Hellman Assumption). A DDH distinguisher for G is a PPT
algorithm A whose advantage probability defined as

AdvDDHG (κ) := |Pr[A(DDH?) = 1]− Pr[A(DDH$) = 1]|
is non negligible. The DDH problem is intractable if there exists no DDH distinguisher for G. The
DDH assumption states that this is the case for all sufficiently large κ.

The following theorem shows that if the CDH problem is solvable then so is the DDH problem.

Theorem 5.12 (DDH ≤ CDH). The DDH problem is polynomial-time reducible to the CDH problem
and

SuccCDHG (κ) ≤ AdvDDHG (κ) +
1

q
.

Proof. Assuming that there exists a CDH solver for G denotedAwe construct a DDH distinguisher
for G denoted A′ as follows. On input the distribution (g, gx1 , gx2 , z) the DDH distinguisher A′
calls the CDH solverA on input the DH distribution (g, gx1 , gx2) and obtains gx1x2 with probability
SuccCDHG (κ). Then, A′ checks whether z ?

= gx1x2 and returns 1 if the equation holds.
In case thatA′ receives a DDH? distribution it outputs 1 with the probability SuccCDHG (κ). Thus,

Pr[A(DDH?) = 1] = SuccCDHG (κ).
In case that A′ receives a DDH$ distribution the value z is uniformly distributed in G. Hence,

A′ outputs 1 with the probability of a random choice over the size of G, i.e, Pr[A(DDH$) = 1] =
1
q
.

This implies the desired inequality SuccCDHG (κ) ≤ AdvDDHG (κ) + 1
q
. ut

Corollary 5.13 (DDH ≤ DL). The DDH problem is polynomial-time reducible to the DL problem
and

SuccDLG (κ) ≤ AdvDDHG (κ) +
1

q
.

58 5 Background on Cryptography

Proof. The proof follows directly from Theorems 5.10 and 5.15. ut
In other words, if the DL problem is easy to solve then the DDH problem is also easy to solve,

and if the DDH problem is intractable then the DL problem is also intractable. The relationship
between the DDH, CDH and DL problems is a hot topic of research. In particular, there are so-called
Gap Diffie-Hellman groups [37] where DDH is easy but CDH and DL remain hard.

In the following we focus on a variant of the DDH assumption considered in [154, 185], called
Square-Exponent Decisional Diffie-Hellman (SEDDH) assumption. Considering x, r ∈R Zq, we
define two distributions:

SEDDH? := (g, gx, gx
2

) and SEDDH$:= (g, gx, gr).

Definition 5.14 (Square-Exponent Decisional Diffie-Hellman Assumption). A SEDDH distin-
guisher for G is a PPT algorithm A whose advantage probability defined as

AdvSEDDHG (κ) := |Pr[A(SEDDH?) = 1]− Pr[A(SEDDH$) = 1]|

is non negligible. The SEDDH problem is intractable if there exists no SEDDH distinguisher for G.
The SEDDH assumption states that this is the case for all sufficiently large κ.

Wolf [185] showed that the intractability of the SEDDH problem depends on the actual choice
of G. More precisely, the probability that any SEDDH distinguisher A can correctly distinguish
between SEDDH? and SEDDH$ is directly proportional to the inverse of the smallest prime factor
of q. Hence, the SEDDH assumption is believed to hold for groups where q is free of small prime
factors [154].

Additionally, Wolf [185] showed that the SEDDH problem is reducible to the DDH problem but
that the converse does not hold (see also [154]). The following theorem shows that if the DDH

problem is solvable then so is the SEDDH problem.

Theorem 5.15 (SEDDH ≤ DDH). The SEDDH problem is polynomial-time reducible to the DDH

problem and
AdvDDHG (κ) ≤ AdvSEDDHG (κ).

Proof. Assuming that there exists a DDH distinguisher for G denoted A′ we construct a SEDDH

distinguisher for G denoted A as follows. On input a distribution (g, gx, z) (either SEDDH? or
SEDDH$) the SEDDH distinguisher A chooses s, t ∈R Zq, calls A′ on input (g, (gx)s, (gx)t, zst)
and returns its output. Note that if A has received SEDDH? then (g, (gx)s, (gx)t, zst) corresponds
to the distribution DDH?. On the other hand, if A has received SEDDH$ then (g, (gx)s, (gx)t, zst)
corresponds to the distribution DDH$.

Thus, Pr[A(SEDDH?) = 1] = Pr[A′(DDH?) = 1] and Pr[A(SEDDH$) = 1] = Pr[A′(DDH$) =
1]. This implies the desired inequality AdvDDHG (κ) ≤ AdvSEDDHG (κ). ut

5.5 Digital Signatures

As already noted in the introduction part digital signatures are useful cryptographic primitives
for the purpose of identification and entity authentication. In the following we provide the formal
treatment of this notion.

5.6 Techniques used in Security Proofs 59

Definition 5.16 (Digital Signature Scheme). A signature scheme Σ := (Gen, Sign, Verify)
consists of the following algorithms:

Gen: A probabilistic algorithm that on input a security parameter 1κ outputs a secret key sk
and a public key pk.
Sign: A probabilistic algorithm that on input a secret key sk and a message m ∈ {0, 1}∗
outputs a signature σ.
Verify: A deterministic algorithm that on input a public key pk, a message m ∈ {0, 1}∗ and
a candidate signature σ outputs 1 or 0, indicating whether σ is valid or not.

For our constructions we require digital signatures to be existentially unforgeable under cho-
sen message attacks [99].

Definition 5.17 (EUF-CMA Security). A digital signature scheme Σ := (Gen, Sign, Verify)
from Definition 5.16 is said to be existentially unforgeable under chosen message attacks (EUF-
CMA) if for any PPT algorithm (forger) F the following success probability is negligible in
κ:

Succeuf−cmaΣ (κ) := Pr

[
(sk, pk) := Gen(1κ);

(m,σ)← FSign(sk,·)(pk);
:
Verify(pk,m, σ) = 1∧
¬Sign(sk,m)

]
.

Remark 5.18. There exists a stronger security requirement called strong EUF-CMA [9]. It allows
F to query m to the signing oracle, and the forgery is successful if F returns (m,σ) such that σ
was never returned in response to any query Sign(sk,m). However, in our constructions we do
not need this stronger property.

5.6 Techniques used in Security Proofs

5.6.1 The “Sequence of Games” Technique

As already mentioned in the introduction the technique called “sequence of games” described
by Shoup [168] can be used to reduce complexity of reductionist security proofs.

Recall that the “sequence of games” technique subsumes the construction of a sequence of
games G0,G1, . . . ,Gn starting with the original game between the adversarial algorithm A
and its environment (simulator) where event Win symbolizes a successful attack. In the security
proof for each game of the sequence one specifies events Wini, i = 0, . . . , n whereby Win0 is
the original event Win and events Wini, i = 1, . . . , n are usually related to Win. Then, one tries
to show that Pr[Wini] is negligibly close to Pr[Wini+1]. Games are usually constructed in such
way that Pr[Winn] equals to some specified “target probability”.

In order to simplify the estimation of |Pr[Wini] − Pr[Wini+1]| for any i ∈ [0, n − 1] each
game Gi+1 is usually constructed from small changes to Gi. Shoup distinguishes between the
following three transition types for the construction of successive games, i.e., transitions based
on indistinguishability, transitions based on “failure events”, and transitions based on “bridging
steps”. In the following we briefly describe these transitions and extend the framework by an
additional type which we call transitions based on “condition events”.

Transitions based on indistinguishability

Such transitions are made based on the assumption that there are two computationally indis-
tinguishable distributions D0 and D1, i.e., for any PPT algorithm (distinguisher) D its advan-
tage probability in distinguishing between D0 and D1, denoted AdvD,D(κ) := |Pr[D(D0) =

60 5 Background on Cryptography

1] − Pr[D(D1) = 1]|, is assumed to be negligible. One constructs games Gi and Gi+1 such
that if their difference is detected by the adversary A then it is possible to construct a distin-
guisher D that on input D0 outputs 1 with probability Pr[Wini] and on input D1 outputs 1 with
probability Pr[Wini+1]. The indistinguishability assumption between D0 and D1 implies that
|Pr[Wini]− Pr[Wini+1]| is negligible.

Transitions based on “failure events”

In this case one constructs Gi and Gi+1 in a way that both games proceed identically unless
some specified “failure event” F occurs. If both games are defined over the same probability
space then both events Wini ∧ ¬F and Wini+1 ∧ ¬F are equivalent.

The following lemma is essential to estimate the difference between probabilities Pr[Wini]
and Pr[Wini+1].

Lemma 5.19 (Difference Lemma [168]). Let A, B, F be events defined in some probability
distribution, and suppose that A ∧ ¬F⇐⇒ B ∧ ¬F. Then

|Pr[A]− Pr[B]| ≤ Pr[F].

Proof. We compute

|Pr[A]− Pr[B]| = |Pr[A ∧ F] + Pr[A ∧ ¬F]− Pr[B ∧ F]− Pr[B ∧ ¬F]|
= |Pr[A ∧ F]− Pr[B ∧ F]|
≤ Pr[F].

Note that the second equality follows from the assumption that A ∧ ¬F ⇐⇒ B ∧ ¬F which
implies Pr[A ∧ ¬F] = Pr[B ∧ ¬F]. ut

Following this lemma, in order to show that |Pr[Wini]− Pr[Wini+1]| is negligible it is suffi-
cient to show the negligibility of Pr[F].

Transitions based on “bridging steps”

These are transitions where Pr[Wini] = Pr[Wini+1]. Such transitions can be build by restating
the way of computation of certain entities while keeping their resulting values equivalent. Tran-
sitions based on “bridging steps” are usually used to prepare transitions of the other two types
described above.

Transitions based on “condition events”

In order to perform some of our proofs using the “sequence of games” technique we require an
additional transition type for the construction of successive games. The background is given by
Lemma 5.20, which we call Difference Lemma II.

Lemma 5.20 (Difference Lemma II). Let A, B, C be events defined in some probability distri-
bution, and suppose that Pr[B] = Pr[A|C]. Then

Pr[A]− Pr[B] ≤ Pr[¬C].

5.6 Techniques used in Security Proofs 61

Proof. We compute

Pr[A] = Pr[A|C] Pr[C] + Pr[A|¬C] Pr[¬C]

= Pr[B] Pr[C] + Pr[A|¬C] Pr[¬C]

≤ Pr[B] + Pr[¬C].

ut
In order to construct a new game Gi+1 from the previous game Gi via a transition based on

a “condition event” one proceeds as follows. One defines an appropriate “condition event” C
and sets Wini+1 as the event that Wini occurs given C. Then according to Lemma 5.20

Pr[Wini]− Pr[Wini+1] ≤ Pr[¬C].

Therefore, in order to estimate the probability distance between Gi and Gi+1 it is sufficient to
compute the probability of ¬C. Note that in this form Gi and Gi+1 proceed identical from the
perspective of the adversary, and we are only interested in the probability of ¬C. Therefore, it
is not necessary for the simulator to detect whether this “condition event” occurs or not. This
is an important difference to games Gi and Gi+1 built via transitions based on “failure events”
where both games proceed identically unless the specified “failure event” has occurred so that
in some cases the simulator must be able to detect this event in order to change the process of
Gi+1. Thus, transitions based on “condition events” additionally simplify the proof and can be
applied in cases where transitions based on “failure events” are not directly applicable because
of the problems with the detection of “failure events” by the simulator.

Another important observation of Lemma 5.20 is that by conditioning the success of the
adversary with the event C we do not restrict the adversarial strategy. Note that the inequality

Pr[Wini] = Pr[Wini+1] Pr[C] + Pr[Wini|¬C] Pr[¬C] ≤ Pr[Wini+1] + Pr[¬C]

considers both events, Wini+1 and Wini|¬C, thus focusing on one adversarial strategy repre-
sented by Wini+1 = Wini|C in the subsequent sequence game Gi+1 does not rule out all other
strategies represented by Wini|¬C because the total probability for Wini is still upper-bounded
by Pr[Wini+1] + Pr[¬C].

Remark 5.21. We apply transitions based on “condition events” in the proofs of Theorems 9.11,
9.16, 9.26, 9.34, 10.8, and 10.13.

5.6.2 The “Hybrid Technique”

The “hybrid technique” [94] (a.k.a. “hybrid argument”) is a special type of reductionist proofs
where computational indistinguishability of complex distributions is proved by construction of
computational indistinguishable hybrid distributions. Thus, the efficient distinguishability of the
hybrid distributions is reduced to the efficient distinguishability of the complex distributions. Let
D and D′ be two complex distributions. In order to show their computational indistinguishabil-
ity one defines a sequence of hybrid distributions D1, . . . , Dn of a polynomially bounded length
such that D1 = D, Dn = D′, and shows that any two neighboring distributions Di and Di+1,
i ∈ [1, n − 1] are computationally indistinguishable. The computational indistinguishability of
D and D′ follows from the polynomially bounded length of the sequence.

Remark 5.22. In some sense games Gi and Gi+1 constructed within the “sequence of games”
technique via transitions based on indistinguishability can be considered as hybrid distributions.

Chapter 6

Analytical Survey on Security Requirements and Models for
Group Key Exchange Protocols

In this chapter we describe security issues that are relevant for group key exchange protocols.
We start in Section 6.1 with the security notions that have been informally described in the lit-
erature and widely used in security analyses of earlier protocols. Most of these definitions were
originally stated for two-party protocols and then adapted to a group setting. These definitions
can be considered as foundational for the later appeared formal security models whose develop-
ment, strengths, and weaknesses we describe and analyze in Section 6.2. We summarize main
results of our analysis in Section 6.3.

6.1 Survey on Informal Security Definitions . 63
6.1.1 Semantic Security and Known-Key Attacks . 64
6.1.2 Impersonation Attacks . 64
6.1.3 Key Confirmation and Mutual Authentication . 65
6.1.4 Perfect Forward Secrecy . 66
6.1.5 Key Control and Contributiveness . 66

6.2 Analytical Survey on Formal Security Models . 67
6.2.1 Models by Bellare and Rogaway (BR, BR+) . 67
6.2.2 Model by Bellare, Canetti, and Krawczyk (BCK) . 69
6.2.3 Model by Bellare, Pointcheval and Rogaway (BPR) . 70
6.2.4 Model by Canetti and Krawczyk (CK) . 71
6.2.5 Model by Shoup . 73
6.2.6 Model by Bresson, Chevassut, Pointcheval, and Quisquater (BCPQ) 74
6.2.7 Models by Bresson, Chevassut, and Pointcheval (BCP, BCP+) . 78
6.2.8 Modifications of the BCPQ, BCP, and BCP+ Models . 80
6.2.9 Models by Katz and Shin (KS, UC-KS) . 82
6.2.10 Model by Bohli, Vasco, and Steinwandt (BVS) . 83

6.3 Summary and Discussion . 84

6.1 Survey on Informal Security Definitions
Security properties of cryptographic schemes are usually defined based on certain assumptions
about the adversary whose goal is to break these properties. In case of cryptographic protocols it
is common to distinguish between passive and active adversaries. A passive adversary, usually,
only eavesdrops the communication channel without being able to modify or inject messages.
An active adversary is more powerful since it is assumed to have a complete control over the
communication channel resulting in its ability to alter sent messages or inject own messages
during the execution of the protocol. In particular, an active adversary is able to mount so-called
man-in-the-middle attacks. Additionally, security of a cryptographic protocol may depend on
the behavior of its participants. Obviously, it is more challenging for a protocol to guarantee its
security properties in case where legitimate participants are malicious, or dishonest, and do not
act according to the protocol specification.

In the following we consider blocks of related security notions which we describe following
the chronology of their appearance in the literature. We also specify which type of the adversary
is reasonable to be assumed for each notion.

64 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

6.1.1 Semantic Security and Known-Key Attacks

The notion of key privacy, also called key confidentiality or key secrecy [80], was surfaced by
Diffie and Hellman [79], and described later in the context of group key establishment [50, 171].
According to the definition of Burmester and Desmedt [50] a group key establishment proto-
col guarantees privacy if it is computationally infeasible for a passive adversary to compute the
group key k. Obviously, similar definition should hold against an active adversary who is not a
legitimate protocol participant. A stronger definition of key privacy requires the indistinguisha-
bility of the computed group key from a random number. Thus, an adversary given either a real
group key or a random string sampled from the same space should not be able to distinguish
which value it has been given. This is in spirit of the semantic security requirement proposed
by Goldwasser and Micali [98] in the context of digital encryption schemes. Note, however,
that this requirement can only hold under the assumption that the adversary does not obtain any
additional information that would allow it to verify the given value, e.g., if the adversary obtains
a cipher text computed using the real group key then it can easily distinguish between the real
group key and some random value by comparing the corresponding cipher text.

The notion of known-key security [48, 189], strengthens the above requirements by assum-
ing a stronger adversary who knows the group keys of past sessions. For example, members
excluded from the group should not be able to compute or distinguish the updated group keys.
The related notion of key freshness [135] requires that the protocol guarantees that the key is
new, that is participants compute group keys which have not been used in the past. Steiner et al.
[175] introduced the notion of key independence in the context of dynamic group key exchange
protocols meaning that previously used group keys must not be discovered by joined group
members and that former group members must not be able to compute the group keys used
in the future. Obviously, this definition considers that the adversary was a legitimate protocol
participant or may become one in the future.

Kim et al. [116, 117] summarized the above requirements as follows: weak backward se-
crecy guarantees that previously used group keys must not be discovered by new group mem-
bers; weak forward secrecy guarantees that new keys must remain out of reach of former group
members; computational group key secrecy guarantees that it is computationally infeasible for
a passive adversary to discover any group key; forward secrecy guarantees that a passive adver-
sary who knows a contiguous subset of old group keys cannot discover subsequent group keys;
backward secrecy guarantees that a passive adversary who knows a contiguous set of group keys
cannot discover any preceding group keys; key independence guarantees that a passive adver-
sary who knows any proper subset of group keys cannot discover any other group key. Note
that the last four requirements do not make any assumptions about the group membership of the
adversary. In their subsequent work, Kim et al. [119] introduced the decisional group key se-
crecy whereby a passive adversary must not be able to distinguish the group key from a random
number. Although [116, 117] use passive adversaries in their definitions, it is mentioned that the
same security requirements should also hold in the presence of active adversaries.

Remark 6.1. Unfortunately, Kim et al.’s definitions concerning (weak) forward secrecy are in
conflict with the commonly used meaning of the term forward secrecy (see Section 6.1.4 for
further details).

6.1.2 Impersonation Attacks

Security against impersonation attacks in the context of group key establishment was addressed
by Burmester and Desmedt [50] and defined as a property of the protocol where an impersonator

6.1 Survey on Informal Security Definitions 65

together with active or passive adversaries should be prevented from the computation of the
group key. By an impersonator [50] denotes an adversary whose goal is to replace a legitimate
participant in the execution of the protocol (thus impersonator is not considered to be a malicious
participant but rather some external party). Further, [48, 49] extend the notion of known-key
attacks by requiring that an active adversary who knows past session keys must not be able to
impersonate one of the protocol participants.

The notion of entity authentication [22], introduced by Bellare and Rogaway in the context
of two-party authentication protocols, specifies a process whereby one party is assured of the
identity of the second party involved in the protocol, and of the actual protocol participation of
the latter. This requirement is equivalent to the requirement on resistance against impersonation
attacks in the context of group key exchange protocols. The related notion called (implicit)
key authentication [135] requires that each legitimate protocol participant is assured that no
other party except for other legitimate participants learns the established group key. According
to this definition a group key exchange protocol is authenticated if it provides (implicit) key
authentication. Ateniese et al. [13] proposed a requirement on group integrity meaning that
each protocol participant must be assured of every other party’s participation in the protocol.
Obviously, this notion is similar to the requirement of the entity authentication applied to a
group setting.

All of these impersonation/authentication requirements consider an adversary that represents
some external party and not a legitimate protocol participant. Therefore, these requirements
are similar to those of the previous section assuming that the adversary is active, i.e., that the
indistinguishability of the real group keys and the random numbers sampled from the same
space remains preserved with respect to the attacks of an active adversary which is allowed to
modify and inject messages during the protocol execution.

Another related requirement called unknown key-share resilience surfaced in [80] means
that an active adversary must not be able to make one protocol participant believe that the key
is shared with one party when it is in fact shared with another party. Note that in this attack the
adversary may be a malicious participant and does not need necessarily to learn the established
group key [38].

Finally, we mention key-compromise impersonation resilience [29]. This security property
prevents the adversary who obtains a long-term key of a user from being able to impersonate
other users to that one. Note that long-term (a.k.a. long-lived) keys are usually either private keys
used for signature generation or digital decryption, or shared secret (small entropy) passwords
that remain unchanged for a long period of time. In both cases long-lived keys are used primar-
ily for the purpose of authentication rather than for the actual computation of the group key.
Obviously, this attack concerns only protocols whose goal is to establish a session key which
is then used for the purpose of authentication. Therefore, it is arguable (e.g. [111]) whether
this requirement is general for all group key exchange protocols. Note that if an adversary ob-
tains long-lived keys of participants then it can usually act on behalf of these participants in
subsequent protocol executions.

6.1.3 Key Confirmation and Mutual Authentication

The requirement called key confirmation [135] means that each protocol participant must be
assured that every other protocol participant actually has possession of the computed group key.
According to [135] key confirmation in conjunction with (implicit) key authentication results
in explicit key authentication, i.e., each identified protocol participant is known to actually pos-
sess the established group key. The same goal states the requirement of mutual authentication

66 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

introduced in [23] when considered for group key exchange protocols. As noted in [13] key
confirmation makes a group key exchange protocol a more robust and a more autonomous oper-
ation. According to [38] key confirmation mechanisms can be used to provide resistance against
unknown key-share attacks mentioned in the previous section. We stress that the requirements
on key confirmation and mutual authentication should also be considered from the perspective
of the attacks by malicious protocol participants who try to prevent honest participants from
computing identical group keys.

6.1.4 Perfect Forward Secrecy

The notion of (perfect) forward secrecy (sometimes called break-backward protection [135])
was surfaced by Günter [102] and rephrased by Diffie et al. [80] as a property of an authenti-
cated key agreement protocol requiring that the disclosure of long-term keying material does
not compromise the secrecy of the established keys from earlier protocol sessions. The idea
behind this notion is to maintain the protection of the secure traffic in the future. Note that the
compromised long-term keys make future protocol sessions nonetheless susceptible to imper-
sonation attacks. A weaker form of (perfect) forward secrecy is partial forward secrecy [38]
which considers the case where one (or more but not all) principals’ long-term keys become
compromised.

6.1.5 Key Control and Contributiveness

The issue of key control described by Mitchel et al. [138] in the context of two-party group
key exchange protocols considers malicious protocol participants who wish to influence the
computation of the group key.

Ateniese et al. [13] introduced a notion of contributory group key agreement meaning such
protocols where each party equally contributes to the established group key and guarantees its
freshness (see also [173]). This notion also subsumes the requirement of unpredictability of
the computed group keys. Note that these requirements clearly exclude group key distribution
protocols (see Section 2.2) where some trusted party is responsible for the generation of the
group keys. Ateniese et al. defined additionally complete group key authentication as a property
of a group key exchange protocol whereby all parties compute the same group key only if each
of the parties have contributed to its computation. This notion can be seen as a combination
of contributiveness and mutual (or explicit key) authentication. Ateniese et al. [13] proposed
further a more stronger notion of verifiable contributory group key agreement meaning protocols
where each participant is assured of every other participant’s contribution to the group key. We
stress that these requirements should also hold in the presence of malicious protocol participants.

Another related requirement that is stated from the perspective of an adversary that is not
a malicious participant is key integrity [108] which requires that the established group key has
not been modified by the adversary, or equivalently only has inputs from legitimate protocol
participants. Ateniese et al. [13] extended the definition of key integrity by requiring that the
established group key is a function of only the individual contributions of legitimate protocol
participants such that extraneous contribution(s) to the group key must not be tolerated even if
it does not afford the adversary with any additional knowledge. Obviously, this can be achieved
if the protocol is contributory and provides mutual authentication.

6.2 Analytical Survey on Formal Security Models 67

6.2 Analytical Survey on Formal Security Models

As already noted in the introduction provable security of cryptographic protocols can be
achieved using an appropriate security model that considers protocol participants, their trust
relationship, communication environment, and further relevant aspects, and contains definitions
of required security goals.

Unfortunately, there exist no common goodness criteria for the evaluation of such security
models. In our opinion a security model should be abstract meaning that it should not depend
on any implementation-specific definitions or assumptions. Further, a model should be self-
contained, i.e., there should be no parameters whose specification is not defined within the
model or depends on certain assumptions beyond it. This property allows design of autonomous
protocols. A model should be precise, i.e., it should disallow any ambiguous interpretations for
its definitions and requirements. A security model should be modular, i.e., allow security proofs
for protocols that provide only a subset of specified security goals. This property allows design
of protocols with respect to their practical deployment in applications that do not require the
full range of security; on the other hand it allows construction of generic solutions. Another
advantage of modular security models is a possible integration of additional security definitions
which may become essential in the future.

In the following we provide an analytical survey of security models proposed for group key
exchange protocols (note that these models can or have already been used for security proofs of
the protocols described in Chapter 7). In addition to the description we specify which of the most
important informal security requirements have been considered by the definitions of a model,
thereby focusing on semantic security or indistinguishability of the computed group keys from
random numbers considering known-key attacks and active adversaries, key confirmation and
mutual authentication with respect to malicious protocol participants, (perfect) forward secrecy,
and the issues related to key control and contributiveness. Additionally, we judge each model
with respect to the specified goodness criteria. Some of the models described in this section were
proposed in the context of two- or three-party key exchange protocols. However, they provide
some interesting definitions and constructions that became foundational for a variety of the later
appeared security models designed for the group setting.

6.2.1 Models by Bellare and Rogaway (BR, BR+)

BR

Bellare and Rogaway [22] proposed the first computational security model for authentication
and security goals of two-party key exchange protocols which we refer to as the BR model.
This model allows reductionist proofs of security. Each protocol participant is assumed to have
an identity and a long-lived key. The adversary can initiate different sessions between the same
participants. It has an infinite collection of oracles Πs

i,j such that each oracle represents partic-
ipant i trying to authenticate participant j in session s. The adversary communicates with the
oracles via queries which contain sender and receiver identities, the session id, and the actual
message. Hence, the adversary is considered to be active. However, the model assumes a benign
adversary which faithfully forwards all message flows between the oracles, and is, therefore,
not allowed to modify the messages. It can invoke any oracle to start the protocol execution.
A variable κsi,j keeps track of the conversation between i and j in session s. The security goal
of mutual authentication is defined based on the notion of matching conversations between the

68 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

participants. Roughly, this means that all messages sent by one participant have been subse-
quently delivered to another participant without modification, and vice versa. According to the
BR model a protocol provides mutual authentication if for any polynomial time adversary the
oracles Πs

i,j and Πs
j,i have matching conversations and if one of the oracles, say Πs

i,j , accepts
(does not fail) then there is always another oracle Πs

j,i with the engaged matching conversation.
Note that from this definition mutual authentication also results in key confirmation since the
exchanged message flows, and thus computed keys, must be equal. The authors also show the
uniqueness of matching partners. Additionally, the adversary is allowed to ask Reveal queries
to obtain session keys computed by Πs

i,j . In order to model known-key attacks the BR model
specifies the notion of fresh oracles, i.e., an oracle Πs

i,j is fresh if it has accepted (computed the
session key) and no Reveal query was asked to Πs

i,j or to its matching partner Πs
j,i. Further, the

adversary is allowed to ask exactly one Test query to any oracle which is fresh. In response to
this query it receives either the real session key computed by the oracle or a random number of
the same range and has to decide which value it has received. The BR model calls an authen-
ticated key exchange protocol secure if in the presence of the benign adversary both oracles,
Πs
i,j and Πs

j,i, accept with the equal session keys which are randomly distributed over the key
space, and the success probability of the adversary to decide correctly in response to the value
obtained from its Test query is non-negligibly greater that 1/2.

The main weakness of the BR model is that it disallows the adversary to modify messages,
or to corrupt participants obtaining their long-lived keys. Hence, the model does not consider
the notion of (perfect) forward secrecy. Further, the model does not deal with attacks of mali-
cious participants. Thus, definition of mutual authentication is defined only for honest protocol
participants, and no definitions concerning issues related to key control and contributiveness are
available in the BR model.

BR+

In their subsequent work, Bellare and Rogaway [24] extended the BR model to deal with key
distribution scenarios in a three-party setting which involves two participants wishing to estab-
lish a shared key and a key distribution center (key server). Nonetheless, this model, denoted
BR+, is of particular interest for us since it provides some interesting definitions which are also
relevant for the models dealing with key exchange protocols. The actions of the adversary are
specified by a number of queries which it may ask to the instances of parties participating in
the protocol. Each party may have a multiple number of instances and so participate in different
sessions of the protocol. Using a SendPlayer or a SendS query the adversary can send messages
to one of the participants or to the key distribution center, respectively, that reply according to
the protocol specification or do not reply if the received message is unexpected. So the adver-
sary is active. With a Reveal query to a specified instance the adversary may obtain the final key
computed by that instance. Additionally, the adversary is allowed to ask Corrupt queries which
return the complete internal state of the instance to the adversary together with the long-lived
key of the party and allows the adversary to replace this long-lived key with any value of its
choice. Note that this kind of corruptions became later known as strong corruptions. After an
adversary asks a Corrupt query for some party all instances of this party use the changed value
for the long-lived key in all subsequent protocol executions. Although the adversary is allowed
to corrupt parties and reveal their session keys the security of the protocol may also depend on
instances of other parties who participate in the same session. To consider all protocol partici-
pants the BR+ model specifies an abstractly defined partner function which roughly speaking

6.2 Analytical Survey on Formal Security Models 69

means that two instances are partnered if they participate in the same session and compute the
shared key. Further, at the end of its execution the adversary asks a Test query to an instance
which holds a fresh session key, i.e., a key computed during the session such that no Reveal
or Corrupt queries have been previously asked to the instance or any of its partners. The ad-
versary receives either the session key computed by that instance or a random number of the
same range, and similar to the BR model must decide which value it has received. This security
definition subsumes the informal requirement on indistinguishability of computed group keys
from random numbers while also considering active adversaries.

The BR+ model has some weaknesses described in the following. Although the adversary is
allowed to reveal long-lived keys of participants through Corrupt queries it is allowed to ask its
Test query only at the end of its execution. Obviously, the adversary may not use the knowledge
of corrupted long-term keys to make its guess because of the freshness requirement. Therefore,
the model does not capture the requirement of (perfect) forward secrecy. Second, the BR+ model
does not deal with the attacks concerning key confirmation or mutual authentication, neither
with respect to honest participants nor to malicious. This observation has also been mentioned
in [72, 73]. Third, the BR+ model does not consider attacks related to the issue of key control.
This, however, is reasonable since the model has been proposed for key distribution protocols
for which such requirements are not relevant because of the trust assumption concerning the key
server. The partnering function in the BR+ model is not concretely specified. This contradicts
to our goodness criteria for the security models.

6.2.2 Model by Bellare, Canetti, and Krawczyk (BCK)

Bellare, Canetti, and Krawczyk [20] proposed a computational security model for authentica-
tion and key exchange, which we denote as the BCK model. This model allows security proofs
based on the simulatability approach. The BCK model supports modular constructions and deals
with message-driven protocols, i.e., after being invoked by a party the protocol waits for an ac-
tivation which may either be caused by the arrival of a certain message or by an external request
(which may come from other processes executed by the party). The authors essentially define
two different adversarial models: authenticated-links model (AM) and unauthenticated-links
model (UM). The AM model considers a passive adversary who has a full control over the
communication channel but is assumed to deliver messages faithfully without modifying any
of them, however, is allowed to change their delivery order. Further the adversary is allowed
to activate any party using external requests, but not own protocol messages. The UM model
assumes that the adversary is active, i.e., can activate parties with arbitrary incoming messages.
Further, the BCK model specifies the notion of emulation of protocols in UM using a so-called
authenticator which is considered to be a compiler translating the execution of a protocol in
AM into UM while preserving its security requirements. Similar to the BR+ model the BCK
model considers several executions of the protocols, and calls each execution a session. In or-
der to distinguish different sessions the model uses session ids which should be unique for the
sender and the receiver (recall that the model was defined for two parties). The adversary in the
AM and UM models is allowed to corrupt sessions such that it learns the internal state asso-
ciated with a particular session identified via unique session IDs for which the model does not
provide any concrete construction. Although the BCK model was proposed in the context of
two-party key exchange protocols, the authors tried to provide definitions which also hold in a
multi-party setting. They defined the notion of the ideal key exchange and the ideal adversary.
The ideal adversary is allowed to invoke any party to establish the session key with any other

70 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

party such that the adversary learns the transcript of the exchanged protocol messages and the
session id value, but not the established key. Further, if the ideal adversary corrupts a session
using the corresponding session id then it obtains the established key for this session, and if
the adversary corrupts a party then it obtains all keys (including long-lived key) known to this
party. Corrupted parties may continue participating in the protocol. However, in this case the
model allows the adversary to choose the established keys. Therefore, no security definitions
related to the requirement on (perfect) forward secrecy are considered. For the same reason, the
BCK model does not provide any security definitions for the case in which honest participants
interacting with the adversary represented as a (subset of) malicious participant(s) try to con-
tribute to the resulting group key. Hence, the BCK model does not consider attacks concerning
key control and unpredictability. Also, the BCK model does not capture possible attacks of ma-
licious participants against key confirmation and mutual authentication. Note that the corrupt
query reveals internal state information together with the long-lived key of a party. This, how-
ever, disallows consideration of scenarios where long-lived keys are revealed without revealing
the internal state information (note that long-lived keys may have a different protection mecha-
nism). In order to define security goals the BCK model specifies the notion of a global output of
the protocol execution in the presence of the adversary. It consists of cumulative concatenations
of the outputs (sent messages) of all parties and their random inputs, together with the output
of the adversary which is a function of its random input and all information seen by the adver-
sary throughout its execution. A key exchange protocol is called secure in the BCK model if
the global output of the ideal protocol execution is indistinguishable from the global output of
the protocol execution in either the AM or UM model. This is the typical approach for security
models that allow security proofs based on simulatability/indistinguishability as described in
Section 3.3.

Interesting about the BCK model is that its modular construction allows to prove protocol
security in the AM model and then apply the described authenticator to obtain a protocol which
is secure in the UM model.

6.2.3 Model by Bellare, Pointcheval and Rogaway (BPR)

The following model proposed by Bellare, Pointcheval, and Rogaway in [21], which we denote
BPR, is based on the previously described BR+ model, and considers two-party key exchange
protocols. The BPR model is described w.r.t. the communication between a client and a server.
Similar to the BR+ model each participant may have different instances, called oracles. In ad-
dition to the queries Reveal and Test which return the computed key of the instance respectively
the computed session key or a random number of the same range (in contrast to the BR+ model
the adversary in the BPR model may ask the Test query at any time during its execution and
not only at the end), the BPR model specifies Execute and Send queries. Execute queries can be
used by the adversary to invoke an honest execution of the protocol and obtain a transcript of ex-
changed messages. The Send query allows the adversary to send messages to the instances, i.e.,
behave actively. Send queries can also be used to achieve honest execution (as Execute queries)
simply by invoking the protocol execution at instances of adversary’s choice and then forward-
ing messages between these instances without any modification. However, Execute query allows
on the one hand a better handling of dictionary attacks in case where long-lived keys are shared
passwords, because the adversary can be granted access to plenty of honest executions, and on
the other hand it allows to treat passive adversaries separately though the BPR model does not
take use of this second advantage. Additionally, the BPR model allows the adversary to ask Or-
acle queries in order to deal with non-standard models, like the Random Oracle Model (ROM)

6.2 Analytical Survey on Formal Security Models 71

[23] or the Ideal Cipher Model (ICM) [27, 162]. In case when the protocol is designed to achieve
security in the standard model the Oracle query can be omitted. The BPR model specifies two
forms of a Corrupt query (unlike the previously described models): a strong form (called strong
corruption model) means that the adversary obtains the long-lived key of the party and its inter-
nal state (excluding the session key), and a weak form (called weak corruption model) means
that the adversary obtains only the long-lived key of the party.

The model assumes the existence of unique session ids and specifies partner ids. The partner
id of an instance is a public value and consists of the identities of all parties with which the oracle
believes it has just exchanged the session key with. According to the BPR model two oracles are
partnered if they compute (accept with) equal session keys, equal session ids, have each other’s
identity as part of the computed partner ids, and there is no other oracle who accepts with the
same partner id. The BPR model defines two flavors of session key freshness: a session key is
fresh if there have been no Reveal queries to the oracle or any of its partners, and no Corrupt
queries at all; a session key is fs-fresh (fs for forward secrecy) if there have been no Reveal
queries to the oracle or any of its partners, and if there have been no Corrupt queries prior to the
Test query such that further Send queries have been asked to the tested oracle. The latter means
that the adversary can corrupt participants before the test session but is then not allowed to send
any messages to the oracle whose key (or a random value instead) it later receives in response
to its Test query. Based on these two flavors the model provides two definitions of security
against known-key attacks: (1) security without forward-secrecy meaning that the adversary
asks a Test query to an oracle which holds a fresh session key, and (2) security with forward-
secrecy meaning that the adversary asks a Test query to an oracle which holds a fs-fresh session
key. Similar to the BR and BR+ models the goal of the adversary is to distinguish whether
it obtains a session key or a random number. Obviously, this security definition subsumes the
informal requirements related to the indistinguishability of group keys from random numbers
with respect to active adversaries. Furthermore, security proofs in which the Test query is asked
to an oracle holds a fs-fresh session key consider attacks related to (perfect) forward secrecy.

Additionally, the BPR model gives a definition of server-to-client and client-to-server au-
thentication which are violated in case where a server respectively a client accepts with a ses-
sion key but does not have any partner. Mutual authentication is, therefore, violated if either
a server-to-client or client-to-server authentication is violated (recall that the BPR model was
proposed for the two-party key exchange protocols).

In the BPR model partnering is defined using session ids. However, the authors do not pro-
vide further details within the model concerning the construction of the unique session ids. In
the proposed protocol, however, they are constructed as a concatenation of all flows exchanged
between both participants. Note that this is an appropriate method in case of two parties, how-
ever, cannot be generally applied to the multi-party case where participants do not generally
need to send each message to every other participant. Similar to the BR+ model the BPR model
does not consider attacks related to the issues of key control and contributiveness.

6.2.4 Model by Canetti and Krawczyk (CK)

Canetti and Krawczyk [62] proposed a formal model, which we refer to as CK, based on the
methodology of the BR and BCK models. Similar to the BCK model the CK model deals with
message-driven protocols that involve only two parties. Different executions of a protocol are
called sessions which are identified by unique session ids. The CK model describes the no-
tion of matching sessions (related to the matching conversations in the BR model), and treats
participants of matching sessions as partners.

72 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

As the BCK model the CK model specifies an unauthenticated-links (UM) and an authenti-
cated-links (AM) adversarial models. In the UM model the adversary passes messages from
one participant to another, but has control over their scheduling (including initiation of the pro-
tocol), and is allowed to ask Reveal queries to obtain the computed session keys and Corrupt
queries to obtain all the internal memory of the party including its long-lived key and specific
session-internal information (such as internal state of incomplete sessions and session-keys of
already completed sessions). From the moment a party is corrupted it is fully controlled by
the adversary. This models attacks against (perfect) forward secrecy. Additionally, in the CK
model the adversary is allowed to reveal internal state of a party for an incomplete session
without necessarily corrupting that party (we call this RevealState queries). In the CK model a
session becomes locally exposed if any of these three queries (Reveal, RevealState, or Corrupt)
have been asked to a party during that session, and the session becomes exposed if it or any of its
matching sessions are locally exposed. Further, the CK model specifies session expiration which
can be performed by a party causing the erasure of that session key and any session-specific in-
formation from the party’s memory, and used in the model for the definition of security without
(perfect) forward secrecy. In the AM model the adversary has the same capabilities as in the
UM model, but is required to pass messages between the parties truly, i.e., without modifying
them (this is comparable to a passive adversary who only eavesdrops the communication). The
UM and AM models are linked together over the emulation paradigm based on authenticators
as in the BCK model.

The CK model introduces the notion of session-key security as a security goal for the key
exchange protocols. The definition in the UM model allows the adversary to ask a Test query
(with similar response as in the BR, BR+, and BPR models) to a party during the session which
is completed, unexpired and unexposed at that time. Having asked this Test query the adversary
is allowed to continue with regular actions according to the UM model but is not allowed to ex-
pose the test-session. At the end of its execution the adversary has to output a guess concerning
the response of the Test query. A protocol is called session-key secure if for any UM-adversary
holds that if any two parties complete matching sessions then they compute the same session
key, and that the probability of the adversary’s correct guess is no more than 1/2 plus a negligi-
ble fraction. This definition also captures informal requirements on indistinguishability notions
considering known-key attacks and active adversaries. Additionally, the CK model provides a
weaker definition of security for protocols in which no (perfect) forward secrecy is available or
desirable. For this purpose the model disallows session expirations. A protocol is called session-
key secure without (perfect) forward secrecy if it is session-key secure and the UM-adversary
is not allowed to corrupt any partner from the test-session, i.e., the security of the session key
can be no more guaranteed if any partner who computes this key gets corrupted. The authors
mention that similar definitions are applicable for the AM model.

Compared to the BCK and BR models, the CK model provides a stronger adversarial setting
since it allows RevealState queries. Interesting is that session-key security in the CK model
implies the known-key security of the protocol in the BR+ and BPR models. For the proof of
this fact and further analysis of the relations between the security definitions in the BR, BR+,
BPR and CK models we refer to the work of Choo, Boyd and Hitchcock [73]. Note that one
drawback of the CK model in the context of key exchange is that it leaves the construction of
the session ids open, and this might have an impact on the security of the protocols designed
based on this model. Also the CK model does not deal with the issues of key confirmation and
mutual authentication as well as key control and contributiveness.

6.2 Analytical Survey on Formal Security Models 73

6.2.5 Model by Shoup

Shoup [167] proposed a modular formal model for secure key exchange between two parties that
can be seen as an extension of the BCK model. Shoup’s model considers protocol composition,
i.e., it contains security definitions for the case where the key exchange protocol should be
used within another high-level application protocol. The model allows security proofs based on
simulatability approach. It consists of two settings: the ideal-world model and the real-world
model (this is somewhat similar to the ideal key exchange process in the BCK model). For each
setting there exists a different adversary. For both the real-world and the ideal-world adversaries
a transcript is generated which consists of all occurred events and messages. The security of
the protocol for every real-world adversary means that there exists a corresponding ideal-world
adversary, such that the generated transcripts are computationally indistinguishable. Shoup’s
model specifies three corruption settings: static, adaptive, and strong adaptive corruptions.

In case of static corruptions the ideal model allows the ideal adversary to initialize the party
and its instance (oracle) using the identity of its partner, abort a session between two instances,
invoke a session between two instances using a so-called connection assignment which specifies
how the session key is computed, i.e., either honestly, or using the key of another connection,
or chosen by the adversary (compromised). The latter is available only if this instance is not
partnered with any other party’s instance. As noted by Shoup, connection assignments are used
instead of session ids to identify the connection between two parties. Further, the ideal-world
adversary is allowed to call the application query which returns a partial information about
the session key computed as a function within the application protocol. Additionally, the ideal-
world adversary is allowed to ask an implementation query which simply adds the attached
comment to the transcript. At the end of the adversary’s execution a transcript which contains
all actions (and outputs) taken by the adversary is generated. In the real-world model there
is an additional trusted party which can be queried by the adversary in order to register the
identities of the parties. However, the model requires that if a party is registered by the adversary
then its identity should not be in the set of identities of the parties for which the adversary
used its initialization query. So the adversary is able to obtain a long-lived key for a party
which will not be initialized, and, therefore, will not participate actively in the honest protocol
execution (this is the reason for the notion of static corruptions). In this case the model does not
consider attacks concerning the interaction between honest and malicious participants, that are
issues of key confirmation and mutual authentication, (perfect) forward secrecy, and key control.
Instead of session invocations the real-world adversary is allowed to deliver messages (via a
corresponding query) to the instances who process them and return a protocol-specific output
together with a status information which specifies whether the instance is waiting for further
messages (continue), has already computed the session key (accept), or is finished without being
able to compute the key (reject). At the end of the execution of the real-world adversary a
transcript with all its actions is generated. For the setting of static corruptions Shoup specifies
three security goals: termination (each instance either accepts or rejects after a polynomially
bounded number of sessions), liveness (whenever the real-world adversary faithfully delivers
all protocol messages both instances accept with the same session key), and simulatability (for
every real-world adversary there exists a ideal-world adversary such that the transcripts of their
actions are computationally indistinguishable).

In case of adaptive corruptions the model extends the requirements from the setting of static
corruptions. The real-world adversary is additionally allowed to corrupt parties and reveal their
long-lived keys before their initialization, and then register them by the trusted party. This en-
ables the adversary to participate in the protocol on behalf of the corrupted user. The same

74 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

operation is available to the ideal-world adversary, however, the adversary is allowed to choose
a compromised connection assignment in its session invocation query to a party’s instance ei-
ther if this party is not partnered with any other party, or the party is partnered with another
corrupted party, or the party itself is already corrupted. These changes capture the notions of
key confirmation and mutual authentication, and (perfect) forward secrecy.

The setting of strong adaptive corruptions extends the setting of adaptive corruptions and
considers a more powerful real-world adversary who obtains not only the long-lived keys, but
also the internal state information if this has not been previously erased by the high-level appli-
cation protocol. The same operation is given to the ideal-world adversary. This kind of corrup-
tions is comparable to the strong corruption model of the BPR model.

Additionally, Shoup’s model specifies similar security definitions for key exchange protocols
between anonymous parties, i.e., parties whose identities are not registered with a trusted party.
In these protocols the established key is used to derive a password which can be used for the
purpose of authentication. Further, Shoup compares his model to the BR+ and BCK models.
This results in the equivalence of some security notions, like security against static and adaptive
corruptions in the Shoup’s and the BR+ models.

As already noted Shoup’s model is strongly focused on the composition of key exchange
protocols with high-level application protocols. Therefore, it is unavoidable that some defini-
tions of the model rely on the assumptions about the application protocol, e.g., computation and
erasure of session keys. Further, security definitions in Shoup’s model do not consider attacks
related to key control and contributiveness.

6.2.6 Model by Bresson, Chevassut, Pointcheval, and Quisquater (BCPQ)

The formal model proposed by Bresson, Chevassut, Pointcheval and Quisquater [46], which
we refer to as the BCPQ model, is truly the first computational security model which has been
designed for group key exchange protocols. The model allows reductionist security proofs and
extends the methodology used in the BR, BR+, and BPR models to a group setting. Similar
to the mentioned models each protocol participant Ui ∈ ID1, i = 1, . . . , n is modeled by an
unlimited number of instances called oracles and denoted Πsi

i (si-th instance of Ui) that can be
involved in different concurrent protocol executions. Each user Ui is assumed to have a long-
lived key LLi (either symmetric or asymmetric). As in the BPR model the BCPQ model uses
session ids to define the notion of partnering used in the definition of security goals. Unlike the
BPR model which assumes the existence of unique session ids the BCPQ model describes their
concrete construction. A session id of an oracle Πsi

i is defined as SID(Πsi
i) := {SIDij | Uj ∈

ID} where SIDij is the concatenation of all flows that Πsi
i exchanges with another oracle Πsj

j .
According to the BCPQ model two oracles Πsi

i and Πsj
j are called directly partnered, denoted

Πsi
i ↔ Π

sj
j , if both oracles accept (compute the session key) and if SID(Πsi

i) ∩ SID(Π
sj
j) 6=

∅. Further, oracles Πsi
i and Π

sj
j are partnered if there exists a graph GSIDS := (V,E) with

V := {Πsl
l | Ul ∈ ID, l = 1, . . . , n} and E := {(Πsl

l , Π
sl′
l′)| Πsl

l ↔ Π
sl′
l′ } such that there

exists a sequence of oracles (Π
sl1
l1
, Π

sl2
l2
, . . . , Π

slk
lk

) with lk > 1, Πsi
i = Π

sl1
l1

, Πsj
j = Π

slk
lk

,
and Πsl−1

l−1 ↔ Πsl
l for all l = l2, . . . , lk. This kind of partnering is denoted Πsi

i ! Π
sj
j . The

BCPQ model uses graph GSIDS to construct (in polynomial time |V |) the graph of partnering
GPIDS := (V ′, E ′) with V ′ = V and E ′ = {(Πsl

l , Π
sl′
l′) |Πsl

l ! Π
sl′
l′ }, and defines the partner

id for an oracle Πsi
i as PIDS(Πsi

i) = {Πsl
l | Πsi

i ! Πsl
l ∀ l ∈ {1, n} \ {i}}.

1 ID is a set of n participants involved in the current protocol execution and is part of a larger set that contains all possible
participants.

6.2 Analytical Survey on Formal Security Models 75

The adversary A in the BCPQ model is allowed to send messages to the oracles (and invoke
the protocol execution) via Send queries, reveal the session key computed by the oracles via
Reveal queries, obtain long-lived keys of the users via Corrupt queries (note that the oracle’s
internal state information is not revealed, that is similar to the weak-corruption notion in the
BPR model), and ask a Test query to obtain either a session key or a random number. Using
this adversarial setting the BCPQ model specifies two security goals for a group key exchange
protocol: authenticated key exchange (AKE) security and mutual authentication (MA) security,
both based on the notion of partnering.

For the AKE-security the model requires that during its execution A which is given access
to the above mentioned queries asks a single Test query to an oracle which is fresh. An oracle
Πs
i is fresh if: (1) it has accepted, (2) neither Πs

i nor any of its partners have been asked for a
Corrupt query beforeΠs

i accepts, and (3) neitherΠs
i nor any of its partners have been asked for

a Reveal query. A group key exchange protocol is said to be AKE-secure if the probability that
A correctly guesses which value it has received in response to its Test query, i.e., the session
key or a random number, is negligibly greater than that of a random guess. This definition of
AKE-security subsumes the informal security goals related to the indistinguishability of group
keys from random numbers with respect to known group keys of other sessions in the presence
of active adversaries, as well as the requirement of (perfect) forward secrecy.

The definition of MA-security in the BCPQ model is intended to capture the intuitive notion
that it should be hard for a computationally bounded adversaryA to impersonate any participant
Ui through its oracle Πsi

i . For this purpose the authors require that the probability that during
the execution ofA which is given access to the above queries (thereby Test query is irrelevant)
there exists at least one oracle Πsi

i which accepts with |PIDS(Πsi
i)| 6= n − 1 is negligible. In

other words, if each participating oracle Πsi
i has accepted with |PIDS(Πsi

i)| = n − 1 then no
impersonation attacks could have occurred, thus the informal notion of mutual authentication
meaning that each participating oracle is assured of every other oracle’s participation in the
protocol is satisfied. In the following paragraph we show that this is not generally the case,
i.e., that there exists protocols where A impersonates Ui through some Πsi

i but nevertheless
all participating oracles accept and remain partnered, i.e., |PIDS(Π

sj
j)| = n − 1 for every

participating Πsj
j . Further, the authors claim

In the definition of partnering, we do not require that the session key computed by
partnered oracles be the same since it can easily be proven that the probability that part-
nered oracles come up with different session keys is negligible. [46, Footnote 3]

We are not concerned with partnered oracles coming up with different session keys,
since our definition of partnering implies the oracles have exchanged exactly the same
flows. [46, Section 7.4]

If these claims hold then the above definition of MA-security captures further informal security
goals related to key confirmation and mutual authentication (but only for honest protocol par-
ticipants). In the following paragraph we explain that these claims do not hold for just any GKE
protocol either. We show that an impersonation attack may likely result in different group keys
accepted by different partnered oracles. In fact we are able to show that the definition of MA-
security in the BCPQ model is not general enough to be used just for any GKE protocol, i.e., if
in a GKE protocol every participating oracleΠsi

i accepts with |PIDS(Πsi
i)| = n−1 then it does

not necessarily mean that this protocol provides mutual authentication and key confirmation.

76 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

Additionally, we stress that the BCPQ model does not consider attacks aiming to reveal the
internal state information (strong corruptions) and attacks of malicious participants aiming to
control the resulting key value.

Problems with the definition of MA-Security in the BCPQ model

We provide examples for the following two problems: (1) there exists GKE protocols where an
active adversary A can impersonate one of the participants through its oracle but nevertheless
every participating oracleΠsi

i accepts with |PIDS(Πsi
i)| = n−1 (the definition of MA-security

in the BCPQ remains satisfied even though impersonation attacks have occurred); (2) there
exists GKE protocols where each participating oracle Πsi

i accepts with |PIDS(Πsi
i)| = n − 1

but there are at least two partnered oracles that have computed different keys (the definition
of MA-security in the BCPQ remains satisfied even though some of the oracles complete with
different group keys). Note that these problems become visible only in the group setting with at
least three protocol participants. Therefore, it does not concern the original definition of mutual
authentication given by Bellare and Rogaway [22] based on matching conversations.

Before we give examples using a concrete GKE protocol we provide an abstract descrip-
tion. Figure 6.1 shows the abstract messages denoted mi (index i specifies the order in which
messages have been sent) that have been exchanged between the oracles (at least three partici-
pants are required) during the honest execution of any GKE protocol from [41, 42, 43, 46]. A
concrete equivalent message of each abstract message mi can be found in the corresponding
up- or downflow stage of any of these GKE protocols. By mi at the beginning of the arrow we
mean the original message sent by the oracle, and by mi at the end of the arrow we mean the
corresponding message received by another oracle. If both messages are equal then the original
message was not modified during the transmission.

Πs1
1 Πs2

2 Πs3
3

m1 m1 m2 m2

m3m3m3

Fig. 6.1. Example: Honest Execution of Protocols in [41, 42,
43, 46]

SID(Πsi
i) SIDi1 SIDi2 SIDi3

SID(Πs1
1) ∅ m1 m3

SID(Πs2
2) m1 ∅ (m2,m3)

SID(Πs3
3) m3 (m2,m3) ∅

Fig. 6.2. Example: SID(Πsi
i) in the Honest Protocol Execu-

tion

Obviously, Figure 6.1 shows a correct execution of the protocol since there are no modified
messages. Figure 6.2 specifies the session ids of the oracles Πs1

1 , . . . , Π
s3
3 during this honest

protocol execution using the construction from the BCPQ model. We assume that the protocol
is correct, thus it is clear that each participating oracle Πsi

i accepts with |PIDS(Πsi
i)| = 2. To

show the first problem we consider the case where A impersonates U1 and modifies message
m1 to m̃1 (Figure 6.3) such that SID21 = m̃1 (Figure 6.4). Our goal is to show that nevertheless

Πs1
1 Πs2

2 Πs3
3

m1 m̃1 m2 m2

m3m3m3

Fig. 6.3. Example: Protocol Execution with Impersonation
Attack

SID(Πsi
i) SIDi1 SIDi2 SIDi3

SID(Πs1
1) ∅ m1 m3

SID(Πs2
2) m̃1 ∅ (m2,m3)

SID(Πs3
3) m3 (m2,m3) ∅

Fig. 6.4. Example: SID(Πsi
i) in the Attacked Protocol Exe-

cution

every participating oracle Πsi
i accepts with |PIDS(Πsi

i)| = 2. We cannot generally assume that

6.2 Analytical Survey on Formal Security Models 77

all oracles accept after this modification but we may assume that there exists protocols where
this is the case (our example later is such a protocol where the oracles nevertheless accept).
With this assumption the first part of our goal, i.e., the acceptance of every participating Πsi

i ,
is satisfied. In order to show that |PIDS(Πsi

i)| = 2 holds for every Πsi
i we need to show that

Πsi
i ! Π

sj
j (or Πsi

i ↔ Π
sj
j) still holds for any two participating Πsi

i and Πsj
j . For this purpose

we need to look more precisely on the session ids of the oracles. Note that SID12 = m1. Though
SID(Πs1

1)∩ SID(Πs2
2) = {m1,m3} ∩ {m̃1,m2|m3} = ∅ and thus Πs1

1 6↔ Πs2
2 , there still exists

a sequence of oracles Πs1
1 , Πs3

3 , Πs2
2 such that

SID(Πs1
1) ∩ SID(Πs3

3) =

= {m1,m3} ∩ {m3,m2|m3}
= m3

SID(Πs3
3) ∩ SID(Πs2

2) =

= {m3,m2|m3} ∩ {m̃1,m2|m3}
= m2|m3

so that Πs1
1 ! Πs2

2 . Note also that these equations imply the direct partnering Πs1
1 ↔ Πs3

3 and
Πs2

2 ↔ Πs3
3 . Hence, we have shown that every Πsi

i , i ∈ {1, 2, 3} has |PIDS(Πsi
i)| = 2. Thus

all oracles are still partnered though the impersonation attack occurred whereby Πs2
2 received a

different message than the one originally sent by Πs1
1 . This may result in different group keys

computed by Πs1
1 and Πs2

2 .
In order to illustrate the described attack on a concrete example we consider the GKE pro-

tocol described in the same paper as the BCPQ model [46] but without the additional confir-
mation round which the authors described independently of the protocol. We stress that the
additional confirmation round belongs to a concrete protocol design but not to a general se-
curity model; otherwise the model cannot be applied to the protocols that do not have this
round. Recall, our goal is to show that despite of the acceptance of each participating oracle
Πsi
i with |PIDS(Πsi

i)| = 2 mutual authentication and key confirmation are not necessarily
provided. The protocol proceeds as described in Figure 6.5 (for simplicity we consider three
participants). [m]Ui denotes a digital signature on m computed by the corresponding Πsi

i (the
signature is attached to m), and V (m)

?
= 1 its verification; g is a generator of a cyclic group

of prime order p. Upon computing K = gx1x2x3 each oracle derives the resulting group key
k := H(ID, FL3, K) with a cryptographic hash function H : {0, 1}∗ → {0, 1}l where l is the
security parameter. In order to apply the above attack we consider that Πs1

1 chooses x1 ∈ Z∗p but
A drops the original message [Fl1]U1 and replays a corresponding message from some previous
protocol execution (noteA can invoke several subsequent protocol executions with the same ID
via its Send query). The replayed message is likely to be [F̃ l1]U1 with F̃ l1 := (ID, X̃1) where
X̃1 := {g, gx̃1} for some x̃1 6= x1 (since each xi is chosen at random for every new session).
Obviously, Πs2

2 can still verify the replayed message, i.e., V (F̃ l1) = 1 holds. It is easy to see
that X2 = {gx̃1 , gx2 , gx̃1x2} and X3 := {gx̃1x2 , gx̃1x3 , gx2x3} so that Πs1

1 computes K = gx1x2x3

whereas Πs2
2 and Πs3

3 compute another value, i.e., K = gx̃1x2x3 . This also implies that the de-
rived group keys are different. Note also that all oracles accept since all signature verifications
remain correct. Beside that we have (similar to the abstract problem description above)

78 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

Πs1
1 Πs2

2 Πs3
3

X3 := {gx1x2 , gx1x3 , gx2x3}

x1 ∈R Z∗
p; X1 := {g, gx1}

Fl1 := {ID, X1} [Fl1]U1

x2 ∈R Z∗
p; X2 := {gx1 , gx2 , gx1x2}

V (Fl1)
?
= 1

Fl2 := {ID, X2}

[Fl2]U2

x3 ∈R Z∗
p;

V (Fl2)
?
= 1

Fl3 := {ID, X3}
K := (gx1x2)x3

[Fl3]U3

V (Fl3)
?
= 1 V (Fl3)

?
= 1

K := (gx2x3)x1 K := (gx1x3)x2

Fig. 6.5. Example: Execution of the Protocol in [46] with Three Participants

SID(Πs1
1) ∩ SID(Πs3

3) =

= {[Fl1]U1 , [Fl3]U3} ∩ {[Fl3]U3 , [Fl2]U2|[Fl3]U3}
= [Fl3]U3

SID(Πs3
3) ∩ SID(Πs2

2) =

= {[Fl3]U3 , [Fl2]U2|[Fl3]U3} ∩ {[F̃ l1]U1 , [Fl2]U2|[Fl3]U3}
= [Fl2]U2|[Fl3]U3

so that |PIDS(Πsi
i)| = 2 for every Πsi

i , i ∈ {1, 2, 3}. Thus, we could show that although all
oracles accept with |PIDS(Πsi

i)| = 2 the protocol does not provide mutual authentication and
key confirmation. This contradicts to the idea behind the definition of MA-security in the BCPQ
model. Thus, it is not always true that if every Πsi

i accepts with |PIDS(Πsi
i)| = n − 1 then

mutual authentication and key confirmation are provided. Note that this is true if the protocol
from [46] is executed with the additional confirmation round, but there may exist other protocols
(including our example) for which this statement is not true (i.e., if MA-security is achieved by
some other techniques). This shows that the definition of MA-security given in the BCPQ model
is not generally applicable just for any GKE protocol.

Furthermore, we stress that a more general definition of MA-security should also consider
possible attacks of malicious protocol participants those goal is to influence honest participants
to come up with different group keys. As described in [72, 73], not considering malicious partic-
ipants is the reason why the BCPQ model and some of its later appeared variants do not capture
unknown key-share attacks in their definitions. Note also that the construction of session ids
based on concatenation of exchanged messages has one significant drawback - it becomes avail-
able only after the protocol is executed. However, some protocols use uniqueness of session ids
as protection against replay and protocol interference attacks. In this case it is desirable to have
a unique session id prior to the protocol execution.

6.2.7 Models by Bresson, Chevassut, and Pointcheval (BCP, BCP+)

BCP

In their subsequent work, Bresson, Chevassut, and Pointcheval [41] extend the BCPQ model to
deal with dynamic group key exchange protocols where group membership may change during
the protocol execution. We denote this extended model BCP. According to it a dynamic GKE

6.2 Analytical Survey on Formal Security Models 79

protocol consists of an initialization algorithm executed for each participant, a setup protocol
between all founding group members for the initialization of the group and computation of
initial session key, a join protocol executed between current group members and a set of joining
members, and a remove protocol executed between the remaining group members after the
exclusion of a subset of members from the group. The protocols for setup, join, and remove
are called operations. The BCP model also specifies three additional queries, Setup, Join, and
Remove, enabling an adversary to invoke the corresponding operation between the protocol
participants. The BCP model defines AKE-security and MA-security as in the BCPQ model,
i.e., based on the adversary’s guess on the response of its Test query to a fresh oracle and based
on the partnering condition, respectively.

The BCP model has the same drawbacks as the BCPQ model concerning the security of the
protocol in case of the attacks that aim to reveal the internal state information of the oracles,
attacks by malicious participants, and the identified problems with the definition of MA-security.

BCP+

Bresson, Chevassut, and Pointcheval [42] revised their BCP model to cover attacks against the
protocol based on the revealed internal state information of the oracles (strong corruptions). We
denote this revised model as BCP+. The model assumes that the security-relevant internal state
information is maintained within a secure coprocessor, and that the long-lived keys of partic-
ipants are stored within a smart card. Therefore, the model specifies additional queries which
an adversary is allowed to ask, i.e., a Sendc query which allows the adversary to communicate
directly with the coprocessor, a Corruptc query which reveals the private memory of the device
together with all messages which have been exchanged between the coprocessor and the smart
card, a Sends query which allows the adversary to communicate directly with the smart card,
and a Corrupts query which reveals the oracle’s long-lived key.

Further, the BCP+ model defines two flavors of forward secrecy: weak forward secrecy (wfs)
and strong forward secrecy (fs). For the case of weak forward secrecy the BCP+ model defines
a weak corruption model in which the adversary is allowed to ask Send, Setup, Join,Remove,
Reveal, and Test queries (all of which are answered as in the BCP model) as well as Sendc,
Sends, and Corrupts queries. According to the weak corruption model an oracle is called wfs-
fresh if no Corrupts query has been asked by the adversary since the beginning of its execution,
and in the execution of the current operation the oracle has accepted (holds the session key) and
neither this oracle nor any of its partners (although the model does not specify the definition of
partnering it seems to be the same as in the BCP model) have been asked for a Reveal query.
The adversary must ask its Test query to an oracle which is wfs-fresh.

Consequently, for the case of strong forward secrecy the BCP+ model defines a strong cor-
ruption model in which the adversary may additionally ask Corruptc queries to obtain the
internal state of the coprocessor and all messages which have been exchanged between the co-
processor and the smart card, and Reveal queries reveal not only the session key but also all
messages which have been exchanged between the oracle and its secure coprocessor. An oracle
is called fs-fresh if neither Corruptc nor Corrupts queries have been asked by the adversary
since the beginning of its execution, and in the execution of the current operation the oracle has
accepted and neither this oracle nor any of its partners have been asked for a Reveal query. In
the strong corruption model the adversary must ask its Test query to an oracle which is fs-fresh.

The BCP+ model defines AKE-security of a GKE protocol using the adversary’s guess for
the response to its Test query as in the BCP model but can be of two types with respect to the

80 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

chosen corruption model. Hence, the BCP+ model considers definitions of semantic security
with respect to known-key attacks and active adversaries as well as (perfect) forward secrecy.
The BCP+ model does not explicitly specify MA-security, however, the authors mention that
its definition can be taken from their BCP model. Although the model deals with the attacks
concerning internal states of participants it still does not consider attacks of malicious partici-
pants, neither for MA-security nor for the issues of key control and contributiveness. It is also
arguable whether the assumptions about the existence of smart cards and secure coprocessors
for the protocol execution are of major importance and should be considered within an abstract
model. The ability of the adversary to reveal the internal state information and the long-lived
keys of participants can also be modeled by corresponding queries without these assumptions.
This would also simplify the model.

6.2.8 Modifications of the BCPQ, BCP, and BCP+ Models

In this section we describe some existing modifications of the models in Sections 6.2.6 and
6.2.7.

Modification by Bresson, Chevassut, and Pointcheval

In [43] the authors slightly modified the BCPQ model to be used with group key exchange pro-
tocols where authentication is achieved by the means of shared passwords. In addition to Send,
Reveal, Corrupt, and Test queries the adversary is allowed to ask an Execute which models
an honest protocol execution between the participants specified in the query, or in other words
the protocol is executed in the presence of a passive adversary. This allows to provide tighter
security proofs with respect to dictionary attacks because the number of Send queries which
an adversary is allowed to ask and that it actually uses to try own passwords is independent
of the number of Execute queries for which the adversary obtains the transcript of an honest
execution where participants use the shared password.

Modification by Katz and Yung (KY)

Katz and Yung [112] revised the BCPQ model from the perspective of static group key exchange
protocols in which all messages are sent over a broadcast channel, i.e., received by all partic-
ipants. Similar as the modification in [43] the authors consider an additional Execute query.
However, the main difference to the BCPQ model is a different construction of session ids and
partner ids. The session id of an oracle Πs

i is simply the concatenation of all message flows that
were sent or received by Πs

i . Since each protocol message is received by every protocol partic-
ipant it is clear that at the end of an honest execution all participants compute the same session
id. The partner id of an oracle Πs

i consists of the identities of participants with whom the oracle
intends to establish the session key including Ui (note that in the BCPQ model Ui is not part of
PIDS(Πs

i)). Note that according to this definition partner ids are known in advance whereas in
the BCPQ model they become known at the end of the protocol execution. Therefore, the equal-
ity of partner ids alone is not sufficient to decide whether oracles have actually participated in
the same protocol session or not. For this reason Katz and Yung define two oracles as being
partnered if they have equal partner ids and equal session ids. Also, Katz and Yung slightly
modified the definition of the freshness of an oracle, i.e., an oracle Πs

i is fresh if the adversary
did not ask a Send query to Πs

i or any of its partners after having corrupted Ui or any of its
partners, and neither Πs

i nor any of its partners have been asked for a Reveal query. Hence,

6.2 Analytical Survey on Formal Security Models 81

this modification allows the adversary to corrupt a party but then the adversary is not allowed
to participate in the protocol on behalf of the corrupted party. This does not give the adversary
any advantage compared to the definition of freshness in the BCPQ model. For the definition
of security of a protocol Katz and Yung consider a modular approach. They call a protocol: (a)
a secure group key exchange protocol if a passive adversary which is not allowed to ask any
Send queries (note that this is the reason for the additional Execute query) is successful in
its guess concerning the Test query, and (b) a secure authenticated group key exchange pro-
tocol if the same holds for an active adversary. However, their modifications do not explicitly
consider mutual authentication and key confirmation and also do not deal with the attacks of
malicious participants concerning the issues of key control and contributiveness. Note also that
the proposed construction of session ids can be used only in the group key exchange protocols
where each message is sent over a broadcast channel, i.e., received by each other party. Thus,
the model is not abstract enough.

Modification by Kim, Lee, and Lee

Kim, Lee, and Lee [114] proposed a modification of the BCP model considering modifications
done by Katz and Yung for the BCPQ model. In their model partner id of an oracle Πs

i corre-
sponds to the set of group members excluding the identity Ui, so that the partner ids are already
known prior to the execution of the protocol. The proposed model specifies unique session ids
for each oracle, however, they do not describe how these session ids are constructed. Obviously,
they assume the same construction as in the modification by Katz and Yung. Two oracles are
defined to be partnered if: (1) their session ids are equal, (2) each oracle’s partner id consists
of identities of all other group members’ oracles, and (3) if the oracles compute equal session
keys. Obviously, the latter requirement on the equality of computed session keys is somehow
redundant, because if oracles compute equal session ids which are built by the concatenation of
exchanged messages then they also compute equal session keys. Note also that this modifica-
tion has similar limitations as the modification by Katz and Yung concerning protocols in which
messages are not exchanged over a broadcast channel, and it also does not deal with attacks
related to mutual authentication and key control.

Modification by Dutta, Barua, and Sarkar

Dutta, Barua, and Sarkar [87] proposed another variant of the BCPQ model. Similar modifica-
tions have been later applied by Dutta and Barua [83, 84, 86] to the BCP model for dynamic
protocols and to the model in [43] for the password-based authenticated protocols. The authors
use the same construction of partner ids as Katz and Yung, however, they proposed a different
construction of session ids. Instead of using the concatenation of exchanged messages the au-
thors set the session id of an oracle Πs

i to be a set of pairs {(U1, s1), . . . , (Un, sn)} where each
pair (Uj, sj), j ∈ {1, . . . , n} corresponds to the instance oracle Πsj

j of the protocol participant
Uj , and say that two oracles are partnered if they have equal partner ids and equal session ids.

In order to keep session ids unique the authors require the uniqueness of oracles for each
new session. In [83] the authors suggest to use a counter value as an additional parameter which
should be increased for every new oracle of the user. Though this construction makes unique
session ids available prior to the protocol execution it has the following weakness if used in
the actual protocol implementation: the counter value must be saved after each execution of
the protocol and, furthermore, it must be protected from manipulation; otherwise, an adversary
may reset it to some previous value and cause impacts on the security of the protocol. A more

82 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

practical approach seems to be using random values (nonces) for each new initialization of the
oracle. However, in this case one has to consider possible collisions between nonces used in
different sessions. Note that the if session ids are not unique then an adversary may mount
attacks based on interference of different sessions, e.g., replay attacks.

6.2.9 Models by Katz and Shin (KS, UC-KS)

Katz and Shin [111] proposed two different security models for GKE protocols: a computational
model (referred to as the KS model), and a model in the framework of Universal Composability
(UC) [57] (referred to as the UC-KS model). These models provide the first formal treatment of
security of GKE protocols in the presence of malicious participants.

KS

The KS model is an extension of the BCPQ model and is also based on the modification of
the latter by Katz and Yung [112]. However, Katz and Shin assume that unique session ids are
already provided to the protocol by some high-level application protocol whereas the BCPQ
model and the mentioned extension provide their own construction of the session ids. Partner
ids of the oracles and the partnering relation are specified in the same way as proposed by Katz
and Yung. The KS model allows the adversary to ask Execute, Send, Reveal, Corrupt and
Test queries capturing the informal security definitions of semantic security with respect to
known-key attacks and active adversaries as well as (perfect) forward secrecy. Similar to the
BCP+ model the KS model specifies two types of oracle freshness with respect to two different
corruption models. In the weak corruption model an oracle Πs

i is fresh if no Reveal query has
been asked to Πs

i or to any of its partners, and no Corrupt query has been asked to Ui or
to any other participants in the session before the oracles have computed the session key and
terminated. In the strong corruption model an oracle Πs

i is fresh if no Reveal query has been
asked to Πs

i or to any of its partners, and no Corrupt query has been asked to a party whose
identity belongs to the partner id of Πs

i beforeΠs
i has computed the session key and terminated.

Thus, in the strong corruption model the adversary is allowed to corrupt partners ofΠs
i . Further,

in the strong corruption model the Corrupt query returns not only the long-lived key of a party
but also the internal state of any active oracle which belongs to this party. Based on these two
corruption models the KS model defines security of authenticated group key exchange protocols
based on the adversary’s guess with respect to its Test query (similar to the AKE-security from
the BCPQ model and its previously described variants).

Additionally, the KS model considers insider attacks executed by misbehaving, malicious
participants. It defines a security goal called agreement such that an adversary violates agree-
ment if there exist two oracles, Πs

i and Πs′
j , which are partnered and neither Ui nor Uj are

corrupted but Πs
i and Πs′

j have accepted with different session keys. Intuitively, this considers
key confirmation in case that all other participants are malicious (corrupted).

Further, the KS model says thatA impersonates Uj to (accepted)Πs
i if Uj is uncorrupted and

belongs to the partner id of Πs
i but in fact there exists no oracle Πs′

j which is partnered with Πs
i .

In other words, the oracle Πs
i computes the session key and Ui believes that Uj does so, but in

fact an adversary has participated in the protocol on behalf of Uj . Note that there are no assump-
tions about the corruption of other protocol participants. This is a subject of the following two
different definitions of the protocol security against impersonation attacks. A protocol is secure
against outsider impersonation attacks if there exists a party Uj and an oracle Πs

i such that for
any adversary A the probability that A impersonates Uj to Πs

i and no parties which belong to

6.2 Analytical Survey on Formal Security Models 83

the partner id of Πs
i are corrupted before Πs

i accepts is negligible. Thus, the adversary is not
allowed to corrupt protocol participants during the execution of the protocol. Hence, an active
adversary may try to inject messages on behalf of Uj or manipulate messages sent by valid
protocol participants. Further, a protocol is secure against insider impersonation attacks if there
exists a party Uj and an oracle Πs

i such that for any adversary A the probability that A imper-
sonates Uj toΠs

i and neither Uj nor Ui are corrupted beforeΠs
i accepts is negligible. Obviously,

this (stronger) definition requires the existence of at least two uncorrupted protocol participants
and allows the adversary to corrupt other participants. Intuitively, this requirement considers
mutual authentication and unknown key-share resilience in the presence of malicious partici-
pants. Katz and Shin say that an authenticated group key exchange protocol is secure against
insider attacks if it guarantees agreement and is secure against insider impersonation attacks.
Note that the KS model does not describe any relationship between their formal definitions and
other well-known informal definitions.

UC-KS

The UC-KS model has a different concept (which is common for all UC-based models) that
describes what an ideal GKE protocol execution is. Security proofs carried out in this model
are based on the simulatability/indistingushability approach (as mentioned in Section 3.3.2).
This is different to the security proofs carried out in computational security models (like other
mentioned variants of the BCPQ model) that use the reductionist approach (as described in
Section 3.3.1). Note that in addition to both models Katz and Shin proposed a compiler to
turn any GKE protocol which is secure in the BCPQ model into a protocol which is secure
in their UC-based model, and provided simulatability/indistingushability-based security proofs
for this case. However, Katz and Shin did not provide reductionist proofs to show that this
compiler satisfies security against insider attacks defined in their computational model (this is
important to be mentioned even though UC-security is considered to be stronger). This leaves
open whether definitions of agreement and security against insider impersonation attacks in their
computational model are practical enough for the construction of reductionist security proofs.2

Another, more significant drawback of the KS model is that its definitions are still not strong
enough since they do not consider the issues related to key control and contributiveness. As we
show in Section 9.5 Katz and Shin’s construction proven secure in the UC-KS model still allows
a malicious participant to bias the resulting value of the session group key.

6.2.10 Model by Bohli, Vasco, and Steinwandt (BVS)

Bohli, Vasco, and Steinwandt [32] proposed in their unpublished work an extension (which
we refer to as the BVS model) of the BCPQ model and its modification by Katz and Yung
towards security goals in the presence of malicious participants. Their definitions of session ids,
partner ids, the notion of partnering, the adversarial queries, oracle freshness, and security of
authenticated group key exchange are identical to those in [112]. Therefore, the BVS model
captures indistinguishability of group keys from random numbers with respect to known-key

2 In fact in our model in Section 8.2.9 we provide an alternative definition (which we call MA-security to keep consistency
with all previous models) that can be used to replace definitions of agreement and security against insider impersonation
attacks of the KS model. One advantage is that for the same requirements in our model we need only one definition (and
consequently one reductionist proof) whereas in the KS model two definitions (and consequently two reductionist proofs)
are needed. Furthermore, we prove in Section 8.3 that our definition really unifies the informal notions of key confirmation,
mutual authentication and unknown key-share resilience in the presence of malicious participants while the KS model does
not show it explicitly.

84 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

attacks and active adversaries as well as (perfect) forward secrecy. Additionally, the BVS model
defines a security goal called session integrity which is provided if all oracles of uncorrupted
participants that have accepted with equal session ids hold identical session keys and partner ids
which encompass the identities of all honest parties having accepted with the same session id.
The second security goal defined by the BVS model is strong entity authentication to an oracle
Πs
i meaning that Πs

i accepts and for all uncorrupted Uj which belong to the partner id of Πs
i

there exists an oracleΠs′
j which holds the same session id asΠs

i and Ui belongs to the partner id
of Πs′

j . Intuitively, compared to the KS model the definition of session integrity is related to the
definition of agreement, and the notion of strong entity authentication is similar to the security
against impersonation attacks. Therefore, a combination of session integrity and strong entity
authentication subsumes informal definitions of mutual authentication and key confirmation in
the presence of malicious participants.

The BVS model also deals with the issues of key control and contributiveness. The adversary
is given access to Execute, Send, Reveal, and up to t− 1 Corrupt queries and has to output a
tuple (i, s, χκ, a) where i and s correspond to an unused oracle Πs

i (oracle is unused if it has not
been initialized earlier) of an uncorrupted participant Ui, χκ is a boolean-valued algorithm with
κ := {k ∈ K| χκ(k) = true} such that K is a key space and |κ| is polynomial in the security
parameter, and a is some state information. Then on input a the adversary tries to make Πs

i

accept a session key k ∈ κ. In this second stage the adversary is allowed to ask Execute, Send,
Reveal, and Corrupt queries, but is not allowed to corrupt Ui, and the total number of Corrupt
queries in both stages should remain≤ t−1. The BVS model defines a group key establishment
protocol as being t-contributory if the adversary succeeds with only negligible probability. In
case that a protocol is n-contributory where n is a number of protocol participants then the BSV
model calls it a key agreement. It is clear that the above definition enforces each participant to
provide own contribution to the computation of the session key. Unfortunately the authors do
not show feasibility of their contributiveness definition since their proofs are heuristic.

The BVS model has some drawbacks discussed in the following. First, the adversary is re-
quired to commit to a certain oracle Πs

i which remains uncorrupted and whose computation of
the session key it tries to influence. Hence, the adversary is not adaptive in the sense that it can
freely choose Πs

i during the second stage of the attack. Second, the BCPQ model and conse-
quently the BVS model disallows the adversary to reveal internal states of the oracles (strong
corruptions). Therefore, the model considers neither (perfect) forward secrecy with respect to
strong corruptions nor its definition of contributiveness does capture attacks aiming to influence
the computation of the session key by Πs

i using the knowledge of its internal state information
but without corrupting Ui. Third, it is not clear how to specify the algorithm χκ, i.e., accord-
ing to which criteria one can distinguish whether the key computed by Πs

i is influenced by the
adversary or is real in the sense of the protocol.

6.3 Summary and Discussion

In the following we summarize results of our analysis of currently known security models for
group key exchange protocols. We focus on the BCPQ, BCP, BCP+, KY, KS/UC-KS, and BVS
models while leaving out security models specified only for two or three protocol participants.
We also do not consider variations of the above models in [43, 83, 84, 86, 87, 114] since these
are minor modifications, mostly of technical nature, and without significant consequences for
the actual security definitions. Note that almost all considered models (BCPQ, BCP, BCP+,

6.3 Summary and Discussion 85

KY, KS, and BVS) have been designed for reductionist security proofs whereas UC-KS has
been designed for simulatability/indistinguishability-based proofs. Still, the security require-
ments stated in the UC-KS model correspond to those stated in the KS model. Table 6.3 pro-
vides a comparison of these models. Columns two to five specify blocks of the most important

Table 6.1. Analysis of Security Models for Group Key Exchange Protocols

Model IND MA FS CON Strong Corr. S/D

BCPQ [46] + H + - - S

BCP [41] + H + - - D

BCP+ [43] + - + - + D

KY [112] + - + - - S

KS/UC-KS [111] + M + - + S

BVS [32] + M + + - S

informally defined security requirements from Section 6.1 whereby

• IND is the requirement on the indistinguishability of the group key computed in one ses-
sion from a random value with respect to active adversaries and known group keys of other
sessions,

• MA is the requirement on mutual authentication between all participants of the group key
exchange protocol that also subsumes the requirement on key confirmation and unknown
key-share resilience (M points out that definitions of the model consider malicious partici-
pants; H points out that definitions of the model consider only honest participants;),

• FS is the requirement on (perfect) forward secrecy, in particular that IND still holds if the
adversary is able to reveal the long-lived keys of all participants in later sessions,

• CON is the requirement on contributiveness of the group key exchange protocol, in partic-
ular that each participant equally contributes to the resulting group key and guarantees its
freshness (this also subsumes the notion of key control and unpredictability).

Additionally, Table 6.3 specifies whether the considered model provides definitions with respect
to strong corruptions, i.e., the adversary should be allowed to reveal internal (private) informa-
tion of protocol participants used in the protocol execution. This may have consequences on
the definitions of considering FS and CON. The last column provides the type of the protocol
dynamics considered by the model (S for static, D for dynamic).

INFORMAL REQUIREMENTS Obviously, all considered security models provide definitions that
consider the requirements on indistinguishability of computed group keys (IND) and forward
secrecy (FS). The requirement on mutual authentication and key confirmation has been found
to be not general enough in the definitions of the BCPQ and BCP models. Furthermore, these
definitions do not consider attacks of malicious participants. The BCP+ and KY models do not
contain any definitions concerning MA-security. Only the KS/UC-KS and BVS models provide
sufficient definitions concerning mutual authentication, key confirmation and unknown key-
share resilience (MA) concerning attacks of malicious participants. Note that BVS is the only

86 6 Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols

model that considers issues concerning key control and contributiveness (CON).

STRONG CORRUPTIONS Only the BCP+ and KS/UC-KS models consider strong corruptions in
their security definitions, however, only for the security requirement concerning forward secrecy
(FS). The BVS model as an extension of the KY model does not deal with strong corruptions
so that its definitions concerning key control and contributiveness are weak. We stress that the
consideration of a more powerful adversary against key control and contributiveness which is
given access to strong corruptions is important since this kind of the adversary is also consid-
ered for other requirements, e.g., FS.

GROUP DYNAMICS Only the BCP model and its stronger variant BCP+ provide definitions
concerning dynamic group key exchange protocols. All other models focus on static GKE pro-
tocols. Note that dynamic protocols provide additional operations for the efficient update of the
group key upon occurring changes of the group formation. Due to the risk that efficiency is
achieved at the expense of weaker security it is important to consider these operations in the
stated security requirements.

MAIN RESULT Obviously, the models BCP+, KS/UC-KS and BVS are the strongest currently
available security models for GKE protocols. However, all of them have different drawbacks as
shown throughout this chapter. In particular, none of the currently existing security models for
group key exchange protocols provides sufficient security definitions that unify all important
informal security requirements from the earlier literature and consider malicious participants,
strong corruptions and dynamic operations at the same time. This fact emphasizes the need of
an advanced security model that does not have the identified limitations.

Chapter 7

Security-Focused Survey on Group Key Exchange Protocols

In this chapter we give a survey of currently known key exchange protocols while focusing on
the protocols that have been designed for more than three participants. For an overview of two-
and three-party key exchange protocols we refer to [38, 85]. Most of the protocols described in
this chapter can be seen as extensions of the well-known Diffie-Hellman key exchange protocol
between two parties proposed by Diffie and Hellman in their foundational work [79].

7.1 Preliminaries . 87
7.1.1 Two-Party Key Exchange Protocol by Diffie and Hellman . 87
7.1.2 Three-Party Key Exchange Protocol by Joux . 88
7.1.3 A Comment on Relationships between the Protocols . 88

7.2 Group Key Exchange Protocols with Heuristic Security Arguments . 90
7.2.1 Protocol by Burmester and Desmedt . 90
7.2.2 Protocol by Ingemarsson, Tang, and Wong . 91
7.2.3 Protocols by Steiner, Tsudik, and Waidner . 92
7.2.4 Protocols by Ateniese, Steiner, and Tsudik . 93
7.2.5 Protocol by Steer, Strawczynski, Diffie, and Wiener . 95
7.2.6 Protocol by Becker and Wille . 95
7.2.7 Protocols by Kim, Perrig, and Tsudik . 97
7.2.8 Protocol by Lee, Kim, Kim, and Ryu . 98
7.2.9 Protocols by Barua, Dutta, and Sarkar . 99

7.3 Provably Secure Group Key Exchange Protocols . 99
7.3.1 Protocol by Katz and Yung . 99
7.3.2 Protocol by Abdalla, Bresson, Chevassut, and Pointcheval . 100
7.3.3 Protocol by Kim, Lee, and Lee . 101
7.3.4 Protocols by Barua and Dutta . 102
7.3.5 Protocols by Bresson and Catalano . 103
7.3.6 Protocols by Bresson, Chevassut, Pointcheval, and Quisquater . 104
7.3.7 Protocols by Dutta, Barua, and Sarkar . 107

7.4 Summary and Discussion . 108

We distinguish between protocols with heuristic security arguments in Section 7.2 and pro-
tocols in Section 7.3 that have been proven secure in one of the security models described in the
previous chapter.

We stress that our survey focuses on the security aspects of the protocols. It does not aim
to provide any efficiency comparison. The reader interested in this kind of surveys we refer to
[8, 150].

7.1 Preliminaries

7.1.1 Two-Party Key Exchange Protocol by Diffie and Hellman

The protocol proposed by Diffie and Hellman in [79] is the earliest key exchange protocol
that allows two participants, U1 and U2, compute a secret key k over a public communication

88 7 Security-Focused Survey on Group Key Exchange Protocols

channel. Mathematical operations of the protocol are performed in a multiplicative group G
where the DL problem is believed to be intractable (see Section 5.4.1 for further details). Let g
be a generator of G. Figure 7.1 describes the generalized version of the protocol.

• Each Ui, i ∈ {1, 2} chooses a random xi ∈R Zq and sends zi := gxi to U3−i.
• Each Ui, i ∈ {1, 2} computes ki := (z3−i)xi .

Fig. 7.1. Two-Party Key Exchange Protocol by Diffie and Hellman [79]

Obviously, the resulting shared key has the form k = gx1x2 . The semantic security of k
against passive adversaries relies on the DDH assumption. The original Diffie-Hellman protocol
does not provide protection against impersonation attacks. A large number of variations has
been proposed after the invention of the protocol to improve its security degree, the most recent
are [121, 122]. Mostly all group key exchange protocols considered in our survey can be seen as
more or less complex extensions related to this original Diffie-Hellman key exchange protocol.

7.1.2 Three-Party Key Exchange Protocol by Joux

Joux [109] proposed the following efficient key exchange protocol designed for three partici-
pants. The protocol uses a bilinear map ê : G1 × G1 → G2 where G1 is an additive group
of prime order q and G2 a multiplicative group of the same order, e.g., G1 is a subgroup of the
group of points on an elliptic curve E over a finite field, G2 a subgroup of a multiplicative group
over a related finite field, and ê is an appropriate pairing on E (we refer to [28] for more details
on pairings in elliptic curves). Also an element (point) P ∈ G1 with ê(P, P) 6= 1G2 should be
publicly known. The protocol between U0, U1, and U2 proceeds as follows.

• Each Ui chooses xi ∈R Z∗q and broadcasts yi := xiP to all other users.
• Each Ui computes ki := ê(y(i+1) mod 3, y(i+2) mod 3)

xi .

Fig. 7.2. Three-Party Key Exchange Protocol by Joux [109]

Obviously, at the end of the protocol each user computes the group key k = ê(P, P)x0x1x2 .
The protocol requires only one communication round. Although not explicitly shown in [109],
the semantic security of the protocol against passive adversaries is based on the Bilinear Diffie-
Hellman (BDH) assumption [36]. Joux’ protocol does not provide any form of authentication.
Several attempts have been done to add authentication to the Joux’ protocol, e.g., certification-
based [7, 104, 166] and identity-based [68, 139, 140, 164, 191] protocol some of which could
be broken in [67, 164, 165, 177].

7.1.3 A Comment on Relationships between the Protocols

Regardless of the separation into group key exchange protocols with heuristic security argu-
ments and protocols with security proofs in the available security models some of the protocols
included in our survey have certain similarities which we describe in the following.

The protocols in Sections 7.3.1, 7.3.2, 7.3.3, and 7.3.4 can be considered as modifications
of the static group key exchange protocol proposed by Burmester and Desmedt [50] which we

7.1 Preliminaries 89

describe in Section 7.2.1. These protocols are characterized by the constant number of commu-
nication rounds and are, therefore, scalable for large groups. Some of these protocols derive the
group key from bases whose discrete logarithms are outputs of an additive cyclic function.

The protocols in Sections 7.2.3, 7.2.4, and 7.3.6 can be considered as modifications of the
static group key exchange protocol proposed by Ingemarsson, Tang, and Wong [107] which
we describe in Section 7.2.2. Most of these protocols derive the group key from bases whose
discrete logarithms are outputs of a symmetric multiplicative function. In particular, from the
value of the form gx1···xn where g is a generator of a cyclic group G where the DL problem
is believed to be intractable, and every xi, i ∈ [1, n] is a private exponent of participant Ui.
This form can be seen as a “natural” extension of the two-party Diffie-Hellman key exchange
protocol described above.

The protocols in Sections 7.2.6, 7.2.7, derive the group key from a value obtained by an it-
erative application of the two-party Diffie-Hellman protocol. The earliest protocol of this class
was proposed by by Steer, Strawczynski, Diffie, and Wiener [171] which we describe in Sec-
tion 7.2.5. Most of the protocols of this class arrange participants into a logical binary tree
structure which is either linear or balanced. In general, each user is logically assigned to a
leaf node of a binary tree T . We use labels 〈l, v〉 to uniquely identify a node of a tree where
l ∈ {0, dT} is a corresponding level of T , dT the depth of T , and v ∈ N the nodes’ position
within the level. Note that in linear binary trees the depth dT is linear in the number of par-
ticipants whereas in the balanced binary trees dT is logarithmic. Figure 7.3 shows an example
of both tree types for n = 4. Every node of the tree contains a pair (x〈l,v〉, y〈l,v〉) where x〈l,v〉

〈2, 0〉 〈2, 1〉 〈2, 2〉 〈2, 3〉

〈1, 0〉 〈1, 1〉

〈0, 0〉

〈3, 0〉 〈3, 1〉

〈2, 0〉 〈2, 1〉

〈1, 0〉 〈1, 1〉

〈0, 0〉

U〈2,0〉 U〈2,1〉 U〈2,2〉 U〈2,3〉 U〈3,0〉 U〈3,1〉

U〈2,1〉

U〈1,1〉

T is balanced, dT = dlog ne = 2 T is linear, dT = n− 1 = 3

0 ≤ l ≤ 2, 0 ≤ v ≤ 2l − 1 0 ≤ l ≤ 3, v ∈ {0, 1}
X〈2,1〉 = (x〈2,1〉, x〈1,0〉, x〈0,0〉)
Y〈2,1〉 = (y〈2,1〉, y〈1,0〉)

Fig. 7.3. Example: Balanced and Linear Trees for n = 4

is considered to be a secret key, and y〈l,v〉 a public value derived from x〈l,v〉. The root of the
tree, denoted 〈0, 0〉 contains only the secret value x〈0,0〉, which is usually used in the protocols
to derive the resulting group key k. By a secret key path of a node 〈l, v〉 we denote the list
X〈l,v〉 := (x〈l,v〉, x〈l−1,bv/2c〉, . . . , x〈1,bv/2l−1c〉, x〈0,0〉), and by a public key path of a node 〈l, v〉 the
corresponding list Y〈l,v〉 := (y〈l,v〉, y〈l−1,bv/2c〉, . . . , y〈1,bv/2l−1c〉). The protocols differ in a way of
how this group key is computed. Furthermore, some of the described protocols update the log-
ical tree structure and the the secret value x〈0,0〉 upon occurring dynamic changes of the group
formation.

90 7 Security-Focused Survey on Group Key Exchange Protocols

The protocols in Sections 7.2.8, 7.2.9, and 7.3.7 arrange participants into a ternary tree like
the one in Figure 7.4. These protocols are extensions of the Joux’ three-party key exchange
protocol from Section 7.1.2.

〈2, 0〉 〈2, 2〉

〈1, 0〉

〈0, 0〉

U〈2,0〉 U〈2,2〉

T is balanced, dT = dlog3 ne = 2, 0 ≤ l ≤ 2, 0 ≤ v ≤ 3l − 1

X〈2,2〉 = (x〈2,2〉, x〈1,0〉, x〈0,0〉), Y〈2,2〉 = (y〈2,2〉, y〈1,0〉)

〈2, 1〉
U〈2,1〉

〈2, 3〉 〈2, 5〉

〈1, 1〉

U〈2,3〉 U〈2,5〉

〈2, 4〉
U〈2,4〉

〈2, 6〉

〈1, 2〉

U〈2,6〉

〈2, 7〉
U〈2,7〉

Fig. 7.4. Example: Balanced Ternary Tree for n = 8

7.2 Group Key Exchange Protocols with Heuristic Security Arguments

7.2.1 Protocol by Burmester and Desmedt

Burmester and Desmedt [50, 51] describe several protocols that allow a set of n users (group
members) U1, . . . , Un to compute a secret group key k. The proposed protocols differ with
respect to the underlying network topology. Although the majority of their protocols belongs to
the class of group key distribution there are two protocols that can be considered as group key
exchange protocols between users that are connected either over a broadcast network or other a
bi-directional cyclic network. In the following we give a brief description of the static protocol
designed for a broadcast network (denoted in [50] as Protocol 3).

All group members are logically ordered into a cycle, i.e., the indices are taken modulo n so
that user U0 is Un and user Un+1 is U1. All mathematical operations are performed in a cyclic
group G ⊆ Zp with prime p generated by g ∈ Zp of order q. It is assumed that the description
of G is implicitly known to all users. The protocol proceeds as follows.

• Each Ui chooses a random ri ∈R Zq and broadcasts zi := gri (mod p).
• Each Ui broadcasts Xi := (zi+1/zi−1)

ri (mod p).
• Each Ui computes ki := (zi−1)

nri ·Xn−1
i ·Xn−2

i+1 · · ·Xi+n−2 (mod p) for i = 1, . . . , n.

Fig. 7.5. Protocol by Burmester and Desmedt [50]

Note that after the protocol is completed every user holds the same group key k = ki =
gr1r2+r2r3+...+rnr1 (mod p). The protocol designed for bi-directional cyclic network (denoted
in [50] as Protocol 4) proceeds similar except that corresponding messages are sent between
any two directly connected participants. This increases the communication and computation
overhead compared to the above protocol.

7.2 Group Key Exchange Protocols with Heuristic Security Arguments 91

The heuristic security proof given in the pre-proceedings version considers only key secrecy
requirement with respect to passive eavesdroppers under the CDH assumption. The insecurity
against active adversaries follows from the absence of authentication. The authors also mention
a variant of an authenticated protocol where each user Ui authenticates corresponding zi to the
subsequent user Ui+1 using a zero-knowledge proof technique [66]. However this technique
does not provide security against impersonation attacks due to the missing identification.

Variants by Choi et al. and Manulis

Choi et al. [71] proposed a variant of the unauthenticated Burmester-Desmedt protocol based on
the technique of bilinear pairings [28, 36]. The heuristic security analysis considers only indis-
tinguishability of group keys from random numbers with respect to passive adversaries under the
so-called Decisional Bilinear Diffie-Hellman (DBDH) assumption [28, 35, 36, 92, 109, 136, 137]
in the Random Oracle Model. Choi et al. have also constructed a protocol that provides identity-
based authentication. Its security is argued in the Random Oracle Model under the so-called
Decisional Hash Bilinear Diffie-Hellman (DHBDH) assumption [16] which is a non-standard
cryptographic assumption strictly stronger than the DBDH assumption. Later, Zhang and Chen
[190] showed an attack against the authentication property of the identity-based version of Choi
et al.’s protocol where two malicious participants impersonate an honest participant using his
authentication transcript from some previous protocol execution.

Manulis [127] described an elliptic curve equivalent of the original Burmester-Desmedt pro-
tocol in the context of mobile ad-hoc communication. The deployment of the elliptic curve
cryptography results in a better trade-off between computation and communication costs due to
the smaller sizes of the operands. The informally argued semantic security relies on the elliptic-
curve version of the DDH assumption [28] if a non-supersingular and a non-trace-2 elliptic curve
is used as required in [110].

7.2.2 Protocol by Ingemarsson, Tang, and Wong

In [107] Ingemarsson, Tang, and Wong proposed a family of group key exchange protocols
from which we describe the mostly known one in Figure 7.6. It is assumed that all participants
U1, . . . , Un implicitly know the description of the multiplicative group G of prime order q with
the corresponding generator g. Participants are logically ordered into a cycle (similar to the
Burmester-Desmedt protocol), i.e., the indices are taken modulo n so that member U0 is Un
and member Un+1 is U1. At the end of the protocol every Ui computes the group key k :=

• In round 0, each Ui chooses a random xi ∈ Z∗q , computes gxi and forwards it to Ui+1.
• In round t, t = 1, . . . , n − 2 each Ui computes g

∏{xj |j∈[i−t,i]} (using xi as an exponent for g
∏{xj |j∈[i−t,i−1]} received

in the previous round) and forwards it to Ui+1.

Fig. 7.6. Protocol by Ingemarsson, Tang, and Wong [107]

gx1...xn . The informal security proof considers semantic security against passive adversaries
under the DDH assumption. The absence of the authentication implies the insecurity against
active adversaries.

92 7 Security-Focused Survey on Group Key Exchange Protocols

7.2.3 Protocols by Steiner, Tsudik, and Waidner

Steiner et al. [174] proposed a generic group key exchange protocol and three realizations,
called GDH.1, GDH.2, and GDH.3, respectively. The generic construction considers a cyclic
group G of prime order q generated by g. Through a distributed computation of the subsets of
{g∏

X |X ⊂ {x1, . . . , xn}} every member Ui computes gx1...xi−1xi+1...xn . This allows every Ui to
derive the resulting secret group key ki with an additional exponentiation of the mentioned value
with the private exponent xi. The first proposed realization, i.e., the protocol GDH.1 consists of
two stages: upflow and downflow, described in Figure 7.7.

• Upflow: In round i, i = 1, . . . , n− 1 the user Ui chooses a random xi ∈ Z∗q and forwards {g
∏{xt|t∈[1,j]}|j = 1, . . . , i} to

Ui+1.
• Downflow: In round n − 1 + i, i = 1, . . . , n − 1 the user Un−i+1 forwards {g

∏{xt|t∈[1,n]∧t 6∈[j,n−i]}|j = 1, . . . , n − i}
to Un−i. Upon receiving gx1...xi−1xi+1...xn each Ui computes the group key ki := (gx1...xi−1xi+1...xn)xi .

Fig. 7.7. Protocol GDH.1 [174]

The second protocol GDH.2 consists of the upflow stage and an additional broadcast round,
and proceeds as described in Figure 7.8.

• Upflow: In round i, i = 1, . . . , n−1 the userUi chooses a random xi ∈ Z∗q and forwards {g
∏{xt|t∈[1,i]∧t6=j}|j = 1, . . . , i}

and gx1...xi to Ui+1.
• Broadcast: In round n the user Un chooses a random xn ∈ Z∗q and broadcasts a set {g

∏{xt|t∈[1,n]∧t6=i}|i = 1, . . . , n−1}.
Upon receiving gx1...xi−1xi+1...xn each Ui computes the group key ki := (gx1...xi−1xi+1...xn)xi .

Fig. 7.8. Protocol GDH.2 [174]

The third protocol GDH.3 consists of the upflow stage, two broadcast rounds and one re-
sponse round and proceeds as described in Figure 7.9.

• Upflow: In round i, i = 1, . . . , n− 2 the user Ui chooses a random xi ∈ Z∗q and forwards g
∏

(xt|t∈[1,i]) to Ui+1.
• Broadcast: In round n− 1 the user Un−1 chooses a random xn−1 ∈ Z∗q and broadcasts g

∏
(xt|t∈[1,n−1]) to all other users.

• Response: In round n the user Ui factors out xi and sends g
∏

(xt|t∈[1,n−1]∧t 6=i) to Un.
• Broadcast: In round n + 1 the user Un chooses a random xn ∈ Z∗q and broadcasts a set {g

∏
(xt|t∈[1,n]∧t 6=i)|i =

1, . . . , n − 1} to all other users. Upon receiving gx1...xi−1xi+1...xn each Ui computes the secret group key ki :=
(gx1...xi−1xi+1...xn)xi .

Fig. 7.9. Protocol GDH.3 [174]

The heuristic security analysis shows that the generic construction is semantically secure
against passive adversaries under the DDH assumption. The insecurity against active adversaries
comes from the absence of authentication.

For the protocols GDH.2 and GDH.3 Steiner et al. proposed two additional extensions that
handle join and leave events. In order to proceed with these events in GDH.2 user Un has to save
the contents of the received message during the upflow stage whereas in GDH.3 Un saves the
contents of the first broadcast and the response messages. The authors argue that their dynamic
extensions preserve semantic security against passive adversaries.

7.2 Group Key Exchange Protocols with Heuristic Security Arguments 93

In their subsequent work, Steiner et al. [175] presented a dynamic group key agreement
protocol suite called CLIQUES. It consists of several protocols, that allow the initial key agree-
ment between the founding group members, and auxiliary handling of possible dynamic events
(join, leave, group fusion, and subgroup exclusion). In order to proceed with auxiliary proto-
cols for dynamic events each user has to maintain an internal state information. The initial key
agreement (IKA) protocol is given by the GDH.2 protocol from [174]. For the addition of a
group member [175] suggests two different protocols that differ in the choice of a controller,
i.e., the member who sends the broadcast message enabling other members to update the group
key. Further, CLIQUES offers two efficient protocols for the simultaneous addition of multiple
members (mass addition), and suggests several forms to process the group fusion event. It can
be handled as a special case of the mass join or by the construction of a new super-group via
the IKA protocol. Another proposed approach to merge two different groups G1 and G2 each
having corresponding group keys k1 and k2 is to exchange the values gk1 and gk2 and compute
the new group key as k := gk1k2 . Obviously, this approach does not guarantee semantic security
with respect to known key attacks. In case of mass exclusion the set broadcasted by the con-
troller in the last protocol stage does not contain values that would allow excluded members to
compute the updated key. In case where a group has to be partitioned into several independent
smaller groups each smaller group performs the mass exclusion protocol for all other members.

Security of the CLIQUES protocols has been analyzed based on a snapshot of a current group
formation. The protocols do not implicitly provide authentication, and the authors assume that
authentic communication channels are used. Therefore, the notion of perfect forward secrecy
is not treated, and the adversary is considered to be passive and is represented by a set of all
future and former group members with respect to a given snapshot. Thus, the adversary is in
possession of all private exponents of these members. Steiner et al. address only the issue of
key independence and show that the probability of the adversary to distinguish a current group
key from a random number is negligible under the DDH assumption.

Later, Steiner et al. [176] extended the CLIQUES suite by another initial key agreement
IKA.2 that corresponds to the GDH.3 protocol from [174] and a protocol that allows to refresh
the group key where one group member generates a fresh private exponent and repeats the last
broadcast round of the original IKA.1 or IKA.2 protocol using the updated values. The authors
subsequently repeat their heuristic proof from [175] to show that the extended CLIQUES suite
is semantically secure against passive adversaries under the DDH assumption. The authors also
claim that the protocol is contributory. This holds only if the adversary is not allowed to reveal
private exponents of honest participants, that is only in the weak corruption model.

A Variant by Manulis

Manulis [127] describes an elliptic curve variant of the initial key agreement protocol of
CLIQUES and its dynamic extensions achieving a better trade-off between computation and
communication costs, and analyzes the deployment of the protocol suite in mobile ad-hoc
group communication scenarios. The key secrecy of this modification has been argued intu-
itively based on the elliptic-curve version of the CDH assumption [28].

7.2.4 Protocols by Ateniese, Steiner, and Tsudik

Ateniese et al. [13] proposed two authenticated group key agreement protocols, A-GDH.2 and
SA-GDH.2, based on the modifications of the GDH.2 protocol from [174]. In the proposed

94 7 Security-Focused Survey on Group Key Exchange Protocols

protocols every user Ui holds a corresponding long-term key pair (ski, g
ski). The protocol A-

GDH.2 proceeds during its first stage similar to GDH.2 but in the last stage Un broadcasts a
set {gKin ∏{xt|t∈[1,n]∧t6=i}|i = 1, . . . , n − 1} where Kin := F (gskiskn) with F () either a re-
duction modulo q or a cryptographic hash function with domain {0, 1}∗ and image Z∗q where
q is the order of G. At the end of the protocol every user Ui computes the secret group key
k := (gKin

∏{xt|t∈[1,n]∧t6=i})K
−1
in xi . In this form the authentication is performed indirectly via the

controller Un. Ateniese et al. provide a heuristic security analysis of A-GDH.2. They argue that
the protocol is resistant against known-key attacks, and provides implicit authentication and
perfect forward secrecy in the presence of passive adversaries. As for the active adversaries the
authors point out that some attacks against the semantic security of the protocol are possible
due to the missing key confirmation property, i.e., it is possible for the active adversary to share
a group key with a subset of group members. Also, the implicit authentication in A-GDH.2 is
given in a weak form, since there is no direct authentication between the members, but the con-
troller which is assumed to be trusted authenticates himself to all other members. The authors
point out that the protocol is susceptible to the attacks by dishonest participants wishing to alter
the group formation during the protocol execution by excluding (or skipping) some of its partic-
ipants. Thus, the protocol does not provide key confirmation in case that some of its participants
are dishonest.

In order to prevent some of the described attacks Ateniese et al. proposed a modified protocol
version, called SA-GDH.2, with the intention to achieve the informally defined notion of a
complete group key authentication, i.e., any two members compute the same group key only if
every member has contributed to its computation. The protocol proceeds as described in Figure
7.10.

• Upflow: In round i, i = 1, . . . , n− 1 the user Ui receives a set of n intermediate values {Vt|t = 1, . . . , n} with

Vt =

{
g

x1···xi−1
xt

·Kt1···Kt(i−1) if t ≤ i− 1

gx1···xi−1·Kt1···Kt(i−1) if t > i− 1,

updates each value as follows

V ′t =


V Kitxi
t = g

x1···xi
xt

·Kt1···Kti) if t < i

V Kitxi
t = gx1···xi·Kt1···Kt(i) if t > i
Vt if t = i,

and forwards the updated set {V ′t |t = 1, . . . , n} to Ui+1. Note that U1 starts his computation with an empty set and defines
V ′1 := g.

• Broadcast: In round n the user Un chooses a random xn ∈ Z∗q , updates received {Vt|t = 1, . . . , n} as described above,
and broadcasts {V ′t |t = 1, . . . , n} to all other users. Upon receiving the message each Ui selects the appropriate V ′i and
computes the group key as k := (V ′i)

xi·K−1
1i ···K

−1
ni = gx1···xn .

Fig. 7.10. Protocol SA-GDH.2 [13]

Ateniese et al. informally argue that SA-GDH.2 provides complete group key authentication
and is resistant against known-key attacks in the presence of active adversaries. Further, the au-
thors claim that both protocols can be easily extended to provide key confirmation by including
a value gF (kn) where kn is the group key computed by Un into the last message broadcasted by
Un such that each Ui who receives this message is able to verify whether gki ?

= gkn holds.
In their subsequent work Ateniese et al. [14] used the ideas from [13] to add authentication

to the protocols for the initial key agreement and handling of dynamic events of the CLIQUES
suite from [175]. However, later Pereira and Quisquater [144, 146] discovered some attacks

7.2 Group Key Exchange Protocols with Heuristic Security Arguments 95

against implicit key authentication, perfect forward secrecy, and resistance against known-key
attacks of A-GDH.2 and its dynamic extensions, as well as attacks against complete group key
authentication of SA-GDH.2 protocol in the presence of an active adversary. Note that these
attacks do not concern the security of the original CLIQUES protocols in [175] that remain
semantically secure against passive adversaries (in case of weak corruptions).

7.2.5 Protocol by Steer, Strawczynski, Diffie, and Wiener

The protocol proposed by Steer et al. [171] to secure audio teleconference systems is the earliest
protocol that computes the group key using the structure of a linear tree. Although, the authors
do not mention the tree structure explicitly, the mathematical structure of the computed group
key is similar to the one obtained from a linear tree. All operations are performed in a cyclic
group G of prime order p generated by g. It is assumed that all users have public-key certificates
generated by a trusted party that can be used to sign messages. The protocol proceeds as de-

scribed in Figure 7.11. Note that Xn has the algebraic form gxng
xn−1g

...gx3g
x1x2

. The authors also

• In round 1 each Ui chooses a random xi ∈R Zp, and broadcasts yi := gxi . Upon receiving these values all users get indices
according to the ordered list of their identities, i.e., U1, . . . , Un, and U1 computes Xi+1 := yXi

i+1 for all i = 1, . . . , n − 1
starting with X1 = x1.

• In round i, i = 2, . . . , n−1 user Ui, i = 2, . . . , n−1 receives Yi−1 (U2 uses Y1 := y1), computesXi := Y xi
i−1, Yi := gXi ,

broadcasts Yi to all other users, and computes Xj+1 := y
Xj

j+1 for all j = i, . . . , n− 1.
• In round n all users learn Xn and use it to derive the group key k. Each Ui broadcasts own certificate. Upon receiving all

certificates Ui verifies each of them.
• In round n + 1 each Ui signs a hash value of (y1, . . . , yn) and broadcasts it to other users. Upon receiving all messages

each Ui verifies the signature and the hash value.

Fig. 7.11. Protocol by Steer, Strawczynski, Diffie, and Wiener [171]

describe an efficient addition mechanism for new members by considering a new member as
Un+1 and appending his input yn+1 to the accumulated chain calculation as in the second stage
of the protocol. However, this mechanism is not semantically secure against known-key attacks.
The authors claim that the protocol provides key secrecy and security against impersonation
attacks. However, they do not give any security analysis with respect to either a passive or an
active adversary.

7.2.6 Protocol by Becker and Wille

Becker and Wille [17] proposed two static group key exchange protocols, called Octopus and
Hypercube. Although, the protocols do not assign users to the leaf nodes of a tree, the algebraic
structure of the computed group key is similar to the one that can be obtained from a balanced
binary tree. The main building block of the Octopus protocol is a four-party key agreement
described in Figure 7.12. In the first round U0 and U1 in parallel with U2 and U3 compute x0,1 :=
gx0x1 respectively x2,3 := gx2x3 , respectively. In the second round U0 and U2 in parallel with
U1 and U3 compute the resulting shared key y0,1,2,3 := gx0,1x2,3 = gg

x0x1gx2x3 . In the Octopus
protocol all users are ordered into four subgroups of almost equal sizes in which one user,
denoted Ui with i ∈ {0, . . . , 3}, takes the role of a controller (similar to the role of the sponsor
in [117]). The protocol consists of the three stages described in Figure 7.13. For the case where
n = 2d, d ∈ N Becker and Wille proposed a Hypercube protocol where all users are arranged
into a d-dimensional hypercube, i.e., a graph in the form of a cube with 2d vertices, each of

96 7 Security-Focused Survey on Group Key Exchange Protocols

U1

U2 U3

U0

1. x0,1 := gx0x1

1. x2,3 := gx2x3

2. y0,1,2,3 := gx0,1x2,3 2. y0,1,2,3 := gx0,1x2,3

Fig. 7.12. Example: Main Building Block of Protocols Octopus and Hypercube[17]

• Stage 1: Each subgroup controllerUi, i ∈ {0, . . . , 3}, computes an individual Diffie-Hellman key with each of the subgroup
members. By xi,j we denote the secret key shared between Ui and the j-th member of the i-th subgroup.

• Stage 2: Each controller Ui computes x̂i :=
∏
j xi,j and uses it in the protocol from Figure 7.12 to compute the group key

k := gg
x̂1x̂2gx̂3x̂4 .

• Stage 3: Each controller Ui computes (gx̂(i+2) mod 4)x̂i/xi,j (using the received value gx̂(i+2) mod 4 from Stage 2) and sends

this together with another received value gg
x̂(i+1) mod 4x̂(i+3) mod 4

to the j-th member of the i-th subgroup who uses xi,j
to compute gx̂(i+2) mod 4x̂i and k.

Fig. 7.13. Protocols Octopus and Hypercube [17]

them connected to d other vertices. It is assumed that for each user Ui there is a label i of
d bits with i ∈ Zn. The protocol proceeds in d communication rounds such that in the j-th
round each user Ui performs a Diffie-Hellman key exchange with the user Ui⊕2j−1 using the key
computed in the previous round j − 1, i.e., in the j-th round users along the j-th dimension of
the hypercube compute the shared Diffie-Hellman key. After a total number of d rounds and dn
unicast messages all users agree on a group key k. The protocol remains efficient if n equals to
a power of two. For the opposite case [17] suggests a mixed solution, called 2d-Octopus, which
is based on a combination of the Hypercube and Octopus protocols. Becker and Wille prove the
semantic security of their protocols against passive adversaries under the DDH assumption using
a heuristic method similar to [174]. Both protocols as described in [17] do not provide any form
of authentication and are, therefore, insecure against impersonation attacks.

A Variant by Asokan and Ginzboorg

Asokan and Ginzboorg [12] adopted the password-based authentication to the protocol of
Becker and Wille for the scenarios of small ad-hoc groups. They also described a solution for
a user to find a partner for the Diffie-Hellman key exchange if the round partner of this user
is faulty (this can be seen as a step towards denial of service attacks). Although, the authors
described the desirable security properties for their protocol, i.e., group key secrecy, perfect for-
ward secrecy, contributiveness, as well as the tolerance against disruption attempts in the mobile
ad-hoc setting, they do not give any security analysis of these issues.

7.2 Group Key Exchange Protocols with Heuristic Security Arguments 97

7.2.7 Protocols by Kim, Perrig, and Tsudik

Perrig [147] designed a static group key exchange protocol that outputs group keys with the
same algebraic structure as in the Hypercube protocol using the logical structure of a balanced
binary tree T from Figure 7.3. In the following description by T〈l,v〉 we denote a subtree of T
rooted at node 〈l, v〉, and for any non-leaf node x〈l,v〉 := gx〈l+1,2v〉x〈l+1,2v+1〉 holds. The protocol
proceeds as described in Figure 7.14.

• In round 1 each U〈l,v〉, 0 ≤ v ≤ 2l − 1 randomly chooses x〈l,v〉 ∈R Zp and broadcasts y〈l,v〉 := gx〈l,v〉 to every other
user.

• In round i, i = 2, . . . , dT + 1 each U〈l,v〉, l > dT + 1 − i, computes x〈dT+1−i,bv/2i−1c〉. If i 6= dT + 1 then for
each subtree T〈dT+1−i,v〉, 0 ≤ v ≤ 2dT+1−i − 1, a user assigned to one of the leaf nodes of T〈dT+1−i,v〉 broadcasts

y〈dT+1−i,bv/2i−1c〉 := g
x〈dT+1−i,bv/2i−1c〉 to every other user.

Fig. 7.14. Protocol by Perrig [147]

Obviously, at the end of the protocol each user computes x〈0,0〉. This value is then used to
derive the group key as k := H(x〈0,0〉).

Kim et al. [116, 119] extended Perrig’s protocol to the TGDH (for Tree-based Group Diffie-
Hellman) protocol suite that handles various dynamic group changes. For this purpose each user
U〈l,v〉 has to store the structure of T including the public keys of all nodes and the own secret key
pathX〈l,v〉. TGDH changes the initial tree structure and updates the group key with respect to the
changes in the group formation. The authors also propose a policy which keeps the updated tree
mostly balanced. Informal security analysis of the protocol in [119] provides arguments for the
issues of key independence and group key secrecy. It focuses on the semantic security against
passive adversaries under the DDH assumption. TGDH does not provide implicit authentication
or key confirmation. Also, perfect forward secrecy is not considered because of the absence of
any long-term keys.

Kim, Perrig, and Tsudik [117, 118] proposed a dynamic extension of the Steer et al.’s proto-
col, which they have called the STR protocol (Figure 7.15). They applied a linear tree structure
for the computation of the group key, and have extremely increased the communication effi-
ciency. We use the label-based notation from Figure 7.3 to describe their protocol. It is assumed
that each user U〈l,v〉 is assigned to a leaf node of a linear binary tree T , i.e., v is either 0 or 1. All
computations are performed in a special multiplicative cyclic group G = 〈g〉 of prime order q
where the group operation can be used to derive a bijection from Zq to Zq.

• In round 1 each U〈l,v〉, 1 ≤ l ≤ n − 1, v ∈ {0, 1}, randomly chooses x〈l,v〉 ∈R Z∗q , and broadcasts y〈l,v〉 := gx〈l,v〉 to
every other user.

• In round 2 users U〈n−1,0〉 and U〈n−1,1〉 compute X〈n−2,0〉 := {x〈l−1,0〉 := y
x〈l,0〉
〈l,1〉 |∀ n − 1 ≥ l ≥ 1} (U〈n−1,1〉 starts

the computation with y〈n−1,0〉). Then, U〈n−1,0〉 computes and broadcasts Y〈n−2,0〉 := {y〈l,0〉 := gx〈l,0〉 | ∀ x〈l,0〉 ∈ X}.
Then, each U〈l,1〉, 1 ≤ l ≤ n− 2 computes X〈l−1,0〉 := {x〈l−1,0〉 := y

x〈l,1〉
〈l,0〉 } ∪ {x〈j−1,0〉 := y

x〈j,0〉
〈j,1〉 |∀ l − 1 ≥ j ≥ 1}.

Fig. 7.15. Protocol STR [118]

Note that each U〈l,v〉 learns x〈0,0〉 = gx〈1,1〉g
x〈2,1〉g...g

x〈n−2,1〉g
x〈n−1,1〉x〈n−1,0〉

after the execution of
the protocol. Kim et al. suggested to derive the group key using a cryptographic hash function,
i.e., k := H(x〈0,0〉). The authors also propose efficient operations to deal with dynamic group

98 7 Security-Focused Survey on Group Key Exchange Protocols

changes. In order to handle these events the protocol requires from each user to save the whole
structure of T including all public keys y〈l,v〉, 1 ≤ l ≤ n − 1, v ∈ {0, 1}, and the secret key
path of the user’s leaf node. STR updates the tree and the group key with respect to the changes
of the group formation. In [118], Kim et al. intuitively argue that the protocol provides key
independence with respect to the known-key attacks under the DDH assumption. The protocol
does not provide implicit authentication, however, the authors assume that all communication
channels are authentic. The security analysis does not consider forward secrecy in its actual
sense as described in Section 6.1.4 due to the absence of long-term keys.

Variants by Liao, Manulis, and Schwenk

For completeness we mention that Schwenk et al. [161] proposed a protocol suite for multime-
dia communications which is quite similar to that of TGDH but developed independently and
patented [160].

Manulis [127] briefly described elliptic curve variants of the TGDH and STR protocol suites
in the context of mobile ad-hoc communication which allows to achieve a better trade-off be-
tween computation and communication costs of the protocols. The heuristic analysis of the
proposed protocols shows that their semantic security against passive adversaries relies on the
elliptic-curve version of the DDH assumption [28].

Recently, Liao and Manulis [124, 125] proposed a tree-based framework for group key agree-
ment in ad-hoc networks, called TFAN. The framework consists of a protocol which can be seen
as a combination of the optimized elliptic curve variants of TGDH and STR protocols from
[117, 118]. The heuristic security proof considers semantic security of the protocol based on the
elliptic-curve version of the DDH assumption.

7.2.8 Protocol by Lee, Kim, Kim, and Ryu

In [123], Lee et al. extend the TGDH protocol suite [116, 119] using Joux’ protocol. All
members are assigned to the leaf nodes of a ternary tree T . Obviously, every node of T
may be a leaf node, a parent node of two, or a parent node of three child nodes. In case
that a non-leaf node 〈l, v〉 is a parent of three child nodes 〈l + 1, 3v + i〉, i = 0, 1, 2, its
secret key is computed as x〈l,v〉 := H1(ê(P, P)x〈l+1,3v〉x〈l+1,3v+1〉x〈l+1,3v+2〉) using the computa-
tions of the Joux’ protocol with a cryptographic hash function H1 : G2 → Z∗q . In case that
〈l, v〉 is a parent of two child nodes 〈l + 1, 3v + i〉, i = 0, 1 its secret key is computed as
x〈l,v〉 := H2(x〈l+1,3v〉y〈l+1,3v+1〉) = H2(x〈l+1,3v+1〉y〈l+1,3v〉) = H2(x〈l+1,3v〉x〈l+1,3v+1〉P) using
the computations of an elliptic curve equivalent of the two-party Diffie-Hellman protocol with a
cryptographic hash function H2 : G1 → Z∗q . The protocol proceeds as described in Figure 7.16.
At the end of the protocol each user computes the group key k := x〈0,0〉. Dynamic operations

• In round 1 each U〈l,v〉, 0 ≤ v ≤ 3l − 1 randomly chooses x〈l,v〉 ∈R Z∗q and broadcasts y〈l,v〉 := x〈l,v〉P to every other
user.

• In round i, i = 2, . . . , dT + 1 each U〈l,v〉, l > dT + 1 − i, computes x〈dT+1−i,bv/3i−1c〉. If i 6= dT + 1 then for
each subtree T〈dT+1−i,v〉, 0 ≤ v ≤ 3dT+1−i − 1, a user assigned to one of the leaf nodes of T〈dT+1−i,v〉 broadcasts
y〈dT+1−i,bv/3i−1c〉 := x〈dT+1−i,bv/3i−1c〉P to every other user.

Fig. 7.16. Protocol by Lee, Kim, Kim, and Ryu [123]

are handled similarly to those of TGDH by updating the group key and the tree structure which

7.3 Provably Secure Group Key Exchange Protocols 99

is kept mostly balanced. Each user U〈l,v〉 is supposed to save own secret key path X〈l,v〉 and the
structure of T including all public keys to process dynamic events. The protocol does not pro-
vide authentication. Lee et al. specify a special assumption which they call a Decisional Ternary
Tree Group Bilinear Diffie-Hellman (DTGBDH) assumption (which is polynomial-time reducible
to the decisional version of the BDH assumption) and apply a heuristic security proof (similar
to the one from [119]) to show that under this assumption a passive adversary is not able to
distinguish ê(P, P)x〈1,0〉x〈1,1〉x〈1,2〉 from a random number. However, the proof does not consider
hash functions H1 and H2 used to derive the secret keys of the tree nodes. Beside that, the pro-
tocol provides neither implicit key authentication nor key confirmation nor security against key
control attacks.

7.2.9 Protocols by Barua, Dutta, and Sarkar

The protocol proposed by Barua et al. [16] uses a similar approach as Lee et al. to extend the
Joux’ protocol to the group setting. Barua et al. described a top down recursive procedure which
constructs a balanced ternary tree down to the (dT − 1)th-level. All nodes at level dT − 1 have
either one, two, or three child nodes, and all nodes at level l < dT − 1 are either leaf nodes
or have three child nodes. In general, the protocol proceeds as in Figure 7.16 with two main
differences. First, [16] replaces the elliptic curve equivalent of the two-party Diffie-Hellman
key exchange protocol used in [123] for the parent nodes with two child nodes by the com-
putations according to the Joux’ protocol whereby one of the two users, say U〈dT ,0〉, simulates
the third user by choosing two secret keys x〈dT ,0〉, and x′〈dT ,0〉, so that both real users can com-

pute ê(P, P)
x〈dT ,0〉x

′
〈dT ,0〉x〈dT ,1〉 . Similar to [123] the protocol uses hash functions to map the

secrets of non-leaf nodes to Z∗q . The second difference is that unlike [123] the sponsor does
not broadcast the node’s public key, but sends it directly to the users in the subtree(s) rooted
at sibling node(s). In addition to the unauthenticated protocol [16] describes an authenticated
version which is based on the protocol by Zhang et al. [191] which in turn adapts ID-based
authentication to the original Joux’ protocol. Barua et al. also described two operations to han-
dle joins and leaves of users. The heuristic security analysis of the protocol uses the Decisional
Hash Bilinear Diffie-Hellman (DHBDH) assumption which is related to the non-standard Hash
Decisional Diffie-Hellman (HDDH) assumption described in [4] which in turn is strictly stronger
than DDH. The analysis considers only semantic security against passive adversaries and implicit
key authentication. In [145], Pereira and Quisquater described a successful replay attack against
the authenticated version of [16].

7.3 Provably Secure Group Key Exchange Protocols

7.3.1 Protocol by Katz and Yung

Katz and Yung [112] proposed a static group key exchange protocol (as a modification of an
earlier heuristically analyzed protocol by Burmester and Desmedt [50, 51]). All mathematical
operations are performed in the cyclic group G = 〈g〉 of prime order q such that G is a sub-
group of a cyclic group of prime order p = βq + 1, β ∈ N where the DDH assumption holds.
Figure 7.17 describes an unauthenticated version of the protocol. Note that after the protocol
is completed every user holds the same group key k = ki = gr1r2+r2r3+...+rnr1 (mod p). Addi-
tionally, Katz and Yung proposed an authentication compiler based on digital signatures. This
compiler requires one additional communication round for participants to agree on a list of

100 7 Security-Focused Survey on Group Key Exchange Protocols

• In round 1 each Ui chooses a random ri ∈R Zq and broadcasts zi := gri .
• In round 2 each Ui broadcasts Xi := (zi+1/zi−1)

ri . Then each Ui computes ki := (zi−1)
nri ·Xn−1

i ·Xn−2
i+1 · · ·Xi+n−2

for i = 1, . . . , n.

Fig. 7.17. Protocol by Katz and Yung [112]

nonces that is then used to signature generation of all outgoing messages and verification of
all incoming messages (more on Katz and Yung’s authentication compiler in Section 9.3). For
the security analysis Katz and Yung apply their KY model (Section 6.2.8) and show that the
protocol is AKE-secure based on the DDH assumption. Due to the limitations of the KY model
described in Section 6.2.8 the provided security proof does not consider strong corruptions.
Also the protocol does not provide mutual authentication and key confirmation. Bohli et al.
[32] describe an attack against key confirmation of the authenticated version of the protocol in
the presence of an adversary A represented by malicious participants. The attack is successful
for all n > 3, and proceeds as follows: A corrupts users U1 and U3 and continues with the
protocol execution according to its specification up to round 3 (corresponds to round 2 in the
unauthenticated version). Then A swaps X1 and X3, i.e., it broadcasts X1 := (z4/z2)r3 and
X3 := (z2/z4)r1 (instead of original X1 := (z2/z4)r1 and X3 := (z4/z2)r3). Due to the absence
of the key confirmation uncorrupted users U2 and U4 compute different group keys k2 6= k4.
This can be seen by computing the quotient k2

k4
= Xn ·

(
z2
z4

)nr3 6= 1. For example, if n = 4

then k2 = z4r2
1 · X3

2 · X2
1 · X4 =

z
3r1
2 ·z3r23

z
r1
4 ·z

r4
3

and k4 = z4r3
3 · X3

4 · X2
3 · X2 =

z
3r3
4 ·z3r41

z
r3
2 ·z

r2
1

. Note that

z
rj
i = zrij for any i 6= j with 1 ≤ i, j ≤ n. Therefore, A who acts on behalf of U1 and U3 is able

to compute k2 :=
z
3r1
2 ·z3r32

z
r1
4 ·z

r3
4

and k4 :=
z
3r3
4 ·z3r14

z
r3
2 ·z

r1
2

. Bohli et al. notice that verification
∏

iXi
?
= 1 by

every user Ui prior to the computation of the group key ki helps to prevent this attack; however,
only in the presence of at most one malicious participant.

Additionally, we present an attack whereby a malicious participant Ui being in the strong
corruption model is able to control the resulting value of the group key. The attack proceeds as
follows: Ui chooses some r̃ ∈ Zq before the execution is started and his goal is to influence
other users to accept with the key k̃ := gr̃. During the execution of the protocol Ui waits for all
contributions zj 6=i (the common assumption is that communication channel is asymmetric) and
reveals internal states of all other participants that include their private exponents rj 6=i. Then, Ui
uses

ri :=
r̃ − (r1r2 + . . .+ ri−2ri−1 + ri+1ri+2 + . . .+ rnr1)

ri−1 + ri+1

to compute own contribution zi. It is easy to check that k := gr1r2+r2r3+...+rnr1 = gr̃ = k̃ holds.

7.3.2 Protocol by Abdalla, Bresson, Chevassut, and Pointcheval

Abdalla et al. [5] described a variant of the KY protocol where authentication is achieved
by the means of the password-based encryption using a secure symmetric encryption scheme
(Gen, Enc, Dec) modeled as an ideal cipher, and three functions H1, H2, and Auth modeled as
random oracles. Each participant Ui holds a secret password pw which is common for the whole
group. The protocol proceeds as described in Figure 7.18. The authors prove the AKE-security
of their protocol using the BCP+ model (Section 6.2.8) under the DDH assumption with addi-
tional non-standard assumptions of ROM and ICM. Abdalla et al. also proved that their protocol
resists dictionary attacks unless the adversary is able to test several passwords in one session.

7.3 Provably Secure Group Key Exchange Protocols 101

• In round 1 each Ui chooses a random nonce Ni and broadcasts (Ui, Ni).
• In round 2 each Ui computes a session identifier S := U1|N1| . . . |Un|Nn and its symmetric key pwi := H1(S, i, pw).

Each Ui chooses a secret exponent ri ∈R Zq and broadcasts z∗i := Enc(pwi, zi) where zi := gri .
• In round 3 each Ui decrypts zi−1 := Dec(pwi−1, z

∗
i−1) and zi+1 := Dec(pwi+1, z

∗
i+1), and broadcasts Xi :=

(zi+1/zi−1)
ri . Then eachUi computes the temporary key ki := (zi−1)

nri ·Xn−1
i ·Xn−2

i+1 · · ·Xi+n−2 for i = 1, . . . , n, and
broadcasts a confirmation tokenAuthi := Auth(S, {z∗j , Xj}j , ki, i). Then, each user receives and verifies all confirmation
tokens and (if all verifications are successful) accepts with the session group key Ki := H2(S, {z∗j , Xj , Authj}j , ki).

Fig. 7.18. Protocol by Abdalla, Bresson, Chevassut, and Pointcheval [5]

They prove it by showing that the advantage of the adversary to break the AKE-security of the
protocol grows linearly with the number of messages that have been built by the adversary. Note
that password-based protocols cannot achieve security against malicious participants because of
the adversary can use the shared password pw to authenticate messages on behalf of other par-
ticipants. The attack of Bohli et al. against Katz and Yung’s protocol works obviously in this
protocol too. Assume that n = 4. By swapping X1 and X3 the adversary A achieves that U2

and U4 compute different temporary keys k2 6= k4. Then A sends to U4 resp. U2 a forged con-
firmation token Auth2 := Auth(S, {z∗j , Xj}j, k4, 2) resp. Auth4 := Auth(S, {z∗j , Xj}j, k2, 4)
where X1 and X3 are swapped. Both users U2 and U4 verify corresponding confirmation tokens
successfully and believe that k2 = k4. But in fact their temporary session keys are different so
that their session group keys K2 and K4 are different too.

7.3.3 Protocol by Kim, Lee, and Lee

Kim et al. [114] proposed a dynamic extension of Katz and Yung’s protocol. Although, some of
the computation steps in [114] have certain similarity with the protocol in [112] the mathemati-
cal structure of the computed group key is completely different. In Figure 7.19 we describe the
setup operation of the protocol. Again, all group members U1, . . . , Un are arranged into a circle.
All computations are performed in a cyclic multiplicative group G of prime order p generated
by g. The protocol uses a cryptographic hash function H : {0, 1}∗ → {0, 1}l, and a secure
digital signature scheme (Gen, Sign, Verify) with each Ui having a corresponding signature
key pair (ski, pki). In order to handle dynamic events each Ui has to store k, hLi := H(zrii−1|k|0),

• In round 1 each Ui randomly chooses Ni ∈R {0, 1}l and ri ∈R Z∗p and computes zi := gri . Additionally, Un computes
H(Nn|0). Then, each Ui generates σ1

i := Sign(ski, zi|ID|0) (resp. Un generates σ1
n := Sign(skn, H(Nn|0)|zn|ID|0))

where ID := {U1, . . . , Un} is a set of identities, and broadcasts σ1
i together with zi (resp. H(Nn|0)|zn).

• In round 2 each Ui verifies the received signatures and halts if this process fails. Otherwise, Ui computes tLi :=
H(zri

i−1|ID|0), tRi := H(zri
i+1|ID|0), and Ti := tLi ⊕ tRi . Additionally, Un generates T̂ := Nn ⊕ tRn . Each Ui gen-

erates σ2
i := Sign(ski, Ni|Ti|ID|0) (resp. Un generates σ2

n := Sign(skn, T̂ |Tn|ID|0)) and broadcasts the signature
σ2
i together with Ni|Ti (resp. T̂ |Tn). Then, each Ui verifies the received signatures and halts if this process fails. Other-

wise, each Ui computes t̃Ri+1 := Ti+1 ⊕ tRi , t̃Ri+2 := Ti+2 ⊕ t̃Ri+1, . . ., t̃Ri+n−1 := Ti+n−1 ⊕ t̃Ri+n−2, and checks that

tLi
?
= t̃Ri+n−1. Then, each Ui decrypts Ñn := T̂ ⊕ t̃Rn , checks whether H(Ñn|0)

?
= H(Nn|0), and computes the session

group key ki := H(N1| . . . |Nn|0).

Fig. 7.19. Protocol by Kim, Lee, and Lee [114] (Setup Operation)

hRi := H(zrii+1|k|0), and X := H(Nn|k|0). These values are used to update the circle structure
and the group key upon occurring dynamic group changes in a way which is more efficient com-
pared to the new execution of the setup operation. For the detailed description of the dynamic
operations we refer to [114].

102 7 Security-Focused Survey on Group Key Exchange Protocols

The authors prove the AKE-security of their protocol against active adversaries using the
BCP and KY models with minor modifications (Section 6.2.8) under the CDH assumption. How-
ever, their proof requires, additionally, the non-standard assumptions of ROM. Though the pro-
vided proof does not consider strong corruptions the authors claim that their protocol guarantees
strong-forward secrecy with respect to the BCP+ model [42]. Their argumentation is that the
stored hash values hLi , hRi , and X upon being revealed can be used to compute group keys of
the subsequent sessions but not of the previous sessions. However, the authors do not provide
a formal proof of this claim. Also the authors claim that their protocol resists attacks aimed to
control the value of the resulting group key without explaining what do they understand un-
der the key control and without providing any formal proofs for their claims (also because no
formal definitions of key control were available at that time). Bohli et al. [32] present some
impersonation attacks on this protocol for the case that session identifiers are generated via
concatenation of the exchanged message flows as in the BCP and KY models. As a result of
their replay attack two honest participants compute identical session group keys without being
partnered. For the successful attack A must replay σ1

1 together with z1 addressed to U3. The
reason for this attack is that U1 is not directly neighbored with U3 so that the substitution does
not affect the computation of the session group key, i.e., k1 = k3. This attack is of technical
nature since it allows A to ask a Reveal query to U3 and obtain k3 while asking Test query to
U1 (A is allowed to proceed like that because U1 and U3 are not partnered). Since k3 = k1 the
adversary makes a correct guess in response to its Test query with non-negligible probability
and breaks, therefore, the AKE-security of the protocol. In order to prevent this technical attack
Bohli et al. suggest that in the beginning of the second round each user Ui computes a session
identifier sidi := H(ID|N1| . . . |H(Nn)) and use it for signature generation and verification in
the continuation of the protocol execution.

7.3.4 Protocols by Barua and Dutta

Dutta and Barua [83] described an extension of the Katz and Yung’s protocol towards dynamic
groups. The modified unauthenticated setup protocol proceeds as described in Figure 7.20. The

• In round 1 each Ui randomly chooses ri ∈R Z∗p and sends zi := gri to Ui−1 and Ui+1 (note that U0 = Un and
Un+1 = U1).

• In round 2 each Ui computes tLi := zri
i−1, tRi := zri

i+1, and broadcasts Xi := tLi /t
R
i (note that tRi = tLi+1 for 1 ≤ i ≤

n − 1, tRn = tL1 , and tRi+n−1 = tLi). Then, each Ui computes t̃Ri+1 := Xi+1t
R
i , t̃Ri+2 := Xi+2t̃

R
i+1, . . ., t̃Ri+n−1 :=

Xi+n−1t̃
R
i+n−2, and checks that tLi

?
= t̃Ri+n−1. Then, each Ui computes the session group key ki := t̃R1 · · · t̃Rn , the seed

x := H(ki), and saves tLi , t
R
i .

Fig. 7.20. Protocol by Dutta and Barua [83] (Unauthenticated Setup Operation)

authors prove the AKE-security of their protocol against a passive adversary using a minor
modification of the KY model (Section 6.2.8) under the DDH assumption.

Additionally, Dutta and Barua described an authenticated version of their protocol where
digital signatures are used to sign every protocol message assuming that every member Ui has
a signature key pair (ski, pki). This authentication approach is similar to the one described by
Katz and Yung [112] for the only difference that it does not uses nonces. The authors prove
that the authenticated version is AKE-secure under the DDH assumption using the same model
as for the unauthenticated version. They also prove that the protocol provides the weak form of
forward secrecy. However, it seems that there are several inaccuracies in their proof. First, the

7.3 Provably Secure Group Key Exchange Protocols 103

proof does not consider corrupt queries which reveal long-term keys (in this case ski). However,
the forward secrecy requirement assumes that the adversary is allowed to reveal these keys.
Second, in contrast to the Katz and Yung’s technique the protocol by Dutta and Barua does not
use nonces as part of the signed messages. Note that nonces (or any other fresh randomness)
are essential to resist replay attacks (as considered in [112]). Therefore, it is not clear whether
the proposed protocol remains secure if the adversary replays a message from some previous
session. Indeed, no such attacks are covered by the proof. Moreover, the simulation described in
the proof fails if the adversary replays a message as part of its Send query, because these queries
are answered from the predefined transcripts obtained through execute queries, and, therefore,
any unpredictable Send query would not be answered.

Additionally, Dutta and Barua described dynamic operations allowing new members to join
to the group and current members to leave it. In order to handle these operations efficiently
(without restarting the initial protocol) participants use the saved values: x := H(ki), tLi , and
tRi . Note that these values are considered as part of internal states of protocol participants. For
the proof of AKE-security of the dynamic protocol version the authors apply a variant of the
BCP model (Section 6.2.7). They also claim that the dynamic protocol version achieves forward
secrecy. However, their proof has the same weaknesses as the proof of the static authenticated
version. Additionally, recall that the BCP model does not consider strong corruptions. There-
fore, it is not clear whether the dynamic protocol by Dutta and Barua still provides AKE-security
if strong corruptions are considered. Beside these weaknesses the protocols by Dutta and Barua
are also susceptible to the attack against key control in a similar way as described for the proto-
col by Katz and Yung in Section 7.3.1.

It is worth being noticed that Dutta and Barua [86] described a variant of Kim et al.’s protocol
where they used a password pw shared between all users U1, . . . , Un together with three secure
symmetric encryption schemes (Geni, Enci, Deci), i = 1, 2, 3, for the purpose of authentication
instead of the originally used digital signatures. The protocol proceeds as described in Figure
7.21. To prove the AKE-security of their protocol, Dutta and Barua applied a variant of the

• In round 1 each Ui randomly chooses Ni ∈R {0, 1}l and ri ∈R Z∗p and sends z∗i := Enc1(pw, zi) where zi := gri to
Ui−1 and Ui+1.

• In round 2 each Ui extracts zi−1 and zi+1, and computes tLi := H(zri
i−1|ID|0) and tRi := H(zri

i+1|ID|0). For i =

1, . . . , n − 1 each Ui computes Ti := tLi ⊕ tRi while Un computes Tn := Nn ⊕ tRn . For i = 1, . . . , n − 1 each Ui
broadcasts Enc2(pw,Ni|Ti) while Un broadcasts Enc3(pw, Tn). Then, each Ui recovers Nn (as in Kim et al.’s protocol)
and computes the session group key ki := H(N1| . . . |Nn).

Fig. 7.21. Protocol by Dutta and Barua with Password-Based Authentication [86]

model proposed in [43] (see also Section 6.2.8) together with the non-standard assumptions
of the Random Oracle Model. The authors also claimed that the proposed protocol is secure
against off-line dictionary attacks. However, [5] described an efficient substitution attack on this
protocol which allows to mount a successful dictionary attack revealing the shared password pw.

7.3.5 Protocols by Bresson and Catalano

Bresson and Catalano [40] proposed a family of static constant-round authenticated group key
exchange protocols based on the following generalized protocol where each user Ui has a pair
of private/public keys (ski, pki) generated by a key generation algorithm of a public key en-
cryption scheme. These protocols derive the group key from the interpolation of secretly shared

104 7 Security-Focused Survey on Group Key Exchange Protocols

polynomials. All computations are performed modulo a sufficiently large prime number p. The
generalized protocol proceeds as specified in Figure 7.22. The authors prove the AKE-security

• In round 1 each Ui chooses random values si, bi,1, . . . , bi,n−1 ∈R Zp, defines fi(z) := si + bi,1z + . . . + bi,n−1z
n−1

mod p and sends fi(j) to user Uj .
• In round 2 each Ui computes f(i) :=

∑n
j=1 fj(i) mod p, encrypts f(i) with the public keys of all users, denoted

ENCj(f(i)) and sends the corresponding value to Uj .
• In round 3 each Ui decrypts all received values from the previous round, and interpolates them in Zp retrieving the secret

f(0) := s′i = s1 + . . . + sn mod p. Then, each Ui computes k′i := Fs′i(Ui) where F is a pseudo-random function
and broadcasts it to other users. Upon receiving these messages from all other users each Ui checks whether Fs′i(Uj) = k′j
holds for all the received values, and if so computes the group key k := Fs′i(ID), where ID = {U1, . . . , Un} is the set of
identities.

Fig. 7.22. Protocol by Bresson and Catalano [40] (Generalized Version)

of their protocol under standard assumptions, i.e., the existence of one-way functions (Section
5.2), following the requirements of the BCP model. The protocol also achieves key confirmation.
Furthermore, the authors provide two realizations based on the El-Gamal and RSA encryption
schemes where the function F is instantiated by a cryptographic hash function. For the El-
Gamal-based realization the authors show resilience against key control whereby considering
its weaker version with honest participants who are assumed to have a biased source of random-
ness so that a curious adversary tries to gain extra information and break the AKE-security of
the protocol. The authors stress that the case where participants are malicious and try to bias
the resulting group key deliberately is not considered. Note that even this weaker form of key
control is achieved in an inefficient way by requiring that each participant chooses in the first
step an additional random value ri, which is then encrypted with the El-Gamal public keys of
all other participants and broadcasted. Note also that all protocols proposed in [40] are static.

7.3.6 Protocols by Bresson, Chevassut, Pointcheval, and Quisquater

Bresson et al. [46] proposed a static group key exchange protocol (as an extension of the earlier
heuristically analyzed protocols by Steiner et al. [174]). Each member Ui is in possession of a
long-lived key-pair (ski, pki) for the digital signature scheme (Gen, Sign, Verify). All mathe-
matic operations are performed in a finite cyclic group G of the prime order q, |q| = κ generated
by g. The protocol proceeds as described in Figure 7.23 whereby ID := {U1, . . . , Un} is a set of
identities of protocol participants and H : {0, 1}∗ → {0, 1}κ is a cryptographic hash function.

• Upflow stage: In round i = 1, . . . , n−1 the userUi chooses a random xi ∈R Z∗q , computesXi := {g
∏{xt|t∈[1,i]∧t 6=j}|j =

1, . . . , i} and Zi := gx1...xi , generates σi := Sign(ski, ID|Xi|Zi) and forwards Xi|Zi and σi to Ui+1. Upon receiving
the corresponding message Ui+1 verifies the attached signature and halts if this verification is not successful.

• Downflow stage: In round n the userUn chooses a random xn ∈R Z∗q computesXn := {g
∏{xt|t∈[1,n]∧t 6=i}|i = 1, . . . , n−

1}, Zn := Zxn
n−1, generates σn := Sign(skn, ID|Xn) and broadcasts Xn and σn. After the verification of σn each Ui,

i ∈ [1, n − 1] extracts Z′i := gx1...xi−1xi+1...xn ∈ Xn and computes the temporary key ki := Z′xi
i while Un computes

kn := Zn. Finally, each Ui accepts with the session group key Ki := H(ID|Xn|ki)

Fig. 7.23. Protocol by Bresson, Chevassut, Pointcheval, and Quisquater [46]

To prove the AKE-security of their protocol Bresson et al. specify a Group Computational
Diffie-Hellman assumption (GCDH) previously surfaced in [34, 174], which is polynomial-time
reducible to the standard cryptographic assumptions CDH and DDH [44]. The proof itself is per-
formed in the BCPQ model with the additional non-standard assumptions of ROM. Due to the

7.3 Provably Secure Group Key Exchange Protocols 105

limitations of the BCPQ model the proof does not consider strong corruptions. Also the issue
of key control is not considered. Interesting is that an adversary A represented by a malicious
participant Uj (being in the strong corruption model) can control the value of the temporary key
ki computed by some uncorrupted user Ui. For this purpose A simply chooses x̃ ∈ Z∗q prior to
the execution of the protocol and computes own exponent after having revealed exponents of
other participants as xj := x̃∏

i6=j xi
. Also set ID may be known prior to the protocol execution.

Obviously, whether A is able to control the resulting value Ki depends either on the collision-
resistance property of H , or on the ability of A to find appropriate values in Xn such that the
input ofH corresponds to some value chosen byA prior to the protocol execution. The protocol
in Figure 7.23 does not provide key confirmation and mutual authentication.

Additionally, Bresson et al. describe a mechanism to achieve MA-security (key confirmation
and mutual authentication). It consists of one additional communication round where each user
Ui after having computed Ki as described above computes and broadcasts H(Ki, Ui). Every
other member Uj receives this message and checks whether H(Kj, Ui)

?
= H(Ki, Ui) holds

(note, this implies Ki
?
= Kj). If this verification holds for all participants then each user Ui

computes the actual group key asK ′i := H(Ki, 0). The authors prove that in the Random Oracle
Model this additional round adds mutual authentication and key confirmation with respect to the
definition of MA-security in the BCPQ model while preserving AKE-security. Recall that this
definition is flawed. Hence, the provided security proof is no more reliable. It is easy to show that
the above approach does not provide key confirmation in the presence of malicious participants.
This is because the hash value H(Ki, Ui) does not provide sender identification.

Bresson, Chevassut, and Pointcheval [41] extended the protocol from [46] to handle additions
(join protocol) and exclusions (remove protocol) of group members. For this purpose every user
has to save the last broadcasted set Xn which is then updated with freshly chosen private ex-
ponent(s). The remove protocol consists of a single downflow stage where the highest-indexed
remaining user Un deletes from Xn all values addressed to the excluded group members, raises
all remaining values to the power of the freshly generated exponent x′n and broadcasts the up-
dated set X ′n. The join protocol requires an upflow stage where private exponents of joined
members are collected in a way described in the setup protocol starting with the position of
the highest-indexed member Un. The downflow stage is similar to that of the setup protocol.
For the detailed description of the dynamic operations we refer to [41]. The authors proof the
AKE-security of this dynamic protocol in their BCP model (see also Section 6.2.7) using the
non-standard assumptions of ROM under the GCDH assumption. Their proof is similar to the
proof in [46] and does not consider strong corruptions. Indeed, it is possible to show that if an
adversary A obtains private exponents of participants in one protocol sessions then it is able
to compute group keys from the previous sessions using public values in Xn. Considerations
concerning key control issues are similar to that of the static protocol.

In their subsequent work Bresson, Chevassut, and Pointcheval [42] revised the protocols
from [41] and proposed a variant that is secure under standard assumptions, i.e., without con-
sidering assumptions of ROM. Instead of digital signatures as in [41] the authentication in the
protocols from [42] is carried out by a message authentication code (MAC) function. Each user
Ui is in possession of an El-Gamal-like long-lived key (si, g

si) where g is a generator of some
group G where the DDH assumption holds. The MAC-key Kij used for authentication between
users Ui and Uj is derived as F1(gsisj) where F1 is a universal hash function Hr() ([95, Section
6.4.3]) which takes as input beside gsisj an additional random string r = rij which Ui and Uj
receive during the registration of their identities from the Certification Authority which is part

106 7 Security-Focused Survey on Group Key Exchange Protocols

of the Public-Key Infrastructure (PKI). Note that Kij does not expose. The group key is derived
as K := F2(ID,Xn, k) where F2 is a universal hash function Hr() where the required random
string r = rk is chosen by the user Un who sends the final broadcast message. The authors
prove the AKE-security of their protocol using their BCP+ model (see also Section 6.2.7) un-
der the Group Decisional Diffie-Hellman GDDH and the Multi Decisional Diffie-Hellman (MDDH)
assumptions which are polynomial-time reducible to the DDH assumption. It is worth being no-
ticed that the protocol in [42] does not explicitly provide MA-security. Indeed, if the mechanism
from [41, 46] is applied then the proof requires non-standard assumptions of the Random Ora-
cle Model. As for the requirement of key control we notice that the adversary A (being in the
strong corruption model) represented by a malicious participant Uj can control the value of k
(the computation is similar to that of the protocol in [46]) and may learn ID prior to the execu-
tion of the protocol. In addition to that if Un is malicious then it can choose the random string
r = rk used in the universal hash function Hr() non-uniformly implying that resulting hash
values are not uniformly distributed. Hence, the probability that A controls the value of the key
is given by the probability that for two different input values of F2, say α and β, the adversary
finds rα and rβ such that Hrα(α) = Hrβ(β). Obviously, this is some non-standard requirement
of collision-resistance of universal hash functions.

In their other work [43], Bresson et al. proposed a static variant of [46] with the password-
based authentication. The authors show the AKE-security of their protocol in the BCPQ model
[46] using the non-standard assumptions of ROM under the Trigon Group Computational Diffie-
Hellman (TGCDH) assumption (which is a special form of the GCDH assumption and thus re-
ducible to CDH and DDH). Their proof also shows that the protocol is resistant against dictionary
attacks. For this purpose in addition to private exponents xi each Ui has a second private expo-
nent νi such that the resulting group key is derived as K := H(ID,Xn, k) where H is a cryp-
tographic hash function and k = g

∏
i(xiνi). However, the protocol does not deal with dynamic

group changes, and its proof does not consider the requirement on forward secrecy. The authors
also mention that MA-security can be achieved using the hash function based mechanism from
[46]. However, it does not guarantee security in the presence of malicious participants.

Recently, Bresson et. al. [45] proposed another static password-based group key exchange
protocol, called GOKE, for IEEE802.11’s ad-hoc mode. This protocol proceeds as described in
Figure 7.24 whereby V P (xi) (validity proof) is a non-interactive zero-knowledge proof [159]
for the knowledge of xi in the exponent of the elements of Xi, pwi is a secret password shared
between Un and Ui, f is a symmetric encryption function, and H1, H2, H3 are cryptographic
hash functions.

• Upflow stage: In round i = 1, . . . , n − 1 the user Ui chooses random xi ∈R Z∗q , ri ∈R {0, 1}κ computes Xi :=

{g
∏{xt|t∈[1,i]∧t 6=j}|j = 1, . . . , i} and Zi := gx1...xi , generates V P (xi) and forwards ri|Xi|Zi and V P (xi) to Ui+1.

Upon receiving the corresponding message Ui+1 verifies the attached validity proof and halts if this verification is not
successful.

• Downflow stage: In round n the user Un chooses a random xn ∈R Z∗q , computes for all i = 1, . . . , n, the temporary key
k := g

∏
i xi , ki := K1/xi using elements from Xn−1, k′i := kαi

i where αi ∈R Z∗q , and broadcasts k∗i := k′i · f(pwi).
Upon receiving this value each Ui “unmasks” k′i, computes k′′i := k′i

xi , an authenticator Authi := H1(r1| . . . |rn|i|k′′i)
and sends Authi to Un.

• In round n + 1 user Un checks Authi
?
= H1(r1| . . . |rn|i|kαi) for each received Authi. If all received authenticators are

valid then Un broadcasts Auth′i := H2(r1| . . . |rn|i|kαi |ki) and ki.

• In round n+ 2 each Ui checks Auth′i
?
= H2(r1| . . . |rn|i|k′′i |ki). If this verification holds then Ui accepts with the session

group key Ki := H3(r1| . . . |rn|kxi
i).

Fig. 7.24. Protocol by Bresson, Chevassut, and Pointcheval with Password-Based Authentication [45]

7.3 Provably Secure Group Key Exchange Protocols 107

The authors prove the AKE-security of the protocol using a formal setting from [43] together
with the non-standard assumptions of the Random Oracle Model (for the applied hash functions)
under the TGCDH assumption. Note that in this protocol Un acts as a sole authenticator and
checks whether all participants computed the same key. There is no direct authentication and key
confirmation between any to participants Ui and Uj with 1 ≤ i, j < n. Thus, if the authenticator
Un is malicious then he can mount a successful attack against the mutual authentication and key
conformation properties by sending Auth′i := H2(r1| . . . |rn|i|k′′i |k̃i) with some fake k̃i.

7.3.7 Protocols by Dutta, Barua, and Sarkar

Dutta, Barua, and Sarkar [87] extended their heuristically analyzed unauthenticated protocol
from [16] (Section 7.2.9) by the authentication mechanism based on the non-interactive multi-
signature scheme by Boldyreva [33] and on the pairing-based signature scheme by Boneh, Lynn,
and Shacham [37]. Recall that the protocol assigns users to the leaf nodes of a balanced ternary
key tree T and applies iterations of Joux’ protocol to compute the resulting key at the root of T
which is then used to derive the session group key. The tree is constructed in such a way that
all nodes at level dT − 1 are parent nodes of either one, two, or three child nodes, and all nodes
at levels l < dT − 1 are either leaf nodes or parents of exactly three child nodes. In general
the protocol proceeds as described in Figure 7.25 with the following computation rules for the
secret values x〈dT−1,v〉 where H : G2 → Z∗q is a cryptographic hash function:

• if 〈dT − 1, v〉 is a parent of one leaf node then x〈dT−1,v〉 is exactly the secret value chosen by
the user assigned to that leaf node,

• else if 〈dT − 1, v〉 is a parent of two leaf nodes 〈dT , 3v + i〉, i = 0, 1 then x〈dT−1,v〉 =

H(ê(P, P)x〈dT ,3v〉x〈dT ,3v+1〉x′) where x〈dT ,3v〉 and x′ are secret values chosen by the user as-
signed to 〈dT , 3v〉, and x〈dT ,3v+1〉 is chosen by the user assigned to 〈dT , 3v + 1〉,

• else if 〈dT − 1, v〉 is a parent of three leaf nodes 〈dT , 3v + i〉, i = 0, 1, 2 then x〈dT−1,v〉 =
H(ê(P, P)x〈dT ,3v〉x〈dT ,3v+1〉x〈dT ,3v+2〉) where each x〈dT ,3v+i〉 is chosen by the user assigned to
〈dT , 3v + i〉

Note that each node 〈l, v〉 with l < dT − 1 is either a leaf node or a parent of exactly
three nodes. Therefore, x〈l,v〉 is either chosen by the user assigned to 〈l, v〉 or computed as
H(ê(P, P)x〈l+1,3v〉x〈l+1,3v+1〉x〈l+1,3v+2〉) via Joux’ technique.

• In round 1 each U〈l,v〉, 0 ≤ v ≤ 3l − 1 randomly chooses x〈l,v〉 ∈R Z∗q , computes and sends y〈l,v〉 := x〈l,v〉P together
with the corresponding digital signature σ to every user in the subtree(s) rooted at the sibling node(s) of 〈l, v〉. Every user
verifies received signatures before he proceeds with the protocol.

• In round i, i = 2, . . . , dT + 1 each U〈l,v〉, l > dT + 1 − i, computes x〈dT+1−i,bv/3i−1c〉. If i 6= dT + 1 then for each
subtree T〈dT+1−i,v〉, 0 ≤ v ≤ 3dT+1−i − 1, a user (sponsor) assigned to one of the leaf nodes of T〈dT+1−i,v〉 computes
and sends y〈dT+1−i,bv/3i−1c〉 := x〈dT+1−i,bv/3i−1c〉P together with the corresponding non-interactive multi-signature σ
to every user in the subtree(s) rooted at the sibling node(s) of 〈dT + 1− i, v〉. Every user verifies received signatures before
he proceeds with the protocol.

Fig. 7.25. Protocol by Dutta, Barua, and Sarkar [87]

The secret value x〈0,0〉 at the root of the tree is then used as the session group key.
Dutta et al. prove the AKE-security of their protocol against active adversaries under the

non-standard cryptographic assumption DHBDH in the modified version of the KY security model
(Section 6.2.8). Unlike the authentication procedure in Katz and Yung’s protocol the protocol
by Dutta et al. does not use nonces as part of signed messages. Note that nonces are useful to

108 7 Security-Focused Survey on Group Key Exchange Protocols

resist replay attacks. Therefore, it is not clear whether the proposed protocol remains secure
in case where an active adversary replays previous messages. The simulation described in the
proof fails if the adversary replays a message as part of his send query, because send queries
are answered from the predefined transcripts obtained through execute queries, and, therefore,
any unpredictable send query (such as a replayed message) cannot be answered. Also, the se-
curity of some parts of Dutta et al.’s modifications to the original BCPQ model are arguable
as discussed in Section 6.2.8. Beside this it is possible to show that the protocol is susceptible
to the attack against key control (in the strong corruption model). The idea behind the attack is
that the adversary represented by a malicious participant may know the tree structure prior to
the execution of the protocol and own position within it. The adversary adaptively computes all
secret values in its path up to x〈0,0〉 prior to the execution of the protocol. Then, during the proto-
col execution it influences honest participants that are assigned to the leaf nodes of the subtrees
rooted at nodes that are siblings of the nodes in the adversarial path to compute each x〈l,v〉 as
chosen by the adversary. In the strong corruption model this attack is simple. For example, con-
sider that two honest participants are assigned to the leaf nodes 〈dT , 3v + 1〉 and 〈dT , 3v + 2〉
and the malicious participant is assigned to 〈dT , 3v〉, and chooses x〈dT−1,v〉 prior to the protocol
execution as the output of H(ê(P, P)x̃) for some chosen x̃. Then during the protocol execution
it reveals x〈dT ,3v+1〉 and x〈dT ,3v+2〉 as part of the internal information of honest participants and
computes x〈dT ,3v〉 := x̃

x〈dT ,3v+1〉x〈dT ,3v+2〉
. Further, this kind of the attack can be performed for all

x〈l,v〉 in the adversarial path including the session group key x〈0,0〉.
In [84], Dutta and Barua extended the above protocol by additional operations that handle

dynamic group changes, i.e., addition and deletion of group members. Both events are handled
using a sponsor and result in the updated logical tree T ′ and the updated secret value at the root
of T ′ whereby some secret values x〈l,v〉 remain unchanged. The authentication is achieved using
digital signatures and multi-signatures as in [87]. The authors prove the AKE-security of their
dynamic protocol against active adversaries under the DHBDH assumption using a mix of the
BCP+ and KY models with own technical modifications (Section 6.2.8). The proof considers
only weak corruptions. Obviously, no forward secrecy in case of strong corruptions is provided
because the knowledge of any unchanged x〈l,v〉 can be used to compute the previous value of
x〈0,0〉.

7.4 Summary and Discussion

In Table 7.4 we summarize results of our security-focused survey of group key exchange pro-
tocols while considering only provably secure protocols from Section 7.3 since security models
used in their proofs provide a solid background for a fair comparison of their security degrees.
We consider only protocols that have not been found to be flawed despite of their security proof.
For each considered protocol we specify the applied security model together with some possi-
bly used non-standard models like Random Oracle Model (ROM) or Ideal Cipher Model (ICM).
Additionally, we specify the underlying cryptographic assumption, and point out whether the
proof considers strong (S) or weak (W) corruptions. In the last columns we give the protocol
type (S for static; D for dynamic).

STRONG VS. WEAK CORRUPTIONS Observe, only few security proofs of the described
protocols consider a powerful adversary which is given access to strong corruptions. From the
analysis of security models in the previous chapter we know that only the BCP+ and KS/UC-KS

7.4 Summary and Discussion 109

Table 7.1. Analysis of Provably Secure Group Key Exchange Protocols

Protocol Model(s) Assumption(s) Corr. S/D

Abdalla et al. [5] BCP+ + ICM, ROM DDH S S

Barua and Dutta [83] KY DDH W S

Barua and Dutta [83] BCP DDH W D

Barua and Dutta [84] BCP DHBDH W D

Bresson and Catalano [40] BCP OW W S

Bresson et al. [46] BCPQ + ROM GCDH W S

Bresson et al. [41] BCP + ROM GCDH W D

Bresson et al. [42] BCP+ GDDH, MDDH W D

Bresson et al. [43, 45] BCPQ + ROM TGCDH W S

Dutta et al. [87] BCPQ DHBDH W S

Katz and Yung [112] KY DDH W S

Kim, Lee, and Lee [114] BCP,KY + ROM CDH W D

models provide definitions that consider strong corruptions. However, there exists no group key
exchange protocol proven secure in the KS/UC-KS models. The only protocols proven secure
in the BCP+ model have been proposed by Abdalla et al. [5] and by Bresson et al. [42]. The
protocol proposed by Abdalla et al. is static. Intuitively, all static protocols provide security in
the strong corruption model as long as they provide security in the weak corruption model. This
is because in static protocols internal (ephemeral) information used for the computation of the
group key is chosen independently at random for each new protocol execution (session). How-
ever, this is not the case in dynamic protocols. The protocol proposed by Bresson et al. [42] is
dynamic. However, it does not provide security (in particular in case of forward secrecy) in the
strong corruption model. Therefore, its proof considers only weak corruptions. For the protocol
proposed by Dutta et al. [87] and its dynamic version in [84] we pointed out that given security
proofs have mistakes concerning possible replay attacks. For the dynamic protocol proposed by
Kim, Lee, and Lee in [114] security in the strong corruption model has been claimed but not
formally proven (also due to the absence of adequate security models at that time).

STANDARD VS. NON-STANDARD ASSUMPTIONS Security proofs of the protocols in [5, 41, 46,
114] require non-standard assumptions of ROM or ICM. As for the cryptographic assumptions,
security of the protocols in [83] and [112] is based on the standard cryptographic assumption
DDH. Security of the generalized protocol by Bresson and Catalano [40] is based on the standard
assumption on the existence of one-way functions (OW). Security of the protocols proposed by
Bresson et al. in [41, 43, 45, 46] has been proven under the assumptions GCDH and TGCDH
which are polynomial-time reducible to the standard cryptographic assumptions CDH and DDH

[44]. The CDH assumption has also relevance for the security of the protocol proposed by Kim,
Lee, and Lee [114]. The protocol proposed by Bresson, Chevassut, and Pointcheval in [42] re-

110 7 Security-Focused Survey on Group Key Exchange Protocols

lies on the GDDH and MDDH assumptions which are polynomial-time reducible to DDH. The only
non-standard cryptographic assumption is DHBDH which is used in the protocols from [84, 87].

ATTACKS OF MALICIOUS PARTICIPANTS We focus on the attacks of malicious participants
against the properties of key confirmation and mutual authentication (Section 6.1.3) and key
control and contributiveness (Section 6.1.5). From the analysis of security models in the previ-
ous chapter we know that only the KS/UC-KS and BVS models provide definitions that consider
requirements on key confirmation and mutual authentication with respect to the malicious par-
ticipants. However, none of the considered protocols has been proven secure in any of these
models. Intuitively, all password-based authentication protocols including [5, 43, 45] are sus-
ceptible to such attacks of malicious participants (see Section 7.3.2 for an example of the attack
against [5]) because password-based authentication does not provide identification when used in
the group setting. However, such identification is important if all protocol participants must au-
thenticate mutually. Obviously, protocols where mutual authentication is performed via digital
signatures are more suitable for this purpose. Still, none of the security proofs of the protocols
in [40, 41, 46, 83, 84, 87, 112, 114] that apply digital signatures considers this kind of attacks
of malicious participants.

According to our analysis in the previous chapter, none of the security models used in secu-
rity proofs of the GKE protocols in Table 7.4 provides formal definitions concerning key control
and contributiveness in case of strong corruptions. This is the reason why none of the currently
existing group key exchange protocols could be proven secure against this kind of attacks (see
Section 7.3.1 for an example attack against [112] in case of strong corruptions).

MAIN RESULT Based on the above arguments we emphasize that none of the currently existing
dynamic group key exchange protocols is provably secure with respect to the strong corruptions
and attacks of malicious participants. Therefore, one of the goals of this dissertation (achieved
in Chapter 10) is to design a dynamic GKE protocol that can be proven to satisfy these strong
security requirements.

Chapter 8

A Modular Security Model for Group Key Exchange
Protocols

According to the analysis in Section 6.2, currently existing security models for group key
exchange (GKE) protocols still have some limitations concerning their security definitions w.r.t.
a powerful adversary who is given access to the strong corruptions and who may represent
a (subset of) malicious participant(s) mounting attacks against various security requirements,
such as mutual authentication, key confirmation, unknown key-share resilience, key control and
contributiveness.

In this chapter we propose a modular computational security model for GKE protocols which
allows reductionist security proofs and considers strong corruptions for all given security defini-
tions. In fact, we extend the ideas of Bresson et al. [42] and Katz and Yung [112] concerning the
AKE-security with additional secrecy types, specify MA-security alternatively to the definitions
of the insider security by Katz and Shin [111], and define contributiveness strictly stronger than
in Bohli et al. [32], while also considering dynamic GKE protocols.

8.1 Execution Parameters and Definitions . 111
8.1.1 Protocol Participants, Instance Oracles . 111
8.1.2 Long-Lived Keys . 112
8.1.3 Internal State Information . 112
8.1.4 Session Group Key, Session ID, Partner ID . 113
8.1.5 Instance Oracle States . 113
8.1.6 Static GKE Protocol . 114
8.1.7 Dynamic GKE Protocol . 114

8.2 Adversarial Model and Security Requirements . 115
8.2.1 Queries to the Instance Oracles . 115
8.2.2 Correctness . 116
8.2.3 Forward Secrecy . 117
8.2.4 Backward Secrecy . 117
8.2.5 Freshness . 118
8.2.6 Corruption Models . 119
8.2.7 Adversarial Setting . 119
8.2.8 (A)KE-Security . 119
8.2.9 MA-Security . 120
8.2.10 t-Contributiveness . 121

8.3 Unifying Relationship of MA-Security and t-Contributiveness . 123
8.4 A Comment on Backward Secrecy . 124

8.1 Execution Parameters and Definitions

8.1.1 Protocol Participants, Instance Oracles

Let U be a set of N users (their identities) that may participate in a GKE protocol P. Note that
one execution of P may consist of several subsequent executions of the sub-protocols of P called
operations. If P is static then it provides only one operation (setup) so that the execution of P

112 8 A Modular Security Model for Group Key Exchange Protocols

is finished by the end of this operation. If P is dynamic then it provides additional operations
(join and leave) so that after the setup operation several subsequent dynamic operations can be
executed until the execution of P is finished.

In order to handle participation of U ∈ U in distinct concurrent operation executions of P
we consider U having an unlimited number of instances called oracles. By Πs

U with s ∈ N we
denote the s-th instance oracle of U . When we need to distinguish between the oracles of two
different users Ui and Uj we use the notationΠsi

i andΠsj
j , respectively. Note that every instance

oracle Πs
U might be represented as a process controlled by the user U and modeled as a PPT

algorithm.
For each concurrent operation execution of P we consider a non-empty set of oracles G of

size n ∈ [1, N], called a group. A new group of oracles is created for every invoked operation
execution. Each oracle in G is called a group member. By Gi for i = 1, . . . , n we denote the
index of the user related to the i-th oracle involved in this group. This i-th oracle in G is further
denoted Π(G, i). Thus, for every i ∈ {1, . . . , n} there exists Π(G, i) = Πs

Gi ∈ G for some
s ∈ N.

8.1.2 Long-Lived Keys

Every user U ∈ U may hold a long-lived (long-term) key LLU generated by some probabilistic
algorithm GenLL(1κ). Every LLU is generated in advance and becomes known to all oraclesΠs

U ,
s ∈ N upon their initialization (see Section 8.1.5).LLU is usually represented by a private/public
key pair (skU , pkU) of user U or by a symmetric key (password) pw. If we need to distinguish
between different the long-lived keys of different users Ui and Uj we use the notation LLi and
LLj , respectively.

8.1.3 Internal State Information

Every Πs
U maintains an internal state information statesU which is composed of all private

ephemeral information used during the protocol execution excluding the long-lived key LLU .
This information is typically used by the oracles to compute or update group keys during the
execution of the protocol. For example, statesU may contain ephemeral secret exponents used
by a participant of the Diffie-Hellman key exchange protocol.

There are several reasons for separating LLU from statesU . First, LLU is not ephemeral,
moreover it belongs to the user and not to the oracle. Second, in spirit of [42] long-lived keys
may have different protection mechanisms, e.g., smart cards. Thus, revealing LLU does not
necessarily imply that statesU is revealed and vice versa. Third, by distinguishing between
LLU and statesU we are able to model curious adversaries who do not get full control over the
users but reveal their ephemeral secrets. We stress that this second reason is essential for our
definition of contributiveness (cf. Section 8.2.10).

Further, we stress that statesU contains private information. Especially, statesU does not
contain any public information, such as public keys of participants or public parameters of
cryptographic schemes. This is convenient for security proofs like in [21, 42, 114, 167] where a
popular (secure) erasure technique [76] is applied, i.e., the erasure of the internal state informa-
tion does not imply the erasure of the public information which is usually required to continue
with the protocol execution.

8.1 Execution Parameters and Definitions 113

8.1.4 Session Group Key, Session ID, Partner ID

Every operation execution of P constitutes a separate session with own group G. In each session
every participating oracle Πs

U computes the session group key ksU ∈ {0, 1}κ (notation k is used
in case of generalization). We do not consider the session group key ksU as part of statesU in
order to model AKE-security in case of strong corruptions. Therefore, in our security model we
allow the adversary to obtain ksU without obtaining statesU and vice versa. This is also because
ksU is, usually, used in the actual group application where its protection might be insufficient.

The session whereΠs
U participates in is identified by a unique session id sidsU . Note that this

value is known to all oracles participating in the same session. We stress that either the unique
session id is provided by the environment of the protocol (e.g., a high-level application) or is
computed during the actual operation execution (e.g., via nonces). By qs we denote the total
number of (concurrent) sessions (operation executions) of P.

Similarly, each oracle Πs
U ∈ G has a partner id pidsU that contains the identities of all users

holding oracles in G (including U), or formally

pidsU := {UGj | Π(G, j) ∈ G, ∀j = 1, . . . , n}.
We say that two oracles Πsi

i and Πsj
j are partnered if

Ui ∈ pid
sj
j , Uj ∈ pidsii , and sidsii = sid

sj
j .

Obviously, all oracles in G are considered as partners. This notion of partnering is helpful for
formal definitions of some security goals concerning P.

8.1.5 Instance Oracle States

An oracle Πs
U may be either used or unused. The oracle is considered as unused if it has never

been initialized. Each unused oracle Πs
U must be initialized with the long-lived key LLU before

it can participate in the operation execution. After the initialization the oracle is marked as used,
and turns into the stand-by state where it waits for an invocation to execute a protocol operation.

Upon receiving such invocation the oracle Πs
U learns its partner id pidsU (and possibly sidsU)

and turns into a processing state where it sends, receives and processes messages according to
the description of the invoked operation. During the whole processing state the internal state
information statesU is maintained by the oracle. The oracle Πs

U remains in the processing state
until it collects enough information to compute the session group key ksU .

After Πs
U computes ksU it accepts and terminates the execution of the protocol operation

(possibly after some additional auxiliary steps). The oracle turns then back into the stand-by
state where it can be invoked for the new operation. If the operation execution fails (due to
any adversarial actions) then Πs

U turns into the stand-by state without having accepted, i.e., the
session group key ksU is set to some undefined value. Whether Πs

U has accepted or not can be
modeled by a boolean variable which should be set true as soon as ksU is computed, and false
after the oracle receives invocation for a new protocol operation.

Remark 8.1. We need the stand-by state in order to model dynamic group key exchange pro-
tocols where each protocol execution may consist of several operation executions. Thus, in
dynamic protocols there is no state for termination. On the other hand, in static protocols there
is only one operation. Therefore, in static protocols the oracle Πs

U after having accepted does
not turn back into the stand-by state anymore, but remains terminated, that is the stand-by state
is reached only once, straight after the initialization.

114 8 A Modular Security Model for Group Key Exchange Protocols

8.1.6 Static GKE Protocol

The following definition considers only static GKE protocols.

Definition 8.2 (Static GKE Protocol). A static group key exchange protocol S-GKE consists of
the key generation algorithm KeyGen, and an operation Setup defined as follows:

• P.KeyGen(1κ): On input a security parameter 1κ provides each user U in U with a long-lived
key LLU .

• P.Setup(S): On input a set S of n unused oracles a new group G is created and set to be S.
A probabilistic interactive protocol is executed between Π(G, 1), . . ., Π(G, n) such that all
oracles accept with the session group key and terminate.

Remark 8.3. Note that in the definition of P.Setup oracles must be unused and must, therefore,
be initialized before they proceed with the interaction.

8.1.7 Dynamic GKE Protocol

In the following we extend Definition 8.2 towards dynamic GKE protocols. The main difference
are additional dynamic operations which may be used to update the session group key without
a new execution of P.Setup. In the description of the dynamic operations we assume that n is
the size of the initial group G prior to the execution. Note that after the operation is executed the
new group size may be different.

Definition 8.4 (Dynamic GKE Protocol). A dynamic group key exchange protocol D-GKE con-
sists of the key generation algorithm KeyGen and operations Setup, Join+, and Leave+ defined
as follows:

• P.KeyGen(1κ): as in Definition 8.2.
• P.Setup(S): as in Definition 8.2, except that oracles turn into the stand-by state.
• P.Join+(G,J): On input a group G of n used oracles and a set J of nJ (unused) oracles

a new group G of n + nJ oracles is created and set to be G ∪ J . A probabilistic interactive
protocol is executed between Π(G, 1), . . ., Π(G, n+ nJ) such that all oracles accept with
the updated session group key and turn into the stand-by state.

• P.Leave+(G,L): On input a group of n used oracles and a set L of nL used oracles a new
group G of n−nL oracles is created and set to be G\L. A probabilistic interactive protocol is
executed between Π(G, 1), . . ., Π(G, n− nL) such that all oracles accept with the updated
session group key and turn into the stand-by state.

Remark 8.5. In the definition of P.Join+ the joining set J may consist either of the unused or
used oracles. J being a set of the unused oracles models the case where completely new users
join to the group. Since the oracles are unused they have to be initialized before the interaction
starts. J being a set of the used oracles models the case where users that have already partici-
pated in the previous operations join to the group (possibly after having leaved it before). In this
case no initialization of the oracles is required. In both cases oracles in the initial group G must
be used. This is because users can join to and leave from already existing groups.

Remark 8.6. Our model for S-GKE and D-GKE is independent of the underlying communication
channel between the group members. It can be used to model GKE protocols where group
members send messages over broadcast / multicast and unicast channels. Note that if a GKE
protocol assumes only a broadcast channel then all exchanged messages are received by all
oracles.

8.2 Adversarial Model and Security Requirements 115

In the remainder of this part, unless otherwise specified, by P we mean a dynamic GKE
protocol D-GKE. Note also that S-GKE can be considered as an operation of D-GKE.

8.2 Adversarial Model and Security Requirements

In order to analyze security of a GKE protocol we need to define an adversarial setting which
specifies capabilities and possible actions of the attacker. In our model, the adversary A is rep-
resented by a PPT algorithm. It is assumed to have complete control over all communication in
the network and may interact with group members by making queries to an unlimited number
of oracles Πs

U as described in the next section. Note that similar to other models we do not deal
with denial-of-service attacks (neither by non-legitimate participants nor by malicious partici-
pants) which generally aim to prevent an oracle from accepting. Our security definitions (similar
to those of other models) state requirements on the session group keys that are accepted by the
oracles.

8.2.1 Queries to the Instance Oracles

The following queries model the attacks the adversary could mount through the network.

• Setup(S): This query modelsA eavesdropping the honest execution of P.Setup. This query
is only available to A if the oracles in S are unused. P.Setup(S) is executed and A is given
the transcript of the execution.

• Join+(G,J): This query models A eavesdropping the honest execution of P.Join+. This
query is only available to A if the oracles in G are partnered, have previously accepted, and
are in the stand-by state (this is because oracles can only join to already existing groups),
and the oracles in J , only if used, are in the stand-by state. P.Join+(G,J) is executed and
A is given the transcript of the execution.

• Leave+(G,L): This query models A eavesdropping the honest execution of P.Leave+. This
query is only available to A if the oracles in G are partnered, have previously accepted and
are in the stand-by state (this is because oracles can only leave from the already existing
groups), and if L ⊂ G (this is because only current group members can leave the group).
P.Leave+(G,L) is executed and A is given the transcript of the execution.

• Send(op,Πs
U ,m): This query models A sending messages to the oracles. A receives the re-

sponse which Πs
U would have generated after having processed the message m according to

the description of the protocol operation specified by a string op ∈ {′setup′, ′join′, ′leave′}.
The response may also be an empty string if m is incorrect or unexpected.A can use the fol-
lowing Send queries to ask an oracle Πs

U to invoke the operation execution of P with other
oracles:
– Send(′setup′, Πs

U ,S) asks Πs
U for the first message that invokes the setup operation be-

tween Πs
U and other oracles in S. Note that Πs

U ∈ S must hold.
– Send(′join′, Πs

U ,G,J) asks Πs
U for the first message that invokes the join operation

between Πs
U and oracles in G and J . Note that Πs

U ∈ G or Πs
U ∈ J must hold.

– Send(′leave′, Πs
U ,G,L) asks Πs

U for the first message that invokes the leave operation
between Πs

U , and other oracles in G. Note that Πs
U ∈ G and L ⊂ G must hold.

The described send queries are answered according to the specification of the protocol. For
any other send queries ofA related to the execution of the invoked operation a corresponding
identifier op is the first argument of the query.

116 8 A Modular Security Model for Group Key Exchange Protocols

• RevealKey(Πs
U): This query models the attacks which reveal the session group key. A is

given the session group key ksU . Note that this query is answered only if Πs
U has previously

accepted, i.e., the session group key ksU is defined.
• RevealState(Πs

U): This query models the attacks resulting in the internal state of the oracle
being revealed.A is given the internal state information statesU . Note that statesU contains
ephemeral secrets used by Πs

U . We stress that this query does not reveal LLU (this allows
to model separate protection mechanisms for long-lived keys) and ksU (this allows to model
AKE-security with respect to strong corruptions).

• Corrupt(U): This query models the attacks resulting in the group member’s long-lived key
being revealed. A is given the long-lived key LLU .

• Test(Πs
U): This query will be used to model the (A)KE-security of a GKE protocol. It can

be asked by A at any time during A’s execution, but only once. The query is answered only
if Πs

U has previously accepted. The oracle generates a random bit b. If b = 1 then A is given
ksU , and if b = 0 then A is given a random string.

A passive adversary can eavesdrop the execution of the protocol operations via Setup,
Join+, and Leave+ queries, reveal session group keys, internal states and corrupt participants
via RevealKey, RevealState, and Corrupt queries, respectively, and is also allowed to ask
Test queries. Additionally, it is given access to the Send queries, however, with the restriction
that it is not allowed to inject, replay, or modify messages. Thus, a passive adversary can truly
forward, drop, and delay messages, or deliver them out of order. Although the queries Setup,
Join+, and Leave+, can be simulated using the query Send with the appropriate invocation
messages, the presence of these queries still allows a separate treatment of the (weaker) passive
adversaries who are restricted to the eavesdropping of the protocol execution in the sense of
[112]. Note that in our model the passive adversary is stronger than in [112] and is comparable
to the one from [62].

To the contrary an active adversary is given access to all queries and is also allowed to
modify, inject, and replay messages via the Send query.

The separation between passive and active adversaries is convenient for the definition of
security goals in a modular way. Note that modular definitions of security goals can be used to
simplify security proofs, design application-specific protocols for which not all security goals
might be required, and construct so-called “compilers” that may be used to add specific security
properties to a protocol.

Further, we distinguish between honest and malicious participants. We say that Πs
U is a

malicious participant if the adversary has previously asked the Corrupt(U) query, thus the
adversary can participate in P on behalf of U . In all other cases Πs

U is honest. Finally, we say
that the adversary is curious if it asks a RevealState(Πs

U) query for some honest Πs
U .

8.2.2 Correctness

Our model should be able to exclude “useless” GKE protocols. The following definition of
correctness is based on the uniqueness of session ids and ensures that all oracles participating
in the same session of P compute the same group key.

Definition 8.7 (Correctness). A GKE protocol P is correct if for any operation execution be-
tween the oracles Π(G, 1), . . ., Π(G, n) with the same session ids sid all oracles accept with
the same session group key k.

8.2 Adversarial Model and Security Requirements 117

8.2.3 Forward Secrecy

The notion of forward secrecy allows to distinguish between damages to the AKE-security of
previously computed session group keys caused by different actions of the adversary in subse-
quent sessions. In the following we list possible attack scenarios aiming to reveal a previous
session group key: (1) A reveals a subset of session group keys of subsequent sessions; (2) A
corrupts the long-lived key of a group member in any subsequent session; (3)A reveals internal
states of the oracles in some subsequent sessions; and (4) the combination of any subset of the
three previous cases.

We do not consider the attack scenario (1) in the definition of forward secrecy, because
any GKE protocol P must provide security against it implicitly as part of its AKE-security.
So when talking about forward secrecy we distinguish between attack scenarios (2), (3) and
(4). Since long-lived keys in P are used primarily for authentication of messages, but internal
state information is used explicitly to compute the session group key, the attack scenario (3) is
more damageable than (2). In the following definition of forward secrecy we distinguish only
between two types of attacks: (a) the attack scenario (2), and (b) the combination of attack
scenarios (2) and (3). Note that the corruption of the long-lived key does not necessarily reveal
the internal state information of the oracle, and vice versa, because it may have a different
protection mechanism.

Based on these considerations we distinguish between weak forward secrecy (wfs) where
the adversary is allowed to ask the queries Setup, Join+, Leave+, Send, RevealKey, and
Corrupt, and strong forward secrecy (sfs) where the adversary is additionally allowed to ask
the query RevealState.

8.2.4 Backward Secrecy

The notion of backward secrecy allows to distinguish between damages to the AKE-security
of session group keys computed in the future caused by different actions of the adversary in
previous sessions. Obviously, backward secrecy has the opposite meaning of forward secrecy.
In the following we list possible attack scenarios aiming to reveal session group keys computed
in future sessions: (1) A reveals a subset of session group keys of previous sessions; (2) A
corrupts the long-lived key of a group member in any previous session; (3) A reveals internal
states of the oracles used in some previous sessions; and (4) the combination of any subset of
the three previous cases.

Similar to the case of forward secrecy, we do not consider the attack scenario (1) in the
definition of backward secrecy, because any GKA protocol P protocol must provide security
against it implicitly. So when talking about backward secrecy we distinguish between attack
scenarios (2), (3) and (4). Opposed to the case of forward secrecy the attack scenario (2) is more
damageable than (3). This is because by corrupting the long-lived key of a group member the
adversary can impersonate that group member in future sessions. Therefore in the definition
of backward secrecy we distinguish between the following two types of attacks: (a) the attack
scenario (3), and (b) the combination of attack scenarios (3) and (2).

Based on these considerations we distinguish between weak backward secrecy (wbs) where
the adversary is allowed to ask the queries Setup, Join+, Leave+, Send, RevealKey, and
RevealState, and strong backward secrecy (sbs) where the adversary is additionally allowed
to ask the query Corrupt.

Remark 8.8. We refer to Section 8.4 for some additional comments on strong backward secrecy.

118 8 A Modular Security Model for Group Key Exchange Protocols

8.2.5 Freshness

The notion of freshness of an oracle Πs
U is required to distinguish between various definitions

of AKE-security of P with respect to different flavors of forward and backward secrecy.

Definition 8.9 (α-Freshness). Let α ∈ {∅, wfs, wbs, sfs, sbs}. The oracle Πs
U ∈ G is

• ∅-fresh if: neither Πs
U nor any of its partners is asked for a RevealKey query after having

accepted;
• wfs-fresh if: (1) no Ui ∈ pidsU is asked for a Corrupt query prior to a query of the form
Send(op,Π

sj
j ,m) such thatUj ∈ pidsU beforeΠs

U and all its partners accept, and (2) neither
Πs
U nor any of its partners is asked for a RevealKey query after having accepted;

• sfs-fresh if: (1) no Ui ∈ pidsU is asked for a Corrupt query prior to a query of the form
Send(op,Π

sj
j ,m) such that Uj ∈ pidsU before Πs

U and all its partners accept, (2) neither
Πs
U nor any of its partners is asked for a RevealState query before they accept, and (3)

neither Πs
U nor any of its partners is asked for a RevealKey query after having accepted;

• wbs-fresh if: (1) neither Πs
U nor any of its partners is asked for a RevealState query after G

is created, and (2) neither Πs
U nor any of its partners is asked for a RevealKey query after

having accepted;
• sbs-fresh if: (1) no Ui ∈ pidsU is asked for a Corrupt query prior to a query of the form
Send(op,Π

sj
j ,m) such that Uj ∈ pidsU after G is created, (2) neither Πs

U nor any of its
partners is asked for a RevealState query after G is created, and (3) neither Πs

U nor any of
its partners is asked for a RevealKey query after having accepted.

We say that a session is α-fresh if all participating oracles are α-fresh.

The above definition is given from the perspective of an oracle which participates in a concrete
operation execution of P. Note that in our model a new group G is created for every invoked op-
eration, i.e., new session. In the following we provide some additional explanations concerning
our definition of α-freshness.

Obviously, the wfs-freshness allows Corrupt queries to any user in U after the oracles in
G have accepted whereas the sfs-freshness allows, additionally, RevealState queries to any
oracle of any user in U after the oracles in G have accepted. Beside this, the wfs-freshness
allows Corrupt queries in previous and concurrent operations to any user in U who does not
have an oracle in G whereas the sfs-freshness allows, additionally, RevealState queries in
previous and concurrent operations to all oracles that do not belong to G.

On the other hand, the wbs-freshness allows RevealState queries to any oracle of any user
in U before the group G is created whereas the sbs-freshness allows, additionally, Corrupt
queries to any user in U before G is created. Beside this, the wbs-freshness allows RevealState
queries in concurrent and later operations to all oracles that do not belong to G whereas the
sbs-freshness allows, additionally, Corrupt queries in concurrent and later operations to any
user who does not have an oracle in G.

Remark 8.10. Note that the requirements in Definition 8.9 guarantee that if at least one oracle
Πs
U in G is α-fresh then all other oracles in G must be α-fresh too. Thus, the whole session is

then α-fresh. Additionally, these requirements ensure that if a session specified by a group G
is α-fresh then: (1) if a user holding an oracle in G is corrupted during the session execution
then no subsequent Send queries can be asked to any of the participating oracles, (2) none of
the oracles in G can be asked to reveal its internal state information during the session execu-
tion, and (3) none of the oracles in G that has accepted at the end of the session execution can

8.2 Adversarial Model and Security Requirements 119

be asked to reveal the computed session group key. Note that the first statement prevents an
adversary from the active participation in an α-fresh session on behalf of corrupted users and
restricts the adversarial behavior in this case to that of a passive adversary. This observation is
important for the reductions in the security proofs of Theorems 9.3, 9.18, 9.21, and 9.31. The
other two statements ensure that during the whole α-fresh session there can be no RevealState
and RevealKey (to accepted oracles) queries which are asked to the oracles in G.

The notion of α-fresh sessions becomes important in AKE-security proofs since it allows
to distinguish between “honest” sessions, in which the computed key is kept secret, and “cor-
rupted” sessions, in which the adversary may learn or compute its value.

8.2.6 Corruption Models

To properly manage the adversarial capabilities for each scenario of freshness, we distinguish
between the following corruption models.

Definition 8.11 (Corruption Model β). For any PPT adversaryA a possible corruption model
β ∈ {wcm, wcm-fs, wcm-bs, scm} is specified according to the following description:

• wcm (weak corruption model): An adversary A is given access to the queries Setup, Join+,
Leave+, Send, Test and RevealKey.

• wcm-fs (weak corruption model for forward secrecy): An adversary A is given access to the
queries Setup, Join+, Leave+, Send, Test, RevealKey, and Corrupt.

• wcm-bs (weak corruption model for backward secrecy): An adversary A is given access to
the queries Setup, Join+, Leave+, Send, Test, RevealKey and RevealState.

• scm (strong corruption model): An adversaryA is given access to the queries Setup, Join+,
Leave+, Send, Test, RevealKey, RevealState and Corrupt.

8.2.7 Adversarial Setting

For a concrete proof of (A)KE-security (defined in the next section) we will need to specify
capabilities of the adversary depending on the intended freshness type. Combining correspond-
ing definitions for freshness and corruption we obtain a set of possible adversarial settings
(α, β) ∈ {(∅, wcm), (wfs, wcm-fs), (wbs, wcm-bs), (sbs, scm), (sfs, scm)}, where ∅ denotes
the freshness type for GKE protocols that do not provide any form of forward or backward
secrecy.

8.2.8 (A)KE-Security

Informally, the (A)KE-security of a GKE protocol P requires the indistinguishability of session
group keys computed in operations of P from random numbers. The formal description is given
in the following definition.

Definition 8.12 (Game Game(a)ke−b
α,β,P (κ)). Let P be a GKE protocol from Definition 8.4 and b

a uniformly chosen bit. Consider an adversarial setting (α, β) sampled from {(∅, wcm), (wbs,
wcm-bs), (wfs, wcm-fs), (sbs, scm), (sfs, scm)} and an (active) adversary A against (A)KE-
security of P. We define game Game(a)ke−b

α,β,P (κ) as follows:

• after initialization A interacts with instance oracles using queries;

120 8 A Modular Security Model for Group Key Exchange Protocols

• ifA asks a Test query to an oracle α-fresh oracle Πs
U which has accepted, it receives either

k1 := ksU (if b = 1) or k0 ∈R {0, 1}κ (if b = 0);
• A continues interacting with instance oracles;
• when A terminates, it outputs a bit b′ trying to guess which case it was dealing with.

If Πs
U is still α-fresh then the output of A is the output of the game. The advantage function of

A in winning the game is defined as

Adv(a)ke
α,β,P(κ) :=

∣∣2Pr[Game(a)ke−b
α,β,P (κ) = b]− 1

∣∣
Based on the definition of A we define the (A)KE-security of a GKE protocol P as follows.

Definition 8.13 ((A)KE-Security).

(1) P is a KE-secure protocol with α-secrecy (GKE-α) if for any passive PPT A the advantage
Advke

α,β,P(κ) is negligible. Note, if α = ∅, we say that P is a KE-secure protocol.
(2) P is a AKE-secure protocol with α-secrecy (AGKE-α) if for any active PPT A the advantage

Advake
α,β,P(κ) is negligible. Note, if α = ∅, we say that P is a AKE-secure protocol.

The (A)KE-security of P deals with the secrecy of the computed session group key against
parties who are not legitimate protocol participants during the session where the Test query
occurs. The following definitions deal with the attacks of malicious protocol participants and
curious adversaries.

Remark 8.14. In Section 9.3 we describe a generic solution to achieve AKE-security for any
KE-secure group key exchange protocol.

8.2.9 MA-Security

In the following we provide the definition of MA-security which is supposed to subsume the
following informal requirements of unknown key-share resilience [80], key confirmation [135],
explicit key authentication [135], and the original notion of mutual authentication [22] as de-
scribed in Chapter 6.

Our definition differs from the one in [42, 46] since we also consider malicious protocol
participants. The main difference is that malicious participants are able to send valid protocol
messages that may prevent honest participants from computing the same session group key.
Hence, malicious oracles may become partners of honest oracles. Therefore, it is not enough
to define this requirement based alone on public criteria like session ids or partner ids but also
to use session group keys accepted by the oracles. Note, since MA-security is supposed to
subsume key confirmation and mutual authentication requirements there should be at least two
uncorrupted participants during the execution of the protocol operation which is attacked by the
adversary. In our definition of MA-security malicious participants are modeled by the ability of
the active adversary to corrupt oracles in every operation execution of the protocol. This allows
the adversary to influence the protocol execution by malicious activities and so achieve that
uncorrupted participants compute different session keys. Additionally, we allow the adversary
to reveal internal states of the oracles. This models the attack scenario where private information
in the internal states of uncorrupted participants may be obtained by malicious participants.

Definition 8.15 (Game Gamema
P (κ)). Let P be a GKE protocol from Definition 8.4 and Gamema

P (κ)
the interaction between an active adversary A who is allowed to query Send, Setup, Join+,
Leave+, RevealKey, RevealState, and Corrupt, and the oracle instances. We say that A

8.2 Adversarial Model and Security Requirements 121

wins if at some point during the interaction there exist an uncorrupted user Ui whose instance
oracle Πsi

i has accepted with ksii and another user Uj with Uj ∈ pidsii that is uncorrupted at
the time Πsi

i accepts such that

1. there exists no instance oracle Πsj
j with (pid

sj
j , sid

sj
j) = (pidsii , sid

si
i), or

2. there exists an instance oracle Πsj
j with (pid

sj
j , sid

sj
j) = (pidsii , sid

si
i) that has accepted

with ksjj 6= ksii .

The probability of this event is denoted Succma
P (κ).

The first condition deals with unknown key-share attacks since it allows the adversary to in-
troduce “fake” users that do not participate in the protocol. The second condition subsumes
additionally the notions of key confirmation and mutual authentication. Note that in Gamema

P (κ)
we do not deal with α-fresh sessions, and the adversarial Test query is useless.

Definition 8.16 (MA-Security). P is a MA-secure GKE protocol (MAGKE) if for any PPT adver-
sary A the advantage Succma

P (κ) is negligible.

Remark 8.17. In Section 9.4 we describe a generic solution to achieve MA-security for any
group key exchange protocol.

8.2.10 t-Contributiveness

In the following we propose the definition of the security goal which deals with the issues of
the key control, contributiveness and unpredictability of session group keys which are essential
for the security against malicious protocol participants. Informally, we consider an active PPT
adversary that is allowed to corrupt group members and/or reveal internal states of their oracles
(be curious) during the execution of the protocol operations such that there exists at least one
honest oracle who accepts the session group key chosen previously by the adversary.

Definition 8.18 (Game Gamecon−t
P (κ)). Let P be a correct GKE protocol from Definition 8.4

and A be an adversary against t-contributiveness which is executed over two stages, prepare
and attack, in the following game denoted Gamecon−t

P (κ) with t ∈ N:

• A(prepare) is given access to the queries Send, Setup, Join+, Leave+, RevealKey,
RevealState, and Corrupt. At the end of the stage it outputs k̃ ∈ {0, 1}κ, and some state
information St. As soon asAmakes its output and all previously asked queries are processed
the following sets are built: Gus consisting of all used oracles Πsi

i with uncorrupted Ui, Gstd
consisting of the oracles Πsi

i in the stand-by state with uncorrupted Ui, and Ψ consisting of
session ids sidsii for every Πsi

i ∈ Gstd. Then, A is invoked for the attack stage.
• A(attack, St) is given access to the queries Send, Setup, Join+, Leave+, RevealKey,
RevealState, and Corrupt. At the end of the stage A outputs (s, U).

The adversary A wins in Gamecon−t
P (κ) if all of the following holds:

1. Πs
U is in the stand-by state, has accepted with k̃, no Corrupt(U) has been asked, Πs

U 6∈
Gus \ Gstd and sidsU 6∈ Ψ .

2. There are at most t− 1 corrupted users Ui having oracles Πsi
i partnered with Πs

U .

The success probability of A in winning the game is defined as

Succcon−t
P (κ) := Pr[A wins in Gamecon−t

P (κ)]

122 8 A Modular Security Model for Group Key Exchange Protocols

The first requirement ensures that Πs
U belongs to an uncorrupted user. The condition Πs

U 6∈
Gus \ Gstd prevents the case where A while being an operation participant outputs k̃ for the still
running operation which is then accepted by Πs

U that participates in the same operation (this is
not an attack since participants do not compute group keys synchronously). Note that Gus \ Gstd
consists of all oracles that at the end of the prepare stage are in the processing state. Similarly,
the condition sidsU 6∈ Ψ prevents thatA while being in the attack stage outputs (s, U) such that
Πs
U has accepted with k̃ already in the prepare stage; otherwise as soon as Πs

U computes some
ksU in the prepare stage A can trivially output its value as k̃ and after turning into the attack
stage output (s, U) without asking any further queries and invoking any further operations. Note
that in every session sidsU is unique so that sidsU 6∈ Ψ holds if at least one new operation has
been executed with the (“clone” of) Πs

U in the attack stage. The second requirement allows A
to corrupt at most t− 1 participants (out of totally n) in the session where Πs

U accepts with k̃.
Note also that the oracle Πs

U that has been influenced by A to accept k̃ must be uncorrupted
but A is allowed to reveal its internal state during the execution of the attack stage (this is
because our model separates LLU from statesU). This curious behavior models adaptive attacks
by malicious participants against honest participants aiming to reveal their local secrets used in
the protocol operation execution in order to influence them to accept the chosen key. This is the
reason why our definition is strictly stronger than the one given in the BVS model.

Remark 8.19. In case that P is a static GKE protocol set Gstd consists of the terminated oracles
Πsi
i with uncorrupted Ui.

The following definition allows to classify GKE protocols and compare their resistance to
the attacks of A.

Definition 8.20 (t-Contributiveness). P is a t-contributory GKE protocol (t-CGKE) if there ex-
ists no PPT adversary A such that Succcon−t

′
P (κ) is non-negligible for all t′ ≤ t. P is called

contributory if it achieves n-contributiveness.

In other words, A can mount a successful attack against a t-contributory GKE protocol only
if it corrupts at least t session participants.

Remark 8.21. In Section 9.5 we describe a generic solution to achieve n-contributiveness for
any group key exchange protocol.

Remark 8.22. Definition 8.18 ensures unpredictability of group keys accepted by the honest pro-
tocol participants. This definition is sufficient to prevent (interference) attacks where the same
group key occurs twice due to the actions of malicious participants. Think of a GKE protocol
that is invoked by two different applications: if the same session key is obtained twice (de-
liberately), this is surely an interesting open door for attacks. Also, if the same group key is
computed (deliberately) in two different sessions of the same protocol then session interference
attacks may become possible, e.g., if the group key is used for the symmetric encryption then it
would be no more possible to distinguish between cipher texts computed in both sessions. How-
ever, Definition 8.18 does not deal with the unpredictability of some bits of the group key, i.e., it
does not require the indistinguishability of the group key ksU accepted by the honest oracle Πs

U

from a random number in the same space in case that up to t − 1 oracles are corrupted and the
internal states of all honest oracles can be revealed (note that in Definition 8.18 RevealState
queries can be asked to all honest oracles). Independent of the question on reasonability of such
decisional contributiveness it is unclear whether it can be achieved in our strong adversarial

8.3 Unifying Relationship of MA-Security and t-Contributiveness 123

setting. The main problem is that all ephemeral secrets used by the honest participants during
the protocol execution can be revealed by the adversary. This may allow the adversary to com-
pute own messages adaptively as a function of the obtained information biasing the probability
distribution of the resulting value with non-negligible probability. Intuitively, the problem of de-
cisional contributiveness is related to the well-known problem of the asynchronous distributed
coin tossing without any trusted parties for which there exists a theoretical bound of at most
(n− 1)/2 corrupted participants [74]. On the other hand, in the weak corruption model (where
no RevealState queries are allowed) decisional contributiveness can be easily achieved, for ex-
ample, using commitments as suggested in [114, 138], whereas in the strong corruption model
committed secrets can be revealed as part of the internal state statesU .

8.3 Unifying Relationship of MA-Security and t-Contributiveness

In this section we present some claims to illustrate that our definitions of MA-security and con-
tributiveness unify many mostly important informally defined security requirements, i.e., key
confirmation, mutual authentication, explicit key authentication, unknown key-share resilience,
key control, unpredictability of computed group keys, and contributiveness mentioned in Sec-
tion 6.1 since it is not obvious in some cases. Note that missing formalism in these requirements
allows only argumentative proofs.

Claim 8.23. If P is a MAGKE protocol then it provides key confirmation and mutual authentication
(explicit key authentication) in the sense of the [135, Def. 12.6-12.8], i.e., every legitimate pro-
tocol participant is assured of the participation of every other participant, and all participants
that have accepted hold identical session group keys.

Proof (informal). If P does not provide key confirmation and mutual authentication then there
exists at least one uncorrupted user Ui whose oracle Πs

i ∈ G has accepted with a session group
key ksii and there exists at least one another uncorrupted user Uj ∈ pidsii whose oracle Πsj

j

has accepted with a different session group key ksjj 6= ksii . According to Definition 8.15 this is
a successful attack against the MA-security of P. This, however, contradicts to the assumption
that P is a MAGKE protocol. ut
Claim 8.24. If P is a MAGKE protocol then it is resistant against unknown key-share attacks in
the sense of [38, Sec. 5.1.2], i.e., the adversaryA cannot make one protocol participant, say Uj ,
believe that the session group key k is shared with A when it is in fact shared with a different
participant Ui.

Proof (informal). With respect to our model we assume that oracles Πsj
j and Πsi

i participate in
the protocol on behalf of Uj and Ui, respectively. If an unknown key-share attack occurs then
Π
sj
j and Πsi

i accepted with the identical session group k, but since Πsj
j believes that the key

is shared with A we conclude that Ui 6∈ pid
sj
j must hold (otherwise after having accepted Uj

would believe that the key is shared with Ui) whereas Uj ∈ pidsii . This implies (pid
sj
j , sid

sj
j) 6=

(pidsii , sid
si
i) On the other hand, P is by assumption MAGKE. Thus, according to Definition 8.15

for any Uj ∈ pidsii there must exist a corresponding oracle Πsj
j such that (pid

sj
j , sid

sj
j) =

(pidsii , sid
si
i). This is a contradiction. ut

Claim 8.25. If P is a t-CGKE protocol then the output of any operation of P is unpredictable by
any subset of t− 1 session participants.

124 8 A Modular Security Model for Group Key Exchange Protocols

Proof (informal). If the output of some operation of P is predictable by a subset of t− 1 session
participants then there exists k̃ which was predicted by this subset and accepted by some un-
corrupted user’s U oracle Πs

U which does not belong to this subset. However, this implies that
there exists an adversary A who corrupts t− 1 users whose oracles are partnered with Πs

U and
predicts the session group key accepted by Πs

U . This is a contradiction to the assumption that P
is a t-CGKE protocol. ut
Claim 8.26. If P is a n-CGKE protocol then P is contributory in the sense of [13, Def. 3.2],
i.e., each participant equally contributes to the resulting session group key and guarantees its
freshness.

Proof (informal). If P is not contributory then there exists an honest oracle Πs
U who accepts

a session group key without having contributed to its computation, i.e., the session group key
accepted by Πs

U is composed of at most n − 1 contributions. This, however, implies that there
exists an adversaryAwho corrupts up to n−1 users and influencesΠs

U to accept a session group
key built from contributions of these corrupted users. This is a contradiction to the assumption
that P is a CGKE protocol. ut
Claim 8.27. If P is a n-CGKE and a MAGKE protocol then P provides complete group key authen-
tication in the sense of [13, Def. 6.3], i.e., any two participants compute the same session group
key only if all other participants have contributed to it.

Proof (informal). Since P is a n-CGKE protocol then according to the previous claim P is contrib-
utory. Hence, no oracle owned by an honest user accepts the key without having contributed to
its computation. Since P is a MAGKE protocol oracles of all honest users accept the same session
group key. Hence, the oracle of every honest user has contributed to it. Therefore, there can be
no pair of honest users’ oracles which accept the same group key which is not contributed to by
all other honest users’ oracles. Thus, P provides complete group key authentication. ut

The notion of verifiable contributiveness is relevant to MA-security, since this mechanism
is designed for providing confirmation (and thus, verification) that the protocol actually fits the
security requirements. In the case of contributory protocols, it is intuitively true that the MA-
security guarantees that the contributiveness was satisfied (otherwise, some player would be
able to check that his own contribution was not properly taken into account). Hence,

Claim 8.28. If P is a n-CGKE and MAGKE protocol then P is verifiable contributory in the sense
of [13, Def. 7.3], i.e., each participant is assured of every other participant’s contribution to the
group key.

Proof (informal). Since P is a MAGKE protocol oracles of all honest users accept the same session
group key. Since P is also a n-CGKE protocol and, therefore, contributory the accepted group key
is contributed to by the oracle of each honest user. ut

8.4 A Comment on Backward Secrecy

In Section 8.2.8 we considered (sbs, scm) as one of the possible adversarial settings for the
adversary A′ against the AKE-security of a GKE protocol P. In this section we give some
comments for this setting.

We stress that the adversarial setting (sbs, scm) in the definition of AKE-security is mostly of
theoretical interest and is provided for the purpose of completeness. In practice long-lived keys

8.4 A Comment on Backward Secrecy 125

of group members are usually used to achieve authentication for the protocol messages and not
for the actual computation of the group key. Therefore, it is intuitively clear that if an adversary
is able to corrupt a group member in an earlier session and obtain its long-lived key then it can
impersonate that group member in a subsequent session and learn the established group key.
Obviously, in order to achieve strong backward secrecy for this case (assuming that the protocol
provides weak backward secrecy) the long-lived keys have to be chosen at random for each new
operation execution of the protocol (that is the statistical distance δLL from Definition 8.29 must
be negligible).

Definition 8.29 (Statistical Distance δLL). Let P.KeyGen(1κ) be a probabilistic algorithm for
the generation of long-lived keys for the participants of a GKA protocol P. The statistical dis-
tance between the outputs of P.KeyGen(1κ) and a uniform distribution over {0, 1}κ is defined
as

δLL :=
1

2

∑
x∈{0,1}κ

∣∣∣ Pr
LL:=P.KeyGen(1κ)

[LL = x]− Pr
LL∈R{0,1}κ

[LL = x]
∣∣∣

Theorem 8.30. If P is a AGKE-wbs protocol and a new long-lived key LLU is obtained from
P.KeyGen(1κ) with negligible statistical distance δLL by every oracle Πs

U ∈ G prior to the oper-
ation execution with other oracles in G then P is AGKE-sbs, and

Advake
sbs,scm,P(κ) ≤ 2NqsδLL + qsAdvake

wbs,wcm-bs,P(κ),

where qs is the total number of executed protocol sessions.

Proof. We show that for any active PPT adversary A against AGKE-sbs, the advantage of A in
winning the game Gameake−b

sbs,scm,P(κ) can be upper-bounded by the advantage of an active PPT
adversary against AGKE-wbs and a function in δLL.

We define three games G0, G1, and G2 with corresponding events Winake
i with i ∈ {0, 2}

meaning that the output bit b′ of A in Gi is identical to the randomly chosen bit b in this game.
Game G0. This game is the real game Gameake−b

sbs,scm,P(κ) from Definition 8.12 where a simu-
lator ∆ answers all queries of A.

Game G1. This game is identical to Game G0 except that the following rule is added: ∆
chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query
Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Let Q be the event that this guess is correct. Obviously, Pr[Q] = 1/qs. Then we get

Pr[Winake
1

] = Pr[Winake
1
∧Q] + Pr[Winake

1
∧ ¬Q]

= Pr[Winake
1
|Q] Pr[Q] + Pr[Winake

1
|¬Q] Pr[¬Q]

= Pr[Winake
0

]
1

qs
+

1

2

(
1− 1

qs

)
.

This implies

Pr[Winake
0

] = qs

(
Pr[Winake

1
]− 1

2

)
+

1

2
. (8.1)

Game G2. This game is identical to Game G1 with the only exception that in the q∗s-th
session the long-lived key LLU is chosen at random for every participating oracle Πs

U . Since
there are at most N session participants we get

126 8 A Modular Security Model for Group Key Exchange Protocols

|Pr[Winake
1

]− Pr[Winake
2

]| ≤ NδLL. (8.2)

Since the long-lived keys used in the q∗s-th session are random and independent of the long-
lived keys used in other sessions we can bound the success probability ofA in Game G2 by the
success probability of an active adversary in Gameake−b

wbs,wcm-bs,P(κ), i.e.,

Pr[Winake
2

] =
1

2
Advake

wbs,wcm-bs,P(κ) +
1

2
. (8.3)

In the following we successively estimate the upper bound of Pr[Winake
0], and so the advantage

of A in winning the game Gameake−b
sbs,scm,P(κ) followed from its definition as Advake

sbs,scm,P(κ) :=

2Pr[Gameake−b
sbs,scm,P(κ) = b]− 1. Considering the Equations 8.1 to 8.3 we obtain

Pr[Gameake−b
sbs,scm,P(κ) = b] = Pr[Winake

0]

= qs

(
Pr[Winake

1]− 1

2

)
+

1

2

≤ NqsδLL +
1

2
qsAdvake

wbs,wcm-bs,P(κ) +
1

2

By transformation we obtain the desired inequality

Advake
sbs,scm,P(κ) ≤ 2NqsδLL + qsAdvake

wbs,wcm-bs,P(κ)

ut
Note, the requirement that long-lived keys are changed before each operation execution is

not only impractical but also opposed to the idea behind the long-lived key terminology. To
the contrary, the weak corruption model for backward secrecy, i.e., the adversarial setting (wbs,
wcm-bs), is also of practical interest since it concerns only internal state information of the
oracles and is independent of the long-lived keys of their users.

Conjecture 8.31. If P is a dynamic GKE protocol from Definition 8.4 then Adv(a)ke
wbs,wcm-bs,P(κ) is

non-negligible.

This conjecture appears likely to be true since all currently known dynamic GKE protocols
provide efficient update operations for the group key based on the ephemeral secret information
computed in previous sessions. Intuitively, the knowledge of this information would allow the
adversary computing the updated session group key and, thus, breaking the (A)KE-security of
the protocol.

On the other hand, in static GKE protocols all ephemeral secrets are, usually, chosen fresh
for each new protocol execution. Therefore, resulting from the above conjecture we conclude
that static GKE protocols, in nature, provide a higher degree of security than dynamic GKE
protocols. This is an interesting observation in favor of the wide-spread opinion that efficiency
comes at the expense of security.

Chapter 9

Seven Security-Enhancing Compilers for GKE Protocols

In this chapter we describe seven different generic techniques which can be applied to enhance
security of GKE protocols providing additional properties.

9.1 Compilers and their Goals . 127
9.2 Preliminaries . 128

9.2.1 On Separation of Long-Lived Keys and Internal States . 128
9.2.2 Changes in Notation . 128

9.3 Compiler for AKE-Security . 128
9.4 Compiler for MA-Security . 135
9.5 Compiler for n-Contributiveness . 142
9.6 Multi-Purpose Compilers . 149

9.6.1 Compiler for AKE-Security and n-Contributiveness . 150
9.6.2 Compiler for AKE- and MA-Security . 157
9.6.3 Compiler for MA-Security and n-Contributiveness . 163
9.6.4 Compiler for AKE-, MA-Security and n-Contributiveness . 170

9.7 Summary . 178

9.1 Compilers and their Goals

Imagine, there exists a “black-box” implementation of a GKE protocol which should be used
by some group application. On the one hand, this GKE implementation may provide too strong
security properties but not all of them may be needed for that particular application. Usually,
higher security properties are achieved at additional expense of resources like communication or
computation costs. Hence, if the available GKE implementation is too strong for the application
then using it may result in the decreased efficiency of the application.

On the other hand, a given GKE implementation may not satisfy all security requirements
required for a particular group application. Instead of designing and implementing a new GKE
protocol that satisfies the stated stronger requirements it is desirable to have a generic technique
which can be applied to the given “black-box” implementation in order to enhance its security.

In general we are concerned with the following question. What is a good strategy for the
implementation of GKE protocols? Obviously, it depends on the relationship between the ap-
plication and the protocol. If a GKE protocol is designed and implemented for one specific
application and will not be re-used in any other application (which may have different secu-
rity requirements) when it is better to consider all stated requirements in the implementation
and optimize the protocol accordingly. However, what to do if the implementation of the GKE
protocol should be flexible and easily modifiable to be applied for various applications without
any significant additional effort? Obviously, a good strategy is to implement a GKE protocol
in a modular way starting with the basic implementation that satisfies the most common set
of security requirements and continuing with the implementation of optional modules that can
be used together with the basic implementation to provide extended security requirements. The

128 9 Seven Security-Enhancing Compilers for GKE Protocols

main goal of GKE security-enhancing GKE protocol compilers is to enable secure construction
of GKE protocols in a modular way.

Definition 9.1 (Security-Enhancing GKE Protocol Compiler C). A security-enhancing GKE
protocol compiler C is a protocol which takes as input a GKE protocol P and outputs a compiled
GKE protocol CP with security properties not provided by P.

9.2 Preliminaries
9.2.1 On Separation of Long-Lived Keys and Internal States

One of the main objectives for our compilers is to provide security against strong corruptions.
Therefore, we need some specification on the information stored in the internal state statesU of
the oracle Πs

U that participates in the compiled protocol CP.
Mostly all of the compilers described in the following use a digital signature schemes Σ

for the purpose of authentication. Σ is supposed to be existentially unforgeable (see Definition
5.17). In order to generate signatures each user U requires a private/public key pair (sk′U , pk

′
U)

whereby sk′U is the long-lived key LLU w.r.t. our security model in Chapter 8 (this is in ad-
dition to long-lived keys possibly required by underlying protocols). Note that in our security
model we separate between LLU and statesU . At the same time we allow curious behavior of
the adversary, i.e., we allow the adversary via a RevealState query to reveal statesU without
obtaining LLU . This, implicitly means that LLU has a different protection mechanism com-
pared to statesU . For example, LLU can be stored in a smart card as suggested in [42], or in
any other trusted device. On the other hand, the signing algorithmΣ.Sign(sk′U ,m) usually uses
some freshly generated random information in addition to the private key sk′U in order to gen-
erate the signature σ. Now, if this random information is obtained by a curios adversary via a
RevealState query then it can be possibly misused to reveal the private key sk′U . In order to
prevent that RevealState queries can be “misused” as the Corrupt queries we assume that the
execution of the signing algorithm is protected by the same mechanism as the long-lived key
sk′U , e.g., the signature generation can be performed in a smart card or in some other trusted
device. In fact we assume that at any time during the execution of the compiled protocol CP the
internal state information statesU contains secrets which are independent of the user’s long-
lived key LLU .

9.2.2 Changes in Notation

The description of our compilers is done from the perspective of one particular operation ex-
ecution (session). Therefore, by Πs

i ∈ G we consider the i-th oracle in G (thus we use the
notation Πs

i instead of Π(G, i) used in the description of our model) assuming that there exists
an index j ∈ [1, N] such that Uj owns Πs

i . Similar, by (sk′i, pk
′
i) resp. (ski, pki) we denote the

private/public key pair of Uj used in the compiler resp. in the underlying protocol. Note also,
that in our compilers (and also in many group key exchange protocols) participating oracles are
ordered into a sequence.

9.3 Compiler for AKE-Security
The requirement of KE-security, i.e., indistinguishability of computed group keys with respect
to passive adversaries states the basic security requirement for any GKE protocol. To the con-
trary, the requirement of AKE-security may be optional. For example, if a network or high-level

9.3 Compiler for AKE-Security 129

application provides implicit authentication then it is sufficient to use KE-secure GKE protocol.
Therefore, it is reasonable to specify AKE-security as an additional property and design a com-
piler which adds AKE-security to any KE-secure GKE protocol. A compiler which achieves
this requirement was originally proposed by Katz and Yung in [112]. In the following we give a
slightly modified version of their compiler.

Definition 9.2 (Compiler for AKE-Security, C-A (Modification of Katz and Yung’s Com-
piler in [112])). Let P be a GKE protocol from Definition 8.4, and Σ := (Gen, Sign, Verify)
a digital signature scheme. A compiler for AKE-security, denoted C-A, consists of an algorithm
INIT and a protocol A defined as follows:

INIT: In the initialization phase each Ui ∈ U generates own private/public key pair
(sk′i, pk

′
i) using Σ.Gen(1κ). This is in addition to any key pair (ski, pki) used in P.

A: An interactive protocol between the oracles Πs
1 , . . ., Πs

n in G invoked prior to any oper-
ation execution of P. Each Πs

i chooses a random A nonce ri ∈R {0, 1}κ and sends Ui|ri to
every oracle Πs

j with Uj ∈ pidsi . After Πs
i receives Uj|rj from all Πs

j with Uj ∈ pidsi it
computes sidsi := r1| . . . |rn. Then it invokes the operation execution of P and proceeds as
follows:
– If Πs

i in the operation execution of P is supposed to output a message Ui|m then in C-AP it
computes additionally σi := Σ.Sign(sk′i, m|sidsi |pidsi) and outputs a modified message
Ui|m|σi.

– If Πs
i receives Uj|m|σj from Πs

j with Uj ∈ pidsi it checks whether Σ.Verify(pk′j ,

m|sidsi |pidsi , σj) ?
= 1. If this verification fails then Πs

i turns into a stand-by state without
accepting; otherwise it proceeds according to the specification of the executed operation
of P upon receiving Uj|m.

– After Πs
i computes the session group key ksi in the executed operation of P it accepts.

There is one important difference between C-A and the compiler proposed by Katz and Yung.
In our version we do not use sequence numbers as additional parameters for the sent mes-
sages. The compiler in [112] assumes that each sent message is of the form Ui|t|m where t is a
sequence number which starts with 0 and is incremented each time Πs

i oracle sends a new mes-
sage. Before any received message is processed by the original protocol P the compiler checks
whether this message is expected or not with respect to the next expected sequence number. In
our compiler we omit sequence numbers due to several reasons.

First, we assume that any GKE protocol which is secure against passive adversaries simply
fails to process a message which is unexpected according to its natural specification. This is
because in our model a passive adversary can drop messages and deliver them out of order
whereas in the KY model [112] a passive adversary can only eavesdrop the protocol execution.
In the following we show that consideration of a stronger passive adversary is in fact even
necessary to talk about generic security of the Katz and Yung’s compiler.

We consider the following version of the Diffie-Hellman key exchange protocol [79] be-
tween two oracles Πs

1 and Πs
1 . Note that although the following construction is artificial and

would not be used in practice, it is still sufficient to illustrate that the above compiler is not
really generic. Let g be a generator of the multiplicative group G of the prime order q in which
the discrete logarithm problem is assumed to be hard, and let a ∈ G be some publicly known
value. Assume that after being invoked for the protocol execution Πs

1 and Πs
2 start own timers.

The natural specification of the protocol is that Πs
1 chooses own exponent x1 ∈R Z∗q and sends

130 9 Seven Security-Enhancing Compilers for GKE Protocols

X1 := gx1 to Πs
2 . If Πs

2 receives X1 within some specified time period δ2 then Πs
2 replies with

X2 := gx2 for some randomly chosen x2 ∈R Z∗q and accepts with the Diffie-Hellman session
key gx1x2 . Similar if Πs

1 receives X2 within some specified time period δ1 then it accepts with
gx1x2 too. However, if neither X1 nor X2 are received by Πs

2 and Πs
1 within δ2 and δ1, respec-

tively, then both participants accept with a. Obviously, if the passive adversary is restricted to
the eavesdropping only (as in the KY model) then the above protocol remains secure since X1

and X2 will always be delivered to Πs
2 and Πs

1 , respectively, so that both participants accept
with the Diffie-Hellman key. However, an active adversary can drop both messages so that both
participants accept with a which is also known to the adversary who can then easily answer own
Test query. In fact applying the original KY compiler to this protocol would not provide the
required security since in the original protocol failures in the delivery of messages do not neces-
sarily imply that both participants abort. To the contrary, in our model (with a stronger passive
adversary) the above protocol would be already treated as insecure against passive adversaries.

Note also that in the Katz and Yung’s compiler the sequence numbering restarts for each new
protocol operation. Thus sequence numbers do not provide any additional security advantages
for the protocol (e.g., they do not protect against replay attacks). Another reason for omitting
sequence numbers is that in order to check whether a message is expected or not the compiler
must explicitly know the total required number of messages for each protocol operation. Thus,
these numbers should be additionally given as input to the compiler. This additional effort must
be applied for each GKE protocol to be used with the compiler. Thus, compiler has to be con-
figured each time a different GKE protocol is used. This can be considered as an additional
inconvenience.

Additionally we note that the adversarial setting focused by the security proofs in [112]
is comparable to (∅, wcm) and (wfs, wcm-fs) using the terminology of our model. In the fol-
lowing we show that the compiled protocol C-AP is AKE-secure if the original protocol P is
KE-secure. In contrast to the original proof in [112] we additionally consider the adversarial
settings (wbs, wcm-bs) and (sfs, scm) claiming that C-A (and the original compiler in [112]1)
provides even stronger security properties since random nonces are chosen for each executed
protocol session anew. Note that as mentioned in Section 8.4 we do not consider backward se-
crecy in the strong corruption model, i.e., (sbs, scm-bs). This requirement can be satisfied if the
algorithm C-A.INIT is executed prior to each new execution of C-A.A. This, however, contradicts
to the assumption that each key pair (sk′i, pk

′
i) is long-lived.

Theorem 9.3 (AKE-Security of Static C-AP). Let (α, β) be an adversarial setting sampled from
{(∅, wcm), (wbs, wcm-bs), (wfs, wcm-fs), (sfs, scm)}. For any static GKE-α protocol P if Σ is
EUF-CMA then C-AP is AGKE-α, and

• if (α, β) ∈ {(∅, wcm), (wbs, wcm-bs)}:

Advake
α,β,C-AP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ Advke

α,β,P(κ),

• if (α, β) ∈ {(wfs, wcm-fs), (sfs, scm)}:

Advake
α,β,C-AP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ qsAdvke

α,β,P(κ),

where qs is the total number of executed protocol sessions.

1 if one forgets about different assumptions about passive adversaries in our model and the KY model

9.3 Compiler for AKE-Security 131

Proof. We define a sequence of games Gi, i = 0, . . . , 3 and corresponding events Winake
i as

the events that the output bit b′ of Gi is identical to the randomly chosen bit b in the game
Gameake−b

α,β,C-AP(κ). Note that we do not consider Join+ and Leave+ queries in this proof since P

is assumed to be static. Adversarial queries are answered by a simulator ∆. The (classical) idea
behind the proof is to incrementally add changes to the game Gi in the definition of Gi+1 and
then relate the probabilities of the events Winake

i and Winake
i+1.

Game G0. This game is the real game Gameake−b
α,β,C-AP(κ) (see Definition 8.12) where ∆ an-

swers all queries of an active adversary A. Assume that the Test query is asked to an α-fresh
oracle Πs

i . Keep in mind that on the test query the adversary receives either a random string or
a session group key ksi .

Game G1. This game is identical to Game G0 with the only exception that the simulator fails
and sets b′ at random if A asks a Send query on some Ui|m|σ such that σ is a valid signature
on m that has not been previously output by an oracle Πs

i before querying Corrupt(Ui). In
other words the simulation fails if A outputs a successful forgery; such event is denoted Forge.
Hence,

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ Pr[Forge]. (9.1)

In order to estimate Pr[Forge] we show that using A we can construct a EUF-CMA forger
F against the signature scheme Σ as follows. F is given a public key pk and has access to the
corresponding signing oracle. During the initialization of C-AP, F chooses uniformly at random
a user Ui∗ ∈ U and defines pk′i∗ := pk . All other key pairs, i.e., (sk′i, pk

′
i) for every Ui 6=i∗ ∈ U

are generated honestly using Σ.Gen(1κ). F generates also all key pairs (ski, pki) with Ui ∈ U
if any are needed for the original execution of P. The forger simulates all queries of A in a
natural way by executing C-AP, and by obtaining the necessary signatures with respect to pk′i∗
from its signing oracle. This is a perfect simulation forA since by assumption no Corrupt(Ui∗)
may occur (otherwise F would not be able to answer it). Assuming Forge occurs, A outputs a
new valid message/signature pair with respect to some pk′i; since i∗ was randomly chosen and
the simulation is perfect, Pr[i = i∗] = 1/N . In that case F outputs this pair as its forgery. Its
success probability is given by Pr[Forge]/N . This implies

Pr[Forge] ≤ NSucceuf−cmaΣ (κ). (9.2)

Game G2. This game is identical to Game G1 except that the simulation fails and bit b′ is
set at random if an A nonce ri is used by any uncorrupted user’s oracle Πs

i in two different
sessions. We call this event RepA. If qs is the total number of protocol sessions, the probability
that a randomly chosen A nonce ri appears twice is q2

s/2
κ for one particular user. Since there

are at most N users we obtain

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Pr[RepA] ≤ Nq2
s

2κ
(9.3)

This game implies that sidsi computed by any uncorrupted user’s oracle Πs
i remains unique for

each new session. Note that sidsi is used to generate signatures in the A protocol of the compiler.
Thus, this game prevents any replay attacks of A.

Game G3. This game is identical to Game G2 except that the following rule is added: ∆
chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query
Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Let Q be the event that this guess is correct. Obviously, Pr[Q] = 1/qs. Thus, we get

132 9 Seven Security-Enhancing Compilers for GKE Protocols

Pr[Winake
3

] = Pr[Winake
3
∧Q] + Pr[Winake

3
∧ ¬Q]

= Pr[Winake
3
|Q] Pr[Q] + Pr[Winake

3
|¬Q] Pr[¬Q]

= Pr[Winake
2

]
1

qs
+

1

2

(
1− 1

qs

)
.

This implies

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1

2
. (9.4)

Having excluded forgeries and replay attacks we show that the probability of A to win in
this game is upper-bounded by the probability of a passive adversaryA′ to win in Gameke−b

α,β,P(κ).
In the following we describe the construction of A′ which is similar to the one given in [112].
We focus on the construction w.r.t. the adversarial settings (wfs, wcm-fs) and (sfs, scm) and
specify a simpler construction for the settings (∅, wcm) and (wbs, wcm-bs) at the end of the proof.
Note that in case of (wfs, wcm-fs) and (sfs, scm) the active adversary A is given access to the
Corrupt query and according to Remark 8.10 can actively participate in the protocol execution
via Send queries in any session which is not α-fresh. Thus, if the guess of ∆ is correct then no
active participation of A in the q∗s-th session is possible. Also none of the oracles participating
in the q∗s-th session can be asked for a RevealState query, and after these oracles have accepted
none of them cannot be asked for a RevealKey query either. With these observations in mind
we construct the passive adversary A′ as follows.

Upon initialization A′ corrupts every user Ui ∈ U to obtain the long-lived key pair (ski, pki)
used in the original protocol P (if any such keys are defined). Then, A′ generates all key pairs
(sk′i, pk

′
i) honestly using Σ.Gen(1κ), and provides the active adversary A with the set of the

public keys {pk′i, pki}Ui∈U . A′ initializes the list TList and runs A as a subroutine. The idea
of the reduction is that in all sessions except for the q∗s-th session A′ executes the operation of
C-AP itself, whereas in the q∗s-th sessionA′ asks own Setup query to obtain a transcript T for the
operation execution of P which it extends to a transcript T ′ for the simulated operation execution
of C-AP. An entry (sid,⊥) is saved in TList for every session processed directly byA′ whereas
(sid, T ′) is saved for the q∗s-th session. In both cases sid specifies the unique session id used
in that session. We need also to consider that A can invoke the q∗s-th session either via a Setup
or an appropriate Send query. The queries of A are answered by A′ as follows.
Setup queries: If A invokes a protocol session via a Setup(S) query and the invoked ses-

sion is not the q∗s-th session then A′ executes C-AP itself and saves (sid,⊥) in TList where
sid is the unique session id built byA for that session.A′ can simulate the operation execution
efficiently because it knows secret keys of all users. If the invoked session is the q∗s-th session
then A′ forwards the received Setup(S) query as its own query and obtains a transcript T for
the execution of P.Setup between the oracles Πs

i in G which is composed of the ordered or-
acles in S. The goal of A′ is to extend T to a transcript T ′ for the corresponding execution
of C-AP.Setup. Therefore, A′ chooses a random nonce ri ∈R {0, 1}κ for each oracle Πs

i ∈ G
and specifies {Ui|ri}1≤i≤n as the initial messages in T ′. A′ also builds the corresponding q∗s-th
session id sid := r1| . . . |rn. Furthermore, for each successive message Ui|m in T the passive
adversary A′ computes a signature σi := Σ.Sign(sk′i, m|sid|pid) and appends the modified
message Ui|m|σi to T ′. A′ saves (sid, T ′) in TList and gives T ′ to A.

Send queries: Since P is static we are concerned only with the queries of the form Send(′setup′,
Πs
i , m). By Send0 we define the query of the form Send(′setup′, Πs

i ,S) which invokes a new

9.3 Compiler for AKE-Security 133

operation execution for Πs
i . Consequently the second Send query to the same oracle Πs

i should
include messages of the form Uj|rj for each Uj 6=i who holds an oracle in S. We denote such sec-
ond query as Send1(′setup′, Πs

i , (U1|r1)| . . . |(Un|rn)) whereby each Uj that is part of (Uj|rj)
is different from Ui. Note that Πs

i must have received a Send0 query before in order to be able
to answer the Send1 query.

On any Send0 query asked to an oracle Πs
i the adversary A′ chooses a random nonce ri ∈

{0, 1}κ and answers with Ui|ri.
If a Send1 query is asked to an oracle Πs

i in a session which is different from q∗s then A′
computes the session id sidsi using nonces from the received query while the nonce ri is already
known after the previous Send0 query, saves (sidsi ,⊥) in TList, and replies by executing the
next step of the compiled protocol C-AP.Setup itself. Note that if no Send0 query was previously
asked to Πs

i then A′ replies with an empty string since the Send1 query is unexpected.
If Πs

i receives a Send1 query in the q∗s-th session then A′ computes the session id sidsi
using nonces from the received query while the nonce ri is already known after the previous
Send0 query and looks in TList for the entry of the form (sidsi , T

′). If such an entry exists
then A′ takes the appropriate response message from T ′ and gives it to A. This means that A′
has already asked own Setup query in the q∗s-th session and saved the obtained transcript in
the “patched” form in TList. Note that in the q∗s-th session A′ is restricted to the actions of a
passive adversary as mentioned in Remark 8.10. If no entry of the form (sidsi , T

′) exists then
A′ asks own Setup(S) query where S is composed of the unused oracles of the users whose
identities are part of the Send1 query, and obtains the transcript T of the operation execution of
P.Setup. Similar to the description of the Setup query for the q∗s-th session above A′ “patches”
the transcript T with digital signatures to obtain the transcript T ′ for the corresponding opera-
tion execution of C-AP.Setup, saves (sidsi , T

′) in TList, and replies to A with the appropriate
message taken from T ′.

On any other valid Send query to an oracle Πs
i the adversaryA′ looks in TList for the entry

of the form (sidsi , T
∗). Such an entry must exist since TList contains such pairs for all session

ids of the previously invoked sessions; otherwise the query cannot be valid due to the unique-
ness of the session ids. IfA′ executes the operation for Πs

i itself then T ∗ = ⊥ must hold. In this
case A′ executes the next step of C-AP.Setup and replies accordingly. Otherwise, A′ finds the
appropriate message Ui|m|σi in T ∗ = T ′ and gives it to A. Note that if T ∗ 6= ⊥ then T ∗ = T ′

must hold whereby T ′ corresponds to the “patched” transcript saved during the processing of
the Send1 query for the q∗s-th session.

Corrupt queries: If A asks a query of the form Corrupt(Ui) then A′ replies with (ski, ski).

RevealState queries: If A asks a query of the form RevealState(Πs
i) then A′ finds an entry

(sidsi , T
∗) in TList. If T ∗ = ⊥ it means that A′ executes the protocol itself and is, therefore,

able to answer this query directly. If T ∗ = T ′ thenA′ asks its own RevealState(Πs
i) query and

responds with whatever it obtains. We stress that this query is only available in the adversarial
setting (sfs, scm).

RevealKey queries: IfA asks a query of the formRevealKey(Πs
i) thenA′ checks thatΠs

i has
accepted; otherwise an empty string is returned. Next, A′ finds an entry (sidsi , T

∗) in TList.
If T ∗ = ⊥ then A′ is able to answer with ksi directly since the protocol execution with Πs

i has
been done by A′. If T ∗ = T ′ then the query is invalid since no RevealKey queries are allowed
to the oracles that have accepted in the q∗s-th session.

134 9 Seven Security-Enhancing Compilers for GKE Protocols

Test query: Note that in this game we are dealing with the Test query asked to an oracle
Πs
i that has participated in the q∗s-th session. Therefore, A′ forwards this query to an oracle ac-

tivated by A′ via its Setup query and replies accordingly.

Since no forgeries and replay attacks occur in this game the described behavior of the passive
adversary A′ represents a perfect simulation for the active adversary A in case that (α, β) ∈
{(wfs, wcm-fs), (sfs, scm)}. Therefore, we get

Pr[Winake
3

] = Pr[Gameke−b
α,β,P(κ) = b] (9.5)

Considering Equations 9.2 to 9.5 we get

Pr[Gameake−b
α,β,C-AP(κ) = b] = Pr[Winake

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ Pr[Winake

2]

= NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qs

(
Pr[Gameke−b

α,β,P(κ) = b]− 1

2

)
+

1

2

This results in the desired inequality for the case (α, β) ∈ {(wfs, wcm-fs), (sfs, scm)}

Advake
α,β,C-AP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ qsAdvke

α,β,P(κ).

On the other hand, if (α, β) ∈ {(∅, wcm), (wbs, wcm-bs)} then A does not have access to
the Corrupt queries. Having excluded forgeries and replay attacks, the construction of a pas-
sive adversary A′ in this case is much simpler since A′ can answer all Send queries from the
predefined “patched” transcripts. More precisely, when A′ asks for a Setup(S) query A′ first
forwards it to obtain a transcript T of the execution of P.Setup. Next,A′ chooses random nonces
ri ∈R {0, 1}κ for every oracleΠs

i in G which is composed of the ordered oracles in G, computes
sid and specifies {Ui|ri}1≤i≤n as the initial messages in T ′. Then, for each successive message
Ui|m in T the passive adversary A′ computes a signature σi := Σ.Sign(sk′i, m|sid|pid) and
appends the modified message Ui|m|σi to T ′. Finally, A′ saves (sid, T ′) in TList and gives T ′

to A.
In response to any Send0 query for Πs

i A′ chooses a random nonce ri ∈R {0, 1}κ and
outputs Ui|ri. If A asks a Send1 query to an oracle Πs

i then A′ computes sidsi whereby ri is
already known after the previous Send0 query. Next, A′ looks for an entry (sidsi , T

′) in TList.
If this entry exists then A′ replies with the appropriate message from T ′. Otherwise, A′ asks
own Setup(S) query where S is composed of the unused oracles of the users whose identities
are part of the Send1 query, and obtains the transcript T of the execution of P.Setup. Similar
to the description of the Setup query for the q∗s-th session above A′ “patches” the transcript T
with digital signatures to obtain the transcript T ′ for the corresponding execution of C-AP.Setup,
saves (sidsi , T

′) in TList, and replies to A with the appropriate message taken from T ′.
Al other Send queries are answered from the predefined transcripts T ′ saved in TList.
All other queries, i.e., RevealState (only in the setting (wbs, wcm-bs)), RevealKey, and

Test asked byA are forwarded by A′ as own queries to the appropriate oracles activated via its
Setup queries, and answered accordingly.

Furthermore, A′ does not need to guess the q∗s-th session in which the Test query is asked
because A′ never executes protocol operations itself. Therefore, by omitting Equation 9.4 we
obtain for the case (α, β) ∈ {(∅, wcm), (wbs, wcm-bs)}

9.4 Compiler for MA-Security 135

Advake
α,β,C-AP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ Advke

α,β,P(κ).

ut
The construction of the passive adversary A′ given in the above proof uses the fact that

any two different sessions of the static GKE protocol P use independent ephemeral secrets.
Therefore, in all sessions except for the q∗s-th session A′ can execute the Setup operation of
P itself and use its own Setup query to obtain a transcript for the execution during the q∗s-th
session. However, when considering dynamic GKE protocols this approach fails since the q∗s-th
session may be also invoked for the operation Join+ or Leave+ which would depend on the
previously executed operation. For example, in the (q∗s − 1)-th session A can participate on
behalf of an oracle Πs

i for some corrupted user Ui and invoke the q∗s-th session as operation
Leave+ which should remove Πs

i from the current group G such that all remaining oracles
intended for the participation in the q∗s-th session are α-fresh. Obviously, ifA′ would perform the
operation execution in the (q∗s − 1)-th session itself then it cannot ask Leave+ query in the q∗s-th
session. Nevertheless, we believe that C-AP preserves α-freshness of a dynamic (GKE-α) protocol
due to the following arguments. First, for the adversarial setting (∅, wcm) where no Corrupt are
allowed the construction of a passive adversaryA′ can be done similar to Theorem 9.3, that is by
answering all queries of A from the predefined transcripts obtained via passive Setup, Join+,
and Leave+ queries. Beside that C-A does not use any own ephemeral secrets, i.e., random
nonces used to prevent replay attacks are public and chosen anew for every invoked operation of
P. Therefore, we state the following conjecture for dynamic GKE protocols whereby excluding
the adversarial setting (wbs, wcm-bs) as a consequence of Conjecture 8.31.

Conjecture 9.4 (AKE-Security of Dynamic C-AP). Let (α, β) be an adversarial setting sam-
pled from {(∅, wcm), (wfs, wcm-fs), (sfs, scm)}. For any dynamic GKE-α protocol P if Σ is
EUF-CMA then C-AP is AGKE-α, and

• if (α, β) = (∅, wcm):

Advake
α,β,C-AP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ Advke

α,β,P(κ),

• if (α, β) ∈ {(wfs, wcm-fs), (sfs, scm)}:

Advake
α,β,C-AP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ qsAdvke

α,β,P(κ),

where qs is the total number of executed protocol sessions.

9.4 Compiler for MA-Security

As noted in Section 8.2.9 MA-security assures each protocol participant that all legitimate par-
ticipants have computed the same session group key. However, sometimes this requirement is
not needed if participants may notice the difference of computed group keys during the appli-
cation. For example, an application of encrypted group communication may require from each
party to send some encrypted test message to all participants. Obviously, if one of the parties
is not able to properly decrypt the test message then not all parties hold the same group key.
Therefore, it is reasonable to specify a compiler which can add MA-security to a GKE protocol.

136 9 Seven Security-Enhancing Compilers for GKE Protocols

Before proposing our compiler we briefly describe the compiler proposed by Katz and Shin
[111]. Their compiler can be used to turn any AKE-secure GKE protocol into a GKE protocol
which provides security against insider attacks. As already mentioned in Section 6.2.9 secu-
rity against insider attacks subsumes two requirements: security against insider impersonation
attacks and agreement. A protocol is said to be secure against insider impersonation attacks if
there exists a user Uj and an oracle Πs

i such that for any PPT adversaryA the probability thatA
impersonates Uj to Πs

i and neither Uj nor Ui are corrupted before Πs
i accepts is negligible. The

notion of agreement states that there exists no PPT adversary such that during the execution of
the GKE protocol there are two oracles, Πs

i and Πs′
j , which are partnered and neither Ui nor Uj

are corrupted but Πs
i and Πs′

j have accepted with different session keys. From the definitional
point of view security against insider attacks in [111] is related to our definition of MA-security.
In the following we describe Katz and Shin’s compiler using our notations for consistency.

Definition 9.5 (Compiler for Security against Insider Attacks by Katz and Shin [111]). Let
P be a GKE protocol from Definition 8.4, F :=

{
fk
}
k∈{0,1}κ , κ ∈ N a function ensemble with

domain and range {0, 1}κ, and sidsii is a unique session id. A compiler for security against
insider attacks consists of an initialization algorithm and a protocol defined as follows:

Initialization: In the initialization phase each Ui ∈ U generates own private/public key
pair (sk′i, pk

′
i) using Σ.Gen(1κ). This is in addition to any key pair (ski, pki) used in P.

The protocol: After an oracle Πs
i accepts with (ksi , pid

s
i , sid

s
i) in P it computes µi :=

fksi (v0) where v0 is a constant public value and Ks
i := fksi (v1) where v1 6= v0 is another

constant public value. Next, Πs
i erases its private information from statesi except for Ks

i .
Then, Πs

i computes a signature σi := Σ.Sign(sk′i, sid
s
i |pidsi |µi) and sends Ui|σi to every

oracle Πs
j with Uj ∈ pidsi .

After Πs
i receives Uj|σj from Πs

j with Uj ∈ pidsi it checks whether Σ.Verify(pk′j ,

sidsi |pidsi |µi, σj) ?
= 1. If this verification fails then Πs

i turns into a stand-by state with-
out accepting; otherwise after having received and verified these messages from all other
partnered oracles it accepts with the session group key Ks

i .

Note that Katz and Shin describe their compiler in the Universal Composability (UC)frame-
work, thus considering composition of a GKE protocol with some higher-level application pro-
tocol. Therefore, they assume that unique session ids sids are already provided by that ap-
plication protocol. Note that this assumption is general for all protocols described within the
UC framework. Nevertheless, the question which immediately arises is whether this protocol
remains secure in case that no unique session ids are available? Obviously, leaving out ses-
sion ids in the above compiler would allow replay attacks. In the following we investigate what
consequences do these replay attacks have on the security of the compiled protocol.

On importance of unique session ids in Katz and Shin’s compiler

In the following we show that if no unique session ids are available then there exists an adver-
sary A that can enforce two participating oracles of uncorrupted members Ui and Uj accepting
with different session group keys. The attack works as follows: A corrupts n − 2 protocol par-
ticipants in one of the previous sessions and behaves in that session honestly according to the
specification of the protocol. Obviously, the adversary learns the key k̄ returned by P in that
session and the message Ui|σ̄i sent by Πs

i during the compiler round of that session. Note that
σ̄i was computed amongst other values on µ̄i = fk̄(v0). After the execution of P′ is completed

9.4 Compiler for MA-Security 137

A invokes a new session with the same protocol participants (pid). It is legitimate to assume
that A can influence Πs′

j to compute ks′j = k̄ and Πs′
i to compute a different key ks′i 6= k̄ with

non-negligible probability. Then A intercepts and drops the original message Ui|σi with σi on
µi = fks′i

(v0) in the compiler round and sends Ui|σ̄i to Πs′
j instead (as part of its Send query).

Obviously,
µj = fks′j

(v0) = fk̄(v0) = µ̄i

holds so thatΠs′
j verifies σ̄i successfully but ks′j 6= ks

′
i resulting inKs′

j 6= Ks′
i . Thus uncorrupted

oracles Πs′
i and Πs′

j accept with different session group keys, i.e., A succeeds.
Considering this attack it is reasonable to have a compiler which provides MA-security for

any AKE-secure GKE protocol without relying on unique session ids given by another applica-
tions. Our compiler proposed in the following satisfies these requirements and computes session
ids from nonces that prevent replay attacks. Obviously, this requires an additional communica-
tion round. Note that if unique session ids are provided by the application then omitting the first
communication round in our compiler results in the original compiler from [111].

Definition 9.6 (Compiler for MA-Security C-MA). Let P be a GKE protocol from Definition 8.4,
F :=

{
fk
}
k∈{0,1}κ , κ ∈ N a function ensemble with domain and range {0, 1}κ. A compiler for

MA-security, denoted C-MA, consists of an algorithm INIT and a protocol MA defined as follows:

INIT: In the initialization phase each Ui ∈ U generates own private/public key pair
(sk′i, pk

′
i) using Σ.Gen(1κ). This is in addition to any key pair (ski, pki) used in P.

MA: After an oracleΠs
i ∈ G computes ksi in the execution of P it chooses a random MA nonce

ri ∈R {0, 1}κ and sends Ui|ri to every oracle Πs
j with Uj ∈ pidsi .

After Πs
i receives Uj|rj from all Πs

j with Uj ∈ pidsi it computes sidsi := r1| . . . |rn, a MA
token µi := fksi (v0) where v0 is a constant public value, a signature σi := Σ.Sign(sk′i,
µi|sidsi |pidsi) and sends Ui|σi to every oracle Πs

j with Uj ∈ pidsi .
After Πs

i receives Uj|σj from Πs
j with Uj ∈ pidsi it checks whether Σ.Verify(pk′j ,

µi|sidsi |pidsi , σj) ?
= 1 holds. If this verification fails then Πs

i turns into a stand-by state
without accepting; otherwise after having received and verified these messages from all other
partnered oracles it computes the session group key Ks

i := fksi (v1) where v1 6= v0 is another
constant public value, erases every other private information from statesi (including ksi),
and accepts with Ks

i .

The following theorem shows that C-MA provides MA-security for any GKE protocol. A
nice side effect of this proof is that the original compiler in [111] satisfies our definition of
MA-security which can be, therefore, seen as alternative to the definitions concerning security
against insider attacks proposed in [111].

Theorem 9.7 (MA-Security of C-MAP). For any GKE protocol P if Σ is EUF-CMA and F is
collision-resistant then C-MAP is MAGKE, and

Succma
C-MAP(κ) ≤ NSucceuf−cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 2 and corresponding events Winma
i mean-

ing that A wins in Gi. The queries made by A are answered by a simulator ∆.

138 9 Seven Security-Enhancing Compilers for GKE Protocols

Game G0. This game is the real game Gamema
C-MAP(κ) played between ∆ andA. Note that the

goal of A is to achieve that there exists an uncorrupted user Ui whose corresponding oracle Πs
i

accepts with Ks
i and another user Uj ∈ pidsi that is uncorrupted at the time Πs

i accepts and
either does not have a corresponding oracle Πs

j with (pidsj , sid
s
j) = (pidsi , sid

s
i) or has such

an oracle but this oracle accepts with Ks
j 6= Ks

i .
Game G1. This game is identical to Game G0 with the only exception that the simulation

aborts if A asks a Send query on a message Ui|σ such that σ is a valid signature that has not
been previously output by an oracle Πs

i before querying Corrupt(Ui), i.e., the simulation fails
if A outputs a successful forgery. According to Equation 9.2 we obtain,

|Pr[Winma
1

]− Pr[Winma
0

]| ≤ NSucceuf−cmaΣ (κ) (9.6)

Game G2. This game is identical to Game G1 except that the simulation aborts if a MA
nonce ri is used by any uncorrupted user’s oracle Πs

i in two different sessions. Similar to Equa-
tion 9.3 we get

|Pr[Winma
2

]− Pr[Winma
1

]| ≤ Nq2
s

2κ
(9.7)

Note that this prevents attacks where Πs
i during any session of the MA protocol receives a re-

played message of the form Uj|σ̄j where Uj is uncorrupted and σ̄j is a signature computed by
its oracle in some previous session. Note that Πs

i does not accept unless it successfully verifies
σj for all Uj ∈ pidsi in the MA protocol of C-MA. Having excluded forgeries and replay attacks
we follow that for every user Uj ∈ pidsi that is uncorrupted at the time Πs

i accepts there ex-
ists a corresponding instance oracle Πs

j with (pidsj , sid
s
j) = (pidsi , sid

s
i). Thus, according to

Definition 8.15 A wins in this game only if one of these oracles has accepted with Ks
j 6= Ks

i .
Assume that A wins in this game. Then the oracles Πs

i and Πs
j have accepted with

Ks
i = fksi (v1) and Ks

j = fksj (v1) where ksi and ksj are corresponding keys computed during
the execution of P, respectively. Having excluded forgeries and replay attacks on the messages
exchanged between any two uncorrupted users’ oracles we may assume in the following thatΠs

j

has received in the MA protocol the original message Ui|σi with σi computed on µi = fksi (v0) and
Πs
i has received the original message Uj|σj with σj computed on µj = fksj (v0). Since both ora-

cles have accepted (thus, signature verifications are successful) we follow that fksi (v0) = fksj (v0)
holds. Hence, the probability that A wins in this game (since there are at most qs sessions) is
given by

Pr[Ks
i 6= Ks

j ∧ fksi (v0) = fksj (v0)] =

Pr[fksi (v1) 6= fksj (v1) ∧ fksi (v0) = fksj (v0)] ≤ qsSucccoll
F (κ).

Hence,
Pr[Winma

2
] ≤ qsSucccoll

F (κ). (9.8)

Considering Equations 9.6 to 9.8 we get the desired inequality

Succma
C-MAP(κ) = Pr[Winma

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsSucccoll

F (κ).

ut

9.4 Compiler for MA-Security 139

Additionally, we need to show that C-MA also preserves (A)KE-security of the original pro-
tocol. Note that messages exchanged between the oracles in the MA protocol are used to verify
that shared keys already computed during the original protocol P are equal. In contrast to the
AKE-security proof of C-A we are able to give a formal proof for both static and dynamic GKE
protocols.

Theorem 9.8 (AKE-Security of C-MAP). Let (α, β) be an adversarial setting sampled from
{(∅, wcm), (wbs, wcm-bs)2, (wfs, wcm-fs), (sfs, scm)}. For any AGKE-α protocol P if Σ is EUF-
CMA and F is pseudo-random then C-MAP is AGKE-α, and

Advake
α,β,C-MAP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvake

α,β,P(κ) + 4qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 6 and corresponding events Winake
i

as the events that the output bit b′ of Gi is identical to the randomly chosen bit b in game
Gameake−b

α,β,C-MAP(κ).
Game G0. This game is the real game Gameake−b

α,β,C-MAP(κ) played between a simulator ∆ and
an active adversary A. We assume that the Test query is asked to an α-fresh oracle Πs

i . Keep
in mind that on the Test query the adversary receives either a random string or a session group
key Ks

i := fksi (v0) where ksi is the session group key computed in P.
Game G1. This game is identical to Game G0 with the only exception that the simulator fails

and sets b′ at random if A asks a Send query on some Ui|m|σ (or Ui|σ) such that σ is a valid
signature that has not been previously output by an oracle Πs

i before querying Corrupt(Ui). In
other words the simulation fails if A outputs a successful forgery. According to Equation 9.2
we obtain

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ NSucceuf−cmaΣ (κ). (9.9)

Game G2. This game is identical to Game G1 except that the simulator fails and sets b′ at
random if a MA nonce ri is used by any uncorrupted user’s oracle Πs

i in two different sessions.
According to Equation 9.3 we get

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Nq2
s

2κ
. (9.10)

This game implies that sidsi computed by any uncorrupted user’s oracle Πs
i remains unique

for each new session. Note that sidsi is used to generate signatures in the MA protocol of the
compiler. This prevents any replay attacks of A.

Game G3. This game is identical to Game G2 except that the following rule is added: ∆
chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query
Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Similar to Equation 9.4 we get

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1

2
. (9.11)

Game G4. In this game we consider the simulator∆ as an active adversary against the AKE-
security of P that participates in Gameake−1

α,β,P (κ), i.e., the Test query of ∆ to an accepted α-fresh

2 Only in case of static protocols due to Conjecture 8.31.

140 9 Seven Security-Enhancing Compilers for GKE Protocols

oracle Πs
i is answered with the real session group key ksi computed in P. In the following we

show how ∆ answers the queries of A. Note that ∆ and A operate in the same adversarial
setting (α, β) and are both active. This is the main difference to the reduction described in the
proof of Theorem 9.3. In fact, we never require∆ to execute operations of P itself but to forward
each related query of A as its own query and respond accordingly. ∆ itself performs only those
additional computations that are necessary for C-MA.

The simulator ∆ which is initialized with the public keys {pk′i}Ui∈U (if any are given in the
original protocol P) generates all key pairs (sk′i, pk

′
i) honestly using Σ.Gen(1κ), and provides

the active adversary A with the set of the public keys {pk′i, pki}Ui∈U . Then, ∆ runs A as a sub-
routine and answers its queries.

Setup queries: If A invokes a protocol session via a Setup(S) query then ∆ forwards this
query as its own and obtains the transcript T of the P.Setup(S) execution. The goal of ∆ is
to extend T to a transcript T ′ for the corresponding execution of C-MAP.Setup(S). Therefore,
A chooses random nonces ri for each Πs

i in G which is composed of the ordered oracles in
S and computes sid := r1| . . . |rn. In order to build T ′ the simulator appends {Ui|ri}1≤i≤n
to T (without any “patches” in contrast to the reduction in Theorem 9.3). Next, if the invoked
session is the q∗s-th session then ∆ asks own Test query to any oracle activated via the Setup
query and obtains (real) k . Otherwise, if the session is not the q∗s-th session then ∆ asks own
RevealKey query to any of the mentioned oracles and obtains real k . Hence, in any case ∆
knows real k which it then uses to compute the MA token µ := fk(v0). Then, ∆ computes
σi := Σ.Sign(sk′i, µ|sid|pid) and appends messages of the form {Ui|σi}1≤i≤n to T ′. Then, ∆
computes K := fk(v1) and gives T ′ to A.

Join+ and Leave+ queries: These queries are answered similar to the Setup queries so that
∆ is able to compute the extended transcript T ′ as well as K for the operation execution of
C-MAP.Join+ or C-MAP.Leave+, respectively.

Send queries: Send queries: By SendS0 we define the query of the form Send(′setup′, Πs
i ,S)

which invokes a new execution of C-MAP.Setup for Πs
i . By SendJ0 we define the query of

the form Send(′join′, Πs
i ,G,J) which invokes a new execution of C-MAP.Join+ for Πs

i . By
SendL0 we define the query of the form Send(′leave′, Πs

i ,G,L) which invokes a new execu-
tion of C-MAP.Leave+ for Πs

i . WhenA asks one of these queries to Πs
i the simulator forwards it

as its own query and replies with the received answer. All further Send queries ofA that belong
to the operation execution of P are forwarded by ∆ as own queries and answered accordingly.

By queries SendSF , SendJF , and SendLF to an oracle Πs
i we define the final Send queries

ofA concerning the execution of P.Setup, P.Join+, or P.Leave+, respectively, which results in
Πs
i having computed ksi in the operation of P. This means that all further valid Send queries to

Πs
i would be related to the communication rounds of the MA protocol. When A asks one these

final Send queries the simulator forwards it as its own query to an appropriate oracle Πs
i imply-

ing the computation of ksi . Similar to the description of the Setup, Join+, and Leave+ queries
above, ∆ asks own Test query (if the received Send query is addressed to some participant of
the q∗s-th session) or RevealKey query (in all other sessions) to obtain the real intermediate key
ksi . Then, ∆ chooses ri ∈R {0, 1}κ and responds with Ui|ri.

By queries SendSF+, SendJF+, and SendLF+ to an oracleΠs
i we define the Send queries of

A of the form Send(op,Πs
i , (U1|r1)| . . . |(Un|rn)) where op ∈ {′setup′, ′join′, ′leave′} and

n is the (updated) number of operation participants whereby (Ui|ri) is not part of the query

9.4 Compiler for MA-Security 141

message. Note thatΠs
i must have received a SendSF , SendJF , or SendLF query before the cor-

responding SendSF+, SendJF+, or SendLF+ query; otherwise the query is unexpected. When
A asks one of these Send queries the simulator computes the MA token µi := fksi (v0), the
signature σi := Σ.Sign(sk′i, µi|sidsi |pidsi) and responds with Ui|σi to A.

The last Send query to Πs
i is independent of the concrete operation op and has the form

Send(op,Πs
i , (U1|σ1)| . . . |(Un|σn)) whereby (Ui|ri) is not part of the query message. ∆ checks

all received signatures and computes Ks
i := fksi (v1).

Corrupt queries: When A asks a Corrupt(Ui) query ∆ forwards own Corrupt(Ui) query
to obtain ski and replies with (ski, sk

′
i). Note that ∆ and A have identical restrictions concern-

ing the Corrupt queries.

RevealState queries: WhenA asks aRevealState(Πs
i) query∆ forwards ownRevealState(Πs

i)
query to obtain statesi . IfΠs

i is waiting for the last Send query of the form Send(op,Πs
i ,(U1|σ1)|

. . . |(Un|σn)) then ∆ inserts ksi (which is not erased yet) into statesi and returns it to A; other-
wise it simply forwards statesi to A. Note that ∆ and A have identical restrictions concerning
the RevealState queries.

RevealKey queries: When A asks a RevealKey(Πs
i) query ∆ checks that Πs

i has accepted;
otherwise an empty string is returned. Then, ∆ returns the session group key Ks

i . Note that ∆
is always able to do this since it executes the last steps of the MA protocol itself, i.e., the compu-
tation of µi and Ks

i for every (honest) oracle Πs
i .

Test query: Note that in this game we are dealing with the Test query asked to an oracle Πs
i

that has participated in the q∗s-th session. The simulator ∆ already knows Ks
i since this value is

computed by ∆ for every (honest) oracle Πs
i in the simulation. Thus, ∆ chooses a random bit

b ∈R {0, 1} and returns Ks
i if b = 1 or a random string sampled from {0, 1}κ if b = 0.

This is a perfect simulation for A. Since ∆ uses the real ksi to derive Ks
i we can consider

this game as a “bridging step” so that

Pr[Winake
4

] = Pr[Winake
3

]. (9.12)

Game G5. In this game we consider the simulator∆ as an active adversary against the AKE-
security of P that participates in Gameake−0

α,β,P (κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with a random bit string instead of the real key ksi . ∆ answers all queries
of A exactly as described in Game G4. By a “hybrid argument” we obtain

|Pr[Winake
5

]− Pr[Winake
4

]| ≤ Advake
α,β,P(κ). (9.13)

Game G6. This game is identical to Game G5 except that in the q∗s-th session K and the
MA token µ are replaced by random values. Recall that k used to compute K and µ is uniform
according to Game G5. Obviously,

|Pr[Winake
6

]− Pr[Winake
5

]| ≤ 2Advprf
F (κ). (9.14)

Obviously, in this game A gains no advantage from the obtained information and cannot,
therefore, guess b better than by a random choice, i.e.,

142 9 Seven Security-Enhancing Compilers for GKE Protocols

Pr[Winake
6

] =
1

2
(9.15)

Considering Equations 9.9 to 9.16 we obtain

Pr[Gameake−b
α,β,C-MAP(κ) = b] = Pr[Winake

0]

= NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qs

(
Pr[Winake

3]− 1

2

)
+

1

2

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsAdvake

α,β,P(κ) + 2qsAdvprf
F (κ) +

1

2
.

This results in the desired inequality

Advake
α,β,C-MAP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvake

α,β,P(κ) + 4qsAdvprf
F (κ).

ut
Similar result can be obtained for any KE-secure GKE protocol. In this case A is passive

and does not have access to the Send queries. Hence, no forgeries and replay attacks need to be
considered.

Theorem 9.9 (KE-Security of C-MAP). Let (α, β) be an adversarial setting sampled from
{(∅, wcm), (wbs, wcm-bs)3, (wfs, wcm-fs), (sfs, scm)}. For any GKE-α protocol P if F is pseudo-
random then C-MAP is GKE-α, and

Advke
α,β,C-MAP(κ) ≤ 2qsAdvke

α,β,P(κ) + 4qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

9.5 Compiler for n-Contributiveness

As noted in Section 8.2.10 contributiveness deals with the trust relationship between participants
of a GKE protocol such that none of them has any advantage concerning values of computed
group keys. Some group applications may not need this kind of trust relationship between its
users. Therefore, it is reasonable to specify a compiler which provides n-contributiveness for
any GKE protocol and can be used optional if contributiveness is required.

Missing contributiveness in Katz and Shin’s compiler

The compiler by Katz and Shin from Definition 9.5 does not provide contributiveness because
if a malicious participant (or a subset of them) is able to predict or influence the computation
of ksi for any uncorrupted oracle Πs

i in any operation execution of P then it can also predict the
value of Ks

i for the compiled protocol P′ simply by computing fksi (v1).
One of the core points for successful adversarial actions is that Ks

i is derived based only
on the session group key ksi and v1 which is a constant public value known to all participants
before the execution of the protocol. A solution to improve the above compiler by requiring that
participants agree on v1 during the protocol execution is not promising since it has to deal with
attacks of malicious participants who will try to influence the choice of v1 and therefore lead
3 Only in case of static protocols due to Conjecture 8.31.

9.5 Compiler for n-Contributiveness 143

to non-standard collision requirements for pseudo-random functions in the security proof, i.e.,
collisions with respect to different inputs fk(v) = fk′(v

′) and not only with respect to different
keys fk(v) = fk′(v) as required in Definition 5.5.

In the following we propose a compiler which can add n-contributiveness to any GKE proto-
col. There are two general ideas used in the construction. First, the group key derivation depends
on the information which the participants learn before the execution of the protocol. Addi-
tionally, we use some information which is random (unpredictable) for each executed session.
Second, a proper subset of group members is not be able to influence the randomness of this
information.

Definition 9.10 (Compiler for n-Contributiveness C-CON). Let P be a GKE protocol from Def-
inition 8.4, π : {0, 1}κ → {0, 1}κ a permutation, and F :=

{
fk
}
k∈{0,1}κ , κ ∈ N a function

ensemble with domain and range {0, 1}κ. A compiler for n-contributiveness, denoted C-CON,
consists of the protocol CON defined as follows:

CON: After an oracle Πs
i ∈ G computes ksi in the execution of P it chooses a random CON

nonce ri ∈R {0, 1}κ and sends Ui|ri to every oracle Πs
j with Uj ∈ pidsi . After Πs

i receives

Uj|rj from Πs
j with Uj ∈ pidsi it checks whether |rj| ?

= κ. If this verification fails then Πs
i

turns into a stand-by state without accepting; otherwise after having received and verified
these messages from all other partnered oracles it computes ρ1 := fksi⊕π(r1)(v0) and each
ρl := fρl−1⊕π(rl)

(v0) for all l = {2, . . . , n}, where v0 is a public value, computes the session
group key Ks

i := ρn, erases every other private information from statesi (including ksi and
all ρl, l ∈ [1, n]), and accepts with Ks

i .

In the following proof we argue that possible ability of the adversary A to influence the
session group key k computed in the operations of the original protocol P does not provide A
with any additional advantage in its attack on influencing/predicting the session group key K
in the compiled protocol C-CONP. We use the fact that every honest oracle Πs

i ∈ G, i ∈ [1, n]
computes the sequence ρ1, . . . , ρn in order to accept with K = ρn so that each ρl, l ∈ [2, n]
depends on the previously computed ρl−1. We consider the probability thatA is able to influence
an honest oracleΠs

i∗ ∈ G, i∗ ∈ [1, n] to accept some K̃ by considering its ability to influenceΠs
i∗

to compute any value ρl, i∗ ≤ l ≤ n. This is equivalent to the ability ofA in the prepare stage to
output ρl which is then computed byΠs

i∗ in some attack-ed session. On the other hand, applying
Lemma 5.20 in our proof we do also consider the upper-bound for the success probability of the
adversary in case that its strategy differs from influencing any value in ρi∗ , . . . , ρn.

Theorem 9.11 (n-Contributiveness of C-CONP). For any GKE protocol P if π is one-way and F
is collision-resistant pseudo-random then C-CONP is n-CGKE, and

Succcon−n
C-CONP(κ) ≤ Nq2

s +Nqs + qs

2κ
+ (N + 1)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ),

where qs is the total number of executed protocol sessions.

Remark 9.12. Although this proof is put into the formal “sequence of games” framework some
parts of it are kept intuitive. The main reason is that no formal reduction when discussing success
probabilities in games G2 and G3 could be found. The reason is that from the perspective of
the adversary all values are known, especially all PRF keys used to compute ρl, l = 1, . . . , n.
The classical approach where the outputs of a pseudo-random function are replaced by random
values, fails here, because the adversary obtaining these values can easily distinguish between

144 9 Seven Security-Enhancing Compilers for GKE Protocols

the simulation and the real game. We also remark that in [32] no formal reductions for their
(weaker) definition of contributiveness could be given either. It seems that proving this kind of
requirements may require some additional techniques.

Proof (partially informal). In the following we consider an adversary A from Definition 8.18.
Assume that A wins in Gamecon−n

C-CONP(κ) (which event we denote Wincon). Then at the end of the
stage prepare it returned K̃ such that in the stage attack an honest oracle Πs

i∗ ∈ G accepted
with Ks

i∗ = K̃ . According to the construction of Ks
i∗ the equation K̃ = ρn must hold. We

consider the following games.
Game G0. This is the real game Gamecon−n

C-CONP(κ), in which the honest players are replaced by
a simulator ∆.

Game G1. In this game we abort the simulation if the same CON nonce ri is used by any
honest Πs

i in two different sessions. Considering ri being uniform for any uncorrupted user’s
oracle Πs

i , and since there are at most N users we have

Pr[Wincon
0

]− Pr[Wincon
1

] ≤ Nq2
s

2κ
. (9.16)

Game G2. This game is identical to Game G1 with the “condition event” thatA being in the
prepare stage is NOT able to output ρi∗ computed by Πs

i∗ in any session of the attack stage.4

According to Lemma 5.20 we need to estimate the probability of the opposite event, i.e., that
A being in the prepare stage is able to output ρi∗ . We consider two cases: i∗ = 1 and i∗ > 1.
Note that all other oracles except for Πs

i∗ can be corrupted. An important observation for our
argumentation in this game is that the random nonce ri∗ is chosen by Πs

i∗ after the computation
of ksi∗ in P. In other words, when Πs

i∗ chooses ri∗ the key ksi∗ is already defined and cannot be
influenced (changed) any more, thus as soon as the compiler round starts ksi∗ can be considered
as some fixed value.

Case i∗ = 1: In any session of the attack stage honest oracle Πs
1 computes ρ1 :=

fks1⊕π(r1)(v0). Intuitively, without knowing the PRF key given by the XOR sum ks1 ⊕ π(r1)
(denoted R1) in the prepare stageA’s probability to output ρ1 = fR1(v0) in that stage is bound
by the probability that either A chooses a different PRF key and succeeds (thus a PRF collision
occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to discuss the
case whereA chooses R1 in the prepare stage and tries to influence Πs

1 computing exactly this
value in some session of the attack stage. Note that as mentioned above ks1 is some fixed value
at the time point when Πs

1 chooses r1 uniformly at random. Since π is a permutation the value
π(r1) is uniform and fixed for every session in the attack stage. This implies that R1 is also
uniform and fixed, and unknown to A in the prepare stage. Hence, A cannot learn R1 in the
prepare stage better than by a random guess.

Case i∗ > 1: In any session of the attack stage honest oracle Πs
i∗ computes ρi∗ :=

fρi∗−1⊕π(r
i∗)(v0). Intuitively, without knowing the PRF key given by the XOR sum ρi∗−1⊕π(ri∗)

(denoted Ri∗) in the prepare stage A’s probability to output ρi∗ = fRi∗ (v0) in that stage is

4 Note, in G0 and G1 the adversary only outputs a value for the resulting group key. In G2 we consider the additional
(in)ability of the adversary to output the value for ρi∗ . Since we are only interested in the probability of the adversarial
success under this “condition event” (without changing the game in case that this event occurs; see also Section 5.6.1) the
simulator does not need to detect whether A is able to output the correct value or not. In case that we would define this
event as a “failure event” (and apply the corresponding transition type between G1 and G2) we would have to modify the
original Gamecon−n

C-CONP (κ) by requiring thatA also outputs a value for ρi∗ so that the simulator is able to detect it since without
detection we cannot ensure that G2 proceeds differently, e.g., aborts. The same considerations are applicable to G3 w.r.t.
Ks
i∗ .

9.5 Compiler for n-Contributiveness 145

bound by the probability that either A chooses a different PRF key and succeeds (thus a PRF
collision occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to dis-
cuss the case where A chooses Ri∗ in the prepare stage and tries to influence Πs

i∗ computing
exactly this value in some session of the attack stage. Since ri∗ is chosen by honest Πs

i∗ at ran-
dom in every attack-ed session and π is a permutation the value π(ri∗) is uniform and fixed for
each attack-ed session. Hence, the adversary must influence in the attack stage the oracle Πs

i∗

to compute ρi∗−1 = Ri∗ ⊕ π(ri∗) which is fixed and uniformly distributed for each attack-ed
session. Note that A learns the required ρi∗−1 only after having received ri∗ , that is during the
attack-ed session. Since Ui∗ is uncorrupted its oracle computes ρi∗−1 according to the protocol
specification, that is ρi∗−1 := fρi∗−2⊕π(r

i∗−1
)(v0). Having excluded PRF collisions and random

guesses we consider the PRF key ρi∗−2 ⊕ π(ri∗−1) as a fixed value unknown to the adversary.
The probability that A recovers it is intuitively bound by Advprf

F (κ). This is because any adver-
sary that is able to reveal the PRF key can act as a distinguisher for the pseudo-randomness of
f.

Since there are at most qs sessions we have

Pr[Wincon
1

]− Pr[Wincon
2

] ≤ qsSucccoll
F (κ) + qsAdvprf

F (κ) +
qs

2κ
. (9.17)

As a consequence of the “condition event” in this game, in every subsequent game of the se-
quence the adversary, while being in the prepare stage, is not able to output ρi∗ computed by
Πs
i∗ in any session of the attack stage. Note that we do not need to consider the values ρl, l < i∗

computed by Πs
i∗ since in order to compute Ks

i∗ every honest oracle must compute the whole
sequence ρ1, . . . , ρn. Thus, it is sufficient to argue that the probability of A influencing any ρl,
l ≥ i∗, computed by Πs

i∗ in any attack-ed session is negligible.
Game G3. This game is identical to Game G2 with the “condition event” thatA being in the

prepare stage is NOT able to output Ks
i∗ = ρn computed by Πs

i∗ in any session of the attack
stage. Again, the simulator does not need to detect whether this event occurs since both games
proceed identical in any case. According to Lemma 5.20 we need to estimate the probability of
the opposite event that A being in the prepare stage is able to output Ks

i∗ .
Based on the “hybrid technique” we define a sequence of auxiliary games G′

3,l
, l = i∗, . . . , n.

Each of these games is identical to the previous one in the sequence with the “condition event”
that A being in the prepare stage is NOT able to output ρl computed by Πs

i∗ in any session of
the attack stage. Obviously, G′

3,i∗ = G2 and G′
3,n

= G3 . According to Lemma 5.20 we need
to estimate the probability that A being in the prepare stage is able to output ρl.

Since ρl := fρl−1⊕π(rl)
(v0) for all l > i∗ and each rl is not chosen by Πs

i∗ each two consecu-
tive auxiliary games have the same difference. Hence, it is sufficient to compute this difference
between any two consecutive auxiliary games. In the following we compute the difference be-
tween G′

3,i∗+1 and G′
3,i∗ = G2 . We estimate the probability that A being in the prepare stage

is able to output ρi∗+1 computed by Πs
i∗ in any session of the attack stage.

We argue by intuition. Since Πs
i∗ is honest, in the attack stage it computes ρi∗+1 :=

fρi∗⊕π(r
i∗+1

)(v0). Intuitively, without knowing the PRF key given by the XOR sum ρi∗⊕π(ri∗+1)

(denoted Ri∗+1) in the prepare stage A’s probability to output ρi∗+1 = fRi∗+1
(v0) in that stage

is bound by the probability that either A chooses a different PRF key and succeeds (thus a PRF
collision occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to dis-
cuss the case whereA chooses Ri∗+1 in the prepare stage and tries to influence Πs

i∗ computing
exactly this value in some session of the attack stage. Recall that A is allowed to corrupt any
user Ul 6=i∗ , and thus choose each nonce rl, l 6= i∗. Since A learns ρi∗ only in the attack-ed

146 9 Seven Security-Enhancing Compilers for GKE Protocols

session (as observed in Game G2) and having excluded PRF collisions and random guesses
the probability that A is able to influence Πs

i∗ computing Ri∗+1 in the attack stage is bound
by the probability that in the attack-ed session A computes the appropriate nonce ri∗+1 such
that π(ri∗+1) = Ri∗+1 ⊕ ρi∗ holds. Since π is one-way this probability is intuitively bound by
Succow

π (κ). Thus, A is able to output ρi∗+1 while being in the prepare stage with the proba-
bility of at most Succcoll

F (κ) + Succow
π (κ) + 1/2κ. Since there are at most qs sessions the total

probability that A is able to do this is at most

qsSucccoll
F (κ) + qsSuccow

π (κ) +
qs

2κ
.

The above sum upper-bounds the difference between G′
3,i∗+1 and G2 . Since there are at most

N auxiliary games (due to n ≤ N) we obtain

Pr[Wincon
2

]− Pr[Wincon
3

] ≤ NqsSucccoll
F (κ) +NqsSuccow

π (κ) +
Nqs

2κ
. (9.18)

Since in this game A is not able to output Ks
i∗ = ρn in the prepare stage it does not output

a correct value for K̃ . Hence,
Pr[Wincon

3
] = 0 (9.19)

Considering Equations 9.16 to 9.19 we obtain the desired inequality:

Succcon−n
C-CONP(κ) = Pr[Wincon

0]

≤ Nq2
s +Nqs + qs

2κ
+ (N + 1)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ).

ut
Additionally, we show that C-CON preserves (A)KE-security of the original protocol P. Sim-

ilar to the proof of Theorem 9.8 we provide a formal proof for both static and dynamic GKE
protocols.

Theorem 9.13 (AKE-Security of C-CONP). Let (α, β) be an adversarial setting sampled from
{(∅, wcm), (wbs, wcm-bs)5, (wfs, wcm-fs), (sfs, scm)}. For any AGKE-α protocol P if F is
pseudo-random then C-CONP is also AGKE-α, and

Advake
α,β,C-CONP(κ) ≤ 2qsAdvake

α,β,P(κ) + 2NqsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Proof. Similar to the proof of Theorem 9.3 we define a sequence of games Gi, i = 0, . . . , 3
and corresponding events Winake

i as the events that the output bit b′ of Gi is identical to the
randomly chosen bit b in Gameake−b

α,β,C-CONP(κ).
Game G0. This game is the real game Gameake−b

α,β,C-CONP(κ) played between a simulator ∆ and
an active adversary A. We assume that the Test query is asked to an α-fresh oracle Πs

i . Keep
in mind that on the test query the adversary receives either a random string or a session group
key Ks

i := ρn.
Game G1. This game is identical to Game G0 except that the following rule is added: ∆

chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query
5 Only in case of static protocols due to Conjecture 8.31.

9.5 Compiler for n-Contributiveness 147

Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Similar to Equation 9.4 we get

Pr[Winake
0

] = qs

(
Pr[Winake

1
]− 1

2

)
+

1

2
. (9.20)

Game G2. In this game we consider the simulator∆ as an active adversary against the AKE-
security of P that participates in Gameake−1

α,β,P (κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with the real session group key ksi computed in P. In the following we
show how∆ answers the queries ofA. Note that∆ andA operate in the same adversarial setting
(α, β) and are both active. We never require ∆ to execute operations of P itself but to forward
each related query of A as its own query and respond accordingly. ∆ itself performs only those
additional computations that are necessary for C-CON.

The simulator ∆ which is initialized with the public keys {pk′i}Ui∈U (if any are given in the
original protocol P) generates all key pairs (sk′i, pk

′
i) honestly using Σ.Gen(1κ), and provides

the active adversary A with the set of the public keys {pk′i, pki}Ui∈U . Then, ∆ runs A as a sub-
routine and answers its queries.

Setup queries: If A invokes a protocol session via a Setup(S) query then ∆ forwards this
query as its own and obtains the transcript T of the P.Setup(S) execution. The goal of ∆ is
to extend T to a transcript T ′ for the corresponding execution of C-CONP.Setup(S). Therefore,
A chooses random nonces ri for each Πs

i in G which is composed of the ordered oracles in S
and computes sid := r1| . . . |rn. In order to build T ′ the simulator appends {Ui|ri}1≤i≤n to T
(without any “patches” in contrast to the reduction in Theorem 9.3). Next, if the invoked session
is the q∗s-th session then ∆ asks own Test query to any oracle activated via the Setup query and
obtains (real) k . Otherwise, if the session is not the q∗s-th session then ∆ asks own RevealKey
query to any of the mentioned oracles and obtains real k . Hence, in any case ∆ knows real k
which it then uses to compute the sequence ρ1, . . . , ρn (note that K = ρn). Then, ∆ gives T ′ to
A.

Join+ and Leave+ queries: These queries are answered similar to the Setup queries so that
∆ is able to compute the extended transcript T ′ as well as K for the operation execution of
C-CONP.Join+ or C-CONP.Leave+, respectively.

Send queries: Similar to the proof of Theorem 9.8, by SendS0, SendJ0, and SendL0 we define
the Send query which invokes a new operation execution of C-CONP. These and all further Send
queries ofA that belong to the operation execution of P are forwarded by ∆ as own queries and
answered accordingly.

By queries SendSF , SendJF , and SendLF to an oracle Πs
i we define the final Send queries

ofA concerning the execution of P.Setup, P.Join+, or P.Leave+, respectively, which results in
Πs
i having computed ksi in the operation of P. This means that all further valid Send queries to

Πs
i would be related to the communication rounds of the MA protocol. When A asks one these

final Send queries the simulator forwards it as its own query to an appropriate oracle Πs
i imply-

ing the computation of ksi . Similar to the description of the Setup, Join+, and Leave+ queries
above, ∆ asks own Test query (if the received Send query is addressed to some participant of
the q∗s-th session) or RevealKey query (in all other sessions) to obtain the real intermediate key
ksi . Then, ∆ chooses ri ∈R {0, 1}κ and responds with Ui|ri.

148 9 Seven Security-Enhancing Compilers for GKE Protocols

By queries SendSF+, SendJF+, and SendLF+ to an oracle Πs
i we define the last Send

queries ofA of the form Send(op,Πs
i , (U1|r1)| . . . |(Un|rn)) where op ∈ {′setup′, ′join′, ′leave′}

and n is the (updated) number of operation participants whereby (Ui|ri) is not part of the query
message. Note thatΠs

i must have received a SendSF , SendJF , or SendLF query before the cor-
responding SendSF+, SendJF+, or SendLF+ query; otherwise the query is unexpected. When
A asks one of these Send queries the simulator computes the sequence ρ1, . . . , ρn and sets
Ks
i := ρn.

Corrupt queries: When A asks a Corrupt(Ui) query ∆ forwards own Corrupt(Ui) query
to obtain ski and replies with (ski, sk

′
i). Note that ∆ and A have identical restrictions concern-

ing the Corrupt queries.

RevealState queries: WhenA asks aRevealState(Πs
i) query∆ forwards ownRevealState(Πs

i)
query to obtain statesi and gives it toA. Note that ∆ andA have identical restrictions concern-
ing the RevealState queries.

RevealKey queries: When A asks a RevealKey(Πs
i) query ∆ checks that Πs

i has accepted;
otherwise an empty string is returned. Then, ∆ returns the session group key Ks

i . Note that ∆
is always able to do this since it executes the last step of the CON protocol itself, i.e., the compu-
tation of Ks

i for every (honest) oracle Πs
i .

Test query: Note that in this game we are dealing with the Test query asked to an oracle Πs
i

that has participated in the q∗s-th session. The simulator ∆ already knows Ks
i since this value is

computed by ∆ for every (honest) oracle Πs
i in the simulation. Thus, ∆ chooses a random bit

b ∈R {0, 1} and returns Ks
i if b = 1 or a random string sampled from {0, 1}κ if b = 0.

This is a perfect simulation for A. Since ∆ uses the real ksi to derive Ks
i we can consider

this game as a “bridging step” so that

Pr[Winake
2

] = Pr[Winake
1

]. (9.21)

Game G3. In this game we consider the simulator∆ as an active adversary against the AKE-
security of P that participates in Gameake−0

α,β,P (κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with a random bit string instead of the real key ksi . ∆ answers all queries
of A exactly as described in Game G2. By a “hybrid argument” we obtain

|Pr[Winake
3

]− Pr[Winake
2

]| ≤ Advake
α,β,P(κ). (9.22)

Game G4. This game is identical to Game G3 except that in the q∗s-th session each ρi, i =
1, . . . , n is replaced by a random value sampled from {0, 1}κ. Notice, this implies that K is
uniformly distributed in this session.

In order to estimate the difference to the previous game we apply the “hybrid technique” and
define auxiliary games G′

4,l
, l = 1, . . . , n + 1 such that G′

4,1
= G3 and G′

4,n+1 = G4 . That is,
in the q∗s-th session in each G′

4,l
the intermediate values ρi, i ≤ l, are computed as specified in

the compiler whereas in G′
4,l+1 these values are chosen at random from {0, 1}κ. Note that each

replacement of ρi, i = 1, . . . , n − 1 by a random bit string implies uniform distribution of the
PRF key ρi ⊕ π(ri+1) used in the computation of ρi+1, and that k used to compute ρ1 is already
uniform according to Game G3.

9.6 Multi-Purpose Compilers 149

Since n ≤ N we get

|Pr[Winake
4

]− Pr[Winake
3

]| ≤ NAdvprf
F (κ). (9.23)

Note that since each ρi is erased at the end of each C-CONP execution the adversary A can-
not learn any ρi used in the α-fresh q∗s-th session since the adversarial setting (α, β) disallows
RevealKey and RevealState queries and prevents active participation of A on behalf of cor-
rupted users in α-fresh sessions as mentioned in Remark 8.10.

Since K is uniformly distributed A gains no advantage from the obtained information and
cannot, therefore, guess b better than by a random choice, i.e.,

Pr[Winake
4

] =
1

2
(9.24)

Considering Equation 9.20 to 9.25 we get

Pr[Gameake−b
α,β,C-CONP(κ) = b] = Pr[Winake

0]

= qs

(
Pr[Winake

1]− 1

2

)
+

1

2

≤ qsAdvake
α,β,P(κ) +NqsAdvprf

F (κ) +
1

2
.

This results in the desired inequality

Advake
α,β,C-CONP(κ) ≤ 2qsAdvake

α,β,P(κ) + 2NqsAdvprf
F (κ).

ut
The same proof can also be applied to prove that C-CON preserves security of a GKE protocol

which is secure against passive adversaries (KE-secure). In this case A does not have access to
the Send queries.

Theorem 9.14 (KE-security of C-CONP). Let (α, β) be an adversarial setting sampled from
{(∅, wcm), (wbs, wcm-bs)6, (wfs, wcm-fs), (sfs, scm)}. For any GKE-α protocol P ifF is collision-
resistant pseudo-random then C-CONP is also GKE-α, and

Advke
α,β,C-CONP(κ) ≤ 2qsAdvke

α,β,P(κ) + 2NqsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

9.6 Multi-Purpose Compilers

In this section we propose several compilers which add more than one security requirement to
GKE protocols. Some of these compilers can be considered as a straightforward combination of
a subset of the three previously described compilers.

6 Only in case of static protocols due to Conjecture 8.31.

150 9 Seven Security-Enhancing Compilers for GKE Protocols

9.6.1 Compiler for AKE-Security and n-Contributiveness

In this section we present a compiler which can be used to add AKE-security and n-contributiveness
for any KE-secure GKE protocol. The main idea behind this compiler is to use the same nonces
for the authentication and key derivation.

Definition 9.15 (Compiler for AKE-Security and n-Contributiveness C-ACON). Let P be a
GKE protocol from Definition 8.4, Σ := (Gen, Sign, Verify) a digital signature scheme,
π : {0, 1}κ → {0, 1}κ a permutation, and F :=

{
fk
}
k∈{0,1}κ , κ ∈ N a function ensemble

with domain and range {0, 1}κ. A compiler for AKE-security and n-contributiveness, denoted
C-ACON, consists of an algorithm INIT and a protocol ACON defined as follows:

INIT: In the initialization phase each Ui ∈ U generates own private/public key pair
(sk′i, pk

′
i) using Σ.Gen(1κ). This is in addition to any key pair (ski, pki) used in P.

ACON: An interactive protocol between the oracles Πs
1 , . . ., Πs

n in G invoked prior to any
operation execution of P. EachΠs

i chooses an ACON nonce ri ∈R {0, 1}κ and sends Ui|ri to
every oracle Πs

j with Uj ∈ pidsi . After Πs
i receives Uj|rj from Uj ∈ pidsi it checks |ri| ?

= κ.
If this verification does not hold then Πs

i turns into a stand-by state without accepting;
otherwise after having received and verified these messages from all other partnered oracles
it computes sidsi := r1| . . . |rn. Then it invokes the operation execution of P and proceeds as
follows:
– If Πs

i in P is supposed to output a message Ui|m then in C-ACONP it computes additionally
σi := Σ.Sign(sk′i, m|sidsi |pidsi) and outputs a modified message Ui|m|σi.

– IfΠs
i receives a messageUj|m|σj fromΠs

j withUj ∈ pidsi it checks whetherΣ.Verify(pk′j ,

m|sidsi |pidsi , σj) ?
= 1. If this verification fails then Πs

i turns into a stand-by state without
accepting; otherwise it proceeds according to the specification of the executed operation
of P upon receiving Uj|m.

– After an oracle Πs
i computes ksi in the execution of P it computes ρ0 := fksi (v0), and

each ρl := fρl−1⊕π(rl)
(v0) for all l = {1, . . . , n}, where v0 is a public value, computes

the session group key Ks
i := ρn, erases every other private information from statesi

(including ksi and all ρl, l = {0, . . . , n}), and accepts with Ks
i .

Note that C-ACON differs in the computation of Ks
i from C-CON. In C-ACON each Πs

i starts
with the computation of ρ0 := fksi (v0) which is then used to derive the pseudo-random function
key for ρ1, whereas in C-CON each user starts with the computation of ρ1 using ksi directly
for the derivation of the corresponding pseudo-random function key. This trick is applied in
order to achieve contributiveness in the compiled protocol C-ACONP motivated by the fact that
the honest participant’s oracle Πs

i chooses own ACON nonce before P is executed and ksi is
returned whereas the CON nonce is chosen after ksi is computed.

Why do we need ρ0?

In the following we describe a possible attack of an adversary against n-contributiveness of
C-ACON in case that ρ1 is computed using ksii directly instead of ρ0, i.e., if ρ1 := fksii ⊕π(r1)(v0)

instead of ρ1 := fρ0⊕π(r1)(v0).
In the prepare stage the adversary A chooses some R1 ∈ {0, 1}κ and computes ρ1 :=

fR1(v0). Then, for all l > 1 it computes ρl := fρl−1⊕π(rl)
(v0) using a randomly chosen nonce

rl, and outputs K̃ := ρn. Then in the attack stage A corrupts all users Ul 6=1. After Πs
1 outputs

9.6 Multi-Purpose Compilers 151

r1 the adversary sends Ul|rl, l > 1 with each rl chosen in the prepare stage to Πs
1 (as part of

its Send query) and influences Πs
1 to compute ks1 = R1 ⊕ π(r1). Since P is not expected to

be contributory this may happen with non-negligible probability. It is clear that using nonces
chosen by the adversary the oracle accepts with Ks

1 = K̃ , i.e., A succeeds.
In the following we discuss the n-contributiveness of C-ACONP and argue that A, despite

of being able to influence the session group key k computed in the operations of the original
protocol P, has a negligible success in its attack on influencing/predicting the session group key
K in the compiled protocol C-ACONP. Similar to the proof of Theorem 9.11, we use the fact that
every honest oracle Πs

i ∈ G, i ∈ [1, n] computes the sequence ρ0, . . . , ρn in order to accept with
K = ρn so that each ρl, l ∈ [1, n] depends on the previously computed ρl−1. We consider the
probability thatA is able to influence an honest oracle Πs

i∗ ∈ G, i∗ ∈ [1, n] to accept some K̃ by
considering its ability to influence Πs

i∗ to compute any value ρl, i∗ ≤ l ≤ n. This is equivalent
to the ability of A in the prepare stage to output ρl which is then computed by Πs

i∗ in some
attack-ed session. On the other hand, applying Lemma 5.20 in our proof we do also consider
the upper-bound for the success probability of the adversary in case that its strategy differs from
influencing any value in ρi∗ , . . . , ρn.

Theorem 9.16 (n-Contributiveness of C-ACONP). For any GKE protocol P if π is one-way and
F is collision-resistant pseudo-random then C-ACONP is n-CGKE, and

Succcon−n
C-ACONP(κ) ≤ Nq2

s +Nqs + qs

2κ
+ (N + 1)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ),

where qs is the total number of executed protocol sessions.

Remark 9.17. Note that some arguments in this proof are intuitive for the same reasons as men-
tioned in Remark 9.12.

Proof (partially informal). In the following we consider an adversary A from Definition 8.18.
Assume that A wins in Gamecon−n

C-ACONP(κ) (which event we denote Wincon). Then at the end of the
stage prepare it returned K̃ such that in the stage attack an honest oracle Πs

i∗ ∈ G accepted
with Ks

i∗ = K̃ . According to the construction of Ks
i∗ we follow that K̃ = ρn computed by Πs

i∗ .
Game G0. This is the real game Gamecon−n

C-ACONP(κ), in which the honest players are replaced by
a simulator ∆.

Game G1. In this game we abort the simulation if the same random nonce ri is used by any
honest Πs

i in two different sessions. Considering ri being uniform for every honest oracle Πs
i ,

and since there are at most N users we have

Pr[Wincon
0

]− Pr[Wincon
1

] ≤ Nq2
s

2κ
. (9.25)

Game G2. This game is identical to Game G1 with the “condition event” thatA being in the
prepare stage is NOT able to output ρi∗ computed by Πs

i∗ in any session of the attack stage.7

According to Lemma 5.20 we need to estimate the probability of the opposite event, i.e., thatA
being in the prepare stage is able to output ρi∗ . We consider two cases: i∗ = 1 and i∗ > 1. Note
that all other oracles except for Πs

i∗ can be corrupted.
7 Note, in G0 and G1 the adversary only outputs a value for the resulting group key. In G2 we consider the additional

(in)ability of the adversary to output the value for ρi∗ . Since we are only interested in the probability of the adversarial
success under this “condition event” (without changing the game in case that this event occurs; see also Section 5.6.1) the
simulator does not need to detect whetherA is able to output the correct value or not. The same considerations are applicable
to G3 w.r.t. Ks

i∗ .

152 9 Seven Security-Enhancing Compilers for GKE Protocols

Case i∗ = 1: In any session of the attack stage honest oracle Πs
1 computes ρ1 :=

fρ0⊕π(r1)(v0). Intuitively, without knowing the PRF key given by the XOR sum ρ0 ⊕ π(r1)
(denoted R1) in the prepare stageA’s probability to output ρ1 = fR1(v0) in that stage is bound
by the probability that either A chooses a different PRF key and succeeds (thus a PRF collision
occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to discuss the
case whereA chooses R1 in the prepare stage and tries to influence Πs

1 computing exactly this
value in some session of the attack stage. Note that the honest oracle Πs

1 chooses r1 uniformly
at random for every session in the attack stage. Since π is a permutation the value π(r1) is
also uniform and fixed for every attack-ed session. Hence, the adversary must influence in the
attack-ed session the oracle Πs

i∗ to compute ρ0 = R1⊕ π(r1) which is fixed and uniformly dis-
tributed for each such session. Note that A learns the required ρ0 only after having received r1,
that is during the attack-ed session. Since Ui∗ is uncorrupted its oracle computes ρ0 according
to the protocol specification, that is ρ0 := fks1(v0). Having excluded PRF collisions and random
guesses we consider the PRF key ks1 (which is the session group key computed by Πs

1 in the
original protocol P, and thus possibly influenceable by A) as a fixed value unknown to A. The
probability that A recovers it is intuitively bound by Advprf

F (κ). This is because any adversary
that is able to reveal the PRF key can act as a distinguisher for the pseudo-randomness of f.

Case i∗ > 1: In any session of the attack stage honest oracle Πs
i∗ computes ρi∗ :=

fρi∗−1⊕π(r
i∗)(v0). Intuitively, without knowing the PRF key given by the XOR sum ρi∗−1⊕π(ri∗)

(denoted Ri∗) in the prepare stage A’s probability to output ρi∗ = fRi∗ (v0) in that stage is
bound by the probability that either A chooses a different PRF key and succeeds (thus a PRF
collision occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to dis-
cuss the case where A chooses Ri∗ in the prepare stage and tries to influence Πs

i∗ computing
exactly this value in some session of the attack stage. Since ri∗ is chosen by honest Πs

i∗ at ran-
dom in every attack-ed session and π is a permutation the value π(ri∗) is uniform and fixed for
each attack-ed session. Hence, the adversary must influence in the attack stage the oracle Πs

i∗

to compute ρi∗−1 = Ri∗ ⊕ π(ri∗) which is fixed and uniformly distributed for each attack-ed
session. Note that A learns the required ρi∗−1 only after having received ri∗ , that is during the
attack-ed session. Since Ui∗ is uncorrupted its oracle computes ρi∗−1 according to the protocol
specification, that is ρi∗−1 := fρi∗−2⊕π(r

i∗−1
)(v0). Having excluded PRF collisions and random

guesses we consider the PRF key ρi∗−2 ⊕ π(ri∗−1) as a fixed value unknown to the adversary.
The probability that A recovers it is intuitively bound by Advprf

F (κ). This is because any adver-
sary that is able to reveal the PRF key can act as a distinguisher for the pseudo-randomness of
f.

Since there are at most qs sessions we have

Pr[Wincon
1

]− Pr[Wincon
2

] ≤ qsSucccoll
F (κ) + qsAdvprf

F (κ) +
qs

2κ
. (9.26)

As a consequence of the “condition event” in this game, in every subsequent game of the se-
quence the adversary, while being in the prepare stage, is not able to output ρi∗ computed by
Πs
i∗ in any session of the attack stage. Note that we do not need to consider the values ρl, l < i∗

computed by Πs
i∗ since in order to compute Ks

i∗ every honest oracle must compute the whole
sequence ρ0, . . . , ρn. Thus, it is sufficient to argue that the probability of A influencing any ρl,
l ≥ i∗, computed by Πs

i∗ in any attack-ed session is negligible.
Game G3. This game is identical to Game G2 with the “condition event” thatA being in the

prepare stage is NOT able to output Ks
i∗ := ρn computed by Πs

i∗ in any session of the attack
stage. Again, the simulator does not need to detect whether this event occurs since both games

9.6 Multi-Purpose Compilers 153

proceed identical in any case. According to Lemma 5.20 we need to estimate the probability of
the opposite event, i.e., that A being in the prepare stage is able to output Ks

i∗ .
Similar to the proof of Theorem 9.11 based on the “hybrid technique” we define a sequence

of auxiliary games G′
3,l

, l = i∗, . . . , n. Each of these games is identical to the previous one in
the sequence with the “condition event” thatA being in the prepare stage is NOT able to output
ρl computed by Πs

i∗ in any session of the attack stage. Obviously, G′
3,i∗ = G2 and G′

3,n
= G3 .

According to Lemma 5.20 we need to estimate the probability thatA being in the prepare stage
is able to output ρl.

Since ρl := fρl−1⊕π(rl)
(v0) for all l > i∗ and each rl is not chosen by Πs

i∗ each two consecu-
tive auxiliary games have the same difference. Hence, it is sufficient to compute this difference
between any two consecutive auxiliary games. In the following we compute the difference be-
tween G′

3,i∗+1 and G′
3,i∗ = G2 . We estimate the probability that A being in the prepare stage

is able to output ρi∗+1 computed by Πs
i∗ in any session of the attack stage.

We argue by intuition. Since Πs
i∗ is honest, in the attack stage it computes ρi∗+1 :=

fρi∗⊕π(r
i∗+1

)(v0). Intuitively, without knowing the PRF key given by the XOR sum ρi∗⊕π(ri∗+1)

(denoted Ri∗+1) in the prepare stage A’s probability to output ρi∗+1 = fRi∗+1
(v0) in that stage

is bound by the probability that either A chooses a different PRF key and succeeds (thus a PRF
collision occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to dis-
cuss the case whereA chooses Ri∗+1 in the prepare stage and tries to influence Πs

i∗ computing
exactly this value in some session of the attack stage. Recall that A is allowed to corrupt any
user Ul 6=i∗ , and thus choose each nonce rl, l 6= i∗. Since A learns ρi∗ only in the attack-ed
session (as observed in Game G2) and having excluded PRF collisions and random guesses
the probability that A is able to influence Πs

i∗ computing Ri∗+1 in the attack stage is bound
by the probability that in the attack-ed session A computes the appropriate nonce ri∗+1 such
that π(ri∗+1) = Ri∗+1 ⊕ ρi∗ holds. Since π is one-way this probability is intuitively bound by
Succow

π (κ). Thus, A is able to output ρi∗+1 while being in the prepare stage with the proba-
bility of at most Succcoll

F (κ) + Succow
π (κ) + 1/2κ. Since there are at most qs sessions the total

probability that A is able to do this is at most

qsSucccoll
F (κ) + qsSuccow

π (κ) +
qs

2κ
.

The above sum upper-bounds the difference between G′
3,i∗+1 and G2 . Since there are at most

N auxiliary games (due to n ≤ N) we obtain

Pr[Wincon
2

]− Pr[Wincon
3

] ≤ NqsSucccoll
F (κ) +NqsSuccow

π (κ) +
Nqs

2κ
. (9.27)

Since in this game A is not able to output Ks
i∗ = ρn in the prepare stage it does not output

a correct value for K̃ . Hence,
Pr[Wincon

3
] = 0. (9.28)

Considering Equations 9.25 to 9.28 we obtain the desired inequality

Succcon−n
C-ACONP(κ) = Pr[Wincon

0]

≤ Nq2
s +Nqs + qs

2κ
+ (N + 1)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ).

ut
The following theorem shows that C-ACON adds AKE-security to any KE-secure static GKE

protocol. As for the compiler C-A we do not consider (sbs, scm) as a possible adversarial setting.

154 9 Seven Security-Enhancing Compilers for GKE Protocols

Theorem 9.18 (AKE-Security of Static C-ACONP). Let (α, β) be an adversarial setting sampled
from {(∅, wcm), (wbs, wcm-bs), (wfs, wcm-fs), (sfs, scm)}. For any static GKE-α protocol P if
Σ is EUF-CMA and F is pseudo-random then C-ACONP is AGKE-α, and

• if (α, β) ∈ {(∅, wcm), (wbs, wcm-bs)}:

Advake
α,β,C-ACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2Advke

α,β,P(κ) + 2(N + 1)qsAdvprf
F (κ),

• if (α, β) ∈ {(wfs, wcm-fs), (sfs, scm)}:

Advake
α,β,C-ACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 2(N + 1)qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Proof. Similar to the proof of Theorem 9.3 we define a sequence of games Gi, i = 0, . . . , 6
and corresponding events Winake

i as the events that the output bit b′ of Gi is identical to the
randomly chosen bit b in the game Gameake−b

α,β,C-ACONP(κ).
Game G0. This game is the real game Gameake−b

α,β,C-ACONP(κ) (see Definition 8.12) played be-
tween a simulator ∆ and an active adversary A. Assume that the Test query is asked to an
α-fresh oracle Πs

i . Keep in mind that on the test query the adversary receives either a random
string or a session group key Ks

i .
Game G1. This game is identical to Game G0 with the only exception that the simulation

fails and bit b′ is set at random ifA asks a Send query on some Ui|m|σ such that σ is a valid sig-
nature on m that has not been previously output by an oracle Πs

i before querying Corrupt(Ui).
In other words the simulation fails if A outputs a successful forgery. According to Equation 9.2
we obtain

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ NSucceuf−cmaΣ (κ). (9.29)

Game G2. This game is identical to Game G1 except that the simulator fails and sets b′

at random if an ACON nonce ri is used by any uncorrupted user’s oracle Πs
i in two different

sessions. Similar to Equation 9.3 we get

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Nq2
s

2κ
. (9.30)

This game implies that sidsi computed by any uncorrupted user’s oracle Πs
i remains unique

for each new session. Note that sidsi is used to generate signatures in the ACON protocol of the
compiler. This prevents any replay attacks of A.

Game G3. This game is identical to Game G2 except that the following rule is added: ∆
chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query
Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Similar to Equation 9.4 we get

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1

2
. (9.31)

Game G4. In this game we consider the simulator ∆ as a passive adversary against the KE-
security of P that participates in Gameke−1

α,β,P(κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with the real session group key ksi . In the following we show how ∆

9.6 Multi-Purpose Compilers 155

answers the queries of A. We extend the simulation described in the proof of Theorem 9.3 by
additional post-computations needed to derive the session group key K . Similar to the proof of
Theorem 9.3 we focus on the adversarial settings (wfs, wcm-fs) and (sfs, scm).
∆ corrupts every user Ui ∈ U to obtain the long-lived key pair (ski, pki) used in the orig-

inal protocol P (if any such keys are defined). Then, ∆ generates all key pairs (sk′i, pk
′
i) hon-

estly using Σ.Gen(1κ), and provides the active adversary A with the set of the public keys
{pk′i, pki}Ui∈U . ∆ initializes the list TList and runs A as a subroutine.

Setup queries: These queries are processed as described in the proof of Theorem 9.3, i.e., ∆
performs every operation execution itself saving (sid,⊥) in the TList except for the operation
in the q∗s-th session for which it asks own Setup query. After ∆ receives the execution transcript
T of P.Setup it computes T ′ for C-ACONP.Setup by extending T with the initial messages of
the form {Ui|ri}1≤i≤n and digital signatures, saves (sid, T ′) in TList, and gives T ′ to A. Note
that in C-ACONP no additional messages are sent after the computation of k so that T ′ can be
considered as a transcript for the execution of C-ACONP.

Send queries: These queries are also processed as described in the proof of Theorem 9.3. All
sessions invoked via a Send query are executed by ∆ itself except for the q∗s-th session for
which ∆ asks own Setup query. Similar to the description of the Setup query for the q∗s-th
session above ∆ “patches” the transcript T with digital signatures to obtain the transcript T ′

for the corresponding execution of C-ACONP.Setup, saves (sidsi , T
′) in TList, and replies to A

with the appropriate message taken from T ′. All other Send queries related to the oracles that
participate in the q∗s-th session are answered from the predefined transcript T ′.

Corrupt queries: If A asks a query of the form Corrupt(Ui) then ∆ replies with (ski, ski).

RevealState queries: If A asks a query of the form RevealState(Πs
i) then ∆ finds an en-

try (sidsi , T
∗) in TList. If T ∗ = ⊥ it means that ∆ executes the protocol itself and is, therefore,

able to answer this query directly. If T ∗ = T ′ then ∆ checks whether Πs
i has already accepted.

In this case ∆ asks its own RevealState query to obtain statesi and replies accordingly. Note
that if Πs

i has not yet accepted in C-ACONP.Setup then an empty string is returned.

RevealKey queries: If A asks a query of the form RevealKey(Πs
i) then ∆ checks that Πs

i

has accepted; otherwise an empty string is returned. Next,∆ finds an entry (sidsi , T
∗) in TList.

If T ∗ = ⊥ then A′ is able to answer with Ks
i directly since the protocol execution with Πs

i has
been done by ∆. If T ∗ = T ′ then the query is invalid since no RevealKey queries are allowed
to the oracles that have accepted in the q∗s-th session.

Test query: Note that in this game we are dealing with the Test query asked to an oracle
Πs
i that has participated in the q∗s-th session. The simulator ∆ asks own Test query to an oracle

which has been activated via the Setup query and obtains ksi . Then, ∆ computes the resulting
session group key Ks

i using ksi and nonces in sidsi as specified in C-ACONP, i.e., via the compu-
tation of ρ0, . . . , ρn. The simulator chooses a random bit b ∈R {0, 1} and returns Ks

i = ρn if
b = 1 or a random string sampled from {0, 1}κ if b = 0.

This provides a perfect simulation for A. Since ∆ uses the real ksi to derive Ks
i we can con-

sider this game as a “bridging step” so that

156 9 Seven Security-Enhancing Compilers for GKE Protocols

Pr[Winake
4

] = Pr[Winake
3

]. (9.32)

When dealing with the adversarial settings (∅, wcm) and (wbs, wcm-bs) the above simulation
can be simplified since no Corrupt queries need to be considered. Similar to the proof of
Theorem 9.3 ∆ can answer all Send queries of A from the predefined transcripts of P after
having “patched” them with random nonces and digital signatures. In contrast to the above
simulation ∆ needs to perform post-computations also in case of the RevealKey queries since
by forwarding this query ∆ obtains k but must return K . Note that since ∆ does not execute
any operation itself there is no need to guess the q∗s-th session. Thus, in case of the adversarial
settings (∅, wcm) and (wbs, wcm-bs) Game G3 can be skipped.

Game G5. In this game we consider the simulator ∆ as a passive adversary against the KE-
security of P that participates in Gameke−0

α,β,P(κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with a random bit string instead of the real key ksi . ∆ answers all queries
of A exactly as described in Game G4. By a “hybrid argument” we obtain

|Pr[Winake
5

]− Pr[Winake
4

]| ≤ Advke
α,β,P(κ). (9.33)

As mentioned in Game G4 when considering (α, β) ∈ {(∅, wcm), (wbs, wcm-bs)} we can
skip Game G3. Nevertheless Game G3 should be inserted prior to Game G6 which requires a
correct guess for the q∗s-th session in order to perform the simulation.

Game G6. This game is identical to Game G5 except that in the q∗s-th session each ρi, i =
0, . . . , n is replaced by a random value sampled from {0, 1}κ. Notice, this implies that K is
uniformly distributed in this session.

In order to estimate the difference to the previous game we apply the “hybrid technique” and
define auxiliary games G′

6,l
, l = 0, . . . , n + 1 such that G′

6,0
= G5 and G′

6,n+1 = G6 . That is,
in the q∗s-th session in each G′

6,l
the intermediate values ρi, i ≤ l, are computed as specified in

the compiler whereas in G′
6,l+1 these values are chosen at random from {0, 1}κ. Note that each

replacement of ρi, i = 0, . . . , n − 1 by a random bit string implies uniform distribution of the
PRF key ρi ⊕ π(ri+1) used in the computation of ρi+1, and that k used to compute ρ0 is already
uniform according to Game G5.

Since n ≤ N we get

|Pr[Winake
6

]− Pr[Winake
5

]| ≤ (N + 1)Advprf
F (κ). (9.34)

Since K = ρn is uniformly distributed A gains no advantage from the obtained information
and cannot, therefore, guess b better than by a random choice, i.e.,

Pr[Winake
6

] =
1

2
(9.35)

Considering Equations 9.29 to 9.36 we get for the case (α, β) ∈ {(wfs, wcm-fs), (sfs, scm-fs)}
Pr[Gameake−b

α,β,C-ACONP(κ) = b] = Pr[Winake
0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ Pr[Winake

2]

= NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qs

(
Pr[Winake

3]− 1

2

)
+

1

2

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsAdvke

α,β,P(κ) +

(N + 1)qsAdvprf
F (κ) +

1

2
.

9.6 Multi-Purpose Compilers 157

This results in the desired inequality

Advake
α,β,C-ACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 2(N + 1)qsAdvprf
F (κ).

Similarly, for the case (α, β) ∈ {(∅, wcm),(wbs,wcm-bs)} where Game G3 can be placed one
position before Game G6 we get

Advake
α,β,C-ACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2Advke

α,β,P(κ) + 2(N + 1)qsAdvprf
F (κ).

ut
The main problem when applying the reduction from Theorem 9.18 to dynamic GKE proto-

cols occurs in Games G4 and G5 in the simulation of a passive adversary against the KE-security
of the protocol. Considering the additional queries Leave+ and Join+ the above simulation fails
for the similar reasons as described in the context of the compiler C-A. Nevertheless, we believe
that C-ACON preserves the α-freshness of dynamic GKE protocols due to the following reasons.
First, the above simulation can be easily extended to the dynamic case for the adversarial set-
ting (∅, wcm) where no Corrupt queries have to be considered. Second, nonces used to prevent
replay attacks and derive the session group keyK are chosen anew for each operation execution
of the protocol. Beside that the key k and all intermediate values ρi, i = 0, . . . , ρn are erased
at the end of each operation execution protecting the secrecy of K against strong corruptions
in later operations. Therefore, we state the following conjecture for dynamic GKE protocols
whereby excluding the adversarial setting (wbs, wcm-bs) as a consequence of Conjecture 8.31.

Conjecture 9.19 (AKE-Security of Dynamic C-ACONP). Let (α, β) be an adversarial setting
sampled from {(∅, wcm), (wfs, wcm-fs), (sfs, scm)}. For any dynamic GKE-α protocol P if Σ is
EUF-CMA and F is pseudo-random then C-ACONP is AGKE-α, and

• if (α, β) = (∅, wcm):

Advake
α,β,C-ACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2Advke

α,β,P(κ) + 2(N + 1)qsAdvprf
F (κ),

• if (α, β) ∈ {(wfs, wcm-fs), (sfs, scm)}:

Advake
α,β,C-ACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 2(N + 1)qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

9.6.2 Compiler for AKE- and MA-Security

In this section we show that compiler for MA-security C-MA can be combined with the compiler
for AKE-security C-A. The resulting compiler allows to save one communication round. The
main idea behind this combination is to use the same nonces for the authentication and MA-
security.

Definition 9.20 (Compiler for AKE-Security and MA-Security C-AMA). Let P be a GKE
protocol from Definition 8.4, Σ := (Gen, Sign, Verify) a digital signature scheme, F :={
fk
}
k∈{0,1}κ , κ ∈ N a function ensemble with domain and range {0, 1}κ. A compiler for AKE-

security and MA-security, denoted C-AMA, consists of an algorithm INIT and a protocol AMA
defined as follows:

158 9 Seven Security-Enhancing Compilers for GKE Protocols

INIT: In the initialization phase each Ui ∈ U generates own private/public key pair
(sk′i, pk

′
i) using Σ.Gen(1κ). This is in addition to any key pair (ski, pki) used in P.

AMA: An interactive protocol between the oracles Πs
1 , . . ., Πs

n in G invoked prior to any
operation of P. Each Πs

i chooses a random AMA nonce ri ∈R {0, 1}κ and sends Ui|ri to
every oracle Πs

j with Uj ∈ pidsi . After Πs
i receives Uj|rj from all Πs

j with Uj ∈ pidsi it
computes sidsii := r1| . . . |rn. Then it invokes the operation execution of P and proceeds as
follows:
– If Πs

i in P is supposed to output a message Ui|m then in C-AMAP it computes additionally
σi := Σ.Sign(sk′i, m|sidsi |pidsi) and outputs a modified message Ui|m|σi.

– IfΠs
i receives a messageUj|m|σj fromΠs

j withUj ∈ pidsi it checks whetherΣ.Verify(pk′j ,

m|sidsi |pidsi , σj) ?
= 1. If this verification fails then Πs

i turns into a stand-by state without
accepting; otherwise it proceeds according to the specification of the executed operation
of P upon receiving Uj|m.

– After an oracle Πs
i computes ksi in the execution of P it computes an AMA token µi :=

fksi (v0) where v0 is a constant public value, a signature σi := Σ.Sign(sk′i, µi|sidsi |pidsi)
and sends Ui|σi to every oracle Πs

j with Uj ∈ pidsi .
After Πs

i receives Uj|σj from Πs
j with Uj ∈ pidsi it checks whether Σ.Verify(pk′j ,

µi|sidsi |pidsi , σj) ?
= 1. If this verification fails then Πs

i turns into a stand-by state with-
out accepting; otherwise after having received and verified these messages from all other
partnered oracles it computes the session group key Ks

i := fksi (v1) where v1 6= v0 is
another constant public value, erases every other private information from statesi (in-
cluding ksi), and accepts with Ks

i .

First, we show that C-AMA adds AKE-security to any KE-secure GKE protocol. As for the
compilers C-A and C-ACON we do not consider (sbs, scm) as a possible adversarial setting.

Theorem 9.21 (AKE-Security of Static C-AMAP). Let (α, β) be an adversarial setting sampled
from {(∅, wcm), (wbs, wcm-bs), (wfs, wcm-fs), (sfs, scm)}. For any static GKE-α protocol P if
Σ is EUF-CMA and F is pseudo-random then C-AMAP is AGKE-α, and

Advake
α,β,C-AMAP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 4qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Proof. Similar to the proofs of Theorems 9.3 and 9.18 we define a sequence of games Gi,
i = 0, . . . , 6 and corresponding events Winake

i as the events that the output bit b′ of Gi is
identical to the randomly chosen bit b in Gameake−b

α,β,C-AMAP(κ).
Game G0. This game is the real game Gameake−b

α,β,C-AMAP(κ) played between a simulator ∆ and
an active adversary A. Assume that the Test query is asked to an α-fresh oracle Πs

i . Keep in
mind that on the test query the adversary receives either a random string or a session group key
Ks
i .
Game G1. This game is identical to Game G0 with the only exception that the simulation

fails and bit b′ is set at random if A asks a Send query on some Ui|m|σ (or Ui|σ) such that
σ is a valid signature that has not been previously output by an oracle Πs

i before querying
Corrupt(Ui). In other words the simulation fails if A outputs a successful forgery. According
to Equation 9.2 we obtain

9.6 Multi-Purpose Compilers 159

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ NSucceuf−cmaΣ (κ). (9.36)

Game G2. This game is identical to Game G1 except that the simulation fails and bit b′ is
set at random if an AMA nonce ri is used by any uncorrupted user’s oracle Πs

i in two different
sessions. According to Equation 9.3 we get

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Nq2
s

2κ
. (9.37)

This game implies that sidsi computed by any uncorrupted user’s oracle Πs
i remains unique

for each new session. Note that sidsi is used to generate signatures in the AMA protocol of the
compiler. This prevents any replay attacks of A.

Game G3. This game is identical to Game G2 except that the following rule is added: ∆
chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query
Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Similar to Equation 9.4 we get

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1

2
. (9.38)

Game G4. In this game we consider the simulator ∆ as a passive adversary against the KE-
security of P that participates in Gameke−1

α,β,P(κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with the real session group key ksi . In the following we show how ∆
answers the queries of A. We extend the simulation described in the proof of Theorem 9.3 by
additional post-computations needed to derive the session group key K . Similar to the proof of
Theorem 9.3 we focus on the adversarial settings (wfs, wcm-fs) and (sfs, scm).
∆ corrupts every user Ui ∈ U to obtain the long-lived key pair (ski, pki) used in the orig-

inal protocol P (if any such keys are defined). Then, ∆ generates all key pairs (sk′i, pk
′
i) hon-

estly using Σ.Gen(1κ), and provides the active adversary A with the set of the public keys
{pk′i, pki}Ui∈U . ∆ initializes the list TList and runs A as a subroutine.

Setup queries: These queries are processed as described in the proof of Theorem 9.3, i.e.,∆ per-
forms every operation execution itself saving (sid,⊥) in the TList except for the operation in
the q∗s-th session for which it asks own Setup query. After ∆ receives the execution transcript T
of P.Setup in the q∗s-th session it computes T ′ for the corresponding execution of C-AMAP.Setup
by extending T with the initial messages of the form {Ui|ri}1≤i≤n and digital signatures. In con-
trast to the proofs of Theorems 9.3 and 9.18 the simulator must extend T ′ with messages that
include signatures on AMA tokens. For this purpose ∆ asks own Test query to any oracle acti-
vated via the Setup query in the q∗s-th session and obtains (real) k which it then uses to compute
the AMA token µ := fk(v0). Then, ∆ computes σi := Σ.Sign(sk′i, µ|sid|pid) and appends
messages of the form {Ui|σi}1≤i≤n to T ′. Finally,∆ saves (sid, T ′) in TList and gives T ′ toA.

Send queries: These queries are also processed as described in the proof of Theorem 9.3. All
sessions invoked via a Send query are executed by ∆ itself except for the q∗s-th session for
which ∆ asks own Setup query. Similar to the description of the Setup query for the q∗s-th
session above ∆ “patches” the transcript T with digital signatures and additional messages that
contain digital signatures on the computed AMA tokens to obtain the transcript T ′ for the corre-
sponding operation execution of C-AMAP (in order to compute the AMA token ∆ asks own Test
query), saves (sidsi , T

′) in TList, and replies toA with the appropriate message taken from T ′.

160 9 Seven Security-Enhancing Compilers for GKE Protocols

All other Send queries related to the oracles that participate in the q∗s-th session are answered
from the predefined transcript T ′.

Corrupt queries: If A asks a query of the form Corrupt(Ui) then ∆ replies with (ski, ski).

RevealState queries: If A asks a query of the form RevealState(Πs
i) then ∆ finds an en-

try (sidsi , T
∗) in TList. If T ∗ = ⊥ it means that ∆ executes the protocol itself and is, therefore,

able to answer this query directly. If T ∗ = T ′ then ∆ checks whether Πs
i has already accepted.

In this case ∆ asks its own RevealState query to obtain statesi and replies accordingly. Note
that if Πs

i has not yet accepted in C-AMAP.Setup then an empty string is returned.

RevealKey queries: If A asks a query of the form RevealKey(Πs
i) then ∆ checks that Πs

i

has accepted; otherwise an empty string is returned. Next,∆ finds an entry (sidsi , T
∗) in TList.

If T ∗ = ⊥ then ∆ is able to answer with Ks
i directly since the protocol execution with Πs

i has
been done by ∆. If T ∗ = T ′ then the query is invalid since no RevealKey queries are allowed
to the oracles that have accepted in the q∗s-th session.

Test query: Note that in this game we are dealing with the Test query asked to an oracle
Πs
i that has participated in the q∗s-th session. The simulator ∆ already knows ksi since it has

already asked own Test query to build the transcript T ′ straight after the invocation of the q∗s-th
session. Thus,∆ computes the resulting session group keyKs

i := fksi (v1) as specified in C-AMAP,
chooses a random bit b ∈R {0, 1} and returns Ks

i if b = 1 or a random string sampled from
{0, 1}κ if b = 0.

This provides a perfect simulation for A. Since ∆ uses the real ksi to derive Ks
i we can con-

sider this game as a “bridging step” so that

Pr[Winake
4

] = Pr[Winake
3

]. (9.39)

When dealing with the adversarial settings (∅, wcm) and (wbs, wcm-bs) the above simulation
can be simplified since no Corrupt queries need to be considered. Similar to the proof of
Theorem 9.3 ∆ can answer all Send queries of A from the predefined transcripts. However,
note that although ∆ can “patch” T with random nonces and digital signatures it cannot extend
it with the messages that contain digital signatures on the AMA tokens without obtaining the
session group key k needed to compute the AMA token µ. Thus, ∆ must ask own RevealKey
query in order to build the complete transcript T ′. Therefore, ∆ must guess the q∗s-th session.
Otherwise, ∆ risks that A asks its Test query for the session which is already unfresh from the
perspective of ∆. Thus, in contrast to the proof of Theorem 9.18 Game G3 cannot be skipped
when dealing with (∅, wcm) or (wbs, wcm-bs).

Game G5. In this game we consider the simulator ∆ as a passive adversary against the KE-
security of P that participates in Gameke−0

α,β,P(κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with a random bit string instead of the real key ksi . ∆ answers all queries
of A exactly as described in Game G4. By a “hybrid argument” we obtain

|Pr[Winake
5

]− Pr[Winake
4

]| ≤ Advke
α,β,P(κ). (9.40)

Game G6. This game is identical to Game G5 except that in the q∗s-th session K and the
AMA token µ are replaced by random values sampled from {0, 1}κ. Recall that k used to com-
pute K and µ is uniform according to Game G5. Hence,

9.6 Multi-Purpose Compilers 161

|Pr[Winake
6

]− Pr[Winake
5

]| ≤ 2Advprf
F (κ). (9.41)

Obviously, in this gameA gains no advantage from the obtained information and cannot, there-
fore, guess b better than by a random choice, i.e.,

Pr[Winake
6

] =
1

2
(9.42)

Considering Equations 9.36 to 9.42 we get:

Pr[Gameake−b
α,β,C-AMAP(κ) = b] = Pr[Winake

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ Pr[Winake

2]

= NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qs

(
Pr[Winake

3]− 1

2

)
+

1

2

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsAdvke

α,β,P(κ) +

2qsAdvprf
F (κ) +

1

2
.

This results in the desired inequality

Advake
α,β,C-AMAP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 4qsAdvprf
F (κ).

ut
Similar to the compiler C-ACON the main problem when applying the reduction from Theorem

9.21 to dynamic GKE protocols occurs in Games G4 and G5 in the simulation of a passive
adversary against the KE-security of the protocol. Considering the additional queries Leave+

and Join+ the above simulation fails for the similar reasons as described in the context of the
compiler C-A. Nevertheless, we believe that C-AMA preserves the α-freshness of dynamic GKE
protocols due to the following reasons. First, the above simulation can be easily extended to
the dynamic case for the adversarial setting (∅, wcm) where no Corrupt queries have to be
considered. Second, nonces used to prevent replay attacks are chosen anew for each operation
execution of the protocol. Third, AMA tokens derived via a pseudo-random function do not
reveal any information about the key k which is returned by the underlying protocol P and erased
at the end of each operation execution protecting the secrecy of K against strong corruptions
in later operations. Therefore, we state the following conjecture for dynamic GKE protocols
whereby excluding the adversarial setting (wbs, wcm-bs) as a consequence of Conjecture 8.31.

Conjecture 9.22 (AKE-Security of Dynamic C-AMAP). Let (α, β) be an adversarial setting
sampled from {(∅, wcm), (wfs, wcm-fs), (sfs, scm)}. For any dynamic GKE-α protocol P if Σ is
EUF-CMA and F is pseudo-random then C-AMAP is AGKE-α, and

Advake
α,β,C-AMAP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 4qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Further we show that C-AMA adds MA-security to any GKE protocol.

162 9 Seven Security-Enhancing Compilers for GKE Protocols

Theorem 9.23 (MA-Security of C-AMAP). For any GKE protocol P if Σ is EUF-CMA and F is
collision-resistant then C-AMAP is MAGKE, and

Succma
C-AMAP(κ) ≤ NSucceuf−cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 2 and corresponding events Winma
i mean-

ing that A wins in Gi. The queries made by A are answered by a simulator ∆.
Game G0. This game is the real game Gamema

C-AMAP(κ) played between ∆ and A. Note that
the goal of A is to achieve that there exists an uncorrupted user Ui whose corresponding oracle
Πs
i accepts with Ks

i and another user Uj ∈ pidsi that is uncorrupted at the time Πs
i accepts and

either does not have a corresponding oracle Πs
j with (pidsj , sid

s
j) = (pidsi , sid

s
i) or has such

an oracle but this oracle accepts with Ks
j 6= Ks

i .
Game G1. This game is identical to Game G0 with the only exception that the simulation

fails if A asks a Send query on a message Ui|m|σ (or Ui|σ) such that σ is a valid signature
that has not been previously output by an oracle Πs

i before querying Corrupt(Ui), i.e., the
simulation fails if A outputs a successful forgery. According to Equation 9.2 we obtain,

|Pr[Winma
1

]− Pr[Winma
0

]| ≤ NSucceuf−cmaΣ (κ) (9.43)

Game G2. This game is identical to Game G1 except that the simulation fails if an AMA
nonce ri is used by any uncorrupted user’s oracle Πs

i in two different sessions. Similar to Equa-
tion 9.3 we get

|Pr[Winma
2

]− Pr[Winma
1

]| ≤ Nq2
s

2κ
(9.44)

Note that this prevents attacks whereΠs
i during any session of the AMA protocol receives a re-

played message of the formUj|m|σ̄j orUj|σ̄j whereUj is uncorrupted and σ̄j is a signature com-
puted by its oracle in some previous session. Note that Πs

i does not accept unless it successfully
verifies all required σj for all Uj ∈ pidsi in the AMA protocol of C-AMA. Having excluded forg-
eries and replay attacks we follow that for every user Uj ∈ pidsi that is uncorrupted at the time
Πs
i accepts there exists a corresponding instance oracle Πs

j with (pidsj , sid
s
j) = (pidsi , sid

s
i).

Thus, according to Definition 8.15A wins in this game only if any of these oracles has accepted
with Ks

j 6= Ks
i .

Assume that A wins in this game. Then Πs
i and Πs

j have accepted with Ks
i = fksi (v1) resp.

Ks
j = fksj (v1) where ksi resp. ksj are corresponding keys computed during the execution of P

and Ks
i 6= Ks

j . Having eliminated forgeries and replay attacks between the oracles of any two
oracles of uncorrupted users we follow that messages exchanged between Πs

i and Πs
j have been

delivered without any modification. In particular, oracle Πs
i received the signature σj computed

on µj = fksj (v0) and Πs
j received the signature σi computed on µi = fksi (v0). Since both oracles

have accepted we have µi = µj; otherwise oracles cannot have accepted because signature
verification would fail. The probability that A wins in this game is given by

Pr[Ks
i 6= Ks

j ∧ fksi (v0) = fksj (v0)]

= Pr[fksi (v1) 6= fksj (v1) ∧ fksi (v0) = fksj (v0)] ≤ qsSucccoll
F (κ).

Thus
Pr[Winma

2
] ≤ qsSucccoll

F (κ). (9.45)

9.6 Multi-Purpose Compilers 163

Considering Equations 9.43 to 9.45 we get the desired inequality

Succma
C-AMAP(κ) = Pr[Winma

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsSucccoll

F (κ).

ut

9.6.3 Compiler for MA-Security and n-Contributiveness

In this section we show that compiler for MA-security C-MA can be combined with the compiler
for contributiveness C-CON. The resulting compiler allows to save one communication round
since the same nonces can be used for the MA-security and contributiveness.

Definition 9.24 (Compiler for MA-Security and n-Contributiveness C-MACON). Let P be a
GKE protocol from Definition 8.4, π : {0, 1}κ → {0, 1}κ a permutation, F :=

{
fk
}
k∈{0,1}κ ,

κ ∈ N a function ensemble with domain and range {0, 1}κ, and Σ := (Gen, Sign, Verify) a
digital signature scheme. A compiler for MA-security and n-contributiveness, denoted C-MACONP,
consists of the algorithm INIT and a two-round protocol MACON defined as follows:

INIT: In the initialization phase each Ui ∈ U generates own private/public key pair
(sk′i, pk

′
i) using Σ.Gen(1κ). This is in addition to any key pair (ski, pki) used in P.

MACON: After an oracle Πs
i ∈ G computes ksi in the execution of P it chooses a random

MACON nonce ri ∈R {0, 1}κ and sends Ui|ri to every oracle Πs
j with Uj ∈ pidsi . After

Πs
i receives Uj|rj from Πs

j with Uj ∈ pidsi it checks whether |rj| ?
= κ. If this verification

fails then Πs
i turns into a stand-by state without accepting; otherwise after having received

and verified these messages from all other partnered oracles it computes ρ1 := fksi⊕π(r1)(v0)
and each ρl := fρl−1⊕π(rl)

(v0) for all l = {2, . . . , n} where v0 is a public value, defines the
intermediate keyKs

i := ρn and sidsi := r1| . . . |rn, computes a MACON token µi := fKs
i
(v1)

where v1 is a public value, a signature σi := Σ.Sign(sk′i, µi|sidsi |pidsi) and sends Ui|σi to
every oracle Πs

j with Uj ∈ pidsi . Then it erases every other private information from statesi
(including ksi and each ρl, l ∈ [1, n]) except for Ks

i .
After oracle Πs

i receives Uj|σj from Πs
j with Uj ∈ pidsi it checks whether Σ.Verify(pk′j ,

µi|sidsi |pidsi , σj) ?
= 1. If this verification fails then Πs

i turns into a stand-by state with-
out accepting; otherwise after Πs

i has received and verified these messages from all other
partnered oracles it computes the session group key Ks

i := fKs
i
(v2) where v2 6= v1 is an-

other public value, erases every other private information from statesi (including Ks
i), and

accepts with Ks
i .

Intuitively, MACON nonces are supposed to randomize and ensure contributiveness for the
intermediate valueK which is in turn used to derive the resulting session group key K. MACON
tokens are then used for the purpose of key confirmation.

Theorem 9.25 (MA-Security of C-MACONP). For any GKE protocol P if Σ is EUF-CMA and F
is collision-resistant then C-MACONP is MAGKE, and

Succma
C-MACONP(κ) ≤ NSucceuf−cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ),

where qs is the total number of executed protocol sessions.

164 9 Seven Security-Enhancing Compilers for GKE Protocols

Proof. We define a sequence of games Gi, i = 0, . . . , 2 and corresponding events Winma
i mean-

ing that A wins in Gi. The queries made by A are answered by a simulator ∆.
Game G0. This game is the real game Gamema

C-MACONP(κ) played between ∆ and A. Note that
the goal of A is to achieve that there exists an uncorrupted user Ui whose corresponding oracle
Πs
i accepts with Ks

i and another user Uj ∈ pidsi that is uncorrupted at the time Πs
i accepts and

either does not have a corresponding oracle Πs
j with (pidsj , sid

s
j) = (pidsi , sid

s
i) or has such

an oracle but this oracle accepts with Ks
i 6= Ks

j .
Game G1. This game is identical to Game G0 except that the simulation fails if a MACON

nonce ri is used by any uncorrupted user’s oracle Πs
i in two different sessions. According to

Equation 9.3 we get

|Pr[Winma
1

]− Pr[Winma
0

]| ≤ Nq2
s

2κ
. (9.46)

This game implies that sidsi computed by any uncorrupted user’s oracle Πs
i remains unique

for each new session. Note that sidsi is used to generate the signature σi in the MACON protocol
of the compiler.

Game G2. This game is identical to Game G1 with the only exception that the simulation
fails ifA asks a Send query on a message Ui|σ such that σ is a valid signature that has not been
previously output by an oracle Πs

i before querying Corrupt(Ui), i.e., the simulation fails if A
outputs a successful forgery. According to Equation 9.2 we obtain,

|Pr[Winma
2

]− Pr[Winma
1

]| ≤ NSucceuf−cmaΣ (κ). (9.47)

Note that this prevents attacks where Πs
i during any session of the MACON protocol receives a

replayed message of the form Uj|σ̄j where Uj is uncorrupted and σ̄j is a signature computed by
its oracle in some previous session. Note that Πs

i does not accept unless it successfully verifies
σj for all Uj ∈ pidsi in the MACON protocol of C-MACON. Having excluded forgeries and replay
attacks we follow that for every user Uj ∈ pidsi that is uncorrupted at the time Πs

i accepts there
exists a corresponding instance oracle Πs

j with (pidsj , sid
s
j) = (pidsi , sid

s
i). Thus, according

to Definition 8.15 A wins in this game only if any of these oracles has accepted with Ks
i 6= Ks

j .
Assume that A wins in this game. Then, Πs

i and Πs
j have accepted with Ks

i = fKs
i
(v2)

resp. Ks
i = fKs

j
(v2) where Ks

i resp. Ks
j are corresponding temporary keys computed during the

execution of MACON, and Ks
i 6= Ks

j . Having eliminated forgeries and replay attacks between the
oracles of any two oracles of uncorrupted users we follow that messages exchanged between
Πs
i and Πs

j have been delivered without any modification. In particular, oracle Πs
i received

the signature σj computed on µj = fKs
j
(v1) and Πs

j received the signature σi computed on
µi = fKs

i
(v1). Since both oracles have accepted we have µi = µj; otherwise oracles cannot

have accepted because signature verification would fail. The probability that A wins in this
game is given by

Pr[Ks
i 6= Ks

j ∧ fKs
i
(v1) = fKs

j
(v1)] =

Pr[fKs
i
(v2) 6= fKs

j
(v2) ∧ fKs

i
(v1) = fKs

j
(v1)] ≤ qsSucccoll

F (κ).

Hence,
|Pr[Winma

2
]− Pr[Winma

1
]| ≤ qsSucccoll

F (κ). (9.48)

Considering Equations 9.47 to 9.48 we get the desired inequality

Succma
C-MACONP(κ) = Pr[Winma

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsSucccoll

F (κ).

9.6 Multi-Purpose Compilers 165

ut
In the following we argue that the compiler C-MACON provides n-contributiveness for the

compiled protocol. The proof strategy is the same as in Theorem 9.11, i.e., we consider the
probability that A is able to influence an honest oracle Πs

i∗ ∈ G, i∗ ∈ [1, n] to accept some K̃
by considering its ability to influence Πs

i∗ to compute any value ρl, i∗ ≤ l ≤ n.

Theorem 9.26 (n-Contributiveness of C-MACONP). For any GKE protocol P if π is one-way and
F is collision-resistant pseudo-random then C-MACONP is n-CGKE, and

Succcon−n
C-MACONP(κ) ≤ Nq2

s +Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ),

where qs is the total number of executed protocol sessions.

Remark 9.27. Note that some arguments in this proof are intuitive for the same reasons as men-
tioned in Remark 9.12.

Proof (partially informal). In the following we consider an adversary A from Definition 8.18.
Assume thatA wins in Gamecon−n

C-MACONP(κ) (which event we denote Wincon). Then at the end of the
stage prepare it has returned K̃ such that in the stage attack an honest oracleΠs

i∗ ∈ G accepted
with Ks

i∗ = K̃. According to the construction of Ks
i∗ we follow that K̃ = fKs

i∗ (v2) computed
by Πs

i∗ , and consider the following games.
Game G0. This is the real game Gamecon−n

C-MACONP(κ), in which the honest players are replaced
by a simulator.

Game G1. In this game we abort the simulation if the same MACON nonce ri is used by
any honest oracle Πs

i in two different sessions. Considering ri being uniform for every honest
oracle Πs

i and since there are at most N users, we have

Pr[Wincon
0

]− Pr[Wincon
1

] ≤ Nq2
s

2κ
. (9.49)

Game G2. This game is identical to Game G1 with the “condition event” thatA being in the
prepare stage is NOT able to output ρi∗ computed by Πs

i∗ in any session of the attack stage.8

We can argue by intuition exactly as in the proof of Theorem 9.11. According to Equation 9.17
we have

Pr[Wincon
1

]− Pr[Wincon
2

] ≤ qsSucccoll
F (κ) + qsAdvprf

F (κ) +
qs

2κ
. (9.50)

As a consequence of the “condition event” in this game, in every subsequent game of the se-
quence the adversary, while being in the prepare stage, is not able to output ρi∗ computed by
Πs
i∗ in any session of the attack stage. Note that we do not need to consider the values ρl, l < i∗

computed by Πs
i∗ since in order to compute Ks

i∗ every honest oracle must first compute the
whole sequence ρ1, . . . , ρn. Thus, it is sufficient to argue that the probability of A influencing
any ρl, l ≥ i∗, computed by Πs

i∗ in any attack-ed session is negligible.
Game G3. This game is identical to Game G2 with the “condition event” thatA being in the

prepare stage is NOT able to output Ks
i∗ = ρn computed by Πs

i∗ in any session of the attack
8 Note, in G0 and G1 the adversary only outputs a value for the resulting group key. In G2 we consider the additional

(in)ability of the adversary to output the value for ρi∗ . Since we are only interested in the probability of the adversarial
success under this “condition event” (without changing the game in case that this event occurs; see also Section 5.6.1) the
simulator does not need to detect whetherA is able to output the correct value or not. The same considerations are applicable
to G3 w.r.t. Ks

i∗ , and G4 w.r.t. Ks
i∗ .

166 9 Seven Security-Enhancing Compilers for GKE Protocols

stage. Again, the simulator does not need to detect whether this event occurs since both games
proceed identical in any case.

Using the “hybrid technique” similar to the proof of Theorem 9.11 we obtain according to
Equation 9.18

Pr[Wincon
2

]− Pr[Wincon
3

] ≤ NqsSucccoll
F (κ) +NqsSuccow

π (κ) +
Nqs

2κ
. (9.51)

As a consequence of the “condition event” in this game, in every subsequent game of the se-
quence the adversary, while being in the prepare stage, is not able to output Ks

i∗ computed by
Πs
i∗ in any session of the attack stage.
Game G4. This game is identical to Game G3 with the “condition event” that A being in

the prepare stage is NOT able to output Ks
i∗ computed by Πs

i∗ in any session of the attack
stage. Note that in every attack-ed session, the honest oracle Πs

i∗ computes Ks
i∗ := fKs

i∗ (v2).
Intuitively, since in the prepare stage Ks

i∗ is unknown toA (as observed in the previous game),
A’s probability to output Ks

i∗ in that stage is bound by the probability that A chooses a differ-
ent PRF key and succeeds (thus a PRF collision occurs) or succeeds by a random guess, i.e.,
Succcoll

F (κ) + 1/2κ. Hence,

Pr[Wincon
3

]− Pr[Wincon
4

] ≤ qsSucccoll
F (κ) +

qs

2κ
. (9.52)

Obviously, the probability of Wincon
4

is 0, meaning that the adversary did not output a correct
value of K̃ in the prepare stage.

Considering Equations 9.49 to 9.52 we obtain the desired inequality

Succcon−n
C-MACONP(κ) = Pr[Wincon

0]

≤ Nq2
s +Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ).

ut
Additionally, we show that C-MACON preserves (A)KE-security of the compiled protocol with-

out considering the adversarial setting (sbs, scm).

Theorem 9.28 (AKE-Security of C-MACONP). Let (α, β) be an adversarial setting sampled
from {(∅, wcm), (wbs, wcm-bs)9, (wfs, wcm-fs), (sfs, scm)}. For any AGKE-α protocol P if F
is pseudo-random then C-MACONP is also a AGKE-α protocol, and

Advake
α,β,C-MACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvake

α,β,P(κ) + 2(N + 2)qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 7 and corresponding events Winake
i as

the events that the output bit b′ of Gi is identical to the randomly chosen bit b in the game
Gameake−b

α,β,C-MACONP(κ).
Game G0. This game is the real game Gameake−b

α,β,C-MACONP(κ) played between a simulator ∆
and an active adversary A. We assume that the Test query is asked to an α-fresh oracle Πs

i .

9 Only in case of static protocols due to Conjecture 8.31.

9.6 Multi-Purpose Compilers 167

Keep in mind that on the test query the adversary receives either a random string or a session
group key Ks

i := fKs
i
(v2) computed by Πs

i .
Game G1. This game is identical to Game G0 with the only exception that the simulator fails

and sets b′ at random if A′ asks a Send query on some Ui|m|σ such that σ is a valid signature
on m that has not been previously output by an honest oracle Πs

i before querying Corrupt(Ui).
In other words the simulation fails ifA′ outputs a successful forgery. According to Equation 9.2
we obtain

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ NSucceuf−cmaΣ (κ). (9.53)

Game G2. This game is identical to Game G1 except that the simulator fails and sets b′ at
random if a MACON nonce ri is used by any uncorrupted user’s oracle Πs

i in two different
sessions. According to Equation 9.3 we obtain

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Nq2
s

2κ
(9.54)

Note that this game excludes replay attacks in the MACON protocol because sidsi is unique for
each new session.

Game G3. This game is identical to Game G2 except that the following rule is added: ∆
chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query
Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Similar to Equation 9.4 we get

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1

2
. (9.55)

Game G4. In this game we consider the simulator∆ as an active adversary against the AKE-
security of P that participates in Gameake−1

α,β,P (κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with the real session group key ksi computed in P. In the following we
show how∆ answers the queries ofA. Note that∆ andA operate in the same adversarial setting
(α, β) and are both active. In fact, we never require ∆ to execute operations of P itself but to
forward each related query of A as its own query and respond accordingly. ∆ itself performs
only those additional computations that are necessary for C-MACON.

The simulator ∆ which is initialized with the public keys {pk′i}Ui∈U (if any are given in the
original protocol P) generates all key pairs (sk′i, pk

′
i) honestly using Σ.Gen(1κ), and provides

the active adversary A with the set of the public keys {pk′i, pki}Ui∈U . Then, ∆ runs A as a sub-
routine and answers its queries.

Setup queries: If A invokes a protocol session via a Setup(S) query then ∆ forwards this
query as its own and obtains the transcript T of the P.Setup(S) execution. The goal of ∆ is to
extend T to a transcript T ′ for the corresponding execution of C-MACONP.Setup(S). Therefore,
A chooses random nonces ri for eachΠs

i in G which is composed of the ordered oracles in S and
computes sid := r1| . . . |rn. In order to build T ′ the simulator appends {Ui|ri}1≤i≤n to T . Next,
if the invoked session is the q∗s-th session then ∆ asks own Test query to any oracle activated
via the Setup query and obtains (real) k . Otherwise, if the session is not the q∗s-th session then
∆ asks ownRevealKey query to any of the mentioned oracles and obtains real k . Hence, in any
case ∆ knows real k which it then uses to compute the sequence ρ1, . . . , ρn (note that K = ρn)
and the MACON token µ := fK (v1). Then, ∆ computes σi := Σ.Sign(sk′i, µ|sid|pid) and
appends messages of the form {Ui|σi}1≤i≤n to T ′. Then, ∆ computes K := fK (v2) and gives

168 9 Seven Security-Enhancing Compilers for GKE Protocols

T ′ to A.

Join+ and Leave+ queries: These queries are answered similar to the Setup queries so that
∆ is able to compute the extended transcript T ′ as well as µ and K for the operation execution
of C-MACONP.Join+ or C-MACONP.Leave+, respectively.

Send queries: Similar to the proof of Theorem 9.8, by SendS0, SendJ0, and SendL0 we define
the Send query which invokes a new operation execution of C-MACONP. These and all further
Send queries related to the execution of the operations of P are forwarded by ∆ as own queries
and answered accordingly.

By queries SendSF , SendJF , and SendLF to an oracle Πs
i we define the final Send queries

of A concerning the execution of P.Setup, P.Join+, or P.Leave+, respectively, which results
in Πs

i having computed ksi in the operation of P. This means that all further valid Send queries
to Πs

i would be related to the additional communication rounds of the MACON protocol. WhenA
asks one these final Send queries the simulator forwards it as its own query to an appropriate
oracle Πs

i implying the computation of ksi . Similar to the description of the Setup, Join+, and
Leave+ queries above,∆ asks own Test query (if the received Send query is addressed to some
participant of the q∗s-th session) or RevealKey query (in all other sessions) to obtain the real
intermediate key ksi . Then, ∆ chooses ri ∈R {0, 1}κ and responds with Ui|ri.

By queries SendSF+, SendJF+, and SendLF+ to an oracleΠs
i we define the Send queries of

A of the form Send(op,Πs
i , (U1|r1)| . . . |(Un|rn)) where op ∈ {′setup′, ′join′, ′leave′} and

n is the (updated) number of operation participants whereby (Ui|ri) is not part of the query
message. Note thatΠs

i must have received a SendSF , SendJF , or SendLF query before the cor-
responding SendSF+, SendJF+, or SendLF+ query; otherwise the query is unexpected. When
A asks one of these Send queries the simulator computes the sequence ρ1, . . . , ρn, defines
Ks
i := ρn, computes the MACON token µi := fKs

i
(v1), the signature σi := Σ.Sign(sk′i,

µi|sidsi |pidsi) and responds with Ui|σi to A.
The last Send query to Πs

i is independent of the concrete operation op and has the form
Send(op,Πs

i ,(U1|σ1)| . . . |(Un|σn)) whereby (Ui|ri) is not part of the query message. ∆ checks
all received signatures and computes Ks

i := fKs
i
(v2).

Corrupt queries: When A asks a Corrupt(Ui) query ∆ forwards own Corrupt(Ui) query
to obtain ski and replies with (ski, sk

′
i). Note that ∆ and A have identical restrictions concern-

ing the Corrupt queries.

RevealState queries: WhenA asks aRevealState(Πs
i) query∆ forwards ownRevealState(Πs

i)
query to obtain statesi . IfΠs

i is waiting for the last Send query of the form Send(op,Πs
i ,(U1|σ1)|

. . . |(Un|σn)) then ∆ inserts Ks
i (which is not erased yet) into statesi and returns it to A; other-

wise it simply forwards statesi to A. Note that ∆ and A have identical restrictions concerning
the RevealState queries.

RevealKey queries: When A asks a RevealKey(Πs
i) query ∆ checks that Πs

i has accepted;
otherwise an empty string is returned. Then, ∆ returns the session group key Ks

i . Note that ∆
is always able to do this since it executes the last steps of the MACON protocol itself, i.e., the
computation of ρ1, . . . , ρn, µi, and Ks

i for every (honest) oracle Πs
i .

Test query: Note that in this game we are dealing with the Test query asked to an oracle Πs
i

9.6 Multi-Purpose Compilers 169

that has participated in the q∗s-th session. The simulator ∆ already knows Ks
i since this value is

computed by ∆ for every (honest) oracle Πs
i in the simulation. Thus, ∆ chooses a random bit

b ∈R {0, 1} and returns Ks
i if b = 1 or a random string sampled from {0, 1}κ if b = 0.

This is a perfect simulation for A. Since ∆ uses the real ksi to derive Ks
i we can consider

this game as a “bridging step” so that

Pr[Winake
4

] = Pr[Winake
3

]. (9.56)

Game G5. In this game we consider the simulator∆ as an active adversary against the AKE-
security of P that participates in Gameake−0

α,β,P (κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with a random bit string instead of the real key ksi . ∆ answers all queries
of A exactly as described in Game G4. By a “hybrid argument” we obtain

|Pr[Winake
5

]− Pr[Winake
4

]| ≤ Advake
α,β,P(κ). (9.57)

Game G6. This game is identical to Game G5 except that in the q∗s-th session each ρi, i =
1, . . . , n is replaced by a random value sampled from {0, 1}κ. Notice, this implies that K is
uniformly distributed in this session.

In order to estimate the difference to the previous game we apply the “hybrid technique” and
define auxiliary games G′

6,l
, l = 1, . . . , n + 1 such that G′

6,1
= G5 and G′

6,n+1 = G6 . That is,
in the q∗s-th session in each G′

6,l
the intermediate values ρi, i ≤ l, are computed as specified in

the compiler whereas in G′
6,l+1 these values are chosen at random from {0, 1}κ. Note that each

replacement of ρi, i = 1, . . . , n − 1 by a random bit string implies uniform distribution of the
PRF key ρi ⊕ π(ri+1) used in the computation of ρi+1, and that k used to compute ρ1 is already
uniform according to Game G5.

Since n ≤ N we get

|Pr[Winake
6

]− Pr[Winake
5

]| ≤ NAdvprf
F (κ). (9.58)

Note that since each ρi is erased at the end of each C-MACONP execution the adversary A
cannot learn any ρi used in the α-fresh q∗s-th session since the adversarial setting (α, β) disallows
RevealState queries and prevents active participation of A on behalf of corrupted users in α-
fresh sessions as mentioned in Remark 8.10.

Game G7. This game is identical to Game G6 except that in the q∗s-th session K and the
MACON token µ are replaced by random values sampled from {0, 1}κ. Recall that K used to
compute K and µ is uniform according to Game G6. Notice that this implies that K is uniformly
distributed in this game. Obviously,

|Pr[Winake
7

]− Pr[Winake
6

]| ≤ 2Advprf
F (κ). (9.59)

Since K is uniformly distributed A gains no advantage from the obtained information and
cannot, therefore, guess b better than by a random choice, i.e.,

Pr[Winake
7

] =
1

2
(9.60)

Considering Equations 9.53 to 9.60 we get

170 9 Seven Security-Enhancing Compilers for GKE Protocols

Pr[Gameake−b
α,β,C-MACONP(κ) = b] = Pr[Winake

0]

= NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qs

(
Pr[Winake

1]− 1

2

)
+

1

2

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsAdvake

α,β,P(κ) + (N + 2)qsAdvprf
F (κ) +

1

2
.

This results in the desired inequality

Advake
α,β,C-MACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvake

α,β,P(κ) + 2(N + 2)qsAdvprf
F (κ).

ut
The same proof can also be used to show that C-MACON preserves KE-security of the original

GKE protocol. In this case A is passive and does not have access to the Send queries. Hence,
no forgeries and replay attacks need to be considered.

Theorem 9.29 (KE-Security of C-MACONP). Let (α, β) be an adversarial setting sampled from
{(∅, wcm), (wbs, wcm-bs)10, (wfs, wcm-fs), (sfs, scm)}. For any GKE-α protocol P if F is
pseudo-random then C-MACONP is also a GKE-α protocol, and

Advke
α,β,C-MACONP(κ) ≤ 2qsAdvke

α,β,P(κ) + 2(N + 2)qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

9.6.4 Compiler for AKE-, MA-Security and n-Contributiveness

In this section we show that it is possible to use ideas of the compilers C-A, C-MA and C-CON
to design a single compiler which provides all three security requirements described by our
model, that is, AKE-, MA-security and n-contributiveness for any KE-secure GKE protocol.
This compiler uses the same nonces for the authentication, MA-security and contributiveness.

Definition 9.30 (Compiler for AKE-, MA-Security and n-Contributiveness C-AMACON). Let
P be a GKE protocol from Definition 8.4,Σ := (Gen, Sign, Verify) a digital signature scheme,
π : {0, 1}κ → {0, 1}κ a permutation, F :=

{
fk
}
k∈{0,1}κ , κ ∈ N a function ensemble with

domain and range {0, 1}κ. A compiler for AKE-, MA-security and n-contributiveness, denoted
C-AMACON, consists of an algorithm INIT and a protocol AMACON defined as follows:

INIT: In the initialization phase each Ui ∈ U generates own private/public key pair
(sk′i, pk

′
i) using Σ.Gen(1κ). This is in addition to any key pair (ski, pki) used in P.

AMACON: An interactive protocol between the oracles Πs
1 , . . ., Πs

n in G invoked prior to any
operation of P. Each Πs

i chooses an AMACON nonce ri ∈R {0, 1}κ and sends Ui|ri to
every oracle Πs

j with Uj ∈ pidsi . After Πs
i receives Uj|rj from Uj ∈ pidsi it checks whether

|rj| ?
= κ. If this verification fails then Πs

i turns into a stand-by state without accepting;
otherwise after having received and verified these messages from all other partnered oracles
it computes sidsi := r1| . . . |rn. Then, it invokes the operation execution of P and proceeds
as follows:

10 Only in case of static protocols due to Conjecture 8.31.

9.6 Multi-Purpose Compilers 171

– If Πs
i in P is supposed to output a message Ui|m then in C-AMACONP it computes addition-

ally σi := Σ.Sign(sk′i, m|sidsi |pidsi) and outputs a modified message Ui|m|σi.
– IfΠs

i receives a messageUj|m|σj fromΠs
j withUj ∈ pidsi it checks whetherΣ.Verify(pk′j ,

m|sidsi |pidsi , σj) ?
= 1. If this verification fails then Πs

i turns into a stand-by state without
accepting; otherwise it proceeds according to the specification of the executed operation
of P upon receiving Uj|m.

– After Πs
i computes ksi in the execution of P it computes ρ0 := fksi (v0), and each ρl :=

fρl−1⊕π(rl)
(v0) for all l = {1, . . . , n}, where v0 is a public value, defines the intermediate

key Ks
i := ρn, computes an AMACON token µi := fKs

i
(v1) where v1 is a public value,

a signature σi := Σ.Sign(sk′i, µi|sidsi |pidsi) and sends Ui|σi to every oracle Πs
j with

Uj ∈ pidsi . Then it erases every other private information from statesi (including ksi and
each ρl, l = {0, . . . , n}) except for Ks

i .
After Πs

i receives Uj|σj from Πs
j with Uj ∈ pidsi it checks whether Σ.Verify(pk′j ,

µi|sidsi |pidsi , σj) ?
= 1. If this verification fails thenΠs

i turns into a stand-by state without
accepting; otherwise after Πs

i has received and verified these messages from all other
partnered oracles it computes the session group key Ks

i := fKs
i
(v2) where v2 6= v1 is an-

other public value, erases every other private information from statesi (including Ks
i),

and accepts with Ks
i .

We start with the AKE-security of C-AMACON. As for the compilers C-A and C-AMA we do not
consider (sbs, scm) as a possible adversarial setting.

Theorem 9.31 (AKE-Security of Static C-AMACONP). Let (α, β) be an adversarial setting sam-
pled from {(∅, wcm), (wbs, wcm-bs), (wfs, wcm-fs), (sfs, scm)}. For any static GKE-α protocol
P if Σ is EUF-CMA and F is pseudo-random then C-AMACONP is AGKE-α, and

Advake
α,β,C-AMACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 2(N + 3)qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 7 and corresponding events Winake
i as

the events that the output bit b′ of Gi is identical to the randomly chosen bit b in the game
Gameake−b

α,β,C-AMACONP(κ).
Game G0. This game is the real game Gameake−b

α,β,C-AMACONP(κ) (see Definition 8.12) played
between a simulator ∆ and an active adversary A. Assume that the Test query is asked to an
α-fresh oracleΠs

i . Keep in mind that in response to the Test query the adversary receives either
a random string or a session group key Ks

i .
Game G1. This game is identical to Game G0 with the only exception that the simulation

fails and bit b′ is set at random if A asks a Send query on some Ui|m|σ (or Ui|σ) such that
σ is a valid signature that has not been previously output by an oracle Πs

i before querying
Corrupt(Ui). In other words the simulation fails if A outputs a successful forgery. According
to Equation 9.2 we obtain

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ NSucceuf−cmaΣ (κ). (9.61)

Game G2. This game is identical to Game G1 except that the simulation fails and bit b′ is set
at random if an AMACON nonce ri is used by any uncorrupted user’s oracleΠs

i in two different
sessions. According to Equation 9.3 we get

172 9 Seven Security-Enhancing Compilers for GKE Protocols

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Nq2
s

2κ
(9.62)

Game G3. This game is identical to Game G2 except that the following rule is added: ∆
chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query
Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Similar to Equation 9.4 we get

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1

2
. (9.63)

Game G4. In this game we consider the simulator ∆ as a passive adversary against the KE-
security of P that participates in Gameke−1

α,β,P(κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with the proper session group key ksi . In the following we show how ∆
answers the queries of A. We extend the simulation described in the proof of Theorem 9.3 by
additional post-computations needed to derive the session group key K . Similar to the proof of
Theorem 9.3 we focus on the adversarial settings (wfs, wcm-fs) and (sfs, scm).
∆ corrupts every user Ui ∈ U to obtain the long-lived key pair (ski, pki) used in the orig-

inal protocol P (if any such keys are defined). Then, ∆ generates all key pairs (sk′i, pk
′
i) hon-

estly using Σ.Gen(1κ), and provides the active adversary A with the set of the public keys
{pk′i, pki}Ui∈U . ∆ initializes the list TList and runs A as a subroutine.

Setup queries: These queries are processed as described in the proof of Theorem 9.3, i.e.,
∆ performs every operation execution itself saving (sid,⊥) in the TList except for the oper-
ation in the q∗s-th session for which it asks own Setup query. After ∆ receives the execution
transcript T of P.Setup in the q∗s-th session it computes T ′ for the corresponding execution of
C-AMACONP.Setup by extending T with the initial messages of the form {Ui|ri}1≤i≤n and digital
signatures. As in the proof of Theorem 9.21 the simulator must extend T ′ with the messages that
include signatures on the AMACON tokens. For this purpose ∆ asks own Test query to any
oracle activated via the Setup query in the q∗s-th session and obtains (real) k . Then, ∆ computes
ρ0, . . . , ρn and obtains K which it in turn uses to compute µ := fK (v1). Then, ∆ computes
σi := Σ.Sign(sk′i, µ|sid|pid) and appends messages of the form {Ui|σi}1≤i≤n to T ′. Finally,
∆ saves (sid, T ′) in TList and gives T ′ to A.

Send queries: These queries are also processed as described in the proof of Theorem 9.3. All
sessions invoked via a Send query are executed by ∆ itself except for the q∗s-th session for
which ∆ asks own Setup query. Similar to the description of the Setup query for the q∗s-th
session above ∆ “patches” the transcript T with digital signatures and additional messages that
contain digital signatures on the computed AMACON tokens to obtain the transcript T ′ for
the corresponding operation execution of C-AMACONP.Setup (note that in order to compute the
AMACON token ∆ asks own Test query to obtain ksi), saves (sidsi , T

′) in TList, and replies
to A with the appropriate message taken from T ′. All other Send queries related to the oracles
that participate in the q∗s-th session are answered from the predefined transcript T ′.

Corrupt queries: If A asks a query of the form Corrupt(Ui) then ∆ replies with (ski, ski).

RevealState queries: If A asks a query of the form RevealState(Πs
i) then ∆ finds an en-

try (sidsi , T
∗) in TList. If T ∗ = ⊥ it means that ∆ executes the protocol itself and is, therefore,

able to answer this query directly. If T ∗ = T ′ then ∆ checks whether Πs
i has already accepted.

9.6 Multi-Purpose Compilers 173

In this case ∆ asks its own RevealState query to obtain statesi and replies accordingly. Note
that if Πs

i has not yet accepted in C-AMACONP.Setup then an empty string is returned.

RevealKey queries: If A asks a query of the form RevealKey(Πs
i) then ∆ checks that Πs

i

has accepted; otherwise an empty string is returned. Next,∆ finds an entry (sidsi , T
∗) in TList.

If T ∗ = ⊥ then A′ is able to answer with Ks
i directly since the protocol execution with Πs

i has
been done by ∆. If T ∗ = T ′ then the query is invalid since no RevealKey queries are allowed
to the oracles that have accepted in the q∗s-th session.

Test query: Note that in this game we are dealing with the Test query asked to an oracle
Πs
i that has participated in the q∗s-th session. Similar to the proof of Theorem 9.21 the simu-

lator ∆ already knows ksi since it has already asked own Test query to build the transcript T ′

straight after the invocation of the q∗s-th session. Thus,∆ computes the sequence ρ0, . . . , ρn, sets
Ks
i = ρn, and derives the resulting session group key Ks

i := fKs
i
(v2) as specified in C-AMACONP.

Finally, ∆ chooses a random bit b ∈R {0, 1} and returns Ks
i if b = 1 or a random string sampled

from {0, 1}κ if b = 0.

This provides a perfect simulation for A. Since ∆ uses the real ksi to derive Ks
i we can con-

sider this game as a “bridging step” so that

Pr[Winake
4

] = Pr[Winake
3

]. (9.64)

When dealing with the adversarial settings (∅, wcm) and (wbs, wcm-bs) the above simulation can
be simplified since no Corrupt queries need to be considered. Similar to the proof of Theorem
9.3 ∆ can forward all queries of A and obtain a transcript T for the operation execution of
P. Although, ∆ can “patch” T with random nonces and digital signatures it cannot extend it
with messages that contain digital signatures on the AMACON tokens without obtaining the
session group key k needed to compute K and consequently the AMACON token µ. Thus, ∆
must ask own RevealKey query in order to build the complete transcript T ′. Therefore, ∆ must
guess the q∗s-th session. Otherwise, ∆ risks that A asks its Test query for the session which is
already unfresh from the perspective of ∆. Thus, in contrast to the proof of Theorem 9.18 but
similar to the proof of Theorem 9.21 Game G3 cannot be skipped when dealing with (∅, wcm)
or (wbs, wcm-bs).

Game G5. In this game we consider the simulator ∆ as a passive adversary against the KE-
security of P that participates in Gameke−0

α,β,P(κ), i.e., the Test query of ∆ to an accepted α-fresh
oracle Πs

i is answered with a random bit string instead of the real key ksi . ∆ answers all queries
of A exactly as described in Game G4. By a “hybrid argument” we obtain

|Pr[Winake
5

]− Pr[Winake
4

]| ≤ Advke
α,β,P(κ). (9.65)

Game G6. This game is identical to Game G5 except that in the q∗s-th session each ρi, i =
0, . . . , n is replaced by a random value sampled from {0, 1}κ. Notice, this implies that K = ρn
is uniformly distributed in this session.

In order to estimate the difference to the previous game we apply the “hybrid technique” and
define auxiliary games G′

6,l
, l = 0, . . . , n + 1 such that G′

6,0
= G5 and G′

6,n+1 = G6 . That is,
in the q∗s-th session in each G′

6,l
the intermediate values ρi, i ≤ l, are computed as specified in

the compiler whereas in G′
6,l+1 these values are chosen at random from {0, 1}κ. Note that each

replacement of ρi, i = 0, . . . , n − 1 by a random bit string implies uniform distribution of the

174 9 Seven Security-Enhancing Compilers for GKE Protocols

PRF key ρi ⊕ π(ri+1) used in the computation of ρi+1, and that k used to compute ρ0 is already
uniform according to Game G5.

Since n ≤ N we get

|Pr[Winake
6

]− Pr[Winake
5

]| ≤ (N + 1)Advprf
F (κ). (9.66)

Game G7. This game is identical to Game G6 except that in the q∗s-th session K and the
AMACON token µ are replaced by random values sampled from {0, 1}κ. Notice, this implies
that K is uniformly distributed in these sessions. Recall that K used to compute K and µ is
uniform according to Game G6. Obviously,

|Pr[Winake
7

]− Pr[Winake
6

]| ≤ 2Advprf
F (κ). (9.67)

Since K is uniformly distributed A gains no advantage from the obtained information and
cannot, therefore, guess b better than by a random choice, i.e.,

Pr[Winake
7

] =
1

2
(9.68)

Considering Equations 9.61 to 9.68 we get:

Pr[Gameake−b
α,β,C-AMACONP(κ) = b] = Pr[Winake

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ Pr[Winake

2]

= NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qs

(
Pr[Winake

3]− 1

2

)
+

1

2

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsAdvke

α,β,P(κ) +

(N + 3)qsAdvprf
F (κ) +

1

2
.

This results in the desired inequality

Advake
α,β,C-AMACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 2(N + 3)qsAdvprf
F (κ).

ut
Similar to the compilers C-ACON and C-AMA the main problem when applying the reduction

from Theorem 9.31 to dynamic GKE protocols occurs in Games G4 and G5 in the simulation of
a passive adversary against the KE-security of the protocol. Considering the additional queries
Leave+ and Join+ the above simulation fails for the similar reasons as described in the con-
text of the compiler C-A. Nevertheless, we believe that C-AMACON preserves the α-freshness of
dynamic GKE protocols due to the following reasons. First, the above simulation can be easily
extended to the dynamic case for the adversarial setting (∅, wcm) where noCorrupt queries have
to be considered. Second, nonces used to prevent replay attacks are chosen anew for each opera-
tion execution of the protocol. Third, the key k and all intermediate values ρi, i = 0, . . . , ρn (and
consequently K) are erased at the end of each operation execution protecting the secrecy of K
against strong corruptions in later operations. Note also that the AMACON tokens are derived
via a pseudo-random function and do not reveal any information about the intermediate key K
used to compute them. Therefore, we state the following conjecture for dynamic GKE protocols
whereby excluding the adversarial setting (wbs, wcm-bs) as a consequence of Conjecture 8.31.

9.6 Multi-Purpose Compilers 175

Conjecture 9.32 (AKE-Security of Dynamic C-AMACONP). Let (α, β) be an adversarial setting
sampled from {(∅, wcm), (wfs, wcm-fs), (sfs, scm)}. For any dynamic GKE-α protocol P if Σ is
EUF-CMA and F is pseudo-random then C-AMACONP is AGKE-α, and

Advake
α,β,C-AMACONP(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvke

α,β,P(κ) + 2(N + 3)qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Further, we show that C-AMACON provides MA-security for any GKE protocol.

Theorem 9.33 (MA-Security of C-AMACONP). For any GKE protocol P if Σ is EUF-CMA and
F is collision-resistant then C-AMACONP is MAGKE, and

Succma
C-AMACONP(κ) ≤ NSucceuf−cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 2 and corresponding events Winma
i mean-

ing that A wins in Gi. The queries made by A are answered by a simulator ∆.
Game G0. This game is the real game Gamema

C-AMACONP(κ) played between a simulator ∆ and
A. Note that the goal of A is to achieve that there exists an uncorrupted user Ui whose cor-
responding oracle Πs

i accepts with Ks
i and another user Uj ∈ pidsi that is uncorrupted at

the time Πs
i accepts and either does not have a corresponding oracle Πs

j with (pidsj , sid
s
j) =

(pidsi , sid
s
i) or has such an oracle but this oracle accepts with Ks

i 6= Ks
j .

Game G1. This game is identical to Game G0 with the only exception that the simulation
aborts if A asks a Send query on a message Ui|m|σ (or Ui|σ) such that σ is a valid signature
that has not been previously output by an oracle Πs

i before querying Corrupt(Ui), i.e., the
simulation fails if A outputs a successful forgery. According to Equation 9.2 we obtain,

|Pr[Winma
1

]− Pr[Winma
0

]| ≤ NSucceuf−cmaΣ (κ) (9.69)

Game G2. This game is identical to Game G1 except that the simulation fails if an AMA-
CON nonce ri is used by any uncorrupted user’s oracle Πs

i in two different sessions. Similar to
Equation 9.3 we get

|Pr[Winma
2

]− Pr[Winma
1

]| ≤ Nq2
s

2κ
(9.70)

Note that this eliminates attacks where Πs
i during any session of the AMACON protocol re-

ceives a replayed message of the form Uj|m|σ̄j or Uj|σ̄j where Uj is uncorrupted and σ̄j is a
signature computed by its oracle in some previous session. Note that Πs

i does not accept unless
it successfully verifies all required σj for all Uj ∈ pidsi in the AMACON protocol of C-AMACON.
Having excluded forgeries and replay attacks we follow that for every user Uj ∈ pidsi that
is uncorrupted at the time Πs

i accepts there exists a corresponding instance oracle Πs
j with

(pidsj , sid
s
j) = (pidsi , sid

s
i). Thus, according to Definition 8.15 A wins in this game only if

any of these oracles has accepted with Ks
i 6= Ks

j .
Assume that A wins in this game. Then Πs

i and Πs
j have accepted with Ks

i = fKs
i
(v2)

resp. Ks
i = fKs

j
(v2) where Ks

i resp. Ks
j are corresponding temporary keys computed during the

execution of AMACON, and Ks
i 6= Ks

j . Having eliminated forgeries and replay attacks between
the oracles of any uncorrupted users we follow that messages exchanged between Πs

i and Πs
j

176 9 Seven Security-Enhancing Compilers for GKE Protocols

have been delivered without any modification. In particular, oracle Πs
i received the signature σj

computed on µj = fKs
j
(v1) and Πs

j received the signature σi computed on µi = fKs
i
(v1). Since

both oracles have accepted we have µi = µj; otherwise oracles cannot have accepted because
signature verification would fail. The probability that A wins in this game is given by

Pr[Ks
i 6= Ks

j ∧ fKs
i
(v1) = fKs

j
(v1)] =

Pr[fKs
i
(v2) 6= fKs

j
(v2) ∧ fKs

i
(v1) = fKs

j
(v1)] ≤ qsSucccoll

F (κ).

Hence,
|Pr[Winma

2
]− Pr[Winma

1
]| ≤ qsSucccoll

F (κ). (9.71)

Considering Equations 9.69 to 9.71 we get the desired inequality

Succma
C-AMACONP(κ) = Pr[Winma

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsSucccoll

F (κ).

ut
Finally, we argue that C-AMACON provides n-contributiveness for any GKE protocol. The

proof strategy is the same as in Theorems 9.16 and 9.26, i.e., we consider the probability thatA
is able to influence an honest oracle Πs

i∗ ∈ G, i∗ ∈ [1, n] to accept some K̃ by considering its
ability to influence Πs

i∗ to compute any value ρl, i∗ ≤ l ≤ n.

Theorem 9.34. For any GKE protocol P if π is one-way and F is collision-resistant pseudo-
random then C-AMACONP is n-CGKE, and

Succcon−n
C-AMACONP(κ) ≤ Nq2

s +Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ),

where qs is the total number of executed protocol sessions.

Remark 9.35. Note that some arguments in this proof are intuitive for the same reasons as men-
tioned in Remark 9.12.

Proof (partially informal). In the following we consider an adversary A from Definition 8.18.
Assume that A wins in Gamecon−n

C-AMACONP(κ) (which event we denote Wincon). Then at the end of
the stage prepare it has returned K̃ such that in the stage attack an honest oracle Πs

i∗ ∈ G
accepted with Ks

i∗ = K̃ . According to the construction of Ks
i∗ we follow that K̃ = fKs

i∗ (v2)
with Ks

i∗ = ρn computed by Πs
i∗ , and consider the following games.

Game G0. This is the real game Gamecon−n
C-AMACONP(κ), in which the honest players are replaced

by a simulator ∆.
Game G1. In this game we abort the simulation if the same AMACON nonce ri is used by

any honest oracle Πs
i in two different sessions. Considering ri being uniform for every honest

oracle Πs
i and that there are at most N users, we have

Pr[Wincon
0

]− Pr[Wincon
1

] ≤ Nq2
s

2κ
. (9.72)

Game G2. This game is identical to Game G1 with the “condition event” that A being in
the prepare stage is NOT able to output ρi∗ computed by Πs

i∗ in any session of the attack

9.6 Multi-Purpose Compilers 177

stage.11 Arguing intuitively similar to the proof of Theorem 9.16 and considering Equation 9.26
we obtain

Pr[Wincon
1

]− Pr[Wincon
2

] ≤ qsSucccoll
F (κ)qsAdvprf

F (κ) +
qs

2κ
. (9.73)

As a consequence of the “condition event” in this game, in every subsequent game of the se-
quence the adversary, while being in the prepare stage, is not able to output ρi∗ computed by
Πs
i∗ in any session of the attack stage. Note that we do not need to consider the values ρl, l < i∗

computed by Πs
i∗ since in order to compute Ks

i∗ every honest oracle must first compute the
whole sequence ρ0, . . . , ρn. Thus, it is sufficient to argue that the probability of A influencing
any ρl, l ≥ i∗, computed by Πs

i∗ in any attack-ed session is negligible.
Game G3. This game is identical to Game G2 with the “condition event” thatA being in the

prepare stage is NOT able to output Ks
i∗ = ρn computed by Πs

i∗ in any session of the attack
stage. Again, the simulator does not need to detect whether this event occurs since both games
proceed identical in any case.

Using the “hybrid technique” similar to the proof of Theorem 9.16 we obtain according to
Equation 9.27

Pr[Wincon
2

]− Pr[Wincon
3

] ≤ NqsSucccoll
F (κ) +NqsSuccow

π (κ) +
Nqs

2κ
. (9.74)

As a consequence of the “condition event” in this game, in every subsequent game of the se-
quence the adversary, while being in the prepare stage, is not able to output Ks

i∗ computed by
Πs
i∗ in any session of the attack stage.
Game G4. This game is identical to Game G3 with the “condition event” that A being in

the prepare stage is NOT able to output Ks
i∗ computed by Πs

i∗ in any session of the attack
stage. Note that in every attack-ed session, the honest oracle Πs

i∗ computes Ks
i∗ := fKs

i∗ (v2).
Intuitively, since in the prepare stage Ks

i∗ is unknown toA (as observed in the previous game),
A’s probability to output Ks

i∗ in that stage is bound by the probability that A chooses a differ-
ent PRF key and succeeds (thus a PRF collision occurs) or succeeds by a random guess, i.e.,
Succcoll

F (κ) + 1/2κ. Hence,

Pr[Wincon
3

]− Pr[Wincon
4

] ≤ qsSucccoll
F (κ) +

qs

2κ
. (9.75)

Obviously the probability of Wincon
4

is 0, meaning that the adversary did not output a correct
value of K̃ in the prepare stage.

Considering Equations 9.72 to 9.75 we obtain the desired inequality

Succcon−n
C-AMACONP(κ) = Pr[Wincon

0]

≤ Nq2
s +Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ).

ut

11 Note, in G0 and G1 the adversary only outputs a value for the resulting group key. In G2 we consider the additional
(in)ability of the adversary to output the value for ρi∗ . Since we are only interested in the probability of the adversarial
success under this “condition event” (without changing the game in case that this event occurs; see also Section 5.6.1) the
simulator does not need to detect whetherA is able to output the correct value or not. The same considerations are applicable
to G3 w.r.t. Ks

i , and G4 w.r.t. Ks
i∗ .

178 9 Seven Security-Enhancing Compilers for GKE Protocols

9.7 Summary

In this chapter we have proposed seven generic security-enhancing compilers (C-A, C-MA, C-CON,
C-ACON, C-AMA, C-MACON, and C-AMACON) for GKE protocols with respect to the three major
requirements (and combinations thereof) specified in our model in Chapter 8, i.e., the require-
ments of (A)KE- and MA-security, and n-contributiveness. Table 9.7 summarizes main security
results and lists the number of the required communication rounds in addition to those of the

Table 9.1. Summary of the Generic Security-Enhancing Compilers for GKE Protocols

Compiler (A)KE MA n-CON Additional Rounds

C-A
Theo. 9.3

Conj. 9.4
– – 1

C-MA
Theo. 9.8

Theo. 9.9
Theo. 9.7 – 2

C-CON
Theo. 9.13

Theo. 9.14
– Theo. 9.11 1

C-ACON
Theo. 9.18

Conj. 9.19
– Theo. 9.16 1

C-AMA
Theo. 9.21

Conj. 9.22
Theo. 9.23 – 2

C-MACON
Theo. 9.28

Theo. 9.29
Theo. 9.25 Theo. 9.26 2

C-AMACON
Theo. 9.31

Conj. 9.32
Theo. 9.33 Theo. 9.34 2

underlying GKE protocol. Obviously, every compiler requires a constant number of additional
communication rounds. The first round of each compiler, in which all participants exchange
their randomly chosen session nonces, is identical. Note that the concatenation of these nonces
represents the unique session id since nonces are chosen anew for each invoked protocol opera-
tion. In compilers C-CON, C-ACON, C-MACON, and C-AMACON these nonces are additionally used for
the derivation of the session group key ensuring the n-contributiveness of the compiled protocol.

Observe, that all described compilers are generic. Therefore, when applied to concrete GKE
protocols, further efficiency optimizations may become possible, e.g., some messages of the
compiler can possibly be interleaved with those of the underlying GKE protocol. For example,
in our GKE protocol TDH1 described in the next chapter the first protocol message of every
participant includes a random nonce and an ephemeral public value which is necessary for the
computation of the session group key.

Chapter 10

Constant-Round GKE Protocol TDH1 Secure Against Strong
Corruptions

In this chapter we propose two versions (static and dynamic) of our constant-round group key
exchange protocol TDH1 (based on the informal ideas from [118, 171]) and prove its security
under standard cryptographic assumptions using the computational model from Chapter 8.

10.1 Number-Theoretic Assumptions . 179
10.1.1 Algebraic Group . 179
10.1.2 Tree Decisional Diffie-Hellman Assumption . 180

10.2 Short Overview of TDH1 . 184
10.2.1 Static and Dynamic TDH1.Setup . 185
10.2.2 TDH1.Join+ . 185
10.2.3 TDH1.Leave+ . 186

10.3 Static TDH1 . 186
10.3.1 Authentication Functions . 186
10.3.2 Tree Management Function . 186
10.3.3 Key Exchange Functions . 187
10.3.4 Key Confirmation and Derivation Functions . 187
10.3.5 Protocol Execution . 188
10.3.6 Security Analysis of Static TDH1 . 189

10.4 Dynamic TDH1 . 198
10.4.1 Additional Tree Management Functions . 198
10.4.2 Additional Key Exchange Functions . 198
10.4.3 Protocol Execution . 199
10.4.4 Security Analysis of Dynamic TDH1 . 204

10.5 Summary . 208

10.1 Number-Theoretic Assumptions

Security of our TDH1 protocol bases on the Tree Decisional Diffie-Hellman (TDDH) assumption
(Section 10.1.2) which requires a special algebraic group G with generator g where the exponen-
tiation operation gx, x ∈R G is a bijection from G to G preserving uniformity and randomness.
In the next section we describe an example construction of G.

10.1.1 Algebraic Group

Mathematical operations in our protocol are carried out in the algebraic group G which is de-
scribed in the following (and also used in GKE protocols in [118, 119] and for the randomness
extraction in [69, 70]). Let p be a safe prime, i.e., p = 2q+ 1, with q a κ-bit prime where κ ∈ N
is the security parameter. To specify G we require an auxiliary group Ĝ, which is a multiplica-
tive group of quadratic residues modulo p. Ĝ has order q and is generated by a quadratic residue
g = ĝ2 mod p, with g < q and ĝ a primitive element of the multiplicative group Z∗p. Let a
function û : Zq → Zp be defined as û(x) := gx mod p and Ĝ = {û(i) | i ∈ Zq}. Let a function
u : Z∗p → Zq be defined as

180 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

u(x) :=

{
x mod q if x ≤ q
p− x mod q if q < x < p

This function is used to define the group G := {u(û(i)) | i ∈ Zq}. The elements of G are integers
from 0 to q − 1. The multiplicative group operation · on G is defined as a · b := u(ab (mod p))
for all a, b ∈ G. The exponentiation is therefore ab := u(ab mod p) for all a, b ∈ G.

Lemma 10.1. Let f(x) := u(û(x)). For all x ∈ G f(x) is a bijection from G to G.

Proof. First, we show that f is injective, that is for any x, y ∈ G if f(x) = f(y) then x = y.
The equation f(x) = f(y) is equivalent to u(û(x)) = u(û(y)). We denote X := û(x) and
Y := û(y), and assume the following four cases.
CASE X ≤ q∧Y ≤ q: In this case u(X) = X , u(Y) = Y , and hence X = Y . Considering def-
inition of û the equation gx−y mod p = 1 must hold. Consequently q|x− y must hold because
q is the order of g. Since x, y ∈ G and, therefore, 0 < x, y ≤ q the previous equation holds only
if x− y = 0 resulting in x = y.
CASE X > q ∧ Y > q: In this case u(X) = p−X , u(Y) = p− Y , and hence X = Y . Similar
arguments as in the previous case lead to x = y.
CASE X ≤ q ∧Y > q: This case is impossible as explained in the following. Since u(X) = X ,
u(Y) = p − Y so that X = p − Y = −Y = (−1)Y must hold. However, X, Y ∈ Ĝ (are
quadratic residues) but (−1) 6∈ G.
CASE X > q ∧ Y ≤ q: This case is also impossible for the same reason as the previous one.

From the equality of the domain and image of f we follow that f is bijective. ut
The following corollary follows directly from Lemma 10.1.

Corollary 10.2. If x is chosen uniformly at random in G then f(x) is also uniform and random
in G.

Remark 10.3. Note that since G is equivalent to Zq the function f preserves uniformity in Zq.

As a consequence of Corollary 10.2 the exponentiation function preserves uniformity in G,
i.e., if x ∈ G then gx = u(gx mod p) ∈ G.

Further, it is believed that the DDH assumption from Definition 5.11 holds in G.

10.1.2 Tree Decisional Diffie-Hellman Assumption

Let Tn be a set of all binary trees with n leaf nodes1 and Tn ∈ Tn a binary tree defined over the
set of all its nodes (identified via labels 〈l, v〉) Tn := {〈l, v〉 | 0 ≤ l ≤ dTn , 0 ≤ v ≤ vmax ≤
2l−1} where l is a level of the node, v its position within this level (vmax is the maximal possible
position depending on the tree structure, for example in TDH1 we use linear trees with vmax = 1),
and dTn the depth of Tn. The set of leaf nodes of Tn is defined as

LNTn := {〈l, v〉 | 〈l, v〉 ∈ Tn, 〈l + 1, 2v〉 6∈ Tn, 〈l + 1, 2v + 1〉 6∈ Tn},
meaning that leaf nodes do not have any child nodes, and the set of internal nodes of Tn exclud-
ing the root node 〈0, 0〉 is defined as

INTn := {〈l, v〉 | 〈l, v〉 ∈ Tn/〈0, 0〉, 〈l + 1, 2v〉 ∈ Tn, 〈l + 1, 2v + 1〉 ∈ Tn}.
1 We consider only binary trees where each node is either a leaf or a parent of two child nodes.

10.1 Number-Theoretic Assumptions 181

Note that Tn ∈ Tn is not necessarily balanced or complete. Thus, not every label 〈l, v〉 with
0 ≤ l ≤ dTn , 0 ≤ v ≤ 2l− 1 may be part of Tn. In this case we say that the label 〈l, v〉 is empty.

For a set of n uniformly distributed variables x〈l,v〉 ∈R G we specify the Tree Diffie-Hellman
distribution (TDH-distribution) given by a set of pairs each consisting of a node’s label 〈l, v〉 and
a value gx〈l,v〉 ∈ G as

TDHTn :=
(
g,
{

(〈l, v〉, gx〈l,v〉)〈l,v〉∈LNTn | x〈l,v〉 ∈R G
}
,{

(〈l, v〉, gx〈l,v〉)〈l,v〉∈INTn | x〈l,v〉 = gx〈l+1,2v〉x〈l+1,2v+1〉
})
.

Further we define two additional distributions from the TDH-distribution and a uniformly dis-
tributed r ∈R G (note that if n = 2 we get classical DH distributions):

TDDH?Tn :=
(
TDHTn , (〈0, 0〉, x〈0,0〉 := gx〈1,0〉x〈1,1〉)

)
and TDDH$

Tn
:=
(
TDHTn , (〈0, 0〉, x〈0,0〉 := gr)

)
.

Definition 10.4 (TDDH Assumption). A TDDHTn distinguisher for G is a PPT algorithmA whose
advantage probability defined as

AdvTDDHTn,G(κ) := |Pr[A(TDDH?Tn) = 1]− Pr[A(TDDH$
Tn) = 1]|

is non negligible. The TDDHTn problem is intractable if there exists no TDDHTn distinguisher for
G. The TDDH assumption states that this is the case for all n > 1, all Tn ∈ Tn, and all sufficiently
large κ.

In the following we show the equivalence between the TDDH and DDH assumptions. This
allows us to treat TDDH as a standard cryptographic assumption.

Theorem 10.5 (DDH ⇐⇒ TDDH). The DDH problem is polynomial time reducible to the TDDH

problem and the TDDH problem is polynomial time reducible to the DDH problem, and

AdvDDHG (κ) ≤ AdvTDDHTn,G(κ) ≤ (2n− 3)AdvDDHG (κ).

Proof. CASE AdvDDHG (κ) ≤ AdvTDDHTn,G(κ): Assuming that there exists a DDH distinguisher for G
denoted A′ we construct a TDDHTn distinguisher for G denoted A as follows. On input a TDDH

distribution DTn (either TDDH?Tn or TDDH$
Tn

) A calls A′ on input (g, gx〈1,0〉 , gx〈1,1〉 , x〈0,0〉) such
that (〈1, 0〉, gx〈1,0〉) ∈ DTn , (〈1, 1〉, gx〈1,1〉) ∈ DTn , (〈0, 0〉, x〈0,0〉) ∈ DTn , and returns its out-
put. Note that if A has received TDDH?Tn then x〈0,0〉 := gx〈1,0〉x〈1,1〉 and (g, gx〈1,0〉 , gx〈1,1〉 , x〈0,0〉)
corresponds to the distribution DDH?. On the other hand, if A has received TDDH$

Tn
then

x〈0,0〉 := gr, r ∈R G and (g, gx〈1,0〉 , gx〈1,1〉 , x〈0,0〉) corresponds to the distribution DDH$. Thus,
Pr[A(TDDH?Tn) = 1] = Pr[A′(DDH?) = 1] and Pr[A(TDDH$

Tn
) = 1] = Pr[A′(DDH$) = 1]. This

implies the desired inequality AdvDDHG (κ) ≤ AdvTDDHTn,G(κ).

CASE AdvTDDHTn,G(κ) ≤ (2n−3)AdvDDHG (κ): We apply the “sequence of games” technique where
simulator ∆ interacts with the TDDHTn distinguisher for G denoted A.

General Idea: The simulator is responsible for the choice of the TDDH distributions. We start
with the game G0 where ∆ chooses a random tree Tn ∈R Tn and constructs a distribution D0,b,
b ∈R {0, 1} such that D0,0 = TDDH?Tn and D0,1 = TDDH$

Tn
. The event WinTDDH

0 is the event that A
on input the distribution D0,b correctly guesses the bit b chosen by the simulator. In the second
game G1 (and this is also the last game in the sequence) the simulator constructs distribution D1,b

by computing all values x〈l,v〉, 〈l, v〉 ∈ Tn \ 〈0, 0〉 as random independent values whereby in D1,0

182 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

the simulator defines x〈0,0〉 := gx〈1,0〉x〈1,1〉 and in D1,1 it defines x〈0,0〉 := gr, r ∈R G. The event
WinTDDH

1 is the event thatA on input the distribution D1,b correctly guesses the bit b chosen by the
simulator. Since all x〈l,v〉, 〈l, v〉 ∈ Tn \ 〈0, 0〉 are random and independent we can upper-bound
Pr[WinTDDH

1] by the probability that a DDH distinguisher for G denoted A′ correctly guesses b
on input the distribution D′1,b such that D′1,0 = DDH? and D′1,1 = DDH$. In order to upper-bound
|Pr[WinTDDH

0]− Pr[WinTDDH
1]| we apply the “hybrid technique” and specify auxiliary games with

corresponding hybrid distributions Dl,v1,b, one for each internal node 〈l, v〉 ∈ INTn (there are n−2
such nodes). The neighboring hybrid distributions differ in the choice of one particular x〈l,v〉:
in the preceding hybrid distribution the simulator computes x〈l,v〉 := gx〈l+1,2v〉x〈l+1,2v+1〉 whereas
in the succeeding hybrid distribution it computes x〈l,v〉 := gr〈l,v〉 , r〈l,v〉 ∈R G. We start building
hybrids from the deepest leftmost internal node 〈l, v〉 (with level l = dTn − 1) and move up to
the root only after having built hybrid distributions for the rightmost internal node located at the
same level. Thus, in each hybrid distribution D

l,v
1,b every secret value x〈li,vi〉 with li ≤ l, vi < v

is computed as a random independent value. This allows us to upper-bound the computational
distinguishability between any two subsequent auxiliary games using the advantage probability
of the DDH distinguisher A′.

Detailed Proof: Game G0. This game is an interaction between the simulator ∆ and the
TDDHTn distinguisher for G denoted A. The simulator chooses n ∈R N and Tn ∈R Tn, and
constructs a distribution D0 as

D0 :=
(
g,
{

(〈l, v〉, gx〈l,v〉)〈l,v〉∈LNTn | x〈l,v〉 ∈R G
}
,{

(〈l, v〉, gx〈l,v〉)〈l,v〉∈INTn | x〈l,v〉 = gx〈l+1,2v〉x〈l+1,2v+1〉
})
.

Note that D0 ≡ TDHTn .
Then, ∆ chooses a random bit b ∈R {0, 1} and defines distribution D0,b as follows. If b = 0

then D0,0 =
(
D0, (〈0, 0〉, x〈0,0〉 := gx〈1,0〉x〈1,1〉)

)
, else if b = 1 then D0,1 =

(
D0, (〈0, 0〉, x〈0,0〉 :=

gr)
)

with r ∈R G.
Note that D0,0 ≡ TDDH?Tn and D0,1 ≡ TDDH$

Tn
.

The simulator calls then A on input D0,b and obtains bit b′. By WinTDDH

0
we denote the event

b′ = b. Thus,
Pr[WinTDDH

0
] = Pr[A(D0,b) = b]. (10.1)

Game G1. This game is identical to Game G0 except that instead of constructing D0 as above
the simulator constructs

D1 :=
(
g,
{

(〈l, v〉, gx〈l,v〉)〈l,v〉∈LNTn | x〈l,v〉 ∈R G
}
,{

(〈l, v〉, gx〈l,v〉)〈l,v〉∈INTn | x〈l,v〉 = gr〈l,v〉 , r〈l,v〉 ∈R G
})
.

Note that in this distribution all secret values x〈l,v〉, 〈l, v〉 ∈ Tn \ 〈0, 0〉 are random and indepen-
dent of each other.

Then ∆ chooses a random bit b ∈R {0, 1} and defines distributions

D1,0 :=
(
D1, (〈0, 0〉, x〈0,0〉 := gx〈1,0〉x〈1,1〉)

)
, and

D1,1 :=
(
D1, (〈0, 0〉, x〈0,0〉 := gr)

)
, where r ∈R G.

The simulator calls then A on input D1,b and obtains bit b′. By WinTDDH

1
we denote the event

b′ = b (this is the same event as WinTDDH

0
). Thus,

10.1 Number-Theoretic Assumptions 183

Pr[WinTDDH

1
] = Pr[A(D1,b) = b].

Since all secret values x〈l,v〉 except for the root value x〈0,0〉 are random and independent the
probability that A correctly guesses b is no greater than the probability that a DDH distinguisher
for G denotedA′ is able to distinguish between the distributions D′1,0 := (g, gx〈1,0〉 , gx〈1,1〉 , x〈0,0〉 :=
gx〈1,0〉x〈1,1〉) and D′1,1 := (g, gx〈1,0〉 , gx〈1,1〉 , x〈0,0〉 := gr), where r ∈R G. Note that gx〈1,0〉 , gx〈1,1〉 ,
and x〈0,0〉 are sampled from the corresponding distributions D1,0 respectively D1,1. Note also that
D′1,0 ≡ DDH? and D′1,1 ≡ DDH$. Thus,

Pr[WinTDDH

1
] = Pr[A(D1,b) = b] ≤ Pr[A′(D′1,b) = b]. (10.2)

Further, we estimate the difference |Pr[WinTDDH

1
] − Pr[WinTDDH

0
]|. For this purpose we apply

the “hybrid technique”. We consider a sequence of auxiliary games Gl,v
1 for all l = dTn −

1 down to 0, 0 ≤ v ≤ vmax ≤ 2l − 1, 〈l, v〉 ∈ Tn \ LNTn . Each Gl,v
1 is identical to Game G0

except that instead of constructing D0 as in Game G0 the simulator constructs

D
l,v
1 :=

(
g,
{

(〈li, vi〉, gx〈li,vi〉)〈li,vi〉∈LNTn | x〈li,vi〉 ∈R G
}
,{

(〈li, vi〉, gx〈li,vi〉)〈li,vi〉∈INTn ,li≤l,vi<v | x〈li,vi〉 := gr〈li,vi〉 , r〈li,vi〉 ∈R G
}
,{

(〈li, vi〉, gx〈li,vi〉)〈li,vi〉∈INTn ,li≥l,vi≥v | x〈li,vi〉 := gx〈li+1,2vi〉x〈li+1,2vi+1〉
})
.

Note that if l = dTn − 1 and vmin is the minimal position of all non-empty labels with level
dTn − 1 then D

dTn−1,vmin
1 ≡ D0 whereas if l = 0 and v = 0 then D

0,0
1 ≡ D1.

Then, instead of constructing the distribution D0,b as in Game G0 the simulator constructs

D
l,v
1,0 =

(
D
l,v
1 , (〈0, 0〉, x〈0,0〉 := gx〈1,0〉x〈1,1〉)

)
, and

D
l,v
1,1 =

(
D
l,v
1 , (〈0, 0〉, x〈0,0〉 := gr)

)
, where r ∈R G,

and proceeds as in Game G0. Note that if l = dTn − 1 and vmin is the minimal position of all
non-empty labels with level dTn − 1 then D

dTn−1,vmin
1,b ≡ D0,b whereas if l = 0 and v = 0 then

D
0,0
1,b ≡ D1,b. Let WinTDDH

l,v denote the event that Win0 (or equally Win1) occurs in Gl,v
1 .

The only difference between two neighboring auxiliary games Gli,vi
1 and G

lj ,vj
1 is how ∆

constructs the value x〈li,vi〉 in the distributions Dli,vi1,b and D
lj ,vj
1,b : in D

li,vi
1,b the simulator computes

x〈li,vi〉 := gx〈li+1,2vi〉x〈li+1,2vi+1〉 whereas in D
lj ,vj
1,b it computes x〈li,vi〉 := gr〈li,vi〉 , r〈li,vi〉 ∈R G.

Therefore, (g, gx〈li+1,2vi〉 , gx〈li+1,2vi〉 , gx〈li+1,2vi〉x〈li+1,2vi+1〉) consisting of values taken from distri-
bution D

li,vi
1,b corresponds to the distribution DDH? whereas (g, gx〈li+1,2vi〉 , gx〈li+1,2vi〉 , gr〈li,vi〉) con-

sisting of values taken from distribution D
lj ,vj
1,b corresponds to the distribution DDH$. This allows

us to upper-bound the difference between G
lj ,vj
1 and Gli,vi

1 with the advantage of the DDH distin-
guisher A′, i.e.,

|Pr[WinTDDH
lj ,vj

]− Pr[WinTDDH
li,vi

]| ≤ AdvDDHG (κ).

Note that G
dTn−1,vmin
1 = G0, where vmin is the minimal position of all non-empty labels with

level dTn−1, and that G0,0
1 = G1. In any binary tree Tn ∈ Tn there are exactly n−2 intermediate

nodes excluding the root node, that is |Tn \ {LNTn ∪ 〈0, 0〉}| = n− 2. Hence,

|Pr[WinTDDH

1
]− Pr[WinTDDH

0
]| ≤ (n− 2)AdvDDHG (κ). (10.3)

This implies

184 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

Pr[WinTDDH

0
] ≤ (n− 1)AdvDDHG (κ) + Pr[WinTDDH

1
].

Considering Equations 10.1 and 10.2 we obtain

Pr[A(D0,b) = b] ≤ (n− 2)AdvDDHG (κ) + Pr[A′(D′1,b) = b],

that is equivalent to

2 Pr[A(D0,b) = b]− 1 ≤ 2(n− 2)AdvDDHG (κ) + 2 Pr[A′(D′1,b) = b]− 1. (10.4)

In the following we argue that the TDDHTn distinguisher A has the advantage AdvTDDHTn,G(κ) :=
|2 Pr[A(TDDHb) = b]−1|, where b is a uniformly chosen bit, and TDDH0 ≡ TDDH?Tn resp. TDDH1 ≡
TDDH$

Tn
. Recall that in Definition 10.4 we have defined AdvTDDHTn,G(κ) := |Pr[A(TDDH?Tn) =

1] − Pr[A(TDDH$
Tn

) = 1]|. The following simple computation shows that both definitions are
equivalent:

|2 Pr[A(TDDHb) = b]− 1| =
= |2(Pr[A(TDDHb) = b|b = 0] Pr[b = 0] + Pr[A(TDDHb) = b|b = 1] Pr[b = 1])− 1|
= |21

2
(Pr[A(TDDH0) = 0] + Pr[A(TDDH1) = 1])− 1|

= |((1− Pr[A(TDDH0) = 1]) + Pr[A(TDDH1) = 1])− 1|
= |Pr[A(TDDH1) = 1]− Pr[A(TDDH0) = 1]|
= |Pr[A(TDDH$) = 1]− Pr[A(TDDH?) = 1]|

The same approach can also be applied in order to show the equivalence between both defi-
nitions AdvDDHG (κ) := |2 Pr[A′(DDHb) = b]− 1|, where b is a uniformly chosen bit, DDH0 ≡ DDH?

resp. DDH1 ≡ DDH$, and AdvDDHG (κ) := |Pr[A′(DDH?) = 1] − Pr[A(DDH$) = 1]|. Recall that
D0,0 ≡ TDDH?Tn resp. D0,1 ≡ TDDH$

Tn
as noted in Game G0, and D′1,0 ≡ DDH? and D′1,1 ≡ DDH$

as noted in Game G1. Thus, considering Equation 10.4 we obtain the desired inequality
AdvTDDHTn,G(κ) ≤ (2n− 3)AdvDDHG (κ). ut

10.2 Short Overview of TDH1

In the following we highlight the main idea of the static and dynamic TDH1 protocols. Similar
to Section 9.2.2 by Πsi

i ∈ G we denote the i-th oracle involved in the group G assuming that
there exists an index j ∈ [1, N] such that some Uj ∈ U owns Πsi

i . Further, in order to simplify
the description of the protocol we assume that s := s1 = . . . = sn for all oracles Πsi

i ∈ G and
use the notation Πs

i instead.
Assume that the initial group G consists of n oracles Πs

1 , . . . , Π
s
n and each of them knows

this order implicitly. Every Πs
i is assigned to a leaf node 〈li, vi〉 of a linear binary tree Tn (in

this context linear means that dTn = n− 1 and vi ∈ {0, 1}, e.g., Figure 10.1).
Every sent message in TDH1 is authenticated via an attached digital signature. In order to pre-

vent replay attacks each signature is generated on a message and the session id sid = r1| . . . |rn
where each nonce ri is chosen by Πs

i fresh for every new session, i.e., session ids are unique.
Each operation of TDH1 requires three communication rounds independent of the number of

participants.

10.2 Short Overview of TDH1 185

10.2.1 Static and Dynamic TDH1.Setup

In order to compute the session group key in the static version of TDH1 each oracle with position
〈li, vi〉 in Tn chooses own secret exponent x〈li,vi〉 ∈R G and broadcasts2 y〈li,vi〉 := gx〈li,vi〉 (note
that y〈li,vi〉 ∈ G). Πs

1 which is assigned to the deepest leftmost leaf node of Tn is the first to
build a set X1 of secret values (of nodes) x〈l,v〉 in its path up to the root 〈0, 0〉. Note, each
internal node x〈l,0〉 = (y〈l+1,0〉)x〈l+1,1〉 = (y〈l+1,1〉)x〈l+1,0〉 = gx〈l+1,0〉x〈l+1,1〉 . Thus, Πs

1 is the first to
learn x〈0,0〉. To ensure that also other oracles compute x〈0,0〉, Πs

1 computes the set Ŷ consisting
of y〈l,0〉 := gx〈l,0〉 for each previously computed internal node’s secret value x〈l,0〉 ∈ X1 but
without computing y〈0,0〉, and broadcasts Ŷ . Upon receiving Ŷ every Πs

i 6=1 is able to compute
own set Xi consisting of all secret values x〈l,v〉 in its path up to the root. Thus, every Πs

i 6=1 learns
x〈0,0〉 too. The protocol ensures that only valid participants learn x〈0,0〉 which is then used to
derive the intermediate value K . In order to compute the intermediate value K each participant
iteratively computes values ρ0, . . . , ρn as outputs of the pseudo-random function f on the public
input value v0 whereby the key (secret seed) of f for the computation of each ρi is build as the
XOR sum ρi−1⊕ π(ri) where π is a one-way permutation (note that ρ0 := fx〈0,0〉bκ(v0) whereby
x〈0,0〉bκ denotes x〈0,0〉 truncated to its κ rightmost bits). This successive evaluation of f embeds
every random nonce ri into the computation of K := ρn. Intuitively, the one-way permutation
π is used to prevent that malicious participants choose own nonces such that they can influence
values of the pseudo-random function secret seeds (note that if malicious participants are able
to do this then they can also influence K). Thus, random nonces and successive evaluation of f
as described above are used to ensure n-contributiveness for K , which is then used as a seed for
the pseudo-random function f to derive the key confirmation token µ (on input a constant public
value v1) and the actual session group key K (on input another constant public value v2 6= v1).
Note that prior to accepting K participants exchange and verify signatures on the computed key
confirmation tokens ensuring MA-security of the protocol.

The dynamic version of TDH1 setup requires additional computations described in the follow-
ing. In order to ensure strong forward secrecy everyΠs

i must erase3 all secret information which
can be used to obtain K (this information includes ephemeral secrets Xi and ρ0, . . . , ρn, and K)
but in order to proceed with dynamic changes efficiently each Πs

i saves X ′i which is composed
of x′〈l,v〉 := gx

2
〈l,v〉 for each x〈l,v〉 from Xi. Intuitively, the knowledge of any x〈l,v〉 in Xi would

enable the adversary to compute K (if the sent protocol messages are stored). We show that this
kind of mapping prevents the adversary from recovering any x〈l,v〉 in later sessions.

10.2.2 TDH1.Join+

In order to handle join events the initial tree is updated, i.e., one new leaf node on top of the
initial tree is added for each joining oracle from J (Figure 10.3). Before all oracles can compute
the updated session group key K they need to compute the updated secret value x〈0,0〉 at the root
node of the updated tree. The computation process of x〈0,0〉 is like in the initialization procedure
but more efficient since initial participants do not need to compute all secret values x〈l,v〉 in their

2 By broadcast we abstractly mean that a message is sent to all participants. This can be also realized via multicast and unicast
connections, i.e., as a sequence of equal messages to different receivers. Note that the adversary can treat each of these
messages independently.

3 The most challenging task when using the (secure) erasure technique [76] to achieve strong forward secrecy in dynamic
GKE protocols is to ensure that some ephemeral information remains in order to provide efficient dynamic operations. Note
that previously proposed dynamic GKE protocols, e.g., [114], could not achieve this and provide security under standard
cryptographic assumptions at the same time.

186 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

paths up to the root (that is not the whole setXi as in the setup operation) but only those starting
from the level of the first joined oracle. For this purpose an oracle Πs

γ broadcasts a message
that contains updated Ŷ whereby 〈lγ, vγ〉 is the leaf node below the leaf node of the first joined
oracle. The same derivation process for K and the same erasure technique as in the setup is
applied to ensure contributiveness and strong forward secrecy, respectively.

10.2.3 TDH1.Leave+

In order to handle leave events the initial tree is updated, i.e., leaf nodes of leaving oracles from
L are deleted from the tree (Figure 10.4). All remaining oracles first update x〈0,0〉. Similar to
setup and join they start updating secret values x〈l,v〉 in their paths up to the root from a certain
level which depends on the deepest removed leaf node (thus more efficiently compared to setup).
For this purpose an oracle Πs

γ broadcasts a message that contains updated Ŷ whereby 〈lγ, vγ〉
is the leaf node below the deepest removed leaf node in the updated tree. The updated session
group key K is derived similar to setup and join, and the same erasure technique is applied at
the end of the operation.

10.3 Static TDH1

In this section we propose the static version of the TDH1 protocol and prove its security using
definitions of our model from Chapter 8. In order to simplify the description of the protocol and
to provide feeling for its implementation we first specify some auxiliary functions.

10.3.1 Authentication Functions

Authentication in TDH1 is achieved using a digital signature schemeΣ := (Gen, Sign, Verify).
We assume that each user Ui ∈ U holds a long-term key pair (ski, pki) := Σ.Gen(1κ). The
authentication mechanism of TDH1 consists of the functions:

• Auth_Sig(Ui,m). This function invokes Σ.Sign(ski,m) to obtain signature σ, which is
returned.

• Auth_Ver(Ui,m, σ). This function invokes Σ.Verify(pki, m, σ) and returns its output.
• Auth_Nonce(1κ). This function generates and returns a random nonce r ∈R {0, 1}κ.

10.3.2 Tree Management Function

In the TDH1 protocol each participating oracle Πsi
i is logically assigned to a leaf node 〈li, vi〉

of a binary tree Tn which is initialized during the setup protocol. We sometimes call 〈li, vi〉 the
position of Πsi

i in Tn. The TDH1 protocol uses linear binary trees such that dTn = n − 1 and
v ∈ {0, 1}, e.g., in Figure 10.1. The following function is responsible for the logical assignment
of n instance oracles to the binary tree Tn.

• Tree_Init(G). This function creates an empty tree structure Tn and assigns Πs
1 to the po-

sition 〈n− 1, 0〉 and each Πs
i , i = 2, . . . , n to 〈n+ 1− i, 1〉 in Tn. The function returns Tn.

(see Figure 10.1 for an example)

10.3 Static TDH1 187

〈2, 0〉 〈2, 1〉

〈1, 0〉 〈1, 1〉

〈0, 0〉

Πs
1 Πs

2

Πs
3

0 ≤ l ≤ 2 = dT3

Fig. 10.1. Example: Tree_Init. Linear Binary Tree T4. This Tree is Returned by Tree_Init on Input G = {Πs
1 ,Πs

2 ,Πs
3 ,Πs

4 .}

10.3.3 Key Exchange Functions

For the description of the static TDH1 protocol we require the following key exchange functions
where g is a generator of G from Section 10.1.1:

• TDH1_Exp(x〈l,v〉). The function returns y〈l,v〉 := gx〈l,v〉 .
• TDH1_Pick(1κ). The function picks x〈l,v〉 ∈R G and returns (x〈l,v〉, y〈l,v〉 := TDH1_Exp(x〈l,v〉)).
• TDH1_Up(l, v, x〈l,v〉, y〈l,1−v〉, Y) with Y := {y〈j,1〉| j = l− 1, . . . , 1}. The function computes
x〈l−1,0〉 := (y〈l,1−v〉)x〈l,v〉 , and returns

X := {x〈l,v〉, x〈l−1,0〉}
⋃
{x〈j,0〉 := (y〈j+1,1〉)x〈j+1,0〉 | y〈j+1,1〉 ∈ Y, ∀j = l − 2, . . . , 0}.

• TDH1_Exp?(l, X). The function returns Y := {y〈j,0〉 := TDH1_Exp(x〈j,0〉) | x〈j,0〉 ∈ X, ∀j =
l, . . . , 1}.

10.3.4 Key Confirmation and Derivation Functions

Let F :=
{
fk
}
k∈{0,1}κ , κ ∈ N be a collision-resistant pseudo-random function ensemble with

domain and range {0, 1}κ (Definitions 5.4 and 5.5) and π : {0, 1}κ → {0, 1}κ a one-way
permutation (Definition 5.2). The following function is used to compute the intermediate value
K and the key confirmation token µ.

• TDH1_Con(x〈0,0〉, r1| . . . |rn). The function computes x〈0,0〉bκ which is a κ-bit string composed
of κ least significant bits of x〈0,0〉. Then the function computes ρ0 := fx〈0,0〉bκ(v0), and each
ρl := fρl−1⊕π(rl)

(v0) for all l = {1, . . . , n}, where v0 is a constant public value. Let K := ρn.
Finally, the function computes µ := fK (v1) where v1 is a constant public value, and returns
(K,µ).

Note, this function has certain similarity to the computation process applied in our compiler
C-MACON from Chapter 9. Indeed, n-contributiveness and key confirmation for the TDH1 protocol
is achieved in the same way as in the mentioned compiler. However, we need to truncate x〈0,0〉
to a bit string of length κ in order to allow any pseudo-random function f to be used. Note that
according to Definition 5.4 a PRF key is a randomly chosen string of κ bits.

The actual session group key K in TDH1 is derived using the following function:

• TDH1_Key(K). The function returns K := fK (v2) where v2 6= v1 is a constant public value.

188 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

10.3.5 Protocol Execution

Having specified protocol functions for authentication, tree management, key exchange, and
key derivation we are now ready to describe the setup operation TDH1.Setup. Note that in the
static version of TDH1 this is the only operation to be considered.

Operation TDH1.Setup (Static Case)

Figure 10.2 shows an example of the TDH1.Setup operation with three participating oracles
Πs

1 , Πs
2 , and Πs

3 . Each oracle computes the same tree structure T3 (Figure 10.1). Each ora-

Πs
1 Πs

2 Πs
3

T3 := Tree_Init(G) T3 := Tree_Init(G)T3 := Tree_Init(G)

(x〈2,0〉, y〈2,0〉) := TDH1_Pick(1κ) (x〈2,1〉, y〈2,1〉) := TDH1_Pick(1κ) (x〈1,1〉, y〈1,1〉) := TDH1_Pick(1κ)

r1 := Auth_Nonce(1κ) r2 := Auth_Nonce(1κ) r3 := Auth_Nonce(1κ)

σ1 := Auth_Sig(U1, 0|y〈2,0〉|r1|pids
1) σ2 := Auth_Sig(U2, 0|y〈2,1〉|r2|pids

2) σ3 := Auth_Sig(U3, 0|y〈1,1〉|r3|pids
3)

U1|0|y〈2,0〉|r1|σ1 U2|0|y〈2,1〉|r2|σ2 U3|0|y〈1,1〉|r3|σ3

everyΠs
i6=j checksAuth_Ver(Uj , 0|y〈lj ,vj〉|rj |pids

i , σj)
?
= 1 and|rj |

?
= κ for all j = 1, 2, 3

broadcast round

X1 := TDH1_Up(2, 0, x〈2,0〉, y〈2,1〉, Y1)

X2 := TDH1_Up(2, 1, x〈2,1〉, y〈2,0〉, Y2) X3 := TDH1_Up(1, 1, x〈1,1〉, y〈1,0〉, Y3)

Ŷ := TDH1_Exp?(1, X1)

σ1 := Auth_Sig(U1, 1|Ŷ |sids
1|pids

1)

U1|1|Ŷ |σ1

everyΠs
i6=1 checksAuth_Ver(U1, 1|Ŷ |sids

i |pids
i , σ1)

?
= 1

broadcast round

(Ks
1 , µ1) := TDH1_Con(x〈0,0〉, sids

1) (Ks
2 , µ2) := TDH1_Con(x〈0,0〉, sids

2) (Ks
3 , µ3) := TDH1_Con(x〈0,0〉, sids

3)

σ1 := Auth_Sig(U1, 2|µ1|sids
1|pids

1) σ2 := Auth_Sig(U2, 2|µ2|sids
2|pids

2) σ3 := Auth_Sig(U3, 2|µ3|sids
3|pids

3)

U1|2|σ1 U2|2|σ2 U3|2|σ3

everyΠs
i6=j checksAuth_Ver(Uj , 2|µi|sids

i |pids
i , σj)

?
= 1

broadcast round

Ks
1 := TDH1_Key(Ks

1) Ks
2 := TDH1_Key(Ks

2) Ks
3 := TDH1_Key(Ks

3)

Fig. 10.2. Example: Operation TDH1.Setup (Static Case) with G = {Πs
1 , Π

s
2 , Π

s
3}. Public values: sidsi = r1|r2|r3, Y1 =

Y2 = {y〈1,1〉}, Y3 = ∅, Ŷ = {y〈1,0〉}, where y〈1,1〉 = gx〈1,1〉 , y〈1,0〉 = gx〈1,0〉 . Secret values: X1 = {x〈2,0〉, x〈1,0〉, x〈0,0〉},
X2 = {x〈2,1〉, x〈1,0〉, x〈0,0〉}, X3 = {x〈1,1〉, x〈0,0〉}, where x〈0,0〉 = gx〈1,0〉x〈1,1〉 , x〈1,0〉 = gx〈2,0〉x〈2,1〉 and x〈2,0〉, x〈2,1〉,
x〈1,1〉 ∈R G.

cle Πs
i chooses own secret exponent x〈li,vi〉 and sends y〈li,vi〉 := gx〈li,vi〉 together with own

randomly chosen nonce ri to each other oracle. Hence, each Πs
i is able to build Yi and

sidsi := r1| . . . |r3. Oracle Πs
1 builds X1 composed of the previously chosen x〈2,0〉, and com-

puted x〈1,0〉 := (y〈2,1〉)x〈2,0〉 , and x〈0,0〉 := (y〈1,1〉)x〈1,0〉 (note that y〈2,1〉 and y〈1,1〉 are received
in the previous round). Then Πs

1 builds Ŷ composed of y〈1,0〉 := gx〈1,0〉 and sends it to
Πs

2 and Πs
3 . Oracle Πs

2 builds X2 composed of the previously chosen x〈2,1〉, and computed
x〈1,0〉 := (y〈2,0〉)x〈2,1〉 , and x〈0,0〉 := (y〈1,1〉)x〈1,0〉 (note that y〈2,0〉 and y〈1,1〉 are received in the
first round). Oracle Πs

3 builds X3 composed of the previously chosen x〈1,1〉, and computed

10.3 Static TDH1 189

x〈0,0〉 := (y〈1,0〉)x〈1,1〉 (note that y〈1,0〉 is part of the previously received Ŷ). Thus, every or-
acle is in possession of x〈0,0〉 and sidsi = r1| . . . |r3, and is therefore able to compute the
intermediate value K , i.e., ρ0 := fx〈0,0〉bκ(v0), ρ1 := fρ0⊕π(r1)(v0), ρ2 := fρ1⊕π(r2)(v0), and
K = ρ3 := fρ2⊕π(r2)(v0), and the key confirmation token µ := fK (v1). The latter is used
to compute the corresponding signature, which is then sent to and verified by all other group
members prior to the acceptance with the session group key K.

In the following we give the formal description of the static TDH1.Setup operation.

Round 1. Each oracle Πs
i ∈ G computes Tn := Tree_Init(G), (x〈li,vi〉, y〈li,vi〉) :=

TDH1_Pick(1κ), ri := Auth_Nonce(1κ), σi := Auth_Sig(Ui, 0|y〈li,vi〉|ri|pidsi), and broad-
casts Ui|0|y〈li,vi〉|ri|σi.

Round 2. When Πs
i ∈G receives Uj|0|y〈lj ,vj〉|rj|σj from each Πs

j 6=i∈G it verifies Auth_Ver(

Uj , 0|y〈lj ,vj〉|rj|pidsi , σj) ?
= 1 and checks whether |rj| ?

= κ. If any of these verifications
fails then the protocol outputs a failure. Else each Πs

i ∈ G defines sidsi := r1| . . . |rn and
Yi := {y〈lj ,1〉 | ∀lj = li − 1, . . . , 1}. Then, Πs

1 computes X1 := TDH1_Up(n − 1, 0, x〈n−1,0〉,
y〈n−1,1〉, Y1), Ŷ := TDH1_Exp?(n−2,X1), σ1 := Auth_Sig(U1, 1|Ŷ |sids1|pids1), and broad-
casts U1|1|Ŷ |σ1.

Round 3. When Πs
i 6=1 ∈ G receives U1|1|Ŷ |σ1 it verifies Auth_Ver(U1, 1|Ŷ |sidsi |pidsi ,

σ1)
?
= 1. If this verification fails then the protocol outputs a failure. Else Πs

i 6=1 ∈ G ob-
tains Xi := TDH1_Up(li, vi, x〈li,vi〉, y〈li,1−vi〉, Yi). Each Πs

i ∈ G computes (Ks
i , µi) :=

TDH1_Con(x〈0,0〉, sidsi) where x〈0,0〉 ∈ Xi and erases every other private information from
statesi (including all x〈l,v〉, and ρ0, . . . , ρn) except for Ks

i . Further, it computes σi :=
Auth_Sig(Ui, 2|µi|sidsi |pidsi), and broadcasts Ui|2|σi.

Key Computation. When Πs
i ∈ G receives Uj|2|σj from each Πs

j 6=i ∈ G it verifies

Auth_Ver(Uj , 2|µi|sidsi |pidsi , σj) ?
= 1. If any of these verifications fails then the proto-

col outputs a failure. Else each Πs
i ∈G computes Ks

i := TDH1_Key(Ks
i), erases every other

private information from statesi (including Ks
i), and accepts with Ks

i .

Note that TDH1.Setup requires three communication rounds. Note also that the intermediate
value Ks

i is derived from x〈0,0〉 and that both these values are never sent over the public commu-
nication channel but computed locally by all participants upon receiving enough information.

10.3.6 Security Analysis of Static TDH1

Similar to the compilers in Chapter 9 our TDH1 protocol uses digital signature for the purpose
of authentication. Hence, following the discussion in Section 9.2.1 we assume that internal
states of participating oracles are independent from the long-lived keys of the corresponding
users in order to allow curios behavior of the adversary without necessarily corruption the user.
Thus, at any time during the execution of static TDH1 the internal state information statesU is
independent of LLU .

The following theorem shows that the static TDH1 protocol is AKE-secure with respect to
the requirements of backward secrecy in the weak-corruption model and forward secrecy in the
strong-corruption model.

190 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

Theorem 10.6 (AKE-Security of Static TDH1). Let (α, β) be an adversarial setting sampled
from {(wbs, wcm-bs),(sfs, scm)}. If Σ is EUF-CMA, F is pseudo-random, and the TDDH as-
sumption holds in G then TDH1 is AGKE-α, and

Advake
α,β,TDH1(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvTDDHTN ,G(κ) + 2(N + 3)qsAdvprf

F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 8 and corresponding events Winake
i as

the events that the output bit b′ of Gi is identical to the randomly chosen bit b in the game
Gameake−b

α,β,TDH1(κ).
Game G0. This game is the real game Gameake−b

α,β,TDH1(κ) played between a simulator ∆ and
an active adversary A. Assume that the Test query is asked to an α-fresh oracle Πs

i . Keep in
mind that on the test query the adversary receives either a random string or a session group key
Ks
i .
Game G1. This game is identical to Game G0 with the only exception that the simulation

fails and bit b′ is set at random if A asks a Send query on some Ui|seqn|m|σ (or Ui|seqn|σ)
with the sequence number seqn ∈ {0, 1, 2} such that σ is a valid signature on m (or on µi) that
has not been previously output by an oracle Πs

i before querying Corrupt(Ui). In other words
the simulation fails if A outputs a successful forgery; such event is denoted Forge. Hence,

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ Pr[Forge]. (10.5)

In order to estimate Pr[Forge] we show that using A we can construct a EUF-CMA forger
F against the signature scheme Σ as follows. F is given a public key pk and has access to
the corresponding signing oracle. F chooses uniformly at random a user Ui∗ ∈ U and defines
pki∗ := pk . All other key pairs, i.e., (ski, pki) for every Ui 6=i∗ ∈ U are generated honestly
using Σ.Gen(1κ). The forger simulates all queries of A in a natural way by executing TDH1

operations by itself, and by obtaining the necessary signatures with respect to pki∗ from its
signing oracle. This is a perfect simulation for A since by assumption no Corrupt(Ui∗) may
occur (otherwise F would not be able to answer it). Assuming Forge occurs, A outputs a new
valid message/signature pair with respect to some pki; since i∗ was randomly chosen and the
simulation is perfect, Pr[i = i∗] = 1/N . In that caseF outputs this pair as its forgery. Its success
probability is given by Pr[Forge]/N . This implies Pr[Forge] ≤ NSucceuf−cmaΣ (κ). Hence,

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ NSucceuf−cmaΣ (κ). (10.6)

Game G2. This game is identical to Game G1 except that the simulation fails and bit b′ is
set at random if a nonce ri is used by any uncorrupted user’s oracleΠs

i in two different sessions.
If qs is the total number of protocol sessions, the probability that a randomly chosen nonce ri
appears twice is bound by q2

s/2
κ for one given user. Since there are at most N users we obtain

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Nq2
s

2κ
. (10.7)

Note that this game excludes replay attacks in operations of TDH1.
Game G3. This game is identical to Game G2 except that the following rule is added: ∆

chooses q∗s ∈ [1, qs] as a guess for the number of sessions invoked before A asks the query

10.3 Static TDH1 191

Test. If this query does not occur in the q∗s-th session then the simulation fails and bit b′ is set
at random. Let Q be the event that this guess is correct. Obviously, Pr[Q] = 1/qs. Then we get

Pr[Winake
3

] = Pr[Winake
3
∧Q] + Pr[Winake

3
∧ ¬Q]

= Pr[Winake
3
|Q] Pr[Q] + Pr[Winake

3
|¬Q] Pr[¬Q]

= Pr[Winake
2

]
1

qs
+

1

2

(
1− 1

qs

)
.

This implies

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1

2
. (10.8)

Game G4. This game is identical to Game G3 except that ∆ is given a tuple from the real
TDDH?TN distribution (as specified in Section 10.1.2) where TN is a linear tree. In all sessions
except for the q∗s-th session ∆ computes all secret values x〈l,v〉 on behalf of honest participants
as specified in the protocol description. In the q∗s-th session with n participants ∆ injects public
values gx〈l,v〉 from TDDH?TN into the protocol execution. Note that in the q∗s-th session the group
size nmight be smaller thanN , thus the simulator considers only the tree Tn which is composed
of TN ’s nodes from level 0 to level n− 1. The idea for the simulation is to assign Πs

1 to the (in-
ternal) node 〈n− 1, 0〉, Πs

2 to the leaf node 〈n− 1, 1〉, . . ., Πs
n to the leaf node 〈1, 1〉, and to use

for each node 〈l, v〉 ∈ Tn \ 〈0, 0〉 public values gx〈l,v〉 taken from the given TDDH?TN distribution.
The secret value x〈0,0〉 used for the function TDH1_Con in the q∗s-th session for all honest partic-
ipants is also taken from the TDDH?TN distribution (thus x〈0,0〉 := gx〈1,0〉x〈1,0〉). Since the session
where the Test query is asked in must be α-fresh, we can deduce that no RevealState queries
to Πs

i or to any of its partners have been asked in the q∗s-th session (assuming the guess of ∆ is
correct); otherwise ∆ would not be able to answer them since it does not known secret values
x〈l,v〉 of internal and leaf nodes of Tn with respect to TDDH?TN . However, in all other sessions
where ∆ computes all x〈l,v〉 on behalf of honest participants as specified in the protocol descrip-
tion RevealState queries can be easily answered. Note that as soon as honest oracles accept in
the q∗s-th session x〈0,0〉 is erased, and thus remains unknown to A.

Since TDDH?TN is a real distribution we conclude that this game is a “bridging step” so that

Pr[Winake
4

] = Pr[Winake
3

]. (10.9)

Game G5. This game is identical to Game G4 except that∆ is given a tuple from the random
TDDH$

TN
distribution where TN is a linear tree. Similar to Game G4, in all sessions except for

the q∗s-th session ∆ computes all secret values x〈l,v〉 on behalf of honest participants as specified
in the protocol description. In the q∗s-th session with n participants ∆ injects gx〈l,v〉 values from
TDDH$

TN
into the protocol execution. Again, since in the q∗s-th session the group size n might be

smaller than N the simulator considers only the tree Tn which is composed of TN ’s nodes from
level 0 to level n−1 (the same assignment idea as above). Thus, for each node 〈l, v〉 ∈ Tn\〈0, 0〉
the simulator uses public values gx〈l,v〉 taken from the given TDDH$

TN
distribution. Thus, the secret

value x〈0,0〉 used for the function TDH1_Con in the q∗s-th session for all honest participants is also
taken from TDDH$

TN
implying that x〈0,0〉 := gr, r ∈R G. Since the session where the Test query

is asked in must be α-fresh, we can deduce that no RevealState queries to Πs
i or to any of its

partners have been asked in the q∗s-th session (assuming the guess of ∆ is correct); otherwise ∆
would not be able to answer them. However, in all other sessions where ∆ computes all x〈l,v〉 on

192 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

behalf of honest participants as specified in the protocol description RevealState queries can
be easily answered. Note that as soon as honest oracles accept in the q∗s-th session the random
x〈0,0〉 is erased, and thus remains unknown to A. By a “hybrid argument” we get

|Pr[Winake
5

]− Pr[Winake
4

]| ≤ AdvTDDHTN ,G(κ). (10.10)

Note that in this game x〈0,0〉 = gr〈0,0〉 is a uniformly distributed value in G (or equivalently
in Zq).

Game G6. This game is identical to Game G5 except that in the q∗s-th session a random bit
string sampled from {0, 1}κ is used instead of the truncated value x〈0,0〉bκ inside the function
TDH1_Con. Since in Game G5 the entire value x〈0,0〉 is already random in G (and according to
Corollary 10.2 and Remark 10.3 also uniform in Zq) both games are identical. Thus, replacing
x〈0,0〉 with a randomly sampled bit string can be seen as a “bridging step” so that

Pr[Winake
6

] = Pr[Winake
5

]. (10.11)

Game G7. This game is identical to Game G6 except that in the q∗s-th session each ρi, i =
0, . . . , n is replaced by a random value sampled from {0, 1}κ. Notice, this implies that K is
uniformly distributed in this session.

In order to estimate the difference to the previous game we apply the “hybrid technique” and
define auxiliary games G′

7,l
, l = 0, . . . , n + 1 such that G′

7,0
= G6 and G′

7,n+1 = G7 . That
is, in the q∗s-th session in each G′

7,l
the intermediate values ρi, i ≤ l, are computed as specified

in the protocol (as output of the pseudo-random function f) whereas in G′
7,l+1 these values are

chosen at random from {0, 1}κ. Note that each replacement of ρi, i = 0, . . . , n− 1 by a random
bit string implies uniform distribution of the PRF key ρi ⊕ π(ri+1) used in the computation of
ρi+1, and that x〈0,0〉bκ used to compute ρ0 is already uniform according to Game G6.

Since n ≤ N we get

|Pr[Winake
7

]− Pr[Winake
6

]| ≤ (N + 1)Advprf
F (κ). (10.12)

Game G8. This game is identical to Game G7 except that in the q∗s-th session the confirma-
tion token µ and the session group key K are replaced by two different random values sampled
from {0, 1}κ. This can be done since the intermediate value K is uniformly distributed accord-
ing to Game G7. Obviously,

|Pr[Winake
8

]− Pr[Winake
7

]| ≤ 2Advprf
F (κ). (10.13)

Since K is uniformly distributed A gains no advantage from the obtained information and
cannot, therefore, guess b better than by a random choice, i.e.,

Pr[Winake
8

] =
1

2
. (10.14)

Considering Equations 10.6 to 10.14 we get

Pr[Gameake−b
α,β,TDH1(κ) = b] = Pr[Winake

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ Pr[Winake

2]

= NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qs

(
Pr[Winake

8
]− 1

2

)
+

1

2

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsAdvTDDHTN ,G(κ) + (N + 3)qsAdvprf

F (κ) +
1

2
.

10.3 Static TDH1 193

This results in the desired inequality

Advake
α,β,TDH1(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdvTDDHTN ,G(κ) + 2(N + 3)qsAdvprf

F (κ).

ut
In the following we show that TDH1 satisfies the requirement of MA-security.

Theorem 10.7 (MA-Security of TDH1). If Σ is EUF-CMA and F is collision-resistant then
TDH1 is MAGKE, and

Succma
TDH1(κ) ≤ NSucceuf−cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 2 and corresponding events Winma
i mean-

ing that A wins in Gi. The queries made by A are answered by a simulator ∆.
Game G0. This game is the real game Gamema

TDH1(κ) played between a simulator ∆ and A.
Note that the goal ofA is to achieve that there exists an uncorrupted user Ui whose correspond-
ing oracle Πs

i accepts with Ks
i and another user Uj ∈ pidsi that is uncorrupted at the time Πs

i

accepts and either does not have a corresponding oracle Πs
j with (pidsj , sid

s
j) = (pidsi , sid

s
i)

or has such an oracle but this oracle accepts with Ks
i 6= Ks

j .
Game G1. This game is identical to Game G0 with the only exception that the simulation

aborts ifA asks a Send query on some Ui|seqn|m|σ (or on Ui|seqn|σ) with the sequence num-
ber seqn ∈ {0, 1, 2} such that σ is a valid signature on m (on µi) that has not been previously
output by an oracle Πs

i before querying Corrupt(Ui), i.e., the simulation fails if A outputs a
successful forgery. According to Equation 10.6 we obtain,

|Pr[Winma
1

]− Pr[Winma
0

]| ≤ NSucceuf−cmaΣ (κ) (10.15)

Game G2. This game is identical to Game G1 except that the simulation fails if a nonce ri
is used by any uncorrupted user’s oracle Πs

i in two different sessions. Similar to Equation 10.7
we get

|Pr[Winma
2

]− Pr[Winma
1

]| ≤ Nq2
s

2κ
(10.16)

Note that this eliminates attacks whereΠs
i during any session of the TDH1 protocol receives a

replayed message of the form Uj|seqn|m|σ̄j or Uj|seqn|σ̄j where Uj is uncorrupted and σ̄j is a
signature computed by its oracle in some previous session. Note that Πs

i does not accept unless
it successfully verifies all required σj for all Uj ∈ pidsi . Having excluded forgeries and replay
attacks we follow that for every user Uj ∈ pidsi that is uncorrupted at the time Πs

i accepts there
exists a corresponding instance oracle Πs

j with (pidsj , sid
s
j) = (pidsi , sid

s
i). Thus, according

to Definition 8.15 A wins in this game only if any of these oracles has accepted with Ks
i 6= Ks

j .
Assume that A wins in this game. Then Πs

i and Πs
j have accepted with Ks

i = fKs
i
(v2)

resp. Ks
i = fKs

j
(v2) where Ks

i resp. Ks
j are corresponding intermediate values, and Ks

i 6= Ks
j .

Having eliminated forgeries and replay attacks between the oracles of any two uncorrupted
users we follow that messages exchanged between Πs

i and Πs
j have been delivered without any

modification. In particular, oracle Πs
i received the signature σj computed on µj = fKs

j
(v1) and

Πs
j received the signature σi computed on µi = fKs

i
(v1). Since both oracles have accepted we

194 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

have µi = µj; otherwise oracles cannot have accepted because signature verification would fail.
The probability that A wins in this game is given by

Pr[Ks
i 6= Ks

j ∧ fKs
i
(v1) = fKs

j
(v1)] =

Pr[fKs
i
(v2) 6= fKs

j
(v2) ∧ fKs

i
(v1) = fKs

j
(v1)] ≤ qsSucccoll

F (κ).

Hence,
|Pr[Winma

2
]− Pr[Winma

1
]| ≤ qsSucccoll

F (κ). (10.17)

Considering Equations 10.15 to 10.17 we get the desired inequality

Succma
TDH1(κ) = Pr[Winma

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qsSucccoll

F (κ).

ut
In the following we focus on several aspects concerning the n-contributiveness of TDH1.

Recall that our Definition 8.18 ensures that the adversary A fails to influence some honest par-
ticipant Πs

U to accept the session group key chosen by A. In particular, we mentioned that it
prevents attacks where a session group key repeats in two different sessions due to the adversar-
ial actions. We also mentioned that in the TDH1 protocol the random nonces ri and the function
TDH1_Con(x〈0,0〉, r1| . . . |rn) are used to provide contributiveness. Note that in TDH1 the adver-
sary is able to influence the resulting value for x〈0,0〉 (as shown below). Therefore, in our proof
we show that despite being able to influence x〈0,0〉 the adversary is still unable to influence the
resulting session group key K.

How can A influence x〈0,0〉 in TDH1?

Before proceeding with the proof of n-contributiveness of TDH1 in Theorem 10.8, we would
like to show how A can influence x〈0,0〉, more precisely the goal of A is to influence that the
same x〈0,0〉 is computed by the oracles of some uncorrupted user in two different sessions. For
simplicity we assume three participants: Πs

1 , Πs
2 , and Πs

3 , and consider that Πs
1 and Πs

3 are
malicious (controlled by A) whereas Πs

2 is honest. We consider two different sessions: session
A and session B, whereby session B takes place later than A. In both sessions the tree is as in
Figure 10.1. We assume that in session A all oracles behave as specified in the protocol except
that neitherΠs

1 norΠs
3 erase their states. At some point before session B is started, the adversary

A (that controls Πs
1 and Πs

3) computes z := x〈1,0〉x〈1,1〉 where x〈1,0〉 is a value computed by Πs
1

and x〈1,1〉 is the exponent chosen by Πs
3 in session A. Obviously, gz equals to x〈0,0〉 computed

by all oracles in session A. The goal of A is to influence honest Πs′
2 to compute the same

x〈0,0〉 in session B. In session B, the exponent x〈2,1〉 used by honest Πs′
2 is likely to be different

compared to session A. To proceed with the attack A waits for Πs′
2 to broadcast y〈2,1〉 = gx〈2,1〉

in session B (note the communication is asymmetric). Then, the adversary shows its curiosity by
revealing x〈2,1〉 (via the RevealState(Πs′

2) query); chooses x〈2,0〉 truly at random on behalf of
Πs′

1 , computes x〈1,0〉 := gx〈2,0〉x〈2,1〉 and x〈1,1〉 := z/x〈1,0〉. To complete the attack, A broadcasts
y〈2,0〉 := gx〈2,0〉 and y〈1,1〉 := gx〈1,1〉 on behalf of Πs′

1 and Πs′
3 , respectively. It is easy to check

that Πs′
2 computes x〈0,0〉 = gz in session B.

In the following theorem we argue that the ability to influence x〈0,0〉 does not provide the ad-
versaryAwith any additional advantage in its attack on influencing/predicting the session group

10.3 Static TDH1 195

key K. Similar to the argumentation in Theorem 9.34 we discuss the probability that for an
honest participant Πs

i∗ the adversary A is able to influence/predict any of the values ρi∗ , . . . , ρn
(note that K = ρn), or K computed by the collision-resistant pseudo-random function f. This
is equivalent to the event that in the prepare stage A is able to output any ρi∗ , . . . , ρn, or K
which Πs

i∗ computes in any session of the attack stage. Note that according to Lemma 5.20 in
our proof we do also consider the upper-bound for the success probability of the adversary in
case that its strategy differs from influencing any value in ρi∗ , . . . , ρn.

Theorem 10.8 (n-Contributiveness of Static TDH1). If F is collision-resistant pseudo-random
and π is one-way then static TDH1 is a n-CGKE protocol, and

Succcon−n
TDH1 (κ) ≤ Nq2

s +Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ),

where qs is the total number of executed protocol sessions.

Remark 10.9. Note that some arguments in this proof are intuitive for the same reasons as men-
tioned in Remark 9.12.

Proof (partially informal). In the following we consider an adversary A from Definition 8.18.
Assume that A wins in Gamecon−n

TDH1 (κ) (which event we denote Wincon). Then at the end of the
stage prepare it returned K̃ such that in the stage attack an honest oracle Πs

i∗ ∈ G accepted
with Ks

i∗ = K̃. According to the construction of Ks
i∗ we follow that K̃ = fKs

i∗ (v2) where Ks
i∗

is the intermediate value computed by Πs
i∗ .

Game G0. This is the real game Gamecon−n
TDH1 (κ), in which the honest players are replaced by

a simulator.
Game G1. In this game we abort the simulation if the same nonce ri is used by any honest

oracle Πs
i in two different sessions. Considering ri being uniform for every honest oracle Πs

i ,
and since there are at most N users we have

Pr[Wincon
0

]− Pr[Wincon
1

] ≤ Nq2
s

2κ
. (10.18)

Game G2. This game is identical to Game G1 with the “condition event” thatA being in the
prepare stage is NOT able to output ρi∗ computed by Πs

i∗ in any session of the attack stage.4

According to Lemma 5.20 we need to estimate the probability of the opposite event, i.e., thatA
being in the prepare stage is able to output ρi∗ . We consider two cases: i∗ = 1 and i∗ > 1. Note
that all other oracles except for Πs

i∗ can be corrupted.
Case i∗ = 1: In any session of the attack stage honest oracle Πs

1 computes ρ1 :=
fρ0⊕π(r1)(v0). Intuitively, without knowing the PRF key given by the XOR sum ρ0 ⊕ π(r1)
(denoted R1) in the prepare stageA’s probability to output ρ1 = fR1(v0) in that stage is bound
by the probability that either A chooses a different PRF key and succeeds (thus a PRF collision
occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to discuss the
case whereA chooses R1 in the prepare stage and tries to influence Πs

1 computing exactly this
value in some session of the attack stage. Note that the honest oracle Πs

1 chooses r1 uniformly

4 Note, in G0 and G1 the adversary only outputs a value for the resulting group key. In G2 we consider the additional
(in)ability of the adversary to output the value for ρi∗ . Since we are only interested in the probability of the adversarial
success under this “condition event” (without changing the game in case that this event occurs; see also Section 5.6.1) the
simulator does not need to detect whetherA is able to output the correct value or not. The same considerations are applicable
to G3 w.r.t. Ks

i∗ .

196 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

at random for every session in the attack stage. Since π is a permutation the value π(r1) is
also uniform and fixed for every attack-ed session. Hence, the adversary must influence in the
attack-ed session the oracle Πs

i∗ to compute ρ0 = R1 ⊕ π(r1) which is fixed and uniformly
distributed for each such session. Note that A learns the required ρ0 only after having received
r1, that is during the attack-ed session. Since Ui∗ is uncorrupted its oracle computes ρ0 accord-
ing to the protocol specification, that is ρ0 := fx〈0,0〉(v0). Having excluded PRF collisions and
random guesses we consider the required PRF key x〈0,0〉 (which is influenceable byA as shown
above) as a fixed value unknown toA in any session of the attack stage. The probability thatA
recovers it is intuitively bound by Advprf

F (κ). This is because any adversary that is able to reveal
the PRF key can act as a distinguisher for the pseudo-randomness of f.

Case i∗ > 1: In any session of the attack stage honest oracle Πs
i∗ computes ρi∗ :=

fρi∗−1⊕π(r
i∗)(v0). Intuitively, without knowing the PRF key given by the XOR sum ρi∗−1⊕π(ri∗)

(denoted Ri∗) in the prepare stage A’s probability to output ρi∗ = fRi∗ (v0) in that stage is
bound by the probability that either A chooses a different PRF key and succeeds (thus a PRF
collision occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to dis-
cuss the case where A chooses Ri∗ in the prepare stage and tries to influence Πs

i∗ computing
exactly this value in some session of the attack stage. Since ri∗ is chosen by honest Πs

i∗ at ran-
dom in every attack-ed session and π is a permutation the value π(ri∗) is uniform and fixed for
each attack-ed session. Hence, the adversary must influence in the attack stage the oracle Πs

i∗

to compute ρi∗−1 = Ri∗ ⊕ π(ri∗) which is fixed and uniformly distributed for each attack-ed
session. Note that A learns the required ρi∗−1 only after having received ri∗ , that is during the
attack-ed session. Since Ui∗ is uncorrupted its oracle computes ρi∗−1 according to the protocol
specification, that is ρi∗−1 := fρi∗−2⊕π(r

i∗−1
)(v0). Having excluded PRF collisions and random

guesses we consider the PRF key ρi∗−2 ⊕ π(ri∗−1) as a fixed value unknown to the adversary.
The probability that A recovers it is intuitively bound by Advprf

F (κ). This is because any adver-
sary that is able to reveal the PRF key can act as a distinguisher for the pseudo-randomness of
f.

Since there are at most N users and qs sessions we have,

Pr[Wincon
1

]− Pr[Wincon
2

] ≤ qsSucccoll
F (κ) + qsAdvprf

F (κ) +
qs

2κ
. (10.19)

As a consequence of the “condition event” in this game, in every subsequent game of the se-
quence the adversary, while being in the prepare stage, is not able to output ρi∗ computed by
Πs
i∗ in any session of the attack stage. Note that we do not need to consider the values ρl, l < i∗

computed by Πs
i∗ since in order to compute Ks

i∗ every honest oracle must compute the whole
sequence ρ0, . . . , ρn. Thus, it is sufficient to argue that the probability of A influencing any ρl,
l ≥ i∗, computed by Πs

i∗ in any attack-ed session is negligible.
Game G3. This game is identical to Game G2 with the “condition event” thatA being in the

prepare stage is NOT able to output Ks
i∗ := ρn computed by Πs

i∗ in any session of the attack
stage. Again, the simulator does not need to detect whether this event occurs since both games
proceed identical in any case. According to Lemma 5.20 we need to estimate the probability of
the opposite event, i.e., that A being in the prepare stage is able to output Ks

i∗ .
Based on the “hybrid technique” (used for the first time in the proof of Theorem 9.11) we

define a sequence of auxiliary games G′
3,l

, l = i∗, . . . , n. Each of these games is identical
to the previous one in the sequence with the “condition event” that A being in the prepare
stage is NOT able to output ρl computed by Πs

i∗ in any session of the attack stage. Obviously,
G′

3,i∗ = G2 and G′
3,n

= G3 . According to Lemma 5.20 we need to estimate the probability that
A being in the prepare stage is able to output ρl.

10.3 Static TDH1 197

Since ρl := fρl−1⊕π(rl)
(v0) for all l > i∗ and each rl is not chosen by Πs

i∗ each two consecu-
tive auxiliary games have the same difference. Hence, it is sufficient to compute this difference
between any two consecutive auxiliary games. In the following we compute the difference be-
tween G′

3,i∗+1 and G′
3,i∗ = G2 . We intuitively estimate the probability that A being in the

prepare stage is able to output ρi∗+1 computed by Πs
i∗ in any session of the attack stage.

We argue by intuition. Since Πs
i∗ is honest, in the attack stage it computes ρi∗+1 :=

fρi∗⊕π(r
i∗+1

)(v0). Intuitively, without knowing the PRF key given by the XOR sum ρi∗⊕π(ri∗+1)

(denoted Ri∗+1) in the prepare stage A’s probability to output ρi∗+1 = fRi∗+1
(v0) in that stage

is bound by the probability that either A chooses a different PRF key and succeeds (thus a PRF
collision occurs) or succeeds by a random guess, i.e., Succcoll

F (κ) + 1/2κ. Thus, we have to dis-
cuss the case whereA chooses Ri∗+1 in the prepare stage and tries to influence Πs

i∗ computing
exactly this value in some session of the attack stage. Recall that A is allowed to corrupt any
user Ul 6=i∗ , and thus choose each nonce rl, l 6= i∗. Since A learns ρi∗ only in the attack-ed
session (as observed in Game G2) and having excluded PRF collisions and random guesses
the probability that A is able to influence Πs

i∗ computing Ri∗+1 in the attack stage is bound
by the probability that in the attack-ed session A computes the appropriate nonce ri∗+1 such
that π(ri∗+1) = Ri∗+1 ⊕ ρi∗ holds. Since π is one-way this probability is intuitively bound by
Succow

π (κ). Thus, A is able to output ρi∗+1 while being in the prepare stage with the proba-
bility of at most Succcoll

F (κ) + Succow
π (κ) + 1/2κ. Since there are at most qs sessions the total

probability that A is able to do this is at most

qsSucccoll
F (κ) + qsSuccow

π (κ) +
qs

2κ
.

The above sum upper-bounds the difference between G′
3,i+1 and G2 . Since there are at most

N auxiliary games (due to n ≤ N) we obtain

Pr[Wincon
2

]− Pr[Wincon
3

] ≤ NqsSucccoll
F (κ) +NqsSuccow

π (κ) +
Nqs

2κ
. (10.20)

As a consequence of the “condition event” in this game, in every subsequent game of the
sequence the adversary, while being in the prepare stage, is not able to output Ks

i∗ computed
by Πs

i∗ in any session of the attack stage.
Game G4. This game is identical to Game G3 with the “condition event” that A being in

the prepare stage is NOT able to output Ks
i∗ computed by Πs

i∗ in any session of the attack
stage. Note that in every attack-ed session, the honest oracle Πs

i∗ computes Ks
i∗ := fKs

i∗ (v2).
Intuitively, since in the prepare stage Ks

i∗ is unknown to A (as observed in Game G3), A’s
probability to output Ks

i∗ in that stage is bound by the probability thatA chooses a different PRF
key and succeeds (thus a PRF collision occurs) or succeeds by a random guess, i.e., Succcoll

F (κ)+
1/2κ. Hence,

Pr[Wincon
3

]− Pr[Wincon
4

] ≤ qsSucccoll
F (κ) +

qs

2κ
. (10.21)

Obviously the probability of Wincon
4

is 0, meaning that the adversary did not output a correct
value K̃ in the prepare stage.

Considering Equations 10.18 to 10.21 we obtain the desired inequality

Succcon−n
TDH1 (κ) ≤ Nq2

s +Nqs + 2qs

2κ
+ (N + 2)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ).

ut

198 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

Remark 10.10. Similar to the compilers C-ACON and C-AMACON, the role of nonces ri in TDH1 is
twofold: they ensure security against replay attacks and are also used to provide contributiveness
for the resulting session group key.

10.4 Dynamic TDH1

In this section we extend the static version of the TDH1 protocol from the previous section by
additional operations TDH1.Join+ and TDH1.Leave+ which are supposed to handle addition and
exclusion of group members, respectively. For the description of this dynamic version of the
TDH1 protocol we need the same authentication and key confirmation and derivation functions
given in Sections 10.3.1 and 10.3.4, respectively. Additionally, we require some new functions
concerning tree management and key exchange.

10.4.1 Additional Tree Management Functions

In addition to the initial tree management function Tree_Init described in Section 10.3.2 the
dynamic TDH1 protocol requires functions to handle dynamic group changes. For each change
the tree structure and the assignment of users to the corresponding leaf nodes has to be updated.

There is a special oracle Πs
γ ∈ G which is involved in all dynamic changes. The index γ of

this oracle depends on the event to be handled and on the current group G with the corresponding
tree structure Tn. In the following we describe the additional tree management functions called
TDH1.Join+ and TDH1.Leave+.

• Tree_Join+(Tn,G,J). Let n := |G| and nJ := |J |. This function prepends nJ leaf nodes to
the root of Tn resulting in the updated tree Tn+nJ . Then, the function assigns each Πs′

j ∈ J ,
j = 1, . . . , nJ , to the position 〈n+ j, 1〉 in Tn+nJ and changes its index to n + j. Finally,
Πs
γ := Πs

n. The function returns (Tn+nJ , G := {Πs
1 , . . . , Π

s
n+nJ
}, Πs

γ). (see Figure 10.3 for
an example)

• Tree_Leave+(Tn,G,L). Let n := |G| and nL := |L|. This function removes 〈lj, vj〉 for each
Πs
j ∈ L from Tn resulting in the updated tree Tn−nL . For each Πs

i ∈ G \ L the index is
changed to i−#Li where #Li is the number of lower indexed oracles removed from Tn. If
indices of all oracles have been changed thenΠs

γ = Πs
1 , elseΠs

γ is the highest indexed oracle
whose index remained unchanged. The function returns (Tn−nL , G := {Πs

1 , . . . , Π
s
n−nL},

Πs
γ). (see Figure 10.4 for an example)

Note that one of the outputs of functions Tree_Join+ and Tree_Leave+ is a modified group
G := G⋃J and G := G \ L, respectively.

10.4.2 Additional Key Exchange Functions

In addition to the key exchange functions described in Section 10.3.3 the dynamic version of
TDH1 requires the following functions:

• TDH1_Rand(X). The function returns X ′ := {gx2
〈l,v〉 | ∀x〈l,v〉 ∈ X}.

• TDH1_Up?(l, x〈l,0〉, Y). The function returns

X := {x〈j−1,0〉 := (y〈j,1〉)x〈j,0〉 | y〈j,1〉 ∈ Y, ∀j = l, . . . , 1}.

10.4 Dynamic TDH1 199

〈3, 0〉 〈3, 1〉

〈2, 0〉

Πs
1 Πs

2

〈2, 1〉

〈1, 0〉 〈1, 1〉

〈0, 0〉

Πs
3

Πs
4

Fig. 10.3. Example: Tree_Join+. This tree is returned by
Tree_Join+ on input T3 and G as in Figure 10.1, and
J = {Πs′

1 }. Note that Πs′
1 has been changed to Πs

4 , G =
{Πs

1 , . . . , Π
s
4} and Πs

γ is Πs
3 .

〈2, 0〉 〈2, 1〉

〈1, 0〉 〈1, 1〉

〈0, 0〉

Πs
1 Πs

2

Πs
3

Fig. 10.4. Example: Tree_Leave+. This tree is returned by
Tree_Leave+ on input T4 and G as in Figure 10.3, and L =
{Πs

3}. Note that Πs
4 is changed to Πs

3 since #L1 = #L2 =
0, and #L4 = 1. Πs

γ is Πs
2 .

10.4.3 Protocol Execution

In order to process dynamic group changes more efficiently compared to the initialization pro-
cedure participants of the dynamic TDH1 protocol need to save some additional private state
information. For this purpose we need to extend the static setup operation of TDH1 with addi-
tional computation steps, which are also required in both dynamic operations TDH1.Join+ and
TDH1.Leave+.

Operation TDH1.Setup (Dynamic Case)

Figure 10.5 shows an example of the dynamic TDH1.Setup operation with three participating
oracles Πs

1 , Πs
2 , and Πs

3 . The oracles proceed exactly as described for the static version of
TDH1.Setup in Figure 10.2 until each of them computes ρ0 := fx〈0,0〉bκ(v0), ρ1 := fρ0⊕π(r1)(v0),
ρ2 := fρ1⊕π(r2)(v0), the intermediate value K = ρ3 := fρ2⊕π(r2)(v0), and the resulting session
group key K := fK (v2). Additionally, eachΠs

i computesX ′i, i.e.,X ′1 := {gx2
〈2,0〉 , gx

2
〈1,0〉 , gx

2
〈0,0〉},

X ′2 := {gx2
〈2,1〉 , gx

2
〈1,0〉 , gx

2
〈0,0〉}, and X ′3 := {gx2

〈1,1〉 , gx
2
〈0,0〉}. Each Πs

i saves (G, T3, Xi) and erases
all other state information. Let each updated gx

2
〈l,v〉 be denoted as x′〈l,v〉. Note that Πs

1 and Πs
2

still share x′〈1,0〉 and x′〈0,0〉, and all three oracles still share x′〈0,0〉.
In the following we give the formal description of the dynamic TDH1.Setup operation.

Round 1. Each oracle Πs
i ∈ G computes Tn := Tree_Init(G), (x〈li,vi〉, y〈li,vi〉) :=

TDH1_Pick(1κ), ri := Auth_Nonce(1κ), σi := Auth_Sig(Ui, 0|y〈li,vi〉|ri|pidsi), and broad-
casts Ui|0|y〈li,vi〉|ri|σi.

Round 2. When Πs
i ∈G receives Uj|0|y〈lj ,vj〉|rj|σj from each Πs

j 6=i∈G it verifies Auth_Ver(

Uj , 0|y〈lj ,vj〉|rj|pidsi , σj) ?
= 1 and checks whether |rj| ?

= κ. If any of these verifications
fails then the protocol outputs a failure. Else each Πs

i ∈ G defines sidsi := r1| . . . |rn and
Yi := {y〈lj ,1〉 | ∀lj = li − 1, . . . , 1}. Then, Πs

1 computes X1 := TDH1_Up(n − 1, 0, x〈n−1,0〉,
y〈n−1,1〉, Y1), Ŷ := TDH1_Exp?(n−2,X1), σ1 := Auth_Sig(U1, 1|Ŷ |sids1|pids1), and broad-
casts U1|1|Ŷ |σ1.

200 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

Πs
1 Πs

2 Πs
3

T3 := Tree_Init(G) T3 := Tree_Init(G)T3 := Tree_Init(G)

(x〈2,0〉, y〈2,0〉) := TDH1_Pick(1κ) (x〈2,1〉, y〈2,1〉) := TDH1_Pick(1κ) (x〈1,1〉, y〈1,1〉) := TDH1_Pick(1κ)

r1 := Auth_Nonce(1κ) r2 := Auth_Nonce(1κ) r3 := Auth_Nonce(1κ)

σ1 := Auth_Sig(U1, 0|y〈2,0〉|r1|pids
1) σ2 := Auth_Sig(U2, 0|y〈2,1〉|r2|pids

2) σ3 := Auth_Sig(U3, 0|y〈1,1〉|r3|pids
3)

U1|0|y〈2,0〉|r1|σ1 U2|0|y〈2,1〉|r2|σ2 U3|0|y〈1,1〉|r3|σ3

everyΠs
i6=j checksAuth_Ver(Uj , 0|y〈lj ,vj〉|rj |pids

i , σj)
?
= 1 and|rj |

?
= κ for all j = 1, 2, 3

broadcast round

X1 := TDH1_Up(2, 0, x〈2,0〉, y〈2,1〉, Y1)

X2 := TDH1_Up(2, 1, x〈2,1〉, y〈2,0〉, Y2) X3 := TDH1_Up(1, 1, x〈1,1〉, y〈1,0〉, Y3)

Ŷ := TDH1_Exp?(1, X1)

σ1 := Auth_Sig(U1, 1|Ŷ |sids
1|pids

1)

U1|1|Ŷ |σ1

everyΠs
i6=1 checksAuth_Ver(U1, 1|Ŷ |sids

i |pids
i , σ1)

?
= 1

broadcast round

X′
2 := TDH1_Rand(X2)X′

1 := TDH1_Rand(X1) X′
3 := TDH1_Rand(X3)

(Ks
1 , µ1) := TDH1_Con(x〈0,0〉, sids

1) (Ks
2 , µ2) := TDH1_Con(x〈0,0〉, sids

2) (Ks
3 , µ3) := TDH1_Con(x〈0,0〉, sids

3)

σ1 := Auth_Sig(U1, 2|µ1|sids
1|pids

1) σ2 := Auth_Sig(U2, 2|µ2|sids
2|pids

2) σ3 := Auth_Sig(U3, 2|µ3|sids
3|pids

3)

U1|2|σ1 U2|2|σ2 U3|2|σ3

everyΠs
i6=j checksAuth_Ver(Uj , 2|µi|sids

i |pids
i , σj)

?
= 1

broadcast round

Ks
1 := TDH1_Key(Ks

1) Ks
2 := TDH1_Key(Ks

2) Ks
3 := TDH1_Key(Ks

3)

Fig. 10.5. Example: Operation TDH1.Setup (Dynamic Case) with G = {Πs
1 , Π

s
2 , Π

s
3}. Public values: sidsi = r1|r2|r3, Y1 =

Y2 = {y〈1,1〉}, Y3 = ∅, Ŷ = {y〈1,0〉}, where y〈1,1〉 = gx〈1,1〉 , y〈1,0〉 = gx〈1,0〉 . Secret values: X1 = {x〈2,0〉, x〈1,0〉, x〈0,0〉},
X2 = {x〈2,1〉, x〈1,0〉, x〈0,0〉}, X3 = {x〈1,1〉, x〈0,0〉}, where x〈0,0〉 = gx〈1,0〉x〈1,1〉 , x〈1,0〉 = gx〈2,0〉x〈2,1〉 and x〈2,0〉, x〈2,1〉,
x〈1,1〉 ∈R G.

Round 3. When Πs
i 6=1 ∈ G receives U1|1|Ŷ |σ1 it verifies Auth_Ver(U1, 1|Ŷ |sidsi |pidsi ,

σ1)
?
= 1. If this verification fails then the protocol outputs a failure. Else Πs

i 6=1 ∈ G ob-
tains Xi := TDH1_Up(li, vi, x〈li,vi〉, y〈li,1−vi〉, Yi). Each Πs

i ∈ G computes (Ks
i , µi) :=

TDH1_Con(x〈0,0〉, sidsi) with x〈0,0〉 ∈ Xi, X ′i := TDH1_Rand(Xi), and erases every private
information from statesi (including all x〈l,v〉, and ρ0, . . . , ρn) except for Ks

i and X ′i. Further,
it computes σi := Auth_Sig(Ui, 2|µi|sidsi |pidsi), and broadcasts Ui|2|σi.

Key Computation. When Πs
i ∈ G receives Uj|2|σj from each Πs

j 6=i ∈ G it verifies

Auth_Ver(Uj , 2|µi|sidsi |pidsi , σj) ?
= 1. If any of these verifications fails then the proto-

col outputs a failure. Else each Πs
i ∈G computes Ks

i := TDH1_Key(Ks
i), erases every private

information from statesi (including Ks
i) except for X ′i, and accepts with Ks

i .

Once again, the main difference to the static version of TDH1.Setup is that each oracle has
to save a tuple (G, Tn+nJ , X

′
i) where each secret value x〈li,0〉 ∈ X ′i is known to each oracle Πs

j

at position 〈lj, vj〉 with lj > li. These values are essential for the efficient update of the session
group key in case that dynamic group changes occur.

Operation TDH1.Join+

Figure 10.6 shows an example of the TDH1.Join+ operation. The initial group G consists of

10.4 Dynamic TDH1 201

Πs
1 Πs

2 Πs
3 Πs

4

(T4,G, U3) := Tree_Join(T3,G,J) (T4,G, U3) := Tree_Join(T3,G,J)(T4,G, U3) := Tree_Join(T3,G,J)(T4,G, U3) := Tree_Join(T3,G,J)

r1 := Auth_Nonce(1κ) r2 := Auth_Nonce(1κ) r3 := Auth_Nonce(1κ) r4 := Auth_Nonce(1κ)

σ1 := Auth_Sig(U1, 0|r1|pids
1) σ2 := Auth_Sig(U2, 0|r2|pids

2) σ3 := Auth_Sig(U3, 0|r3|pids
3) σ4 := Auth_Sig(U4, 0|y〈1,1〉|r4|pids

4)

U1|0|r1|σ1 U2|0|r2|σ2 U3|0|r3|σ3
U4|0|y〈1,1〉|r4|σ4

everyΠs
i 6=j checksAuth_Ver(Uj , 0|rj |pids

i , σj)
?= 1 and|rj | ?= κ for j = 1, 2, 3

broadcast round

X3 := X ′
3

⋃
TDH1_Up?(1, x〈1,0〉, Y3)

Ŷ := TDH1_Exp?(1, X3)
σ3 := Auth_Sig(U3, 1|Ŷ |sids

3|pids
3)

U3|1|Ŷ |σ3

(Ks
2 , µ2) := TDH1_Con(x〈0,0〉, sids

2) (Ks
3 , µ3) := TDH1_Con(x〈0,0〉, sids

3) (Ks
4 , µ4) := TDH1_Con(x〈0,0〉, sids

4)

X2 := X ′
2

⋃
TDH1_Up?(1, x〈1,0〉, Y2)X1 := X ′

1

⋃
TDH1_Up?(1, x〈1,0〉, Y1)

everyΠs
i 6=3 checksAuth_Ver(U3, 1|Ŷ |sids

i |pids
i , σ3)

?= 1

broadcast round

X ′
1 := TDH1_Rand(X1) X ′

2 := TDH1_Rand(X2) X ′
3 := TDH1_Rand(X3) X ′

4 := TDH1_Rand(X4)

X4 := TDH1_Up(1, 0, x〈1,1〉, y〈1,0〉, Y4)

(x〈1,1〉, y〈1,1〉) := TDH1_Pick(1κ)

everyΠs
i 6=4 checksAuth_Ver(U4, 0|y〈1,1〉|r4|pids

i , σ4)
?= 1 and|r4| ?= κ

(Ks
1 , µ1) := TDH1_Con(x〈0,0〉, sids

1)

σ1 := Auth_Sig(U1, 2|µ1|sids
1|pids

1) σ2 := Auth_Sig(U2, 2|µ2|sids
2|pids

2) σ3 := Auth_Sig(U3, 2|µ3|sids
3|pids

3) σ4 := Auth_Sig(U4, 2|µ4|sids
4|pids

4)

U1|2|σ1 U2|2|σ2 U3|2|σ3 U4|2|σ4

everyΠs
i 6=j checksAuth_Ver(Uj , 2|µi|sids

i |pids
i , σj)

?= 1

broadcast round

Ks
1 := TDH1_Key(Ks

1) Ks
2 := TDH1_Key(Ks

2) Ks
3 := TDH1_Key(Ks

3) Ks
4 := TDH1_Key(Ks

4)

Fig. 10.6. Example: Operation TDH1.Join+ with G = {Πs
1 , Π

s
2 , Π

s
3}, T3 from Figure 10.1 and J = {Πs′

1 }. Note that after the
update of T3 the group is changed to G = {Πs

1 , Π
s
2 , Π

s
3 , Π

s
4}. Public values: sidsi = r1|r2|r3|r4, Y1 = Y2 = Y3 = {y〈1,1〉},

Y4 = ∅, Ŷ = {y〈1,0〉}, where y〈1,1〉 = gx〈1,1〉 , y〈1,0〉 = gx〈1,0〉 . Secret values: X1 = {x〈3,0〉, x〈2,0〉, x〈1,0〉, x〈0,0〉},
X2 = {x〈3,1〉, x〈2,0〉, x〈1,0〉, x〈0,0〉}, X3 = {x〈2,1〉, x〈1,0〉, x〈0,0〉}, X4 = {x〈1,1〉, x〈0,0〉}, where x〈0,0〉 = gx〈1,0〉x〈1,1〉 ,
x〈1,0〉 = gx〈2,0〉x〈2,1〉 , x〈2,0〉 = gx〈3,0〉x〈3,1〉 , and x〈3,0〉, x〈3,1〉, x〈2,1〉, x〈1,1〉 ∈R G.

the three oracles Πs
1 , Πs

2 , and Πs
3 . The joining group J consists of Πs′

1 (note that each index
denotes the order of the oracle in the group due to some sorting function and that there are
permanent identities beside the index, thus Πs′

1 can belong to any Ui ∈ U). All oracles compute
the updated tree structure T4 (Figure 10.3). The joining oracle Πs′

1 is assigned to the leaf node
〈1, 1〉 and its index is changed, i.e., Πs′

1 is from now on denoted as Πs
4 , whereas labels of

leaf nodes of Πs
1 , Πs

2 , Πs
3 are changed to 〈3, 0〉, 〈3, 1〉, 〈2, 1〉, respectively. As noted in the

description of TDH1.Setup and w.r.t. the changed labels Πs
1 and Πs

2 still share x′〈2,0〉 and x′〈1,0〉,
and all three initial oracles still share x′〈1,0〉. In the following we can omit ′ in the notations since
each x′〈l,v〉 can be seen as a replacement of the erased x〈l,v〉. The joined oracle Πs

4 chooses own
exponent x〈1,1〉 and broadcasts y〈1,1〉 := gx〈1,1〉 together with own randomly chosen nonce r4,
whereas initial oracles Πs

1 , Πs
2 , and Πs

3 choose and broadcast their fresh nonces only. Upon
receiving y〈1,1〉: oracle Πs

1 builds X1 composed of the already known x〈3,0〉, x〈2,0〉, x〈1,0〉 (part of
X ′1 from the previous operation), and newly computed x〈0,0〉 := (y〈1,1〉)x〈1,0〉; oracle Πs

2 builds
X2 composed of the already known x〈3,1〉, x〈2,0〉, x〈1,0〉 (part of X ′2 from the previous operation),
and newly computed x〈0,0〉 := (y〈1,1〉)x〈1,0〉; oracleΠs

3 buildsX3 composed of the already known
x〈2,1〉, x〈1,0〉 (part ofX ′3 from the previous operation), and newly computed x〈0,0〉 := (y〈1,1〉)x〈1,0〉 .
Then, Πs

3 builds Ŷ consisting of y〈1,0〉 := gx〈1,0〉 and broadcasts it so that Πs
4 can build X4

composed of the previously chosen x〈1,0〉 and newly computed x〈0,0〉 := (y〈1,0〉)x〈1,1〉 . Then, each
Πs
i , i ∈ [1, 4] computes the intermediate value K and the key confirmation token µ, computes

X ′i and erases all private state information except for X ′i. That is every oracle saves (G, T4, X
′
i),

202 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

where G consists of Πs
1 , Πs

2 , Πs
3 , and Πs

4 . Finally, oracles exchange and verify signatures on the
computed confirmation tokens and accept with the session group key K.

In the following we give the formal description of TDH1.Join+.

Round 1. Each Πs′
j ∈J computes Tn := Tree_Init(G). Then, each Πs

i ∈G and Πs′
j ∈J

computes (Tn+nJ , G, Πs
γ) := Tree_Join+(Tn,G,J). Then,

– each Πs
i≤γ ∈ G computes ri := Auth_Nonce(1κ), σi := Auth_Sig(Ui, 0|ri|pidsi) and

broadcasts Ui|0|ri|σi
– each Πs

i>γ ∈ G computes ri := Auth_Nonce(1κ), (x〈li,vi〉, y〈li,vi〉) := TDH1_Pick(1κ),
σi := Auth_Sig(Ui, 0|y〈li,vi〉|ri|pidsi) and broadcasts Ui|0|y〈li,vi〉|ri|σi.

Round 2. When Πs
i 6=j ∈ G receives Uj|0|rj|σj from each Πs

j≤γ ∈ G resp. Uj|0|y〈lj ,vj〉|rj|σj
from each Πs

j>γ ∈ G it verifies Auth_Ver(Uj , 0|rj|pidsi , σj) ?
= 1 resp. Auth_Ver(Uj ,

0|y〈lj ,vj〉|rj|pidsi , σj) ?
= 1 and checks whether |rj| ?

= κ. If any of these verifications fails
then the protocol outputs a failure. Then, each Πs

i ∈G defines sidsi := r1| . . . |rn+nJ
, and

– each Πs
i≤γ∈G defines Yi := {y〈lj ,1〉 | ∀lj = lγ − 1, . . . , 1}

– each Πs
i>γ∈G defines Yi := {y〈lj ,1〉 | ∀lj = li − 1, . . . , 1}.

Further, each Πs
i≤γ ∈ G computes Xi := X ′i

⋃
TDH1_Up?(nJ , x〈nJ ,0〉, Yi) with x〈nJ ,0〉 ∈X ′i.

Additionally,Πs
γ computes Ŷ := TDH1_Exp?(nJ ,Xγ), σγ := Auth_Sig(Uγ , 1|Ŷ |sidsγ|pidsγ),

and broadcasts Uγ|1|Ŷ |σγ .

Round 3. When Πs
i ∈ G receives Uγ|1|Ŷ |σγ it verifies Auth_Ver(Uγ , 1|Ŷ |sidsi |pidsi ,

σγ)
?
= 1. If this verification fails then the protocol outputs a failure, else Πs

i>γ ∈ G ob-
tains Xi := TDH1_Up(li, vi, x〈li,vi〉, y〈li,1−vi〉, Yi). Further, each Πs

i ∈G computes (Ks
i , µi) :=

TDH1_Con(x〈0,0〉, sidsi) with x〈0,0〉 ∈ Xi, X ′i := TDH1_Rand(Xi), and erases every private
information from statesi (including all x〈l,v〉, and ρ0, . . . , ρn) except for Ks

i and X ′i. Further,
it computes σi := Auth_Sig(Ui, 2|µi|sidsi |pidsi), and broadcasts Ui|2|σi.

Key Computation. When Πs
i ∈ G receives Uj|2|σj from each Πs

j 6=i ∈ G it verifies

Auth_Ver(Uj , 2|µi|sidsi |pidsi , σj) ?
= 1. If any of these verifications fails then the proto-

col outputs a failure. Else each Πs
i ∈G computes Ks

i := TDH1_Key(Ks
i), erases every private

information from statesi (including Ks
i) except for X ′i, and accepts with Ks

i .

Note that at the end of the TDH1.Join+ operation every participating oracle Πs
i saves

(G, Tn+nJ , X
′
i).

Operation TDH1.Leave+

Figure 10.7 shows an example of the TDH1.Leave+ operation. The initial group G consists of
four oracles Πs

1 , Πs
2 , Πs

3 , and Πs
4 . The leaving group L consists of Πs

3 . All remaining oracles
compute the updated tree structure T3 (Figure 10.4) by removing the leaf node 〈2, 1〉 (leaf node
ofΠs

3). The index of the remaining oracleΠs
4 is changed to 3, i.e.,Πs

4 is from now on denoted as
Πs

3 . Also labels of leaf nodes of Πs
1 resp. Πs

2 , are changed to 〈2, 0〉 resp. 〈2, 1〉. Note that from
the previous operation Πs

1 and Πs
2 still share x′〈1,0〉 and x′〈0,0〉, and all three oracles still share

x′〈0,0〉 (in the following we omit ′ in the notations since each x′〈l,v〉 can be seen as a replacement
of the erased x〈l,v〉). Each Πs

i takes own exponent x〈li,vi〉 (known from the previous operation as
part of X ′i), computes y〈li,vi〉 := gx〈li,vi〉 and broadcasts it together with a fresh nonce ri. Upon

10.4 Dynamic TDH1 203

Πs
1 Πs

2 Πs
3

(T3,G, U2) := Tree_Init(T4,G,L)
r1 := Auth_Nonce(1κ) r2 := Auth_Nonce(1κ) r3 := Auth_Nonce(1κ)

σ2 := Auth_Sig(U2, 0|y〈2,1〉|r2|pids
2) σ3 := Auth_Sig(U3, 0|y〈1,1〉|r3|pids

3)
U1|0|y〈2,0〉|r1|σ1 U2|0|y〈2,1〉|r2|σ2 U3|0|y〈1,1〉|r3|σ3

everyΠs
i 6=j checksAuth_Ver(Uj , 0|y〈lj ,vj〉|rj |pids

i , σj)
?= 1 and|rj | ?= κ for all j = 1, 2, 3

broadcast round

X1 := X ′
1

⋃
TDH1_Up?(2, x〈2,0〉, Y1)

Ŷ := TDH1_Exp?(1, X3)
σ2 := Auth_Sig(U2, 1|Ŷ |sids

2|pids
2)

U2|1|Ŷ |σ2

everyΠs
i 6=2 checksAuth_Ver(U2, 1|Ŷ |sids

i |pids
i , σ2)

?= 1

broadcast round

(Ks
1 , µ1) := TDH1_Con(x〈0,0〉, sids

1) (Ks
2 , µ2) := TDH1_Con(x〈0,0〉, sids

2) (Ks
3 , µ3) := TDH1_Con(x〈0,0〉, sids

3)
X ′

2 := TDH1_Rand(X2)X ′
1 := TDH1_Rand(X1) X ′

3 := TDH1_Rand(X3)

(T3,G, U2) := Tree_Init(T4,G,L) (T3,G, U2) := Tree_Init(T4,G,L)

y〈2,1〉 := TDH1_Exp(x〈2,1〉) y〈1,1〉 := TDH1_Exp(x〈1,1〉)

X2 := TDH1_Up(2, 1, x〈2,1〉, y〈2,0〉, Y2)

y〈2,0〉 := TDH1_Exp(x〈2,0〉)
σ1 := Auth_Sig(U1, 0|y〈2,0〉|r1|pids

1)

X3 := TDH1_Up(1, 1, x〈1,1〉, y〈1,0〉, Y3)

σ2 := Auth_Sig(U2, 2|µ2|sids
2|pids

2) σ3 := Auth_Sig(U3, 2|µ3|sids
3|pids

3)
U1|2|σ1 U2|2|σ2 U3|2|σ3

everyΠs
i 6=j checksAuth_Ver(Uj , 2|µi|sids

i |pids
i , σj)

?= 1

broadcast round

σ1 := Auth_Sig(U1, 2|µ1|sids
1|pids

1)

Ks
1 := TDH1_Key(Ks

1) Ks
2 := TDH1_Key(Ks

2) Ks
3 := TDH1_Key(Ks

3)

Fig. 10.7. Example: Operation TDH1.Leave+ with G = {Πs
1 , Π

s
2 , Π

s
3 , Π

s
4}, T4 from Figure 10.3 and L = {Πs

3}. Note that af-
ter the update of T4 the group is changed to G = {Πs

1 , Π
s
2 , Π

s
3} (formerΠs

4 is nowΠs
3). Public values: sidsi = r1|r2|r3, Y1 =

Y2 = {y〈1,1〉}, Y3 = ∅, Ŷ = {y〈1,0〉}, where y〈1,1〉 = gx〈1,1〉 , y〈1,0〉 = gx〈1,0〉 . Secret values: X1 = {x〈2,0〉, x〈1,0〉, x〈0,0〉},
X2 = {x〈2,1〉, x〈1,0〉, x〈0,0〉}, X3 = {x〈1,1〉, x〈0,0〉}, where x〈0,0〉 = gx〈1,0〉x〈1,1〉 , x〈1,0〉 = gx〈2,0〉x〈2,1〉 and x〈2,0〉, x〈2,1〉,
x〈1,1〉 ∈R G.

receiving these messages: Πs
1 builds X1 composed of the already known x〈2,0〉 (part of X ′1 from

the previous operation), and newly computed x〈1,0〉 := (y〈2,0〉)x〈2,1〉 and x〈0,0〉 := (y〈1,1〉)x〈1,0〉;
Πs

2 builds X2 composed of the already known x〈2,1〉 (part of X ′2 from the previous operation),
and newly computed x〈1,0〉 := (y〈2,1〉)x〈2,0〉 and x〈0,0〉 := (y〈1,1〉)x〈1,0〉 . Oracle Πs

2 computes and
broadcasts Ŷ consisting of y〈1,0〉 := gx〈1,0〉 so that Πs

3 (former Πs
4) can build X3 composed of

the already known x〈1,1〉 (part of X ′4 from the previous operation) and newly computed x〈0,0〉 :=
(y〈1,0〉)x〈1,1〉 . Finally, eachΠs

i , i ∈ [1, 3] computes the intermediate valueK and the confirmation
token µ, as well as the updated set X ′i, and erases all state information except for X ′i. Every
oracle saves (G, T3, X

′
i) where G consists of the remaining participants, i.e.,Πs

1 ,Πs
2 ,Πs

3 (former
Πs

4). Finally, oracles exchange and verify signatures on the computed key confirmation tokens
and accept with the updated session group key K.

In the following we give the formal description of TDH1.Leave+.

Round 1. Each oracle Πs
i ∈G \L computes (Tn−nL , G, Πs

γ) := Tree_Leave+(Tn,G,L) and
ri := Auth_Nonce(1κ). Then,
– each Πs

i<γ−1∈G computes σi := Auth_Sig(Ui, 0|ri|pidsi) and broadcasts Ui|0|ri|σi
– Πs

γ−1 computes y〈lγ ,1−vγ〉 := TDH1_Exp(x〈lγ ,1−vγ〉) with x〈lγ ,1−vγ〉 ∈ X ′γ−1, σγ−1 :=
Auth_Sig(Uγ−1, 0|y〈lγ ,1−vγ〉|rγ−1|pidsγ−1) and broadcasts Uγ−1|0|y〈lγ ,1−vγ〉|rγ−1|σγ−1

204 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

– eachΠs
i≥γ∈G computes y〈li,vi〉 := TDH1_Exp(x〈li,vi〉) with x〈li,vi〉∈X ′i, σi := Auth_Sig(Ui,

0|y〈li,vi〉|ri|pidsi) and broadcasts Ui|0|y〈li,vi〉|ri|σi.

Round 2. When Πs
i 6=j ∈G receives Uj|0|rj|σj from each Πs

j<γ−1∈G resp. Uγ−1|0|y〈lγ ,1−vγ〉|
rγ−1|σγ−1 fromΠs

γ−1∈G resp.Uj|0|y〈lj ,vj〉|rj|σj from eachΠs
j≥γ∈G it verifies Auth_Ver(Uj ,

0|rj|pidsi , σj) ?
= 1 resp. Auth_Ver(Uγ−1, 0|y〈lγ ,1−vγ〉|rγ−1|pidsi , σγ−1)

?
= 1 resp. Auth_Ver(

Uj , 0|y〈lj ,vj〉|rj|pidsi , σj) ?
= 1, and checks whether |rj| ?

= κ. If any of these verifications fails
then the protocol outputs a failure. Then, each Πs

i ∈G defines sidsi := r1| . . . |rn−nL , and
– each Πs

i<γ∈G defines Yi := {y〈lj ,1〉 | ∀lj = lγ, . . . , 1}
– each Πs

i≥γ∈G defines Yi := {y〈lj ,1〉 | ∀lj = li − 1, . . . , 1}.
Further,
– each Πs

i<γ∈G computes Xi := X ′i
⋃
TDH1_Up?(lγ , x〈lγ ,0〉, Yi) with x〈lγ ,0〉∈X ′i.

– Πs
γ computes Xγ := TDH1_Up(lγ , vγ , x〈lγ ,vγ〉, y〈lγ ,1−vγ〉, Yγ) with x〈lγ ,vγ〉∈X ′γ .

Additionally, Πs
γ computes Ŷ := TDH1_Exp?(lγ − 1, Xγ), σγ := Auth_Sig(Uγ , 1|Ŷ |sidsγ|

pidsγ), and broadcasts Uγ|1|Ŷ |σγ .

Round 3. When Πs
i 6=γ ∈ G receives Uγ|1|Ŷ |σγ it verifies Auth_Ver(Uγ , 1|Ŷ |sidsi |pidsi ,

σγ)
?
= 1. If this verification fails then the protocol outputs a failure. Else each Πs

i>γ ∈ G
obtains Xi := TDH1_Up(li, vi, x〈li,vi〉, y〈li,1−vi〉, Yi). Further, each Ui ∈ G computes
(Ks

i , µi) := TDH1_Con(x〈0,0〉, sidsi) with x〈0,0〉 ∈ Xi, X ′i := TDH1_Rand(Xi), and erases
every private information from statesi (including all x〈l,v〉, and ρ0, . . . , ρn) except for Ks

i

and X ′i. Further, it computes σi := Auth_Sig(Ui, 2|µi|sidsi |pidsi), and broadcasts Ui|2|σi.

Key Computation. When Πs
i ∈ G receives Uj|2|σj from each Πs

j 6=i ∈ G it verifies

Auth_Ver(Uj , 2|µi|sidsi |pidsi , σj) ?
= 1. If any of these verifications fails then the proto-

col outputs a failure. Else each Πs
i ∈G computes Ks

i := TDH1_Key(Ks
i), erases every private

information from statesi (including Ks
i) except for X ′i, and accepts with Ks

i .

Note that at the end of the TDH1.Leave+ operation every participating oracle Πs
i saves

(G, Tn−nL , X ′i).

10.4.4 Security Analysis of Dynamic TDH1

Similar to the discussion in Sections 9.2.1 and 10.4.4 we assume that at any time during the
execution of dynamic TDH1 the internal state information statesU is independent of LLU .

The following theorem shows that the dynamic TDH1 protocol is AKE-secure and provides
forward secrecy in the strong-corruption model. Note that the protocol does not provide back-
ward secrecy because knowledge of X ′i would allow the adversary to compute the session
group key established in any subsequent session. Therefore, backward secrecy (in the weak-
corruption model) is only achieved by the static TDH1 protocol where each private exponent
x〈li,vi〉, 〈li, vi〉 ∈ LNTn is freshly generated for each new session. Since in dynamic TDH1 ora-
cles save additional information, in particular the set X ′i, in order to process dynamic changes
more efficiently the security analysis must ensure that this information does not provide the ad-
versary against AKE-security with some non-negligible advantage. Intuitively, the computation
process of the values in X ′i becomes an additional important factor.

10.4 Dynamic TDH1 205

Theorem 10.11 (AKE-Security of Dynamic TDH1). If Σ is EUF-CMA, F is pseudo-random,
and the DDH and SEDDH assumptions hold in G then TDH1 is AGKE-sfs, and

Advake
sfs,scm,TDH1(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ (2N − 2)qsAdvDDHG (κ) +

(4N − 2)qsAdvSEDDHG (κ) + (2N + 6)qsAdvprf
F (κ),

where qs is the total number of executed protocol sessions.

Proof. We define a sequence of games Gi, i = 0, . . . , 8 and corresponding events Winake
i as

the events that the output bit b′ of Gi is identical to the randomly chosen bit b in the game
Gameake−b

sfs,scm,TDH1(κ).
Game G0. This game is the real game Gameake−b

sfs,scm,TDH1(κ) played between a simulator∆ and
an active adversary A. Assume that the Test query is asked to an α-fresh oracle Πs

i . Keep in
mind that on the test query the adversary receives either a random string or a session group key
Ks
i .
Game G1. This game is identical to Game G0 with the only exception that the simulation

fails and bit b′ is set at random if A asks a Send query on some Ui|seqn|m|σ (or Ui|seqn|σ)
with the sequence number seqn ∈ {0, 1, 2} such that σ is a valid signature on m (or on µi) that
has not been previously output by an oracle Πs

i before querying Corrupt(Ui). In other words
the simulation fails if A outputs a successful forgery. According to the proof of Theorem 10.6
and Equation 10.6 we get

|Pr[Winake
1

]− Pr[Winake
0

]| ≤ NSucceuf−cmaΣ (κ). (10.22)

Game G2. This game is identical to Game G1 except that the simulation fails and bit b′ is
set at random if a nonce ri is used by any uncorrupted user’s oracleΠs

i in two different sessions.
According to the proof of Theorem 10.6 and Equation 10.7 we get

|Pr[Winake
2

]− Pr[Winake
1

]| ≤ Nq2
s

2κ
. (10.23)

Note that this game excludes replay attacks in operations of TDH1.
Game G3. This game is identical to Game G2 except that the following rule is added: ∆

chooses q∗s ∈ [1, qs] as a guess for the number of sessions (operations of TDH1) invoked before
A asks the query Test. If this query does not occur in the q∗s-th session then the simulation fails
and bit b′ is set at random. Similar to Equation 10.8 we get

Pr[Winake
2

] = qs

(
Pr[Winake

3
]− 1

2

)
+

1

2
. (10.24)

Game G4. This game is identical to Game G3 except that in the q∗s-th session we add the
following rules. Let n be a number of participants in the q∗s-th session. Let l∗ be n − 2 if the
operation invoked for the q∗s-th session is TDH1.Setup and lγ − 1 otherwise. For each node
〈l, 0〉 ∈ Tn \ LNTn with l = l∗ down to 0 the simulator chooses a random value r〈l,0〉 ∈R G and
computes x〈l,0〉 := gr〈l,0〉 . The idea for the simulation is to replace all secret values in the tree Tn,
whose corresponding public values are computed by the function TDH1_Exp? and broadcasted
in the q∗s-th session, with truly random values. Note that since no Corrupt, RevealState, and
RevealKey queries occur in sfs-fresh sessions (according to Remark 8.10), and thus in the

206 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

q∗s-th session, all the above mentioned secret values x〈l,0〉 that are erased at the end of each
operation execution of TDH1 remain unknown to A.

In order to estimate the difference |Pr[Winake
4

] − Pr[Winake
3

]| we apply the “hybrid tech-
nique”. We consider a sequence of auxiliary games Gl

4
for all l = l∗ + 1 down to 0. Each Gl

4

is identical to Game G3 except that for every node 〈j, 0〉 ∈ Tn \ LNTn with j ≥ l we have
x〈j,0〉 := gr〈j,0〉 where r〈j,0〉 ∈R G (note that in Game G3 we have x〈j,0〉 = gx〈j+1,0〉x〈j+1,1〉).

Let Winake
4,l

denote the event that Winake
3

(or equivalently Winake
4

) occurs in Gl
4
. The only

difference between the two neighboring auxiliary games Gl
4

and Gl−1
4

is how ∆ constructs the
value x〈l−1,0〉: in Gl

4
the simulator constructs x〈l−1,0〉 = gx〈l,0〉x〈l,1〉 , whereas in Gl−1

4
the simulator

chooses r〈l−1,0〉 ∈R G and constructs x〈l−1,0〉 = gr〈l−1,0〉 . Obviously, in Gl
4

for 〈l − 1, 0〉 ∈ Tn \
LNTn we have a tuple (g, gx〈l,0〉 , gx〈l,1〉 , gx〈l,0〉x〈l,1〉) taken from the real DDH distribution, i.e., DDH?.
To the contrary, in Gl−1

4
for 〈l − 1, 0〉 ∈ Tn \ LNTn we have a tuple (g, gx〈l,0〉 , gx〈l,1〉 , gr〈l−1,0〉)

taken from the random DDH distribution, i.e., DDH$. Thus, we get

|Pr[Winake
4,l−1]− Pr[Winake

4,l
]| ≤ AdvDDHG (κ)

It is easy to see that Gl∗+1
4

= G3 and G0
4

= G4 . Since l∗ ≤ n− 2 ≤ N − 2 we get

|Pr[Winake
4

]− Pr[Winake
3

]| ≤ (N − 1)AdvDDHG (κ). (10.25)

Note also that in this game x〈0,0〉 = gr〈0,0〉 is a uniformly distributed value in G (or equivalently
in Zq), and that consequently each x′〈l,v〉 is computed as gr

2
〈l,v〉 .

Game G5. This game is identical to Game G4 except that in the q∗s-th session a random bit
string is sampled from {0, 1}κ and used instead of the truncated value x〈0,0〉bκ inside the function
TDH1_Con. Since in Game G4 the entire value x〈0,0〉 is already random in G (and according to
Corollary 10.2 and Remark 10.3 also uniform in Zq) both games are identical. Thus, replacing
x〈0,0〉 with a randomly sampled bit string can be seen as a “bridging step” (using the terminology
of [168]) so that

Pr[Winake
5

] = Pr[Winake
4

]. (10.26)

Game G6. This game is identical to Game G5 except that in the q∗s-th session the simulator
computes each x′〈l,v〉 (part of Xi) as gr

′
〈l,v〉 with some randomly chosen r′〈l,v〉 ∈R G. Observe that

in this game for every 〈l, v〉 ∈ Tn there is a tuple (g, gx〈l,v〉 , gr
′
〈l,v〉) taken from the random SEDDH

distribution (i.e., SEDDH$).5 Note that x〈l,v〉 ∈R G for each 〈l, v〉 ∈ Tn as described in Game G4.
On the other hand, in Game G5 each x′〈l,v〉 is computed as gx

2
〈l,v〉 . Thus, in Game G5 for

every 〈l, v〉 ∈ Tn we have a tuple (g, gx〈l,v〉 , gx
2
〈l,v〉) taken from the real SEDDH distribution (i.e.,

SEDDH?).
According to Definition 5.14, and since |Tn| = 2n− 1 and n ≤ N we have

|Pr[Winake
6

]− Pr[Winake
5

]| ≤ (2N − 1)AdvSEDDHG (κ). (10.27)

Game G7. This game is identical to Game G6 except that in the q∗s-th session each ρi, i =
0, . . . , n is replaced by a random value sampled from {0, 1}κ. Notice, this implies that K is
uniformly distributed in this session.

In order to estimate the difference to the previous game we apply the “hybrid technique” and
define auxiliary games G′

7,l
, l = 0, . . . , n+ 1 such that G′

7,0
= G6 and G′

7,n+1 = G7 . That is, in

5 Note that gx〈l,v〉 may become public during the q∗s -th session and that gr
′
〈l,v〉 can be obtained by A during the (q∗s + 1)-th

session of TDH1 via a RevealState query.

10.4 Dynamic TDH1 207

the q∗s-th session in each G′
7,l

the intermediate values ρi, i ≤ l, are computed as specified in the
protocol (as output of the pseudo-random function f) whereas in G′

7,l+1 these values are chosen
at random from {0, 1}κ. Note that each replacement of ρi, i = 0, . . . , n − 1 by a random bit
string implies uniform distribution of the PRF key ρi⊕π(ri+1) used in the computation of ρi+1,
and that x〈0,0〉bκ used to compute ρ0 is already uniform according to Game G5. Since n ≤ N we
get

|Pr[Winake
7

]− Pr[Winake
6

]| ≤ (N + 1)Advprf
F (κ). (10.28)

Game G8. This game is identical to Game G7 except that in the q∗s-th session the confirmation
token µ and the session group key K are replaced by two different random values sampled from
{0, 1}κ. This can be done since the intermediate value K is uniformly distributed according to
Game G7. Obviously,

|Pr[Winake
8

]− Pr[Winake
7

]| ≤ 2Advprf
F (κ). (10.29)

Since K is uniformly distributed in the q∗s-th sessionA gains no advantage from the obtained
information and cannot, therefore, guess b better than by a random choice, i.e.,

Pr[Winake
8

] =
1

2
. (10.30)

Considering Equations 10.22 to 10.30 we get:

Pr[Gameake−b
sfs,scm,TDH1(κ) = b] = Pr[Winake

0]

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ Pr[Winake

2]

= NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ qs

(
Pr[Winake

3]− 1

2

)
+

1

2

≤ NSucceuf−cmaΣ (κ) +
Nq2

s

2κ
+ (N − 1)qsAdvDDHG (κ) +

(2N − 1)qsAdvSEDDHG (κ) + (N + 3)qsAdvprf
F (κ) +

1

2
.

This results in the desired inequality

Advake
sfs,scm,TDH1(κ) ≤ 2NSucceuf−cmaΣ (κ) +

Nq2
s

2κ−1
+ (2N − 2)qsAdvDDHG (κ) +

(4N − 2)qsAdvSEDDHG (κ) + (2N + 6)qsAdvprf
F (κ).

ut
Every dynamic operation of the TDH1 protocol utilizes the same key confirmation and deriva-

tion mechanism as its static counterpart. Therefore, the following two theorems concerning MA-
security and n-contributiveness of the dynamic TDH1 protocol hold with the proofs of Theorems
10.7 and 10.8, respectively. Note that random nonces are freshly generated for every dynamic
operation of TDH1.

Theorem 10.12 (MA-Security of Dynamic TDH1). If Σ is EUF-CMA and F is collision-
resistant then dynamic TDH1 is MAGKE, and

Succma
TDH1(κ) ≤ NSucceuf−cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ),

where qs is the total number of executed protocol sessions.

208 10 Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions

Proof. See proof of Theorem 10.7. ut
Theorem 10.13 (n-Contributiveness of Dynamic TDH1). If F is collision-resistant pseudo-
random and π is one-way then dynamic TDH1 is a n-CGKE protocol, and

Succcon−n
TDH1 (κ) ≤ Nq2

s +Nqs + qs

2κ
+ (N + 1)qsSucccoll

F (κ) + qsAdvprf
F (κ) +NqsSuccow

π (κ),

where qs is the total number of executed protocol sessions.

Proof. See proof of Theorem 10.8. ut

10.5 Summary

Considering results of our analysis of currently known provably secure group key exchange
protocols in Section 7.4 the dynamic version of our TDH1 protocol is the first constant-round dy-
namic group key exchange protocol provably secure under standard cryptographic assumptions
with respect to strong corruptions and attacks of malicious participants against key control and
contributiveness. Note that each operation of TDH1 requires three communication rounds. The
TDH1 protocol provides additionally key confirmation and mutual authentication in the presence
of malicious participants. It is worth being mentioned that TDH1 is the first provably secure pro-
tocol based on the linear binary tree structure that plays a significant role in the communication
efficiency of the protocol. Additionally, we note that shown equivalence of the TDDH and DDH

assumptions is of independent interest, i.e., the TDDH assumption can be used in other crypto-
graphic constructions whose security is supposed to be shown under standard assumptions.

Conclusions and Further Research Directions

In this chapter we draw some general conclusions and identify some directions for further
research on “provable security” of group key exchange protocols.

The proposed model in Chapter 8 is one of the strongest currently available (game-based)
computational security models for group key exchange protocols designed for reductionist se-
curity proofs with extended security definitions concerning attacks of malicious participants and
strong corruptions. Security-enhancing compilers proposed in Chapter 9 can be used to achieve
this higher degree of security for group key exchange protocols in a general way. The proposed
protocol TDH1 in Chapter 10, especially its dynamic version, is the first provably secure group
key exchange which satisfies these strong security requirements under standard cryptographic
assumptions. The TDDH assumption from Definition 10.4, whose polynomial equivalence to the
DDH assumption has been proven in Theorem 10.5, is of independent interest and can be used
in other cryptographic schemes whose security is supposed to be proven in the standard model.
Finally, our extension of the popular “game of sequence” technique from [168] by the additional
type of transitions based on “condition events” introduced in Section 5.6.1 can also be used in
reductionist security proofs of other cryptographic constructions.

In the following we specify a number of interesting research topics concerning provable
security of group key exchange protocols resulting from the observations put in light along the
lines of this thesis.

As noted in Chapter 8 our security model (similar to the other state-of-the-art models), and
consequently our proposed constructions do not deal with denial-of-service attacks and fault-
tolerance. Our security definitions aim to recognize attacks occurring during the protocol ex-
ecution and prevent honest protocol participants from accepting “biased” session group keys.
Nevertheless, there are no requirements stating that despite of these attacks honest protocol par-
ticipants must still be able to complete the protocol execution and compute identical session
group keys. In fact, in all our constructions honest participants abort the computation process
if some unexpected failures occur. Note also that the adversary has complete control over the
communication channel. Therefore, if the adversary refuses to deliver messages according to
the protocol specification or if some protocol participants crash then the computation process
is blocked. These considerations, in turn, give an interesting open problem on the specifica-
tion of security definitions and design of concrete group key exchange protocols considering
fault-tolerance and denial-of-service attacks.

An interesting pioneer work in this area was done by Cachin and Strobl [55], who proposed
the first (simulatability-based) security model and a concrete static asynchronous group key ex-
change protocol while considering the issues of fault-tolerance. In order to compute the session
group key participants perform operations that can be seen as the abstraction of the Burmester-
Desmedt protocol [50, 51] with an additional stage where any asynchronous distributed con-
sensus protocol, e.g., [53, 65], must be executed prior to acceptance. The protocol ensures that
participants complete the execution and accept with identical session group keys even if at most
t of them crash, whereby t is a bound specific to the consensus protocol (note that if no trusted

210 Conclusions and Further Research Directions

parties are allowed then (n−1)/3 is the optimal bound for tolerated crashes [39, 53, 65]). Addi-
tionally, [55] describes a fault-tolerant protocol version which provides strong forward secrecy.
The authors show that for this case the optimal upper bound for the number of the revealed
internal states in later sessions is strictly less than n − 2t. This paper opens several directions
for further research. First, [55] does not deal with the attacks of malicious protocol participants
aiming to control the value of the session group key. Therefore, it is interesting to investigate
the consequences of these attacks and their prevention in the context of fault-tolerant group key
exchange protocols. Another interesting open question is the identification of malicious par-
ticipants during the protocol execution. This can be also considered as a research goal in the
context of group key exchange protocols without fault-tolerance. Second, the security model
and the protocol proposed in [55] deal with the static case so that possible extensions towards
the more challenging dynamic case represent another direction for further research. Fourth, the
security model specified in [55] uses the simulatability approach (cf. Section 3.3.2); thus, de-
signing an adequate game-based security model can also be considered as an interesting task.
Finally, the ideas from [55] concerning the utilization of the asynchronous distributed consensus
protocols can be possibly deepened in order to design a generic solution (compiler) for fault-
tolerance in group key exchange protocols, and even to combine it with the compilers proposed
in this thesis.

References

[1] OpenNAP: Open Source Napster Server. World Wide Web. http://opennap.
sourceforge.net/. 24

[2] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus.
In ACM Conference on Computer and Communications Security (CCS’97), pages 36–47.
ACM Press, 1997. 44

[3] M. Abadi and P. Rogaway. Reconciling Two Views of Cryptography (The Computational
Soundness of Formal Encryption). Jorunal of Cryptology, 15(2):103–127, 2002. 44

[4] M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions and
an Analysis of DHIES. In Topics in Cryptology – CT-RSA’01, volume 2020 of Lecture
Notes in Computer Science, pages 143–158, April 2001. 99

[5] M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval. Password-Based Group Key
Exchange in a Constant Number of Rounds. In Proceedings of the 9th International
Workshop on Theory and Practice in Public Key Cryptography (PKC’06), volume 3958
of Lecture Notes in Computer Science, pages 427–442. Springer, April 2006. 13, 42, 44,
100, 101, 103, 109, 110

[6] R. Ahlswede and I. Csiszár. Common Randomness in Information Theory and Cryptog-
raphy - i: Secret Sharing. IEEE Transactions on Information Theory, 39(4):1121–1132,
1993. 40

[7] S. S. Al-Riyami and K. G. Paterson. Tripartite Authenticated Key Agreement Protocols
from Pairings. In Proceedings of the IMA Conference on Cryptography and Coding,
volume 2898 of Lecture Notes in Computer Science, pages 332–359. Springer, 2003. 88

[8] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the Performance of Group Key
Agreement Protocols. ACM Transactions on Information and System Security, 7(3):457–
488, 2004. 87

[9] J. H. An, Y. Dodis, and T. Rabin. On the Security of Joint Signature and Encryption. In
Advances in Cryptology – EUROCRYPT’02, volume 2332 of Lecture Notes in Computer
Science, pages 83–107. Springer, 2002. 59

[10] S. Androutsellis-Theotokis and D. Spinellis. A Survey of Peer-to-Peer Content Distribu-
tion Technologies. ACM Computer Surveys, 36(4):335–371, 2004. 24

[11] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Ohe-
imb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA
Tool for the Automated Validation of Internet Security Protocols and Applications. In
Proceedings of 17th International Conference on Computer Aided Verification (CAV’05),
volume 3576 of Lecture Notes in Computer Science, pages 281–285. Springer, 2005. 44

[12] N. Asokan and P. Ginzboorg. Key-Agreement in Ad-hoc Networks. Computer Commu-
nications, 23(17):1627–1637, 2000. 96

http://opennap.sourceforge.net/
http://opennap.sourceforge.net/

212 References

[13] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated Group Key Agreement and
Friends. In Proceedings of the 5th ACM conference on Computer and Communications
Security (CCS’98), pages 17–26. ACM Press, 1998. 13, 37, 65, 66, 93, 94, 124

[14] G. Ateniese, M. Steiner, and G. Tsudik. New Multi-Party Authentication Services
and Key Agreement Protocols. IEEE Journal of Selected Areas in Communications,
18(4):628–639, 2000. 94

[15] M. Backes, B. Pfitzmann, and M. Waidner. A Composable Cryptographic Library with
Nested Operations. In Proceedings of the 10th ACM Conference on Computer and Com-
munications Security (CCS’03), pages 220–230. ACM Press, 2003. 45

[16] R. Barua, R. Dutta, and P. Sarkar. Extending Joux’s Protocol to Multi Party Key Agree-
ment. In Progress in Cryptology – INDOCRYPT’03, volume 2904 of Lecture Notes in
Computer Science, pages 205–217. Springer, December 2003. 91, 99, 107

[17] K. Becker and U. Wille. Communication Complexity of Group Key Distribution. In
Proceedings of the 5th ACM Conference on Computer and Communications Security
(CCS’98), pages 1–6. ACM Press, 1998. 13, 95, 96

[18] M. Bellare. Practice-Oriented Provable-Security. In Proceedings of the First Interna-
tional Workshop on Information Security (ISW’97), volume 1396 of Lecture Notes in
Computer Science, pages 221–231. Springer, 1998. 41

[19] M. Bellare, A. Boldyreva, and A. Palacio. An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem. In Advances in Cryptology – EURO-
CRYPT’04, volume 3027 of Lecture Notes in Computer Science, pages 171–188.
Springer, 2004. 44

[20] M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and Anal-
ysis of Authentication and Key Exchange Protocols (Extended Abstract). In Proceedings
of the Thirtieth Annual ACM Symposium on the Theory of Computing (STOC’98), pages
419–428. ACM Press, 1998. 43, 69

[21] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against
Dictionary Attacks. In Advances in Cryptology–EUROCRYPT’00, volume 1807 of Lec-
ture Notes in Computer Science, pages 139–155. Springer, May 2000. 70, 112

[22] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Advances
in Cryptology–CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages
232–249. Springer, 1993. 65, 67, 76, 120

[23] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In Proceedings of the 1st ACM Conference on Computer and Com-
munications Security (CCS’93), pages 62–73. ACM Press, 1993. 36, 43, 55, 66, 71

[24] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three Party
Case. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing
(STOC’95), pages 57–66. ACM Press, 1995. 68

[25] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. A. Smolin. Experimental Quan-
tum Cryptography. Journal of Cryptology, 5(1):3–28, 1992. 40

[26] C. H. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized privacy amplifica-
tion. IEEE Transaction on Information Theory, 41(6):1915–1923, 1995. 40

[27] J. Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based Hash
Function. Cryptology ePrint Archive, Report 2005/210, 2005. http://eprint.
iacr.org/2005/210.pdf. 44, 71

[28] I. F. Blake, G. Seroussi, and N. P. Smart. Advances in Elliptic Curve Cryptography.
Cambridge University Press, April 2005. ISBN:0-521-60415-X. 88, 91, 93, 98

http://eprint.iacr.org/2005/210.pdf
http://eprint.iacr.org/2005/210.pdf

References 213

[29] S. Blake-Wilson, D. Johnson, and A. Menezes. Key Agreement Protocols and Their Secu-
rity Analysis. In Proceedings of the 6th IMA International Conference on Cryptography
and Coding, volume 1355 of Lecture Notes in Computer Science, pages 30–45. Springer,
December 1997. 65

[30] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In
Proceeding of 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages
82–96. IEEE Computer Society, 2001. 44

[31] B. Blanchet and D. Pointcheval. Automated Security Proofs with Sequences of Games.
In Advances in Cryptology – CRYPTO’06, volume 4117 of Lecture Notes in Computer
Science, pages 537–554. Springer, 2006. 42, 45

[32] J.-M. Bohli, M. I. G. Vasco, and R. Steinwandt. Secure Group Key Establishment Re-
visited. Cryptology ePrint Archive, Report 2005/395, 2005. http://eprint.iacr.
org/. 48, 83, 85, 100, 102, 111, 144

[33] A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based on the
Gap-Diffie-Hellman-Group Signature Scheme. In Proceedings of the 6th International
Workshop on Theory and Practice in Public Key Cryptography (PKC’03), volume 2567
of Lecture Notes in Computer Science, pages 31–46. Springer, 2003. 107

[34] D. Boneh. The Decision Diffie-Hellman Problem. In ANTS-III: Proceedings of the Third
International Symposium on Algorithmic Number Theory, pages 48–63. Springer, 1998.
104

[35] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption Without
Random Oracles. In Advances in Cryptology–EUROCRYPT’04, volume 3027 of Lecture
Notes in Computer Science, pages 223–238. Springer, 2004. Available at http://www.
cs.stanford.edu/~xb/eurocrypt04b/. 91

[36] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM
Journal of Computing, 32(3):586–615, 2003. 88, 91

[37] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. In Ad-
vances in Cryptololgy – ASIACRYPT’01, volume 2248 of Lecture Notes in Computer
Science, pages 514–532. Springer, December 2001. 58, 107

[38] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment. Springer,
2003. ISBN:3-540-43107-1. 65, 66, 87, 123

[39] G. Bracha. An Asynchronous [(n-1)/3]-resilient Consensus Protocol. In Proceedings
of the 3rd ACM Symposium on Principles of Distributed Computing (PODC’84), pages
154–162. ACM Press, 1984. 210

[40] E. Bresson and D. Catalano. Constant Round Authenticated Group Key Agreement via
Distributed Computation. In Proceedings of the 7th International Workshop on Theory
and Practice in Public Key Cryptography (PKC’04), volume 2947 of Lecture Notes in
Computer Science, pages 115–129. Springer, 2004. 13, 103, 104, 109, 110

[41] E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group Diffie-
Hellman Key Exchange - The Dynamic Case. In Advances in Cryptology – ASI-
ACRYPT’01, volume 2248 of Lecture Notes in Computer Science, pages 290–390.
Springer, December 2001. 13, 43, 76, 78, 85, 105, 106, 109, 110

[42] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-Hellman Key Ex-
change under Standard Assumptions. In Advances in Cryptology – EUROCRYPT’02,
volume 2332 of Lecture Notes in Computer Science, pages 321–336. Springer, Mai 2002.
13, 37, 42, 48, 76, 79, 102, 105, 106, 109, 111, 112, 120, 128

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.cs.stanford.edu/~xb/eurocrypt04b/
http://www.cs.stanford.edu/~xb/eurocrypt04b/

214 References

[43] E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman Key Exchange
Secure against Dictionary Attacks. In Advances in Cryptology – ASIACRYPT’02, volume
2501 of Lecture Notes in Computer Science, pages 497–514. Springer, December 2002.
13, 42, 76, 80, 81, 84, 85, 103, 106, 107, 109, 110

[44] E. Bresson, O. Chevassut, and D. Pointcheval. The Group Diffie-Hellman Key Problems.
In Proceedings of the Workshop on Selected Areas in Cryptography (SAC’02), volume
2595 of Lecture Notes in Computer Science, pages 325–338. Springer, August 2002. 104,
109

[45] E. Bresson, O. Chevassut, and D. Pointcheval. A Security Solution for IEEE 802.11’s
Ad-hoc Mode: Password-Authentication and Group Diffie-Hellman Key Exchange. In-
ternational Journal on Wireless and Mobile Computing, 2(1):4–13, 2007. 13, 106, 109,
110

[46] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authenticated
Group Diffie-Hellman Key Exchange. In Proceedings of the 8th ACM conference on
Computer and Communications Security (CCS’01), pages 255–264. ACM Press, 2001.
13, 42, 43, 48, 74, 75, 76, 77, 78, 85, 104, 105, 106, 109, 110, 120

[47] B. Briscoe. MARKS: Zero Side Effect Multicast Key Management Using Arbitrarily Re-
vealed Key Sequences. In Proceedings of the First International Workshop on Networked
Group Communication (NGC’99), volume 1736 of Lecture Notes in Computer Science,
pages 301–320. Springer, 1999. 35

[48] M. Burmester. On the Risk of Opening Distributed Keys. In Advances in Cryptol-
ogy – CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages 308–317.
Springer, August 1994. 36, 64, 65

[49] M. Burmester and Y. Desmedt. Towards Practical Proven Secure Authenticated Key Dis-
tribution. In Proceedings of the 1st ACM Conference on Computer and Communications
Security (CCS’93), pages 228–231. ACM Press, 1993. 36, 65

[50] M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution
System. In Advances in Cryptology – EUROCRYPT’94, volume 950 of Lecture Notes in
Computer Science, pages 275–286. Springer, May 1994. 13, 34, 35, 36, 64, 65, 88, 90,
99, 209

[51] M. Burmester and Y. Desmedt. A Secure and Scalable Group Key Exchange System.
Information Processing Letters, 94(3):137–143, 2005. 90, 99, 209

[52] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. Technical Re-
port 39, DEC Systems Research Center, 1989. http://gatekeeper.dec.com/
pub/DEC/SRC/research-reports/abstracts/src-rr-039.html. 44

[53] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantinople: Practical
Asynchronous Byzantine Agreement using Cryptography. In Proceedings of the 19th An-
nual ACM Symposium on Principles of Distributed Computing (PODC’00), pages 123–
132. ACM Press, 2000. 209, 210

[54] C. Cachin and U. Maurer. Unconditional Security Against Memory-Bounded Adver-
saries. In Advances in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes in
Computer Science, pages 292–306. Springer-Verlag, 1997. 40

[55] C. Cachin and R. Strobl. Asynchronous Group Key Exchange with Failures. In Pro-
ceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing
(PODC’04), pages 357–366. ACM Press, 2004. 209, 210

[56] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000. 42

http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-039.html
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-039.html

References 215

[57] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. In Proceedings of 42nd Annual Symposium on Foundations of Computer Science
(FOCS 2001), pages 136–145. IEEE CS, 2001. 43, 45, 82

[58] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast Security:
A Taxonomy and Some Efficient Constructions. In Proceedings of IEEE INFOCOM ’99,
pages 708–716. IEEE Computer Society, 1999. 28, 29, 30

[59] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited.
Journal of the ACM, 51(4):557–594, 2004. 44

[60] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally Composable
Password-Based Key Exchange. In Advances in Cryptology – EUROCRYPT’05, volume
3494 of Lecture Notes in Computer Science, pages 404–421. Springer, 2005. 43

[61] R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Mutual Au-
thentication and Key-Exchange Protocols. In 3rd Theory of Cryptography Conference
(TCC’06), volume 3876 of Lecture Notes in Computer Science, pages 380–403. Springer,
2006. 45

[62] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels. In Advances in Cryptology - EUROCRYPT’01, volume 2045
of Lecture Notes in Computer Science, pages 453–474. Springer, 2001. 43, 71, 116

[63] R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-Based Key-Exchange
Protocol. In Advances in Cryptology - CRYPTO’02, volume 2442 of Lecture Notes in
Computer Science, pages 143–161. Springer, 2002. 43

[64] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and
Secure Channels. In Advances in Cryptology – EUROCRYPT’02, volume 2332 of Lecture
Notes in Computer Science, pages 337–351. Springer, 2002. 43

[65] R. Canetti and T. Rabin. Fast Asynchronous Byzantine Agreement with Optimal
Resilience. In Proceedings of the 25th ACM Symposium on Theory of Computing
(STOC’93), pages 42–51. ACM Press, 1993. 209, 210

[66] D. Chaum, J.-H. Evertse, and J. van de Graaf. An Improved Proof for Demonstrating
Possession of Discrete Logarithms and Some Generalizations. In Advances in Cryptology
- EUROCRYPT’87, volume 304 of Lecture Notes in Computer Science, pages 127–141.
Springer, 1987. 91

[67] Z. Chen. Security Analysis on Nalla-Reddy’s ID-Based Tripartite Authenticated Key
Agreement Protocols. Cryptology ePrint Archive, Report 2003/103, 2003. http://
eprint.iacr.org/. 88

[68] Z. Cheng, L. Vasiu, and R. Comley. Pairing-Based One-Round Tripartite Key Agreement
Protocols. Cryptology ePrint Archive, Report 2004/079, 2004. http://eprint.
iacr.org/. 88

[69] O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. Key Derivation and Ran-
domness Extraction. Cryptology ePrint Archive, Report 2005/061, 2005. Available at
http://eprint.iacr.org/2005/061.pdf. 179

[70] O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. The Twist-AUgmented Tech-
nique for Key Exchange. In Public Key Cryptography - PKC’06, volume 3958 of Lecture
Notes in Computer Science, pages 410–426. Springer, 2006. 179

[71] K. Y. Choi, J. Y. Hwang, and D. H. Lee. Efficient ID-based Group Key Agreement with
Bilinear Maps. In Public Key Cryptography - PKC’04, volume 2947 of Lecture Notes in
Computer Science, pages 130–144. Springer, March 2004. 91

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2005/061.pdf

216 References

[72] K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Errors in Computational Complexity Proofs
for Protocols. In Advances in Cryptology – ASIACRYPT’05, volume 3788 of Lecture
Notes in Computer Science, pages 624–643. Springer, 2005. 69, 78

[73] K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Examining Indistinguishability-Based Proof
Models for Key Establishment Protocols. In Advances in Cryptology – ASIACRYPT’05,
volume 3788 of Lecture Notes in Computer Science, pages 585–604. Springer, 2005. 69,
72, 78

[74] R. Cleve. Limits on the Security of Coin Flips When Half the Processors are Faulty.
In Proceedings of the 18th ACM Symposium on Theory of Computing (STOC’86), pages
364–369. ACM Press, 1986. 123

[75] V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for Security
Protocols. In Proceedings of 14th European Symposium on Programming (ESOP’05),
volume 3444 of Lecture Notes in Computer Science, pages 157–171. Springer, 2005. 42

[76] G. D. Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to Forget a Se-
cret. In 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS’99),
volume 1563 of Lecture Notes in Computer Science, pages 500–509. Springer, 1999. 112,
185

[77] I. Csiszár and J. Körner. Broadcast Channels with Confidential Messages. IEEE Trans-
actions on Information Theory, 24(3):339–348, 1978. 40, 41

[78] Y. G. Desmedt and Y. Frankel. Threshold Cryptosystems. In Advances in Cryptol-
ogy – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 307–315.
Springer-Verlag, 1989. 31

[79] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, November 1976. 13, 35, 64, 87, 88, 129

[80] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and Authenticated Key
Exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992. 36, 64, 65, 66, 120

[81] Y. Dodis and P. Puniya. On the Relation Between the Ideal Cipher and the Random
Oracle Models. In Third Theory of Cryptography Conference (TCC’06), volume 3876 of
Lecture Notes in Computer Science, pages 184–206. Springer Verlag, 2006. 44

[82] D. Dolev and A. C.-C. Yao. On the Security of Public Key Protocols. IEEE Transactions
on Information Theory, 29(2):198–207, 1983. 44

[83] R. Dutta and R. Barua. Constant Round Dynamic Group Key Agreement. In Informa-
tion Security: 8th International Conference (ISC’05), volume 3650 of Lecture Notes in
Computer Science, pages 74–88. Springer, August 2005. 13, 81, 84, 102, 109, 110

[84] R. Dutta and R. Barua. Dynamic Group Key Agreement in Tree-Based Setting. In
Proceedings of the 10th Australasian Conference on Information Security and Pri-
vacy (ACISP’05), volume 3574 of Lecture Notes in Computer Science, pages 101–112.
Springer, 2005. 42, 81, 84, 108, 109, 110

[85] R. Dutta and R. Barua. Overview of Key Agreement Protocols. Cryptology ePrint
Archive, Report 2005/289, 2005. http://eprint.iacr.org/2005/289/. 87

[86] R. Dutta and R. Barua. Password-Based Encrypted Group Key Agreement. Inter-
national Journal of Network Security, 3(1):23–34, July 2006. Available at http:
//isrc.nchu.edu.tw/ijns/. 13, 81, 84, 103

[87] R. Dutta, R. Barua, and P. Sarkar. Provably Secure Authenticated Tree Based Group
Key Agreement. In Proceedings of the 6th International Conference on Information
and Communications Security (ICICS’04), volume 3269 of Lecture Notes in Computer
Science, pages 92–104. Springer, 2004. 13, 42, 81, 84, 107, 108, 109, 110

http://eprint.iacr.org/2005/289/
http://isrc.nchu.edu.tw/ijns/
http://isrc.nchu.edu.tw/ijns/

References 217

[88] A. K. Ekert. Quantum Cryptography Based on Bell’s Theorem. Physical Review Letters,
67(6):661–663, 1991. 40

[89] F. Fabrega, J. Herzog, and J. Guttman. Strand Spaces: Why is a Security Protocol Correct?
In IEEE Symposium on Security and Privacy 1998, pages 160–171. IEEE Press, 1998. 44

[90] N. Ferguson and B. Schneier. Practical Cryptography. Wiley, 2003. ISBN:0-471-22894-
X. 53

[91] M. Fischlin. Pseudorandom Function Tribe Ensembles Based on One-Way Permutations:
Improvements and Applications. In Advances in Cryptology – EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 432–445. Springer, 1999. 55

[92] G. Frey and H. Rueck. A Remark Concerning m-Divisibility and the Discrete Logarithm
in the Divisor Class Group of Curves. Mathematics of Computation, 62:865–874, 1994.
91

[93] E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane. Codes which Detect Deception.
The Bell Systems Technical Journal, 53(3):405–424, 1974. 40

[94] O. Goldreich. Foundations of Cryptography - Basic Tools, volume 1. Cambridge Univer-
sity Press, 2001. ISBN:0-521-79172-3. 53, 54, 55, 61

[95] O. Goldreich. Foundations of Cryptography - Volume II Basic Applications, volume 2.
Cambridge University Press, 2004. ISBN:0-521-83084-2. 53, 105

[96] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Jour-
nal of the ACM, 33(4):792–807, 1986. 55

[97] O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game or A Com-
pleteness Theorem for Protocols with Honest Majority. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing (STOC’87), pages 218–229. ACM Press, 1987.
42

[98] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984. 64

[99] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal of Computing, 17(2):281–308, 1988.
59

[100] S. Greenberg. An Annotated Bibliography of Computer Supported Cooperative Work.
ACM SIGCHI Bulletin, 23(3):29–62, 1991. 25

[101] S. Greenberg. Computer-Supported Cooperative Work and Groupware: An Introduction
to the Special Issues. International Journal of Man-Machine Studies, 34(2):133–141,
1991. 25

[102] C. G. Günther. An Identity-Based Key-Exchange Protocol. In Advances in Cryptology
– EUROCRYPT’89, volume 434 of Lecture Notes in Computer Science, pages 29–37.
Springer, 1990. 36, 66

[103] S. Hirose and S. Yoshida. An Authenticated Diffie-Hellman Key Agreement Protocol
Secure Against Active Attacks. In Proceedings of the First International Workshop on
Practice and Theory in Public Key Cryptography (PKC’98), volume 1431 of Lecture
Notes in Computer Science, pages 135–148. Springer, 1998. 34

[104] Y. Hitchcock, C. Boyd, and J. M. G. Nieto. Tripartite Key Exchange in the Canetti-
Krawczyk Proof Model. In Progress in Cryptology – INDOCRYPT’94, volume 3348 of
Lecture Notes in Computer Science, pages 17–32. Springer, 2004. 88

[105] D. Hofheinz, J. Müller-Quade, and R. Steinwandt. Initiator-Resilient Universally Com-
posable Key Exchange. In 8th European Symposium on Research in Computer Secu-

218 References

rity (ESORICS’03), volume 2808 of Lecture Notes in Computer Science, pages 61–84.
Springer, 2003. 43

[106] T. Holenstein. Strengthening Key Agreement using Hard-Core Sets. PhD thesis, ETH
Zurich, 2006. Reprint as vol. 7 of ETH Series in Information Security and Cryptography,
ISBN 3-86626-088-2, Hartung-Gorre Verlag, Konstanz, 2006. 41

[107] I. Ingemarsson, D. T. Tang, and C. K. Wong. A Conference Key Distribution System.
IEEE Transactions on Information Theory, 28(5):714–719, 1982. 13, 89, 91

[108] P. Janson and G. Tsudik. Secure and Minimal Protocols for Authenticated Key Distribu-
tion. Computer Communications, 18(9):645–653, September 1993. 66

[109] A. Joux. A One Round Protocol for Tripartite Diffie-Hellman. In Algorithmic Number
Theory, IV-th Symposium (ANTS IV), volume 1838 of Lecture Notes in Computer Science,
pages 385–394. Springer, July 2000. 13, 88, 91

[110] A. Joux and K. Nguyen. Separating Decision DiffieŰHellman from Computational
DiffieŰHellman in Cryptographic Groups. Journal of Cryptology, 16(4):239–247,
September 2003. 91

[111] J. Katz and J. S. Shin. Modeling Insider Attacks on Group Key-Exchange Protocols. In
Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’05), pages 180–189. ACM Press, 2005. 37, 42, 43, 48, 55, 65, 82, 85, 111, 136,
137

[112] J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange. In Ad-
vances in Cryptology - CRYPTO’03, volume 2729 of Lecture Notes in Computer Science,
pages 110–125. Springer, 2003. 13, 37, 42, 48, 80, 82, 83, 85, 99, 100, 101, 102, 103,
109, 110, 111, 116, 129, 130, 132

[113] R. A. Kemmerer, C. Meadows, and J. K. Millen. Three Systems for Cryptographic Pro-
tocol Analysis. Jorunal of Cryptology, 7(2):79–130, 1994. 44

[114] H.-J. Kim, S.-M. Lee, and D. H. Lee. Constant-Round Authenticated Group Key Ex-
change for Dynamic Groups. In Advances in Cryptology – ASIACRYPT’04, volume 3329
of Lecture Notes in Computer Science, pages 245–259, 2004. 13, 42, 81, 84, 101, 109,
110, 112, 123, 185

[115] Y. Kim, D. Mazzocchi, and G. Tsudik. Admission Control in Peer Groups. In Proceedings
of the Second IEEE International Symposium on Network Computing and Applications
(NCA’03), pages 131–139. IEEE Computer Society, 2003. 29, 30, 31

[116] Y. Kim, A. Perrig, and G. Tsudik. Simple and Fault-Tolerant Key Agreement for Dy-
namic Collaborative Groups. In Proceedings of the 7th ACM Conference on Computer
and Communications Security (CCS’00), pages 235–244. ACM Press, 2000. 64, 97, 98

[117] Y. Kim, A. Perrig, and G. Tsudik. Communication-Efficient Group Key Agreement. In
Proceedings of IFIP TC11 Sixteenth Annual Working Conference on Information Security
(IFIP/Sec’01), volume 193 of IFIP Conference Proceedings, pages 229–244. Kluwer,
2001. 64, 95, 97, 98

[118] Y. Kim, A. Perrig, and G. Tsudik. Group Key Agreement Efficient in Communication.
IEEE Transactions on Computers, 53(7):905–921, July 2004. 13, 97, 98, 179

[119] Y. Kim, A. Perrig, and G. Tsudik. Tree-Based Group Key Agreement. ACM Transactions
on Information and System Security, 7(1):60–96, February 2004. 36, 64, 97, 98, 99, 179

[120] N. Koblitz and A. Menezes. Another Look at “Provable Security”. Journal of Cryptology.
Online Issue, 30. November 2005. Also available at http://eprint.iacr.org/
2005/152.pdf. 44

http://eprint.iacr.org/2005/152.pdf
http://eprint.iacr.org/2005/152.pdf

References 219

[121] H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In Ad-
vances in Cryptology – CRYPTO’05, volume 3621 of Lecture Notes in Computer Science,
pages 546–566. Springer, 2005. 88

[122] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An Efficient Protocol for
Authenticated Key Agreement. Designs, Codes and Cryptography, 28(2):119–134, 2003.
88

[123] S. Lee, Y. Kim, K. Kim, and D.-H. Ryu. An Efficient Tree-Based Group Key Agreement
Using Bilinear Map. In Proceedings of the First International Conference on Applied
Cryptography and Network Security (ACNS’03), volume 2846 of Lecture Notes in Com-
puter Science, pages 357–371. Springer, 2003. 13, 98, 99

[124] L. Liao and M. Manulis. Tree-Based Group Key Agreement Framework for Mobile
Ad-Hoc Networks. In Proceedings of 20th International Conference on Advanced Infor-
mation Networking and Applications (AINA 2006), volume 2, pages 5–9. IEEE Computer
Society, 2006. 98

[125] L. Liao and M. Manulis. Tree-Based Group Key Agreement Framework for Mobile
Ad-Hoc Networks. Future Generation Computer Systems (FGCS), 23(6):787–803, July
2007. 98

[126] G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal of Com-
puter Security, 6(1-2):53–84, 1998. 44

[127] M. Manulis. Contributory Group Key Agreement Protocols, Revisited for Mobile Ad-
Hoc Groups. In Proceedings of the 2nd IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS’05), pages 811–818. IEEE Computer Society, November
2005. 91, 93, 98

[128] U. Maurer. Secret Key Agreement by Public Discussion. IEEE Transaction on Informa-
tion Theory, 39(3):733–742, 1993. 40, 41

[129] U. Maurer. Information-Theoretically Secure Secret-Key Agreement by NOT Authenti-
cated Public Discussion. In Advances in Cryptology — EUROCRYPT ’97, volume 1233
of Lecture Notes in Computer Science, pages 209–225. Springer-Verlag, 1997. 40, 41

[130] U. Maurer and S. Wolf. Towards Characterizing when Information-Theoretic Key Agree-
ment is Possible. In Advances in Cryptology — ASIACRYPT ’96, volume 1163 of Lecture
Notes in Computer Science, pages 196–209. Springer-Verlag, 1996. 40

[131] U. Maurer and S. Wolf. The Relationship Between Breaking the Diffie-Hellman Protocol
and Computing Discrete Logarithms. SIAM Journal on Computing, 28(5):1689–1721,
1999. 57

[132] U. Maurer and S. Wolf. Secret Key Agreement Over a Non-Authenticated Channel —
Parts i, ii, iii. IEEE Transactions on Information Theory, 49(4):822–851, 2003. 41

[133] A. J. Mayer and M. Yung. Secure Protocol Transformation via "Expansion": From Two-
Party to Groups. In Proceedings of the 6th ACM Conference on Computer and Commu-
nications Security (CCS’99), pages 83–92. ACM Press, 1999. 34

[134] C. Meadows. Formal Verification of Cryptographic Protocols: A Survey. In Advances in
Cryptology – ASIACRYPT’94, volume 917 of Lecture Notes in Computer Science, pages
135–150. Springer, 1994. 44

[135] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, October 1996. ISBN:0-8493-8523-7. 26, 27, 28, 33, 36, 41, 53, 56, 64, 65, 66,
120, 123

220 References

[136] A. Menezes, S. Vanstone, and T. Okamoto. Reducing Elliptic Curve Logarithms to Log-
arithms in a Finite Field. In Proceedings of the 23rd annual ACM Symposium on Theory
of Computing (STOC’91), pages 80–89. ACM Press, 1991. 91

[137] V. S. Miller. Short Programs for functions on Curves. Manuskript, available at http:
//crypto.stanford.edu/miller/miller.pdf, May 1986. 91

[138] C. J. Mitchell, M. Ward, and P. Wilson. Key Control in Key Agreement Protocols. Elec-
tronic Letters, 34(10):980–981, 1998. 66, 123

[139] D. Nalla. ID-based Tripartite Key Agreement with Signatures. Cryptology ePrint
Archive, Report 2003/144, 2003. http://eprint.iacr.org/2003/144.pdf.
88

[140] D. Nalla and K.C.Reddy. ID-based Tripartite Authenticated Key Agreement Protocols
from Pairings. Cryptology ePrint Archive, Report 2003/004, 2003. http://eprint.
iacr.org/. 88

[141] D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless Re-
ceivers. In Advances in Cryptology – CRYPTO ’01, volume 2139 of Lecture Notes in
Computer Science, pages 41–62. Springer, 2001. 35

[142] J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The
Non-committing Encryption Case. In Advances in Cryptology – CRYPTO’02, volume
2442 of Lecture Notes in Computer Science, pages 111–126. Springer Verlag, 2002. 44

[143] K. Ohta, S. Micali, and L. Reyzin. Accountable-Subgroup Multisignatures: Extended
Abstract. In Proceedings of ACM Conference on Computer and Communications Security
(CCS’01), pages 245–254. ACM Press, 2001. 31

[144] O. Pereira and J.-J. Quisquater. A Security Analysis of the CLIQUES Protocols Suites.
In Proceedings of the 14th IEEE Computer Security Foundations Workshop (CSFW’01),
pages 73–81. IEEE Computer Society Press, June 2001. 39, 94

[145] O. Pereira and J.-J. Quisquater. An Attack against Barua et al. Authenticated Group Key
Agreement Protocol. Technical Report CG-2003-3, UCL Crypto Group, October 2003.
99

[146] O. Pereira and J.-J. Quisquater. Some Attacks upon Authenticated Group Key Agreement
Protocols. Journal of Computer Security, 11(4):555–580, 2003. 39, 94

[147] A. Perrig. Efficient Collaborative Key Management Protocols for Secure Autonomous
Group Communication. In Proceedings of the International Workshop on Cryptographic
Techniques and Electronic Commerce 1999, pages 192–202. City University of Hong
Kong Press, 1999. 13, 97

[148] B. Pfitzmann and M. Waidner. Composition and Integrity Preservation of Secure Reactive
Systems. In ACM Conference on Computer and Communications Security (CCS’00),
pages 245–254. ACM Press, 2000. 42, 45

[149] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control with Subversion.
O’Reilly Media, 2004. 24

[150] S. Rafaeli and D. Hutchison. A Survey of Key Management for Secure Group Commu-
nication. ACM Computer Surveys, 35(3):309–329, 2003. 87

[151] R. Renner, N. Gisin, and B. Kraus. An Information-Theoretic Security Proof for
QKD Protocols. Physical Review A, 72(012332), 2005. http://arxiv.org/abs/
quant-ph/0502064. 41

[152] R. Renner and S. Wolf. New Bounds in Secret-Key Agreement: The Gap Between Forma-
tion and Secrecy Extraction. In Advances in Cryptology — EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 562–577. Springer-Verlag, 2003. 41

http://crypto.stanford.edu/miller/miller.pdf
http://crypto.stanford.edu/miller/miller.pdf
http://eprint.iacr.org/2003/144.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://arxiv.org/abs/quant-ph/0502064
http://arxiv.org/abs/quant-ph/0502064

References 221

[153] M. Roseman and S. Greenberg. GROUPKIT: A Groupware Toolkit for Building Real-
Time Conferencing Applications. In Proceedings of the Conference on Computer Sup-
ported Cooperative Work (CSCW’92), pages 43–50. ACM Press, 1992. 25

[154] A.-R. Sadeghi and M. Steiner. Assumptions Related to Discrete Logarithms: Why Sub-
tleties Make a Real Difference. In Advances in Cryptology – EUROCRYPT’01, volume
2045 of Lecture Notes in Computer Science, pages 244–261. Springer, 2001. full version
available at http://www.semper.org/sirene/lit/abstrA1.html. 58

[155] V. L. Sauter. Decision Support Systems: An Applied Managerial Approach. John Wiley
& Sons, January 1997. 25

[156] N. Saxena, G. Tsudik, and J. H. Yi. Access Control in Ad Hoc Groups. In Proceedings of
the International Workshop on Hot Topics in Peer-to-Peer Systems (HOT-P2P’04), pages
2–7. IEEE Computer Society, 2004. 31

[157] N. Saxena, G. Tsudik, and J. H. Yi. Efficient Node Admission for Short-lived Mobile
Ad Hoc Groups. In Proceedings of the 13th IEEE International Conference on Network
Protocols (ICNP’05), pages 269–278. IEEE Computer Society, 2005. 31

[158] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley,
1995. ISBN:0-471-11709-9. 53

[159] C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
239–252. Springer, 1989. 106

[160] J. Schwenk and Deutsche Telekom AG. Deutsches Patent DE19847941. 98
[161] J. Schwenk, T. Martin, and R. Schaffelhofer. Tree-based Key Agreement for Multicast.

In Proceedings of the IFIP TC6/TC11 International Conference on Communications and
Multimedia Security Issues, volume 192 of IFIP Conference Proceedings. Kluwer, 2001.
98

[162] C. E. Shannon. Communication Theory of Secrecy Systems. The Bell Systems Technical
Journal, 28(4):656–715, 1949. 40, 43, 44, 71

[163] A. T. Sherman and D. A. McGrew. Key Establishment in Large Dynamic Groups Using
One-Way Function Trees. IEEE Transactions on Software Engineering, 29(5):444–458,
2003. 35

[164] K. Shim. Cryptanalysis of Al-Riyami-Paterson’s Authenticated Three Party Key Agree-
ment Protocols. Cryptology ePrint Archive, Report 2003/122, 2003. http://eprint.
iacr.org/. 88

[165] K. Shim. Cryptanalysis of ID-based Tripartite Authenticated Key Agreement Protocols.
Cryptology ePrint Archive, Report 2003/115, 2003. http://eprint.iacr.org/.
88

[166] K. Shim. Efficient One-Round Tripartite Authenticated Key Agreement Protocol from
the Weil Pairing. Electronics Letters, 39(2):208–209, January 2003. 88

[167] V. Shoup. On Formal Models for Secure Key Exchange (Version 4). Technical Report
RZ 3120, IBM Research, November 1999. Also available at http://shoup.net/.
37, 42, 43, 73, 112

[168] V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/
2004/332.pdf. 42, 59, 60, 206, 209

[169] G. J. Simmons. A Survey of Information Authentication. Contemporary Cryptology, The
Science of Information Integrity, pages 379–419, 1992. 40

http://www.semper.org/sirene/lit/abstrA1.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://shoup.net/
http://eprint.iacr.org/2004/332.pdf
http://eprint.iacr.org/2004/332.pdf

222 References

[170] D. X. Song. Athena: A new efficient automatic checker for security protocol analysis. In
Proceedings of 12th IEEE Computer Security Foundations Workshop (CSFW’99),, pages
192–202. IEEE Computer Society, 1999. 44

[171] D. G. Steer, L. Strawczynski, W. Diffie, and M. J. Wiener. A Secure Audio Teleconfer-
ence System. In Advances in Cryptology – CRYPTO’88, volume 403 of Lecture Notes in
Computer Science, pages 520–528. Springer, 1990. 13, 35, 64, 89, 95, 179

[172] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS Revised:
Early Experiences with Multiuser Interfaces. ACM Transactions on Information Systems,
5(2):147–167, 1987. 25

[173] M. Steiner. Secure Group Key Agreement. PhD thesis, Saarland University, March 2002.
37, 66

[174] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman Key Distribution Extended to
Group Communication. In Proceedings of the 3rd ACM Conference on Computer and
Communications Security (CCS’96), pages 31–37. ACM Press, 1996. 13, 92, 93, 96, 104

[175] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A New Approach to Group Key
Agreement. In Proceedings of the 18th International Conference on Distributed Com-
puting Systems (ICDCS’98), pages 380–387. IEEE Computer Society Press, 1998. 64,
93, 94, 95

[176] M. Steiner, G. Tsudik, and M. Waidner. Key Agreement in Dynamic Peer Groups. IEEE
Transactions on Parallel and Distributed Systems, 11(8):769–780, 2000. 93

[177] H.-M. Sun and B.-T. Hsieh. Security Analysis of Shim’s Authenticated Key Agreement
Protocols from Pairings. Cryptology ePrint Archive, Report 2003/113, 2003. http:
//eprint.iacr.org/2003/113. 88

[178] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall, 2002. 25

[179] J. Vesperman. Essential CVS. O’Reilly Media, 2003. 24
[180] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner. The VersaKey Framework:

Versatile Group Key Management. IEEE Journal on Selected Areas in Communications,
17(9):1614–1631, September 1999. 35

[181] D. Wallner, E. Harder, and R. Agee. Key Management for Multicast: Issues and Ar-
chitectures. Internet RFC/STD/FYI/BCP Archives, June 1999. RFC 2627. Available at
http://www.faqs.org/rfcs/rfc2627.html. 34, 35

[182] M. N. Wegman and J. L. Carter. New Hash Functions and Their Use in Authentication
and Set Equality. Journal of Computer and System Sciences, 22(8):265–279, 1981. 40

[183] M. Wessner and H.-R. Pfister. Group Formation in Computer-Supported Collaborative
Learning. In Proceedings of ACM 2001 International Conference on Supporting Group
Work (GROUP’01), pages 24–31. ACM Press, 2001. 25

[184] S. Wolf. Strong Security Against Active Attacks in Information-Theoretic Secret-Key
Agreement. In Advances in Cryptology — ASIACRYPT ’98, volume 1514 of Lecture
Notes in Computer Science, pages 405–419. Springer-Verlag, 1998. 41

[185] S. Wolf. Information-Theoretically and Computationally Secure Key Agreement in Cryp-
tography. PhD thesis, ETH Zürich, 1999. 41, 58

[186] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key graphs.
In Proceedings of the ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM’98), pages 68–79. ACM Press,
1998. 34, 35

http://eprint.iacr.org/2003/113
http://eprint.iacr.org/2003/113
http://www.faqs.org/rfcs/rfc2627.html

References 223

[187] D. R. Woolley. Web Conferencing Guide. World Wide Web. http://thinkofit.
com/webconf/. 24

[188] A. D. Wyner. The Wiretap Channel. The Bell Systems Technical Journal, 54(8):1355–
1387, 1975. 40, 41

[189] Y. Yacobi and Z. Shmuely. On Key Distribution Systems. In Advances in Cryptol-
ogy – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 344–355.
Springer, August 1990. 36, 64

[190] F. Zhang and X. Chen. Attack on Two ID-based Authenticated Group Key Agreement
Schemes. Cryptology ePrint Archive, Report 2003/259, 2003. Available at http://
eprint.iacr.org/2003/259/. 91

[191] F. Zhang, S. Liu, and K. Kim. ID-Based One Round Authenticated Tripartite Key
Agreement Protocol with Pairings. Cryptology ePrint Archive, Report 2002/122, 2002.
http://eprint.iacr.org/2002/122. 88, 99

http://thinkofit.com/webconf/
http://thinkofit.com/webconf/
http://eprint.iacr.org/2003/259/
http://eprint.iacr.org/2003/259/
http://eprint.iacr.org/2002/122

	Titlepage
	Abstract
	Abstract (in German
)
	Acknowledgements

	Contents

	List of Figures
	List of Tables
	List of Symbols and Notations
	Overview and Organization
	Part I. Group Applications and Key Establishment
	Group Applications and Security
	Group Applications
	Digital Conferences
	Text-Based Group Communication
	File and Data Sharing
	Replication and Synchronization Systems
	CSCW Systems and Groupware

	Membership Dynamics
	Security Issues in Group Applications
	Confidentiality
	Authentication
	Integrity

	Group Membership
	Group Admission and Membership Control
	Group Authority
	Group Admission Policy
	Group Membership Certificates and Admission Process

	Group Key Establishment
	Classification
	Group Key Transport/Distribution
	Group Key Exchange/Agreement
	Session Keys
	Security Requirements on Group Key Establishment Protocols
	Generic Security-Enhancing Solutions - Compilers

	Provable Security in Group Key Establishment
	The Notion of Provable Security
	Information-Theoretic Security in Group Key Establishment
	Computational Security in Group Key Establishment
	Reductionist Security Proofs
	Proofs Based on Simulatability/Indistinguishability
	Non-Standard Assumptions in Computational Security Proofs

	Symbolic Security in Group Key Establishment

	Dissertation Focus and Summary of Research Contributions
	Dissertation Focus and Objectives
	Summary of Research Contributions
	Two Surveys
	A Stronger Computational Security Model for GKE Protocols
	Seven Security-Enhancing GKE Protocol Compilers
	A Constant-Round GKE Protocol

	Part II. Provably Secure Group Key Exchange
	Background on Cryptography
	Negligible Functions
	One-Way Permutations
	Pseudo-Random Functions
	Number-Theoretic Assumptions
	Discrete Logarithm Assumption
	Diffie-Hellman Assumptions

	Digital Signatures
	Techniques used in Security Proofs
	The ``Sequence of Games'' Technique
	The ``Hybrid Technique''

	Analytical Survey on Security Requirements and Models for Group Key Exchange Protocols
	Survey on Informal Security Definitions
	Semantic Security and Known-Key Attacks
	Impersonation Attacks
	Key Confirmation and Mutual Authentication
	Perfect Forward Secrecy
	Key Control and Contributiveness

	Analytical Survey on Formal Security Models
	Models by Bellare and Rogaway (BR, BR+)
	Model by Bellare, Canetti, and Krawczyk (BCK)
	Model by Bellare, Pointcheval and Rogaway (BPR)
	Model by Canetti and Krawczyk (CK)
	Model by Shoup
	Model by Bresson, Chevassut, Pointcheval, and Quisquater (BCPQ)
	Models by Bresson, Chevassut, and Pointcheval (BCP, BCP+)
	Modifications of the BCPQ, BCP, and BCP+ Models
	Models by Katz and Shin (KS, UC-KS)
	Model by Bohli, Vasco, and Steinwandt (BVS)

	Summary and Discussion

	Security-Focused Survey on Group Key Exchange Protocols
	Preliminaries
	Two-Party Key Exchange Protocol by Diffie and Hellman
	Three-Party Key Exchange Protocol by Joux
	A Comment on Relationships between the Protocols

	Group Key Exchange Protocols with Heuristic Security Arguments
	Protocol by Burmester and Desmedt
	Protocol by Ingemarsson, Tang, and Wong
	Protocols by Steiner, Tsudik, and Waidner
	Protocols by Ateniese, Steiner, and Tsudik
	Protocol by Steer, Strawczynski, Diffie, and Wiener
	Protocol by Becker and Wille
	Protocols by Kim, Perrig, and Tsudik
	Protocol by Lee, Kim, Kim, and Ryu
	Protocols by Barua, Dutta, and Sarkar

	Provably Secure Group Key Exchange Protocols
	Protocol by Katz and Yung
	Protocol by Abdalla, Bresson, Chevassut, and Pointcheval
	Protocol by Kim, Lee, and Lee
	Protocols by Barua and Dutta
	Protocols by Bresson and Catalano
	Protocols by Bresson, Chevassut, Pointcheval, and Quisquater
	Protocols by Dutta, Barua, and Sarkar

	Summary and Discussion

	A Modular Security Model for Group Key Exchange Protocols
	Execution Parameters and Definitions
	Protocol Participants, Instance Oracles
	Long-Lived Keys
	Internal State Information
	Session Group Key, Session ID, Partner ID
	Instance Oracle States
	Static GKE Protocol
	Dynamic GKE Protocol

	Adversarial Model and Security Requirements
	Queries to the Instance Oracles
	Correctness
	Forward Secrecy
	Backward Secrecy
	Freshness
	Corruption Models
	Adversarial Setting
	(A)KE-Security
	MA-Security
	t-Contributiveness

	Unifying Relationship of MA-Security and t-Contributiveness
	A Comment on Backward Secrecy

	Seven Security-Enhancing Compilers for GKE Protocols
	Compilers and their Goals
	Preliminaries
	On Separation of Long-Lived Keys and Internal States
	Changes in Notation

	Compiler for AKE-Security
	Compiler for MA-Security
	Compiler for n-Contributiveness
	Multi-Purpose Compilers
	Compiler for AKE-Security and n-Contributiveness
	Compiler for AKE- and MA-Security
	Compiler for MA-Security and n-Contributiveness
	Compiler for AKE-, MA-Security and n-Contributiveness

	Summary

	Constant-Round GKE Protocol TDH1 Secure Against Strong Corruptions
	Number-Theoretic Assumptions
	Algebraic Group
	Tree Decisional Diffie-Hellman Assumption

	Short Overview of TDH1
	Static and Dynamic TDH1.Setup
	TDH1.Join+
	TDH1.Leave+

	Static TDH1
	Authentication Functions
	Tree Management Function
	Key Exchange Functions
	Key Confirmation and Derivation Functions
	Protocol Execution
	Security Analysis of Static TDH1

	Dynamic TDH1
	Additional Tree Management Functions
	Additional Key Exchange Functions
	Protocol Execution
	Security Analysis of Dynamic TDH1

	Summary

	Conclusions and Further Research Directions
	References

