

Group Key Exchange Enabling On-Demand Derivation of P2P Keys

Mark Manulis
Cryptographic Protocols Group
TU Darmstadt & CASED

Group Key Exchange

Users in $\mathbf{U} = \{\mathbf{U}_1, ..., \mathbf{U}_N\}$ run a **Group Key Exchange (GKE)** Protocol and compute a session group key k indistinguishable from $k^* \in_{\mathbb{R}} \{0,1\}^{\kappa}$

a nice building block for group applications

$$k_1 = k_2 = ... = k_N$$

secure (private and authenticated) group channel for U_1 , ..., U_N

Main Goal: Extending GKE with P2P Keys

One protocol ⇒ 1 group key + up to N peer-2-peer keys.

All keys must be <u>independent</u> (across different sessions).

Denote such protocols **GKE+P**.

Naive solutions

- 1. Execute GKE within U and own 2KE between each U_i and U_j in parallel.

 Drawback Gives all N keys at once but needs $(n^2 n)/2$ parallel 2KE sessions.
- 2. Execute GKE within **U** followed by *on-demand* execution of 2KE between U_i and U_j .

 Drawback Up to (n-1) additional 2KE sessions per U_i .

Can we do better?

Since users interact in GKE can we derive p2p keys *non-interactively*?

Group Diffie-Hellman Key Exchange

Many GKE Protocols

are extensions of 2-party DHKE (Diffie-Hellman'76) to a group setting

GroupDH

is a GKE protocol amongst the users in $\mathbf{U} = \{U_1, ..., U_N\}$ in which each U_i chooses own exponent $x_i \in_R \mathbb{Z}_Q$ and computes $k'_i = f(g, x_1, ..., x_N)$ for some $f : \mathbb{G} \times \mathbb{Z}_Q^N \to \mathbb{G}$. A GroupDH protocol is *secure* if k'_i is indistinguishable from $k^* \in_R \mathbb{G}$.

Examples

(protocols with passive security) Steer-Strawczynski-Diffie-Wiener'88, Ingemarsson-Tang-Wong'89, Burmester-Desmedt'94, Steiner-Tsudik-Waidner'96, Kim-Perrig-Tsudik'04, Nam-Paik-Kim-Won'07, Desmedt-Lange'08

and their (authenticated) variants

Diffie-Hellman Key Exchange

Let Q, $P \in PRIMES$, Q | P - 1 and $G = \langle g \rangle$ a cyclic subgroup of \mathbb{Z}^*_p of order Q

secure against eavesdropping attacks under the DDH assumption

$$Adv_{DDH}(A') = \max_{A'} |Pr_{a,b}[A'(g, g^a, g^b, g^{ab}) = 1] - Pr_{a,b,c}[A'(g, g^a, g^b, g^c) = 1]| \le \epsilon(|Q|)$$

security is defined in the sense of *indistinguishability* of k' from $k^* \in_R \mathbb{G}$

Parallel Diffie-Hellman Key Exchange

Let $U = \{U_1, ..., U_N\}$ be a set of users (their *unique* identities).

PDHKE

 U_{i} computes *peer-2-peer keys* $k'_{i,1} = g^{x_{i}x_{1}}$, $k'_{i,2} = g^{x_{i}x_{2}}$, ..., $k'_{i,N} = g^{x_{i}x_{N}}$

Passive Security Setting for PDHKE

Passive attacks (Canetti-Krawczyk'01)

more than just eavesdropp, i.e. also drop, delay, change order of messages corrupt U and choose messages on behalf of U but no impersonation (via modification, injection, or replay) of uncorrupted users

Basic security goal for PDHKE

indistinguishability of a p2p key $k'_{i,j}$ accepted by U_i and U_j from $k^* \in_R \mathbb{G}$ U_i and U_j are uncorrupted upon computation of $k'_{i,j}$ but any other U can be corrupted

independence of $k'_{i,j}$ from other p2p keys (also from those computed by U_i , U_j)

knowledge of $k'_{1,2}$ should *not* reveal any information about $k'_{1,3}$ and $k'_{2,3}$

Simple Attack on PDHKE

A does not know x_2

but each
$$U_i$$
 computes $\{k'_{i,1} = g^{x_i x_2}\}_i = \{k'_{i,2} = g^{x_i x_2}\}_i$

 \Downarrow

A can distinguish any $k'_{i,2} = g^{x_i x_2}$ from k^* by revealing $k'_{i,1}$ from U_i

P2P Key Derivation in PDHKE

 $\mathbf{U} = \{\mathbf{U}_1, ..., \mathbf{U}_N\}$. Hash function $\mathbf{H}_p : \{0,1\}^* \longrightarrow \{0,1\}^\kappa$. Cyclic group $\mathbb{G} = (\mathbf{g}, \mathbf{P}, \mathbf{Q})$. For each pair (U_i, U_j) the input order to H is determined by i < j (to ensure $k_{i,i} = k_{i,i}$)

PDHKE + Hash-based Key Derivation

$$k_{i,j} = H_p(k'_{i,j}, (U_i, y_i), (U_j, y_j))$$

uniqueness of user ids \Rightarrow uniqueness of hash inputs $H_{n}(*, (U_{i}, *), (U_{i}, *))$

for any uncorrupted U_i and at most q invoked sessions

$$\Pr[k_{i,j} \text{ occurs twice}] \le \frac{Nq^2}{Q} + \frac{q_{H_p}^2}{2^{\kappa}}$$

Benefits of PDHKE

Users in $\mathbf{U} = \{\mathbf{U}_1, ..., \mathbf{U}_N\}$ run PDHKE and

obtain up to N independent peer-2-peer secure channels

investing the optimal amount of communication costs

1 round, 1 message per U_i (consisting of 1 element from G)

also interesting as a stand-alone group application

and low computation costs

1 exponentiation and 1 hash computation per $k_{i,j}$

with possibility to compute pairwise keys on-demand w/o further communication each U_i stores x_i and $\{y_j\}_j$ and can derive any $k_{i,j}$ if this becomes necessary

gives us a compiler from GKE to GKE+P (sequential composition of PDHKE | | GKE)

Merge GroupDH with PDHKE

Optimization idea

Let $U_i \in U$ re-use $x_i \in \mathbb{Z}_Q$ from GroupDH to compute the p2p key $k_{i,j}$ with $U_i \in U$ (by applying the PDHKE technique).

Suitable key derivation

Hash functions H_g , H_p : $\{0,1\}^* \longrightarrow \{0,1\}^\kappa$. Let $k'_i = f(g, x_1, ..., x_N)$.

Group key
$$k_i = H_g(k'_i, (U_1, y_1), ..., (U_N, y_N))$$

Pairwise key
$$k_{i,j} = H_p(k'_{i,j}, (U_i, y_i), (U_j, y_j))$$
 where $k'_{i,j} = y_j^{x_i}$ (assuming $i < j$)

Suitable GroupDH protocols (protocols with passive security)

Protocols in which each U_i broadcasts $y_i = g^{x_i}$.

in this talk

Burmester-Desmedt'94 (2 rounds, broadcast complexity O(n))

Kim-Perrig-Tsudik'04 (2 rounds, broadcast complexity O(n), Tree-Diffie-Hellman method)

Burmester-Desmedt GroupDH Protocol

Cyclic group $\mathbb{G} = (g, P, Q)$. U_1 , ..., U_N are arranged into a *cycle* s.t. $U_0 = U_N$, $U_{N+1} = U_1$.

Group DH element
$$k'_i = y_{i-1}^{Nx_i} z_i^{N-1} z_{i+1}^{N-2} ... z_{i+N-2} = g^{x_1x_2 + x_2x_3 + ... + x_{N-1}x_N}$$

Group key
$$k_i = H_g(g^{x_1x_2 + x_2x_3 + ... + x_{N-1}x_N}, (U_1, y_1), ..., (U_N, y_N))$$

Pairwise key $k_{i,i} = H_p(g^{x_ix_j}, (U_i, y_i), (U_i, y_i))$

Is this secure?

Analysis of PDHKE-BD

Group key
$$k_i = H_g(g^{x_1x_2 + x_2x_3 + ... + x_{N-1}x_N}, (U_1, y_1), ..., (U_N, y_N))$$

Pairwise key $k_{i,j} = H_p(g^{x_ix_j}, (U_i, y_i), (U_i, y_i))$

Is this secure?

Individual Attacks

Each U_i broadcasts $z_i = (y_{i+1}/y_{i-1})^{x_i} = g^{x_i x_i + 1 - x_{i-1} x_i}$.

Each U_{i-1} can compute $k'_{i,i+1} = g^{x_i x_i + 1}$ and each U_{i+1} can compute $k'_{i-1,i} = g^{x_i - 1 x_i}$.

Collusion Attacks

Any $k'_{i,i+1} = g^{x_i x_i + 1}$ can be recovered through a collusion of U_i , $j \neq i, j \neq i+1$ from k'.

Any $k'_{i,j} = g^{x_i x_j}$ can be computed as follows:

extract $g^{x_jx_i}$

Kim-Perrig-Tsudik GroupDH Protocol

Cyclic group $\mathbb{G} = (g, P, Q)$ s.t. if $x \in \mathbb{Z}_Q$ then $g^x \in \mathbb{Z}_Q$ (there is a bijection from \mathbb{G} to \mathbb{Z}_Q). $U_1, ..., U_N$ are arranged as leaf nodes of a *full linear binary tree*.

Group DH element
$${k'}_i = g^{x_N}g^{x_{N\text{-}1}}g...}^{g^{x_3}g^{x_1}x_2}$$

Analysis of PDHKE-KPT

$$\begin{aligned} &\text{Group key} & \quad k_i \, = H_g(g^{X_N}g^{X_{N-1}}g...g^{X_3}g^{X_1X_2} \\ &\text{Pairwise key} & \quad k_{i,j} = H_p(g^{x_ix_j}, (U_i, y_i), (U_j, y_j)) \end{aligned}$$

Is this secure? Yes.

Observation

The only $k'_{i,j} = g^{x_i x_j}$ which appears in computations is $k'_{1,2} = g^{x_1 x_2}$.

But $k'_{1,2}$ is computed only by U_1 and U_2 which is fine!

Message $y_{1,2} = g^{k'1,2}$ hides $k'_{1,2}$ in the exponent (hardness of DL).

Result

In ROM PDHKE-KPT is (passively) secure under the DDH and DL assumptions in G.

Intuition

 $y_{1,2} = g^{k'1,2}$ is indistinguishable from $y^*_{1,2} \in_R \mathbb{G}$ under DDH assumption.

 $k_{1,2} = H_p(g^{x_1x_2}, (U_1, y_1), (U_2, y_2)) \text{ is indistinguishable from } k^*_{1,2} \in_R \{0,1\}^\kappa \text{ unless } H_p(g^{x_1x_2}, ...) \text{ is asked.}$

Authentication in GKE+P Protocols

Authentication Compiler for GKE Protocols (Katz-Yung'03)

uses EUF-CMA secure digital signature scheme $\Sigma = (KGen(1^{\kappa}), Sig(sk, m), Ver(pk, m, \sigma))$

Katz-Yung'03: passive adversary = eavesdropper

Bresson-Manulis-Schwenk'07: passive adversary must be in the sense of Canetti-Krawczyk'01; otherwise insecure protocols exist

is also sufficient for authentication of passively secure GKE+P protocols

Conclusion

GKE+P protocol ⇒ 1 group key + up to N pairwise keys (on-demand w/o interaction)

New security challenges

independence between k and $k_{i,j}$ independence between $k_{i,j}$ and $k_{i,t}$ (also in the presence of collusions/insider adversaries)

Constructions

PDHKE with hash-based key derivation as a building block exponent re-use technique in BD-PDHKE shown insecure, in KPT-PDHKE shown secure authenticated GKE+P protocols can be obtained via Katz-Yung'03 authentication compiler for GKE

Not in the talk

Security model for GKE+P protocols (extension of Katz-Yung'03 model) and proofs generic compiler from GroupDH to GKE+P based on PDHKE (can be extended for any GKE)

Open Question: What about Derivation of Subgroup Keys?

Generic Compilation of GKE+P Protocols

(passively) secure GroupDH protocol
$$\Pi$$
 compiler C \longrightarrow C Π' = $C(\Pi)$

Compiler for GKE+P Protocols

Cyclic group $\mathbb{G} = (g, P, Q)$. Hash functions H_g , $H_p : \{0,1\}^* \longrightarrow \{0,1\}^\kappa$.

$$k_i = H_g(k'_i, (U_1, y_1), ..., (U_N, y_N))$$

 $k_{i,i} = H_p(y_i^{x_i}, (U_i, y_i), ..., (U_i, y_i))$

Remarks

Compiler is the combination of PDHKE and Π .

Exponents x_i used to compute $k'_{i,j}$ remain independent from x_i^* used in Π to compute k'_i .

If in Π each U_i broadcasts $y_i^* = g^{x_i^*}$ then y_i can be appended to y_i^* saving the preliminary round.

Independence of P2P Keys in PDHKE

yet we were considering indistinguishability of $k'_{i,j}$ from $k^* \in_R \mathbb{G}$ standard definitions require indistingushability from $k^* \in_R \{0,1\}^\kappa$

Key derivation and randomness extraction

Hash Function

 $H: \{0,1\}^* \longrightarrow \{0,1\}^{\kappa}$. Good extractor in ROM (Bellare-Rogaway'93).

<u>Left-over-Hash-Lemma</u> (Håstad-Impagliazzo-Levin-Luby'99)

Based on universal hash functions, requires external perfect randomness.

<u>Truncation</u> (Chevalier-Fouque-Pointcheval-Zimmer'09)

Extract κ least significant bits. Good for DHKE-based protocols.

In PDHKE would additionally require PRF to admit further inputs.

