

Securing Remote Access *Inside* Wireless Mesh Networks

Mark Manulis Cryptographic Protocols Group TU Darmstadt & CASED Germany

Wireless (Local-Area) Networks

Access in Wireless LANs

- IEEE 802.11i (WPA)
- IEEE 802.X (EAP + RADIUS)

registered at home network

Wireless Mesh Networks

Access in Wireless LANs

- IEEE 802.11i (WPA)
- IEEE 802.x (EAP + RADIUS)

Wireless Mesh Networks

- composition of WLANs into one mesh
- dynamic routing (AODV, DSR, LQSR)
 IEEE 802.11s (upcoming standard)
- stable infrastructure
- powerful routers
- cooperation is inevitable
- useful in urban areas and communities

Application Scenarios

Urban Area WMNs

- private households
- places of public interest

Scenarios / Community Services

- doctors visiting patients
- health authority workers on patrol
- insurance salesmen visiting customers

Remote Access Control

- mobile devices ↔ home networks
- low mobility of users
- session-wise stable routes
- need for protection

Secure Remote Network Access

End-to-End Security

secure channel (authenticated and confidential) between M and R_n typically realised via VPN tunnels (e.g. IKEv2 + IPsec) visited and intermediate networks are treated as potential adversaries

Is this enough in WMNs?

wireless multi-hop channel allows injection of rogue packets

→ resource consumption attacks, negative impact on cooperation amongst R_i

The Concept of Path Security

Observations

end-to-end protection is transparent to the routing infrastructure

intermediate mesh routers cannot link packets to remote sessions

- → cannot distinguish packets originated by end points from rogue packets
- → some incentive mechanisms (e.g. reimbursement) would not work properly

New Concept: Path security

- binding between the session and the underlying path (feasible due to stable routes, low mobility)
- protection of packets along the path between M and H (using additional path key K_p)
- authentication between the end points and intermediate mesh routers

SERENA Protocol (Basic Version)

One protocol – Two Main Goals

- end-to-end secure communication over wirelesss multi-hop channel
- security along the established wireless multi-hop path (i.e. path security)

Idea

compute path key as a by-product of a two-party key establishment protocol between M and H

Building blocks

- pseudo-random function PRF for the derivation of keys
- asymmetric encryption scheme (E, D) for the transport of the path key
- message authentication code MAC for authentication between H and M
- digital signature scheme (Sig, Ver) for authentication of H towards R_i
- sequential aggregate signature (ASig, AVer) for authentication of {R_i}_i towards H

Initialization in SERENA

Initialization of the home network H

H holds a signature key pair (sk_i, vk_i)

Registration of M within H

- M and H share high-entropy symmetric keys (k_M, α_M)
- k_M will be used as a PRF key
- $\alpha_{\rm M}$ will be used as a MAC key

Initialization of mesh networks R_i

R_i holds own aggregate signature key pair (sk_i, vk_i) and own encryption key pair (dk_i, ek_i)

Practical remarks

- H is part of the same mesh
- "aggregate signatures imply signatures" → H needs only one aggregate signature key pair
- k_{M} and α_{M} can be derived from one shared secret using PRF (possibly with expansion)
- public keys vk_i and ek_i are assumed to be known within the mesh

Execution of SERENA (Flows 1 and 2)

Execution of SERENA (Flow 3)

M obtains access to H over the wireless multi-hop path R₁, ..., R_n

Realization Ideas based on Standards

Execution of SERENA

- 1. R₁ works as access point and mesh router
- 2. M connects to R₁ at data link layer
- 3. M and R₁ start SERENA as new EAP method within IEEE 802.1X
- 4. Encapsulation of EAP messages along the path using some carrying protocol, e.g. PANA (RFC 5191)
- 5. H works as router and authentication server

Secure Remote Connection

end-to-end security IPsec (AH/ESP) in the tunnel mode with K_e path security IPsec (AH/ESP) in the transport mode with K_p

In comparison to VPNs (IKEv2 + IPsec) we can have SERENA + IPsec

Extensions and Conclusion

Forward secrecy

- not considered in the basic version
- can be achieved for K_e using Diffie-Hellman method
- can be achieved for K_p using Generalized Diffie-Hellman method (Bresson et al. CCS'01)

Anonymity of M

- M can send E(ek_H, M) instead of M since H would have an encryption key pair as well
- suitable encryption achieves unlinkability as well

Accounting between H and R_i

- in basic version R_i obtains Sig(sk_H, sid|*)
- signed message can be extended with a time-stamp

Security analysis

- extension of two-party Bellare-Rogaway'93 model to WMNs
- definitions of security for K_e and K_p and mutual authentication $M \leftrightarrow H$ and $H \leftrightarrow R_i$
- security proofs

