

Authenticated Wireless Roaming via Tunnels*

Mark Manulis Cryptographic Protocols Group TU Darmstadt & CASED

* M. Manulis, D. Leroy, F. Koeune, O. Bonaventure, J.-J. Quisquater: *Authenticated Wireless Roaming via Tunnels: Making Mobile Guests Feel at Home.*ACM Symposium on Information, Computer, and Communication Security (ASIACCS'09), 10-12 March, Sydney, Australia

Wireless (IP) Roaming

(registered at **H**)

Wireless (IP) Roaming

Potential Security Risks 1

Malicious F

- easy DNS manipulations, e.g. pharming attacks
- F may claim higher costs since H has no control over the amount of service provided by F

Mobile Device

(registered at H)

Potential Security Risks 2

Malicious M

- risks for the infrastructure of F which treats M as its own device (based on the IP membership)
- F could be blamed for the illegal activities of M on the Internet

(registered at **H**)

Service Availability

Access to Services

F may not provide the *same* set of services as H does

M may try to access some value-added services (e.g. subscriptions to digital libraries) based on the IP membership in F

Wireless Roaming via Tunnels

On Expected Increase of Latencies

one additional communication round per each service request

some findings on the **Round Trip Time** in wireless IP networks

City 30-60 ms for residential hosts / 3-4 ms for well-connected hosts [LP03]

Country <150 ms [LP03]

Continent <250 ms for residential [DHGS07] and well-connected [AKSJ03] hosts

ITU-T recommendations: **one-way** latency < 400ms *may* be acceptable (e.g. VoIP)

Security Goals

Authentication

H must authenticate M as one of the registered mobile devices

M must authenticate H as its service provider

F must authenticate H as a roaming contract partner

H must authenticate F as a "good" network to be accessed by M

F and M are not aware of each other and rely on the authorization made by H

Key Establishment

end-to-end tunnel protection \rightarrow K_{M,H} (end-to-end key) protection of communication between M, H, and F \rightarrow K_t (tunnel key)

AWRT Protocol (basic version)

20.03.2009 | MARK MANULIS | www.manulis.eu

Resistance to DoS & Hijacking Attacks

11

Forward Secrecy for K_{M,H}

20.03.2009 | MARK MANULIS | www.manulis.eu

Unlinkability of Roaming Sessions

13

Summary & Conclusion

in this talk

the concept of wireless roaming via tunnels (WRT) (security) advantages of WRT over traditional wireless roaming approaches authentication and key establishment goals

AWRT protocol

in the paper (full version at http://eprint.iacr.org/2008/382)

formal model – extension of Bellare-Rogaway model towards WRT security analysis of AWRT some ideas on practical realization based on currently available standards forward secrecy + unlinkability of roaming sessions handling of the reimbursement of F's costs in commercial scenarios

