

Privacy-Preserving Admission to Mobile P2P Groups

Mark Manulis
Cryptographic Protocols Group
TU Darmstadt & CASED

Scenario: Mobile P2P Groups

Goal Establishment of a (closed) p2p group by mobile users

Research questions

- How to build a group?
- How to admit new members?
- How to prove membership?
- How to communicate securely?

Technical constraints

- Decentralized infrastructure
- Mobility

Group Management Framework

Kim-Mazzocchi-Tsudik Group Management Framework^[KMT'03]

Group Charter contains public information about the group

Group Authority manages group admission, is either centralized or *distributed*

Admission Policy Types

- Access Control Lists
 not applicable to p2p groups
- <u>Centralized decision</u>
 not applicable to p2p groups
- Collective decision (voting)
 - static with fixed threshold of needed votes
 - *dynamic* with some fraction of needed votes

general admission protocol

group membership certificate

(GMC)

Prior Work uses Threshold Signatures

Digital Signatures

Key generation algorithm returns secret key sk and public key pk. Signature σ on a message m can be computed using sk and verified using pk.

Threshold Signatures

Users run distributed key generation (DKG) and compute public key pk.

Each user U_i holds a *share* s_i of the secret key $sk = f(s_1, ..., s_n)$. <u>sk remains unknown</u>. Signature σ on a message m can be computed by at least "t-out-of-n" users.

Threshold-Sig-based Admission Control

Admission Process (general for schemes in [NTY'03, STY04, STY05])

- New member U* obtains pk and sends out own membership request.
- U* requires at least t votes to compute own membership certificate GMC*.
- Each vote gives a *partial signature* σ_i on the infos from membership request.
- Each vote gives a partial share ps_i(U*) allowing U* to compute own share s*.

Some Drawbacks

Need for Secure Channels

- Distribution of partial shares ps_i(U*) requires secure channels.
- Otherwise any eavesdropper would be able to compute the share s*.

Need for Randomization of Shares

- Given ps_i(U*) it is possible for U* to compute the secret share s_i of U_i.
- Avoiding this requires expensive random shuffling^[HJKY'95].

Lack of Vote Privacy

- Votes reveal identities of members.
- U* learns who voted in favor of admission (or against it).

Overview of Our Approach

Admission Control based on Group Key Exchange (GKE)

- Founding users run Group Key Exchange and compute shared key k.
- U* sends own membership request to the group.
- All U_i vote *securely* within the group, i.e. encrypting their votes with k.
- If #(positive votes) > t then all U_i and U* execute new GKE and compute k'.

Initialization using a GKE+P Protocol

Group Key Exchange with On-Demand Derivation of P2P Keys (GKE+P)[M09, ACMP10]

- Computes the group key k and p2p keys k_{i,i} shared between U_i and U_i only.
- Each U_i generates *ephemeral key pair* (sk_i, pk_i) during the protocol execution.
- Each generated ephemeral public key pk_i is bound to the GKE execution.

Initialization by Founding Group Members

where $GC = (t, (U_1, pk_1, ..., U_n, pk_n))$ and t is the *dynamic* fraction of votes

Voting Process

Voting Process by Current Group Members

- Each U_i holds group key k and own (sk_i, pk_i).
- (sk_i, pk_i) can be used to sign messages.

encryption with k prevents U* from learning votes

Group Charter

t, $(U_1, pk_1, \sigma_1, ..., U_n, pk_n, \sigma_n)$

- pk_j are taken from GC, thus indicating valid members
- using signatures we further prevent double voting

if t is sufficient then execute GKE+P

Admission to the Group

Admission of U* to the Group

- the protocol proceeds similar to the initialization step
- all users including U* participate in the GKE+P session

PerCom 2010/MP2P, Mannheim 02.04.2010 | Mark Manulis | www.manulis.eu

Proving Own Group Membership

Proving Group Membership to Insiders and Outsiders

- U_i's public key pk_i is included in GC and signed by all other members
- U_i can prove own membership in a simple signature-based challenge-response

Proving Group Membership without Disclosing own Identity

- U_i can run a *zero-knowledge proof of knowledge*
- U_i proves knowledge of 1-out-of-n private keys sk_i w/o disclosing the exact pk_i
- e.g. using dlog based $(sk_i, pk_i) = (x, g^x)$ one can use the proof from [CM98]

Various Forms of Secure Communication

Secure Group Communication

- members can communicate securely within the group using the *group key* k

Secure P2P Communication

- GKE+P allows any pair of users U_i and U_j to derive a $p2p key k_{i,j}$
- this derivation does not require any additional communication
- U_i and U_i can use k_{i,i} to exchange secure messages
- $k_{i,j}$ remains secret from other parties (including other members)

Secure Communication with Outsiders

- any non-member can encrypt messages for any U_i using pk_i from GC
- group key k can be used to derive a group key pair (sk_G, pk_G) such that any outsider can send encrypted message to the whole group using pk_G

Security Issues

Unforgeability

- the goal is to prevent adversary ${\mathcal A}$ from claiming group membership
- in our solution membership can be claimed via an execution of the challenge-response protocol using (Sig, Ver) and public key pk_i from GC
- note that each member's public key pk_i is signed by *all* other members
- \mathcal{A} cannot claim group membership since the signature is unforgeable

Anonymity (as a new goal)

- applies only to admissions based on collective decisions
- the goal is to prevent adversary A from learning $(U_i, vote_i)$
- in our solution votes are exchanged encrypted with the group key k
- the group key k remains secret from \mathcal{A} due to security of GKE+P
- all $(U_i, vote_i)$ remain secret from \mathcal{A} due to the security of (Enc, Dec)

PerCom 2010/MP2P, Mannheim 02.04.2010 | Mark Manulis | www.manulis.eu

Conclusion

Group Admission Protocols

- anonymity as a new privacy threat in admission control protocols for p2p groups
- current solutions based on threshold signatures do not support vote privacy

Solution based on GKE+P protocols

- users jointly initialize the group through the run of the GKE+P protocol
- dynamic admission policy is achieved via voting
- voting process preserves privacy of votes
- group membership can be easily proven with challenge-response techniques (possibly without disclosing the identity of the member)

Secure (Intra- and Intergroup) Communications

- secure group communication inside the group and with the outsiders
- secure p2p communication between group members and with outsiders
- flexible GKE protocol from [ACMP10] allows communication within subgroups

