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Abstract. Modern multi-user communication systems, including popular instant messaging
tools, social network platforms, and cooperative-work applications, offer flexible forms of com-
munication and exchange of data. At any time point concurrent communication sessions involv-
ing different subsets of users can be invoked. The traditional tool for achieving security in a
multi-party communication environment are group key exchange (GKE) protocols that provide
participants with a secure group key for their subsequent communication. Yet, in communica-
tion scenarios where various user subsets may be involved in different sessions the deployment
of classical GKE protocols has clear performance and scalability limitations as each new session
should be preceded by a separate execution of the protocol. The motivation of this work is to
study the possibility of designing more flexible GKE protocols allowing not only the computation
of a group key for some initial set of users but also efficient derivation of independent secret keys
for all potential subsets. In particular we improve and generalize the recently introduced GKE
protocols enabling on-demand derivation of peer-to-peer keys (so called GKE+P protocols). We
show how a group of users can agree on a secret group key while obtaining some additional
information that they can use on-demand to efficiently compute independent secret keys for any
possible subgroup. Our security analysis relies on the Gap Diffie-Hellman assumption and uses
random oracles.

1 Introduction

Despite more than 20 years of research (see surveys in [5,28]), group key exchange (GKE) protocols are
still far from being widely used in practice, especially if one compares to two-party key (2KE) exchange
protocols which found their deployment in various standards and daily applications. Among the main
reasons for this limited spectrum of applications is the fact that GKE protocols are rather complex,
costly to implement, and not versatile enough. Modern communication platforms, including diverse
instant-messaging tools and collaborative applications, allow their users to communicate and exchange
data within almost any subset of participants. Had classical GKE protocols been deployed in this
multi-user environment, then every new communication attempt would require a different execution of
the GKE protocol. This constraint is anchored in the design rationale behind existing GKE protocols.
A possible improvement would be to design more flexible GKE protocols, which would not only provide
their participants with the group key but would also leave space for the efficient computation of secret
keys for use within any subset of the original group.

Recently, Manulis [27] suggested flexible GKE protocols allowing for a secure combination of two
communication forms: secure communication within a group and secure communication amongst any
two parties from the group. In particular, he designed GKE protocols enabling on-demand derivation of
peer-to-peer (p2p) keys, denoted GKE+P, which provide any pair of participants with an independent
secure p2p key in addition to the common group key. The main ingredient of GKE+P constructions
in [27] is the parallel execution of the classical Diffie-Hellman key exchange (PDHKE) protocol [17]
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and, in particular, the user’s ability to re-use the same value gx in the computation of group and p2p
keys, where g is a generator and x is the private user’s exponent.

Building on this, we investigate the even more generalized and flexible approach — the extension
of GKE protocols with the ability to compute an independent session key for any possible subgroup
of the initial GKE participants. Similar to [27], we are interested in solutions which would allow the
derivation of the subgroup keys in a more efficient way than simply running an independent session
of a GKE protocol for each subgroup. GKE protocols enriched in this way, which we denote GKE+S,
would allow the combination of different forms of secure communication. For example, a single file
deposited in a file sharing network or broadcasted to the group may contain documents encrypted for
the whole group and different attachments encrypted for different subgroups.

The required independence between different key types imposes further security challenges on
GKE+S protocols: The classical GKE security requirement concerning the secrecy of the group key
with respect to the external parties (typically called AKE-security [8,22]) should now be preserved even
if some subgroup keys leak, and the independence of any subgroup key implicitly requires us to handle
(collusion) attacks from parties that are external to that subgroup but internal to the preliminary
computation process of the common group key or to a different subgroup with membership overlap.
As a result, the specification of the adequate security requirements for GKE+S protocols with respect
to these threats appears to be an interesting task from a formal point of view.

The protocols being considered in this paper are all based on the well-studied Burmester-Desmedt
(BD) group key exchange protocol [13]. Interestingly, Manulis [27] had shown that, if users try to use the
same exponents in the computation of group and p2p keys in the original BD protocol, then the AKE-
security of p2p keys could no longer be guaranteed. In this work, we illustrate how a small modification
of the original BD protocol suffices to obtain a secure GKE+P protocol. Interestingly, this modification
of the original BD protocol only applies to the computation steps and leaves the communication
complexity unchanged. In particular, our GKE+P protocol has better overall complexity than those
proposed in [27]. After presenting our new GKE+P protocol, we show how to extend it into a secure
GKE+S protocol. Our GKE+S protocol requires only one additional communication round for setting
up any subgroup key as opposed to the two-round communication that one would need to compute a
subgroup key via an independent protocol execution.

1.1 Related Work

Security of key exchange protocols is usually defined with the requirement of Authenticated Key
Exchange (AKE) security; see [3, 14, 15, 26] for the 2KE case and [8, 10, 18, 21, 22] for the GKE case.
AKE-security models the indistinguishability of the established session group key with respect to
an active adversary treated as an external entity from the perspective of the attacked session. The
signature-based compilation technique by Katz and Yung [22] (see also the work by Bresson, Manulis,
and Schwenk [12]) can be used to achieve AKE-security for GKE protocols that already provide such
indistinguishability but with regard to the passive attacks only. Besides AKE-security some security
models for GKE protocols (e.g. [10, 11,18,21]) define optional security against insider attacks.

The notion of GKE+P protocols has been put forth by Manulis [27]. He showed how to compile
the so-called family of Group Diffie-Hellman protocols, i.e. protocols such as [13, 16, 19, 24, 25, 30–32]
which extend the classical Diffie-Hellman method to the group setting, in such a way, that at the end
of the protocol any pair of users can derive their own p2p key on-demand and without subsequent
communication. The main building block of his GKE+P compiler is the parallel Diffie-Hellman key
exchange (PDHKE) in which each user broadcasts a value of the form gx and uses x for the derivation
of different p2p keys. For the two efficient two-round unauthenticated GKE protocols by Burmester
and Desmedt (BD) [13] and by Kim, Perrig, and Tsudik (KPT) [24], in which users need to broadcast
gx anyway, Manulis analyzed optimizations based on the re-use of the exponent x for the computation
of both group and p2p keys showing that KPT remains secure whereas BD not.

We also notice that PDHKE has been used by Jeong and Lee [20] for the simultaneous computation
of multiple two-party keys amongst a set of users, yet without considering collusion attacks against



the secrecy of keys computed by non-colluding users and without considering group keys. In another
work, Biswas [4] proposed a slight modification to the original Diffie-Hellman protocol allowing its
participants to obtain up to 15 different shared two-party keys.

While GKE+P protocols take the top-down approach in the sense that the computation of p2p
keys for any pair of users is seen as a feature of the GKE protocol there have been several suggestions,
e.g. [1,29,33], that construct GKE protocols from 2KE protocols used as a building block. For example,
Abdalla et al. [1], as well as Wu and Zhu [33] order protocol participants into a cycle (in a BD fashion)
and a 2KE protocol is executed only between the neighbors. However, these constructions do not
explicitly meet the requirements of GKE+P protocols as an independent p2p key may not be available
for every pair of users.

1.2 Contributions and Organization

In Section 2, we recall the classical Burmester-Desmedt (BD) protocol [13] and explain problems behind
the re-use of its exponents for PDHKE following the analysis by Manulis [27]. In Section 3, we propose
a slight modification to the computations steps of the BD protocol such that the overall communication
complexity remains unchanged, yet secure, non-interactive derivation of p2p keys through the re-use of
users’ exponents becomes possible. Our GKE+P protocol obtained in this way and denoted mBD+P
is more efficient than other solutions proposed in [27].

We then continue in Section 4 with our second contribution — the description of a GKE+S protocol
in which users compute the common group key first and then any subgroup of these users can agree
on an independent subgroup key. Our GKE+S protocol, denoted mBD+S, requires two-rounds for
the computation of the group key and only one round for the subsequent on-demand computation
of any subgroup key. In comparison to the naive approach of computing a subgroup key through an
independent execution of the full GKE protocol our solution is more scalable as it halves the number
of communication rounds and required messages.

In Section 5, we formally model the security of GKE+S protocols. We address AKE-security of
both group and subgroup keys whereby security of the latter is modeled under consideration of possible
collusion attacks representing the main challenge is such protocols. Our model generalizes the security
model by Manulis [27], which considered only derivation of p2p keys.

Finally, we apply the model in Section 6 to prove that mBD+P provides AKE-security for group
and p2p keys and that mBD+S additionally provides AKE-security for the derived subgroup keys. We
conclude our work in Section 7 by comparing the communication and computation complexity of our
protocols with the previous solutions showing the expected efficiency gain.

2 Preliminaries and Background

2.1 Notations and Assumptions

Throughout the paper, unless otherwise specified, by G := 〈g〉 we denote a cyclic group of prime order
Q generated by g. By Hg, Hp, Hs : {0, 1}∗ → {0, 1}κ we denote three cryptographic hash functions, which
will be used to derive group, p2p, and subgroup keys, respectively, and by H : G 7→ {0, 1}κ an auxiliary
hash function which will be used to slightly modify the computations of the original Burmester-Desmedt
protocol. The symbol “|” will be used for the concatenation of bit-strings. Since we are interested in au-
thenticated protocols we will further use a digital signature scheme Σ = (KeyGen, Sign, Verify), which
we assume to be existentially unforgeable under chosen message attacks (EUF-CMA). Additionally,
we recall the following well-known cryptographic assumption (see e.g. [6]):

Definition 1. Let G := 〈g〉 as above and a, b, c ∈R ZQ. The Gap Diffie-Hellman (GDH) problem in G
is hard if the following success probability is negligible:

SuccGDHG (κ) := max
A′

∣∣ Pr
a,b

[
A′D(·)(g, ga, gb) = gab

]∣∣,



where D(·) denotes the Decision Diffie-Hellman (DDH) oracle, i.e. D(g, ga, gb, gc) outputs 1 if c = ab
and 0 otherwise.

Note that SuccGDHG (κ) is computed over all PPT adversaries A′ running within time κ. In other
words, the Computation Diffie-Hellman (CDH) problem in G is assumed to be hard even if the DDH
problem in G is easy.

2.2 Burmester-Desmedt Group Key Exchange

The Burmester-Desmedt (BD) protocol from [13] is one of the best known unauthenticated GKE
protocols. Its technique has influenced many GKE protocols, including [2,23]. The BD protocol arranges
participants U1, . . . , Un into a cycle, and requires two communication rounds:

Round 1. Each Ui broadcasts yi := gxi for some random xi ∈R ZQ.
Round 2. Each Ui broadcasts zi := (yi+1/yi−1)xi (the indices i form a cycle, i.e. 0 = n and n+1 = 1).
Group Key Computation. Each Ui computes the secret group element

k′i := (yi−1)nxi · zn−1
i · zn−2

i+1 · · · zi+n−2 = gx1x2+x2x3+...+xnx1 ,

which is then used to derive the group key.

As shown by Katz and Yung [22] the group element k′i remains indistinguishable from a randomly
chosen element in G under the DDH assumption with regard to a passive adversary; using the general
authentication technique from [22] this indistinguishability can be extended to resist active attacks.

2.3 Parallel Diffie-Hellman Key Exchange

The following one-round parallelized Diffie-Hellman protocol (PDHKE) with the additional key deriva-
tion step based on a hash function Hp (modeled as a random oracle) has been deployed by Manulis [27]
for the computation of independent p2p keys between any two users Ui and Uj :

Round 1. Each Ui chooses a random xi ∈R ZQ and broadcasts yi := gxi .
P2P Key Computation. Each Ui proceeds as follows:

– for the input identity Uj compute k′i,j := yxi
j = gxixj ,

– derive ki,j := Hp(k′i,j , Ui|yi, Uj |yj).
(W.l.o.g. we assume that both users Ui and Uj use the same order for the inputs to Hp.)

As motivated in [27] the input (Ui|yi, Uj |yj) to Hp in addition to k′i,j = gxixj is necessary in order to
ensure the independence of p2p keys in the presence of collusion attacks. This independence follows
from the uniqueness of user identities and the negligible probability that an honest user Ui chooses the
same exponent xi in two different sessions. It has been shown in [27] that PDHKE provides security
of p2p keys in the presence of passive attacks and that the authentication technique from [22] is also
sufficient to preserve this property in the presence of active attacks.

2.4 Insecure Merge of BD and PDHKE

Given BD and PDHKE one of the questions investigated by Manulis [27] was whether a user Ui can
safely re-use own exponent xi for the computation of the group key and any p2p key. In other words
whether a two-round merged version of original BD and PDHKE would result in a secure GKE+P
protocol in which the keys are computed as follows: the group key ki := Hg(k′i, U1|y1, . . . , Un|yn) and
any p2p key ki,j := Hs(k′i,j , Ui|yi, Uj |yj).

The analysis given in [27] shows that this merge is insecure. More precisely, for any group size n ≥ 3
an attack (possibly by colluding participants) was presented that would break the AKE-security of any
p2p key ki,j .



In the next section we revise this result. We show how to slightly modify the computation of zi in the
original BD protocol in order to allow secure computation of ki := Hg(k′i, U1|y1, . . . , Un|yn) and ki,j :=
Hs(k′i,j , Ui|yi, Uj |yj). We stress that our changes do not increase the original communication complexity
of the BD protocol which is the actual goal for considering its merge with PDHKE. Then, based on our
new construction we show how to obtain a secure GKE+S protocol where the communication effort
for the derivation of subgroup keys requires only one round; this in contrast to two rounds that would
be necessary to establish a subgroup key using the original BD protocol from the scratch.

3 GKE+P Protocol from Modified BD and PDHKE

In order to obtain a secure merge of BD and PDHKE we make use of the following trick in the
computation of zi: Instead of computing zi := (yi+1/yi−1)xi we let each Ui first compute k′i,i+1 := yxi

i+1

and k′i−1,i := yxi
i−1 and then compute zi as an XOR sum H(k′i−1,i)⊕ H(k′i,i+1). This does not introduce

new communication costs to the BD protocol but has impact on the computation of the group key.
We observe that similar trick has been applied for a different purpose by Kim, Lee, and Lee [23], who
considered possible extensions of BD-like protocols to handle dynamic membership events such as join
and leave or to speed up the computation process, whereas here we use the trick exclusively to achieve
independence between the group and p2p keys.

The actual description of the protocol which we denote mBD+P follows. Since we are interested in
AKE-secure constructions we describe the necessary authentication steps as well. For this we assume
that each Ui is in possession of a long-lived key pair (ski, pki)← KeyGen(1κ) for the EUF-CMA secure
digital signature scheme Σ = (KeyGen, Sign, Verify). The authentication procedure is similar to the
general authentication technique from [22], except that we construct the session id using elements from
G as nonces; thus saving the communication costs. The protocol proceeds in two stages: the group stage
involves all members of the group and results in the computation of the common group key, whereas
the p2p stage is executed on-demand by any two group members wishing to compute an independent
p2p key.

Group Stage. Let the group be defined by pid = (U1, . . . , Un). In the following description we assume
that user indices form a cycle such that U0 = Un and Un+1 = U1.

Round 1. Each Ui computes yi := gxi for some random xi ∈R ZQ and broadcasts (Ui, yi).
Round 2. Each Ui proceeds as follows:

– compute sidi := (U1|y1, . . . , Un|yn),
– k′i−1,i := yxi

i−1 and k′i,i+1 := yxi
i+1,

– z′i−1,i := H(k′i−1,i, sidi) and z′i,i+1 := H(k′i,i+1, sidi),
– zi := z′i−1,i ⊕ z′i,i+1,
– σi := Sign(ski, (Ui, zi, sidi)),
– broadcast (Ui, zi, σi).

Group Key Computation. Each Ui checks whether z1 ⊕ . . . ⊕ zn = 0 and whether all received
signatures σj are valid and aborts if any of these checks fails. Otherwise, Ui proceeds as follows:
– iteratively for each j = i, . . . , i+ n− 1: z′j,j+1 := z′j−1,j ⊕ zj ,
– accept ki := Hg(z′1,2, . . . , z

′
n,1, sidi).

P2P Stage. On input any user identity Uj ∈ pidi the corresponding user Ui proceeds as follows:

– compute k′i,j := yxi
j = gxixj ,

– derive ki,j := Hp(k′i,j , Ui|yi, Uj |yj).

(W.l.o.g. we assume that both users Ui and Uj use the same order for the inputs to Hp.)
Here we observe that the computation of p2p keys proceeds without any interaction.



4 GKE+S Protocol from Modified BD and PDHKE

In this section we extend our previous protocol to a secure GKE+S solution. We call it mBD+S.
The design rationale is as follows: Users run the group stage to compute the group key and then any
subgroup can on-demand repeat the second round of the protocol re-using the exponents from the
group stage. Observe that each subgroup identified by some spid ⊂ pid uniquely determines its own
cycle. However, there can be many subgroups involving the same pair of users Ui and Uj in which they
are located at neighboring positions. In order to avoid the use of the same value z′i,j for the derivation
of different subgroup keys we include a subgroup session id ssidi given as the concatenation of all
(Ui, yi) with Ui ∈ spid as additional input to H.

Since the group stage of the current protocol does not change with respect to the protocol in the
previous section, we only present below the subgroup stage.

Subgroup Stage. On input any subgroup spid ⊂ pid the corresponding users perform the following
steps. For the ease of presentation we assume that spid = (U1, . . . , Um) with m < n and that U0 = Um
and Um+1 = U1.

Round 1. Each Ui ∈ spid proceeds as follows:
– extract ssidi := (U1|y1, . . . , Um|ym) from sidi;
– k′i−1,i := yxi

i−1 and k′i,i+1 := yxi
i+1,

– z′i−1,i := H(k′i−1,i, ssidi) and z′i,i+1 := H(k′i,i+1, ssidi),
– zi := z′i−1,i ⊕ z′i,i+1,
– σi := Sign(ski, (Ui, zi, ssidi)),
– broadcast (Ui, zi, σi).

Subgroup Key Computation. Each Ui checks whether z1 ⊕ . . .⊕ zm = 0 and whether all received
signatures σj are valid and aborts if any of these checks fails. Otherwise, Ui proceeds as follows:
– iteratively for each j = i, . . . , i+m− 1: z′j,j+1 := z′j−1,j ⊕ zj ,
– accept ki,J := Hs(z′1,2, . . . , z

′
m,1, ssidi).

(W.l.o.g. we assume that all users in spid use the same order for the inputs to Hs.)

Note that for subgroups of size two, i.e. containing only Ui and Uj , both users can still derive their
p2p key without executing the subgroup stage simply as ki,j := Hs(z′i,j , (Ui|yi, Uj |yj)).

5 Generalized Security Model

Here we generalize the GKE+P model by Manulis [27] towards consideration of subgroup keys com-
puted by participants of a GKE protocol.

5.1 Participants, Sessions, and Correctness of GKE+P Protocols

Let U denote a set of at most N users (more precisely, their identities which are assumed to be unique)
in the universe. We assume that any subset of n users (2 ≤ n ≤ N) can be invoked for a single
session of a GKE+S protocol P. Each Ui ∈ U holds a (secret) long-lived key LLi. The participation of
Ui in distinct, possibly concurrent protocol sessions is modeled via an unlimited number of instances
Πs
i , s ∈ N. An instance Πs

i can be invoked for one GKE+S session with some partner id pidsi ⊆ U
encompassing the identities of all the intended participants (including Ui). An execution of a GKE+S
protocol is then split in two stages, denoted as group stage and subgroup stage, described in the
following.

The group stage results in Πs
i holding a session id sidsi which uniquely identifies the current

protocol session. Any two instances Πs
i and Πt

j are considered as being partnered if sidsi = sidtj and
pidsi = pidtj . The success of the group stage for some instance Πs

i is modeled through its acceptance
with some session group key ksi .



Each instance Πs
i that has accepted in the group stage can later be invoked for the subgroup stage

on input some subgroup partner id spidsi ⊂ pidsi (which includes Ui). This invocation can be performed
several times for different subgroups of pidsi . The success of the subgroup stage for some Πs

i is modeled
through its acceptance with some session subgroup key ksi,J , whereby J denotes the set of indices of
users in spidsi , i.e. it includes all j with Uj ∈ spidsi .

Definition 2 (GKE+S/GKE+P Protocols). P is a group key exchange protocol enabling on-
demand derivation of subgroup keys (GKE+S) if P consists of the following two protocols/algorithms:

P.GKE(U1, . . . , Un): For each Ui, a new instance Πs
i with pidsi = (U1, . . . , Un) is created and a prob-

abilistic interactive protocol between these instances is executed such that at the end every instance
Πs
i accepts holding the session group key ksi . This protocol defines the group stage.

P.SKE(Πs
i , spid

s
i ): On input an accepted instance Πs

i and a subgroup partner id spidsi ⊂ pidsi this
deterministic (possibly interactive) algorithm outputs the session subgroup key ksi,J . This algorithm
defines the subgroup stage. (We assume that SKE is given only for groups of size n ≥ 3 since for
n = 2 the group key is sufficient.)

A GKE+S protocol P is correct if (when no adversary is present) all instances invoked for the group
stage P.GKE accept with identical group keys and for all instances Πt

j partnered with Πs
i the subgroup

stage results in P.SKE(Πt
j , spid

t
j) = P.SKE(Πs

i , spid
s
i ) if spidtj = spidsi .

P is a group key exchange protocol enabling on-demand derivation of p2p keys (GKE+P) if it is
a GKE+S protocol in which the only admissible input to SKE is of the form spidsi = (Ui, Uj). The
execution of SKE in this case defines the p2p stage.

5.2 Adversarial Model and Security Goals

Security of GKE+S protocols must ensure independence of the session group key ksi and any subgroup
key ksi,J . In particular the secrecy of ksi must hold even if any subgroup key ksi,J is leaked to the
adversary. Similarly, the leakage of the group key ksi must guarantee the secrecy of any subgroup key
ksi,J . Since the computation of subgroup keys is triggered on-demand we must provide the adversary
with the ability to schedule the execution of P.SKE on the subgroups of its choice.

Additionally, GKE+S protocols must ensure independence amongst different subgroup keys. That
is the knowledge of some ksi,J should not reveal information about any other subgroup key computed
by Πs

i or any partner Πt
j . This requirement implicitly assumes that some participants Uj with j 6∈ J

may collude during the protocol execution.
Finally, the described independence amongst the group and subgroup keys must hold across different

sessions of GKE+S.

Adversarial Model. The adversary A, modeled as a PPT machine, can schedule the protocol exe-
cution and mount attacks through a set of queries:

– Execute(U1, . . . , Un): This query executes the group stage protocol between new instances of U1,
. . . , Un ∈ U and provides A with the execution transcript.

– Send(Πs
i ,m) : With this query A can deliver a message m to Πs

i whereby U denotes the identity
of its sender. A is then given the protocol message generated by Πs

i in response to m (the output
may also be empty if m is unexpected or if Πs

i accepts). A special invocation query of the form
Send(Ui, (′start′, U1, . . . , Un)) creates a new instance Πs

i with pidsi := (U1, . . . , Un) and provides
A with the first protocol message. This query can be used by A also during the subgroup stage if
P.SKE requires interaction.

– SKE(Πs
i , spid

s
i ): This query allows A to schedule the on-demand computation of subgroup keys. If

P.SKE requires interaction thenΠs
i returnsA its first message for the subgroup stage; otherwiseΠs

i

computes the subgroup key ksi,J . This query is processed only if Πs
i has accepted and spidsi ⊂ pidsi .

Additionally, this query can be asked only once per input (Πs
i , spid

s
i ).



– RevealGK(Πs
i ): This query models the leakage of group keys and provides A with ksi . It is answered

only if Πs
i has accepted in the group stage.

– RevealSK(Πs
i , spid

s
i ): This query models the leakage of subgroup keys and provides A with the

corresponding ksi,J ; the query is answered only if the algorithm SKE(Πs
i , spid

s
i ) has already been

invoked and the subgroup key computed.
– Corrupt(Ui): This query provides A with LLi. Note that in this case A does not gain control over

the user’s behavior, but might be able to communicate on behalf of the user.
– TestGK(Πs

i ): This query models indistinguishability of session group keys. Depending on a given
(privately flipped) bit b A is given, if b = 0 a random session group key, and if b = 1 the real ksi .
This query can be asked only once and is answered only if Πs

i has accepted in the group stage.
– TestSK(Πs

i , spid
s
i ): This query models indistinguishability of session subgroup keys. Depending

on a given (privately flipped) bit b A is given, if b = 0 a random session p2p key, and if b = 1 the
real ksi,J . This query is answered only if the algorithm SKE(Πs

i , spid
s
i ) has already been invoked

and the subgroup key computed.

Terminology. We say that U is honest if no Corrupt(U) has been asked byA; otherwise, U is corrupted
(or malicious). This also refers to the instances of U .

Two Notions of Freshness. The classical notion of freshness imposes several conditions in order
to prevent any trivial break of the AKE-security. Obviously, we need two definitions of freshness to
capture such conditions for the both key types.

First, we define the notion of instance freshness which will be used in the definition of AKE-security
of group keys. Our definition is essentially the one given in [22].

Definition 3 (Instance Freshness). An instance Πs
i is fresh if Πs

i has accepted in the group
stage and none of the following is true, whereby Πt

j denotes an instance partnered with Πs
i : (1)

RevealGK(Πs
i ) or RevealGK(Πt

j) has been asked, or (2) Corrupt(U ′) for some U ′ ∈ pidsi was asked
before any Send(Πs

i , ·).

Note that in the context of GKE+S the above definition restricts A from active participation on
behalf of any user during the attacked session, but implicitly allows for the leakage of (all) subgroup
keys.

Additionally, we define the notion of instance-subgroup freshness which will be used to specify the
AKE-security of subgroup keys.

Definition 4 (Instance-Subgroup Freshness). An instance-subgroup pair (Πs
i , spid

s
i ) is fresh if

Πs
i has accepted in the group stage and none of the following is true, whereby Πt

j is assumed to be
partnered with Πs

i and spidtj = spidsi : (1) RevealSK(Πs
i , spid

s
i ) or RevealSK(Πt

j , spid
t
j) has been

asked, or (2) Corrupt(Ui) or Corrupt(Uj) was asked before any Send(Πs
i , ·) or Send(Πs

j , ·).

Here A is explicitly allowed to actively participate in the attacked session on behalf of any user
except for Ui and any Uj ∈ spidsi . Also A may learn the group key ki and all subgroup keys except for
ki,J returned by P.SKE(Πs

i , spid
s
i ). This models possible collusion of participants from pidsi \ spidsi

during the execution of the protocol aiming to break the secrecy of the subgroup key ki,J .

AKE-Security of Group and Subgroup Keys. For the AKE-security of group keys we follow the
definition from [22].

Definition 5 (AKE-Security of Group Keys). Let P be a correct GKE+P protocol and b a uni-
formly chosen bit. By Gameake-g,b

A,P (κ) we define the following adversarial game, which involves a PPT
adversary A that is given access to all queries:

– A interacts via queries;



– at some point A asks a TestGK(Πs
i ) query for some instance Πs

i which is (and remains) fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define
Advake-g

A,P (κ) :=
∣∣∣2 Pr[Gameake-g,b

A,P (κ) = b]− 1
∣∣∣

and denote with Advake-g
P (κ) the maximum advantage over all PPT adversaries A. We say that P

provides AKE-security of group keys if this advantage is negligible.

Finally, we define AKE-security of subgroup keys while considering possible collusion attacks, as
above but with a TestSK(Πs

i , spid
s
i ) query.

Definition 6 (AKE-security of Subgroup Keys). Let P be a correct GKE+S protocol and b a
uniformly chosen bit. By Gameake-s,b

A,P (κ) we define the following adversarial game, which involves a PPT
adversary A that is given access to all queries:

– A interacts via queries;
– at some point A asks a TestSK(Πs

i , spid
s
i ) query for some instance-subgroup pair (Πs

i , spid
s
i )

which is (and remains) fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define
Advake-s

A,P (κ) :=
∣∣∣2 Pr[Gameake-s,b

A,P (κ) = b]− 1
∣∣∣

and denote with Advake-s
P (κ) the maximum advantage over all PPT adversaries A. We say that P

provides AKE-security of subgroup keys if this advantage is negligible.

6 Security of Our GKE+P and GKE+S Protocols

In this section we analyze security of our mBD+P and mBD+S protocols using our generalized security
model. The corresponding proofs of our theorems can be found in appendix. The security results hold
in the random oracle model. The following two theorems show that mBD+P is a secure GKE+P
protocol.

Theorem 1. If the GDH problem is hard in G then our protocol mBD+P provides AKE-security of
group keys and

Advake-g
mBD+P(κ) ≤2N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ−1

+2NSucceuf-cma
Σ (κ) + 2qSe

(
NqHSuccGDHG (κ) +

qHg
2κ

)
with at most (qEx +qSe) sessions being invoked via Execute and Send queries and at most qHg , qHp , and
qH random oracle queries being asked.

Theorem 2. If the GDH problem is hard in G then our protocol mBD+P provides AKE-security of
p2p keys and

Advake-p
mBD+P(κ) ≤2N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ−1

+2NSucceuf-cma
Σ (κ) + 2qSe

(
(NqH + qSKEqHp)SuccGDHG (κ)

)
with at most (qEx + qSe) sessions being invoked via Execute and Send queries, at most qSKE p2p keys
being computed via SKE queries, and at most qHg , qHp , and qH random oracle queries being asked.



Our next two theorems prove that mBD+S is a secure GKE+S protocol. The main difference in the
security analysis is the consideration of the additional communication round for the subgroup stage
(Theorem 4). Since the group stage of mBD+S does not differ from that of mBD+P, the proof of
Theorem 3 follows from that of Theorem 1.

Theorem 3. If the GDH problem is hard in G then our protocol mBD+S provides AKE-security of
group keys and

Advake-g
mBD+S(κ) ≤2N(qEx + qSe)2

Q
+

(qHg + qHs)
2

2κ−1

+2NSucceuf-cma
Σ (κ) + 2qSe

(
NqHSuccGDHG (κ) +

qHg
2κ

)
with at most (qEx +qSe) sessions being invoked via Execute and Send queries and at most qHg , qHs , and
qH random oracle queries being asked.

Theorem 4. If the GDH problem is hard in G then our protocol mBD+S provides AKE-security of
subgroup keys and

Advake-s
mBD+S(κ) ≤2N(qEx + qSe)2

Q
+

(qHg + qHs)
2

2κ−1
+ 2NSucceuf-cma

Σ (κ)

+2qSe
((
N + (N − 1)qSKE

)
qHSuccGDHG (κ) +

qSKEqHs
2κ

)
with at most (qEx + qSe) sessions being invoked via Execute and Send queries, at most qSKE subgroup
stages being invoked via SKE queries, and at most qHg , qHs , and qH random oracle queries being asked.

7 Performance Comparison

In Table 1 we compare the complexity of our protocols. We measure the communication costs as a total
number of transmitted elements in G, and computation costs as a number of modular exponentiations
per Ui (in the case of BD we count only exponentiations with xi assuming that |xi| � n). We omit
signature generation and verification costs, which are equal for all considered protocols.

Table 1. Performance Comparison of GKE+P and GKE+S Protocols

GKE+P/S Protocols Rounds Communication Computation
(in log Q bits) (in mod. exp. per Ui)

GKE+P BD [27] 2 3n 3
GKE+P KPT [27] 2 2n− 2 n + 2− i (2n− 2 for U1)

our mBD+P 2 2n 3

GKE+S BD 2 2m 2

our mBD+S 1 m ≤ 2

The first part of the table is devoted to GKE+P protocols. By GKE+P BD we denote the protocol
from [27] in which the original Burmester-Desmedt protocol is executed in parallel with PDHKE, i.e.
each user Ui uses two independent exponents xi and x̄i for the computation of the group key and any
p2p key, respectively. By GKE+P KPT we denote the tree-based Kim-Perrig-Tsudik protocol from [24]
in which each user Ui holds only one exponent xi and uses it to compute both types of keys, which has



been proven secure in [27]. Since all GKE+P protocols apply the PDHKE technique for the derivation
of p2p keys we also exclude the computation costs needed to compute a Diffie-Hellman secret k′i,j that
requires constantly one exponentiation per each Uj . Then, we observe that in comparison to GKE+P
BD our mBD+P protocol has better communication complexity since it requires each Ui to hold only
one exponent xi. Note also that the PDHKE-KPT protocol has asymmetric costs, depending on the
position of Ui in the sequence U1, . . . , Un. Although this asymmetry may have benefits in groups with
heterogeneous devices we remark that in general this protocol has much worse computation complexity.

The second part of the table compares the effort needed to derive a subgroup key for any subgroup
of size m < n. By GKE+S BD we consider the trivial solution in which the original BD protocol
from [13] is executed for each new subgroup. We compare it to the subgroup stage of our mBD+S
protocol, which requires only one communication round per subgroup. Observe that the group stage
of mBD+S is executed only once and its complexity is identical to the complete execution of the
BD protocol. By ≤ 2 in the computation costs of mBD+S we point out that users can re-use the
intermediate values k′i−1,i and k′i,i+1 possibly computed during the group stage or during the subgroup
stage for another subgroup, provided the relative position of Ui−1 and Ui or of Ui and Ui+1 in the
cyclic order of the new subgroup remains the same. In this way our mBD+S protocol also offers a
trade-off between space and computation complexity depending on whether users wish to cache the
intermediate values that re-occur in different protocol stages.

8 Conclusion

The increasing popularity of multi-user communication systems offering various forms of communi-
cation can be secured using flexible GKE protocols that provide more than just a secret group key
for the initial set of their participants. This paper addressed the extension of this basic functionality
of GKE protocols towards the computation of different types of keys allowing a secure mix of group,
subgroup, and peer-to-peer communication. While our mBD+P protocol with improved complexity
compared to the protocols from [27] allows a secure mix of group and peer-to-peer communication our
mBD+S protocol extends this approach to obtain the additional secure communication within any
possible subgroup.
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A Proof of Theorem 1

In the following we show that the advantage of A in distinguishing ki from some random element from
{0, 1}κ is negligible. We construct a sequence of games G0, . . . ,G4 and denote by Winake-g

i the event



that the bit b′ output by A is identical to the randomly chosen bit b in the i-th game. Recall that in
each game TestGK(Πs

i ) is answered only if the instance Πs
i is fresh.

Game G0. This is the real execution of mBD+P in which a simulator ∆ truly answers all queries of
A on behalf of the instances as defined in Gameake-g,b

A,mBD+P
(κ).

We assume that A has access to the hash queries for the hash functions H, Hg, and Hp, which are
modeled as random oracles in the classical way, i.e., by returning new random values for new queries
and replaying answers if the queries were previously made.
Game G1. In this game we exclude for every honest user Ui the collisions of the transcripts (Ui, yi)
and group keys ki computed in different sessions. We also exclude any collisions between ki and any
p2p key ki,j . Regarding the transcripts we observe that if Ui is honest then its session value yi is
randomly distributed in G (as a result of yi := gxi for xi ∈R ZQ). Thus, according to the birthday
paradox the collision on transcripts occurs with the probability of at most N(qEx + qSe)2/Q over all
possible users (recall that sessions can be invoked via Execute and Send queries). The uniqueness of
transcripts also implies the uniqueness of inputs to Hg(z′1,2, . . . , z

′
n,1, sidi). By construction inputs to

Hg remain always different from the inputs to Hp. Since Hg and Hp are modeled as random functions we
can also apply the birthday paradox and upper-bound the probability of collisions for ki and collisions
between ki and any ki,j by (qHg + qHp)

2/2κ. Thus,

|Pr[Winake-g
1

]− Pr[Winake-g
0

]| ≤ N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ
.

Game G2. In this game we assume that ∆ fails and bit b′ is set at random if A queries Send containing
(Ui, zi, σi) with σi being a valid signature that has not been previously output by an uncorrupted oracle
Πs
i . In other words the simulation aborts if A outputs a successful forgery. Following the classical

reductionist argument (see for instance [8]) we can build a forger against the signature scheme and
upper-bound the probability difference

|Pr[Winake-g
2

]− Pr[Winake-g
1

]| ≤ NSucceuf-cma
Σ (κ).

Game G3. In this game we let ∆ guess a value q∗ ∈ [1, qSe] and abort if the TestGK query is not
asked for the session invoked by the q∗-th query. Let Q be the event that this guess is correct and
Pr[Q] = 1/qSe. Thus,

Pr[Winake-g
3

] = Pr[Winake-g
2

]
1
qSe

+
1
2

(
1− 1

qSe

)
.

This implies,

Pr[Winake-g
2

] = qSe

(
Pr[Winake-g

3
]− 1

2

)
+

1
2
.

Game G4. In this game we assume that ∆ is given access to the private random oracle H′ : {0, 1}∗ →
{0, 1}κ and computes in the simulation of the q∗-th session for each pair of consecutive users (Ui, Ui+1)
in the cycle z′i,i+1 = H′(i, i+1). Clearly both games remain indistinguishable unless A queries H(k′i,i+1)
for any i ∈ [1, n]. However, this query can be used to break the GDH problem in G, i.e. ∆ embeds
ga and gb from the challenge of the GDH problem into the corresponding values gxi and gxi+1 , and
uses the access to the DDH oracle D in order to identify k′i,i+1 = gxixi+1 provided by A as input to H.
Therefore,

|Pr[Winake-g
4

]− Pr[Winake-g
3

]| ≤ NqHSuccGDHG (κ).

As a result of this game the group key ki computed in the q∗-th session is the output of Hg(z′1,2, . . . ,
z′n,1, sidi) where all input values z′1,2, . . . , z

′
n,1 are uniform in {0, 1}κ. Since Hg is modeled as a random



oracle and collisions on group keys computed in two different sessions have been excluded in Game
G1 the probability that A wins without querying Hg(z′1,2, . . . , z

′
n,1, sidi) is 1/2; on the other hand, the

probability that A asks such a query is given by qHg/2
nκ < qHg/2

κ (for the guess of z′1,2, . . . , z
′
n,1).

Hence, Pr[Winake-g
4

] ≤ 1/2 + qHg/2
κ.

Summarizing the above equations we obtain a negligible advantage

Advake-g
mBD+P

(κ) = |2 Pr[Winake-g
0 ]− 1|

≤ 2N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ−1
+ 2NSucceuf-cma

Σ (κ)

+ 2qSe
(
NqHSuccGDHG (κ) +

qHg
2κ

)
.

B Proof of Theorem 2

In the following we show that the advantage of A in distinguishing any ki,j computed by uncorrupted
users Ui and Uj from some random element in {0, 1}κ is negligible. We construct a sequence of games
G0, . . . ,G6 and denote by Winake-g

i the event that the bit b′ output by A is identical to the randomly
chosen bit b in the i-th game. Recall that in each game TestSK(Πs

i , spid
s
i ) is answered only if the

instance-subgroup pair (Πs
i , spid

s
i ) is fresh.

Game G0. This is the real execution of mBD+P in which a simulator ∆ truly answers all queries of
A on behalf of the instances as defined in Gameake-p,b

A,mBD+P
(κ).

We assume that A has access to the hash queries for the hash functions H, Hg, and Hp, which are
modeled as random oracles.
Game G1. In this game we exclude for every honest user Ui the collisions of the transcripts (Ui, yi)
and group keys ki. We also exclude collisions between ki and any p2p key ki,j . Additionally, we exclude
collisions amongst p2p keys ki,j computed by Ui for different (possibly malicious) Uj . Since sessions
can be invoked via Execute and Send queries we obtain for the collision on transcripts (according to
the birthday paradox) the probability of at most N(qEx + qSe)2/Q over all possible users. Collisions
amongst ki and collisions between ki and any ki,j can be upper-bounded by (qHg + qHp)

2/2κ using
the same argument as in Game G1 from the proof of Theorem 1. This upper-bound also includes
collisions amongst ki,j computed by the same honest Ui for different Uj . To see this observe that even
if Uj malicious and chooses own yj in some rogue way (e.g. in relation to other values) the input to
Hp(k′i,j , Ui|yi, Uj |yj) still remains unique due to the uniqueness of the honest user’s transcript (Ui, yi)
and identity Uj . Hence,

|Pr[Winake-p
1

]− Pr[Winake-p
0

]| ≤ N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ
.

Game G2. In this game we abort simulation (setting bit b′ at random) if A queries Send contain-
ing (Ui, zi, σi) with σi being a valid signature that has not been previously output by an oracle of
uncorrupted Ui. In other words the simulation fails if A outputs a successful forgery such that

|Pr[Winake-p
2

]− Pr[Winake-p
1

]| ≤ NSucceuf-cma
Σ (κ).

Game G3. In this game ∆ randomly chooses a session q∗ ∈R [1, qSe] and aborts the simulation (setting
bit b′ at random) if A asks the TestSK query to some oracle Πs

i that accepted in a group stage of
another session, i.e. not in the q∗-th session. Using similar argument as in Game G3 from the proof of
Theorem 1 we obtain

Pr[Winake-p
2

] = qSe

(
Pr[Winake-p

3
]− 1

2

)
+

1
2
.



As a result of this game it is sufficient for the simulator to focus on the q∗-th session and to simulate
instances of users participating in the group and p2p stages of that session.
Game G4. In this game ∆ is given access to the private random oracle H′ : {0, 1}∗ → {0, 1}κ and in
the simulation of the q∗-th session for each pair of consecutive users (Ui, Ui+1) in the cycle ∆ computes
z′i,i+1 = H′(i, i+1) if both users Ui and Ui+1 are uncorrupted. Note that the definition of AKE-security
for p2p keys requires the TestSK query to be asked to a fresh instance-subgroup pair (Πs

i , spid
s
i ). In

case of p2p keys spidsi would contain two users Ui and Uj that must be uncorrupted at the moment
when their p2p key is computed. However, A is allowed to corrupt and act on behalf of other users
during the protocol execution. This replacement remains indistinguishable unless A queries H(k′i,i+1),
in which case we can solve the challenge of the GDH problem (similar to the proof of the previous
theorem). Thus,

|Pr[Winake-p
4

]− Pr[Winake-p
3

]| ≤ NqHSuccGDHG (κ).

This game implies that in the q∗-th session the computation of the group key ki = Hg(z′1,2, . . . , z
′
n,1, sidi)

uses values z′i,i+1 that are uniform in {0, 1}κ if the respective users Ui and Ui+1 were uncorrupted at
the moment when z′i,i+1 was computed.
Game G5. In this game ∆ randomly chooses a value q∗∗ ∈R [1, qSKE] and aborts the simulation (setting
bit b′ at random) if A asks its q∗∗-th query SKE(Πs

i , spid
s
i ) without asking the TestSK(Πs

i , spid
s
i )

query later. I.e. ∆ tries to guess which invocation in the p2p stage of the q∗-th session will lead to the
computation of the target p2p key. Then,

Pr[Winake-p
4

] = qSKE

(
Pr[Winake-p

5
]− 1

2

)
+

1
2
.

Note that if the guess is positive then spidsi contains two uncorrupted users Ui and Uj .
Game G6. In this game we assume that ∆ is given access to the private random oracle H′p : {0, 1}∗ →
{0, 1}κ and in response to the q∗∗-th SKE(Πs

i , spid
s
i ) query guessed above ∆ computes the corre-

sponding p2p key ki,j as H′p(Ui|yi, Uj |yj) that is independent of k′i,j . Again, this replacement remains
indistinguishable unless A queries Hp(k′i,i+1, Ui|yi, Uj |yj), in which case reduction to the GDH problem
becomes possible, i.e.

|Pr[Winake-p
6

]− Pr[Winake-p
5

]| ≤ qHpSuccGDHG (κ).

As a consequence the p2p key ki,j is uniform in {0, 1}κ and, thus Pr[Winake-p
6

] ≤ 1/2. Summarizing the
above equations we obtain a negligible advantage

Advake-p
mBD+P

(κ) = |2 Pr[Winake-p
0 ]− 1|

≤ 2N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ−1
+ 2NSucceuf-cma

Σ (κ)

+ 2qSe
(
(NqH + qSKEqHp)SuccGDHG (κ)

)
.

C Proof of Theorem 3

In the following we show that the advantage of A in distinguishing ki from some random element from
{0, 1}κ is negligible. We construct a sequence of games G0, . . . ,G4 and denote by Winake-g

i the event
that the bit b′ output by A is identical to the randomly chosen bit b in the i-th game. Recall that in
each game TestGK(Πs

i ) is answered only if the instance Πs
i is fresh.

Game G0. This is the real execution of mBD+S in which a simulator ∆ truly answers all queries of
A on behalf of the instances as defined in Gameake-g,b

A,mBD+S
(κ).



We assume that A has access to the hash queries for the hash functions H, Hg, and Hs, which are
modeled as random oracles in the classical way, i.e., by returning new random values for new queries
and replaying answers if the queries were previously made.
Game G1. In this game we exclude for every honest user Ui the collisions of the transcripts (Ui, yi)
and group keys ki computed in different sessions. We also exclude any collisions between ki and any
subgroup key ki,J . Regarding the transcripts we observe that if Ui is honest then its session value yi
is randomly distributed in G (as a result of yi := gxi for xi ∈R ZQ). Thus, according to the birthday
paradox the collision on transcripts occurs with the probability of at most N(qEx + qSe)2/Q over all
possible users (recall that sessions can be invoked via Execute and Send queries). The uniqueness
of transcripts also implies the uniqueness of inputs to Hg(z′1,2, . . . , z

′
n,1, sidi). Since for each possible

subgroup the corresponding ssidi ⊂ sidi used by an instance of Ui for the computation of the
subgroup key does not repeat and since Hg and Hs are modeled as random functions we can also apply
the birthday paradox and upper-bound the probability of collisions for ki and collisions between ki
and any ki,J by (qHg + qHs)

2/2κ. Thus,

|Pr[Winake-g
1

]− Pr[Winake-g
0

]| ≤ N(qEx + qSe)2

Q
+

(qHg + qHs)
2

2κ
.

Game G2. In this game we assume that ∆ fails and bit b′ is set at random if A forges some signature,
i.e. if A queries Send containing (Ui, zi, σi) with σi being a valid signature that has not been previously
output by an uncorrupted instance of Ui. Hence,

|Pr[Winake-g
2

]− Pr[Winake-g
1

]| ≤ NSucceuf-cma
Σ (κ).

Game G3. In this game we let ∆ guess a value q∗ ∈ [1, qSe] and abort if the TestGK query is not
asked for the session invoked by the q∗-th query. Similar to Game G3 from the proof of Theorem 1 we
obtain

Pr[Winake-g
2

] = qSe

(
Pr[Winake-g

3
]− 1

2

)
+

1
2
.

Game G4. In this game we assume that ∆ is given access to the private random oracle H′ : {0, 1}∗ →
{0, 1}κ and computes in the group stage of the q∗-th session for each pair of consecutive users (Ui, Ui+1)
in the cycle z′i,i+1 = H′(i, i + 1), that is independent of k′i,i+1, i ∈ [1, n]. Clearly both games remain
indistinguishable unless A queries H(k′i,i+1) for any i ∈ [1, n]. However, this query can be used to break
the GDH problem in G, i.e. ∆ embeds ga and gb from the challenge of the GDH problem into the
corresponding values gxi and gxi+1 used on behalf Ui and Ui+1 in the group stage, and uses the access
to the DDH oracle D in order to identify k′i,i+1 = gxixi+1 provided by A as input to H. Therefore,

|Pr[Winake-g
4

]− Pr[Winake-g
3

]| ≤ NqHSuccGDHG (κ).

As a result of this game the group key ki computed in the q∗-th group stage session is the output of
Hg(z′1,2, . . . , z

′
n,1, sidi) where all input values z′1,2, . . . , z

′
n,1 are uniform in {0, 1}κ. Since Hg is modeled as

a random oracle and collisions on group keys computed in two different sessions have been excluded in
Game G1 the probability thatA wins without querying Hg(z′1,2, . . . , z

′
n,1, sidi) is 1/2; on the other hand,

the probability that A asks such a query is given by qHg/2
nκ < qHg/2

κ (for the guess of z′1,2, . . . , z
′
n,1).

Hence, Pr[Winake-g
4

] ≤ 1/2 + qHg/2
κ.

Summarizing the above equations we obtain a negligible advantage

Advake-g
mBD+S

(κ) = |2 Pr[Winake-g
0 ]− 1|

≤ 2N(qEx + qSe)2

Q
+

(qHg + qHs)
2

2κ−1
+ 2NSucceuf-cma

Σ (κ)

+ 2qSe
(
NqHSuccGDHG (κ) +

qHg
2κ

)
.



D Proof of Theorem 4

In the following we show that the advantage of A in distinguishing any ki,J computed by an instance
Πs
i of some uncorrupted Ui in the subgroup stage with regard to the subgroup spidsi = {Uj}j∈J

from some random element in {0, 1}κ is negligible. We construct a sequence of games G0, . . . ,G8 and
denote by Winake-s

i the event that the bit b′ output by A is identical to the randomly chosen bit b in
the i-th game. Recall that in each game TestSK(Πs

i , spid
s
i ) is answered only if the instance-subgroup

pair (Πs
i , spid

s
i ) is fresh.

Game G0. This is the real execution of mBD+S in which a simulator ∆ truly answers all queries of
A on behalf of the instances as defined in Gameake-s,b

A,mBD+S
(κ).

We assume that A has access to the hash queries for the hash functions H, Hg, and Hs, which are
modeled as random oracles.

Game G1. In this game we exclude for every honest user Ui the collisions of the transcripts (Ui, yi)
and group keys ki. We also exclude collisions between ki and any subgroup key ki,J . Additionally, we
exclude collisions amongst subgroup keys ki,J computed by Ui for different subgroups spidi consisting
of (possibly malicious) Uj , j ∈ J . Since sessions can be invoked via Execute and Send queries we
obtain for the collision on transcripts (according to the birthday paradox) the probability of at most
N(qEx + qSe)2/Q over all possible users. Collisions amongst ki and collisions between ki and any ki,J
can be upper-bounded by (qHg + qHs)

2/2κ using the same argument as in Game G1 from the proof
of Theorem 3. This upper-bound also includes collisions amongst ki,J computed by an honest Ui for
different subgroups involving Uj , j ∈ J . This holds since even if Uj , j ∈ J is corrupted and chooses
own yj in some rogue way (e.g. in relation to other values) the input to Hs(z′1,2, . . . , z

′
m,1, ssidi) still

remains unique due to the uniqueness of the honest user’s transcript (Ui, yi) and identity Uj . (Note
that for any subgroup spidi ⊂ pidi the subgroup stage can be invoked only once.) Hence,

|Pr[Winake-s
1

]− Pr[Winake-s
0

]| ≤ N(qEx + qSe)2

Q
+

(qHg + qHs)
2

2κ
.

Game G2. In this game we abort simulation (setting bit b′ at random) if A queries Send contain-
ing (Ui, zi, σi) with σi being a valid signature that has not been previously output by an oracle of
uncorrupted Ui. In other words the simulation fails if A outputs a successful forgery such that

|Pr[Winake-s
2

]− Pr[Winake-s
1

]| ≤ NSucceuf-cma
Σ (κ).

Game G3. In this game ∆ randomly chooses a session q∗ ∈R [1, qSe] and aborts the simulation (setting
bit b′ at random) if A asks the TestSK query to some oracle Πs

i that accepted in a group stage of
another session, i.e. not in the q∗-th session. Using similar argument as in Game G3 from the proof of
Theorem 1 we obtain

Pr[Winake-s
2

] = qSe

(
Pr[Winake-s

3
]− 1

2

)
+

1
2
.

As a result of this game it is sufficient for the simulator to focus on the q∗-th session and to simulate
instances of users participating in the group and subgroup stages of that session.

Game G4. In this game ∆ is given access to the private random oracle H′ : {0, 1}∗ → {0, 1}κ and in
the simulation of the q∗-th group stage session ∆ computes for each pair of consecutive users (Ui, Ui+1)
in the cycle z′i,i+1 = H′(i, i+ 1) if both users Ui and Ui+1 are uncorrupted. Note that the definition of
AKE-security for subgroup keys requires the TestSK query to be asked to a fresh instance-subgroup
pair (Πs

i , spid
s
i ), that is users in the subgroup spidsi remain uncorrupted until the computation of the



subgroup key. Our replacement remains indistinguishable unless A queries H(k′i,i+1), in which case we
can solve the GDH problem. Thus,

|Pr[Winake-s
4

]− Pr[Winake-s
3

]| ≤ NqHSuccGDHG (κ).

Note also that the simulation remains perfect if A corrupts Ui or Ui+1 later since the corrupt query
does not reveal their secret exponents.

This game also implies that in the q∗-th session values z′i,i+1 computed for pairs (Ui, Ui+1) of
uncorrupted users and used in the computation of ki = Hg(z′1,2, . . . , z

′
n,1, sidi) are uniform in {0, 1}κ.

Game G5. In this game ∆ tries to guess the invocation of the subgroup stage which will be selected
by A as a target for the attack. That is ∆ chooses a value q∗∗ ∈R [1, qSKE] at random and aborts the
simulation (setting bit b′ at random) if A does not ask its TestSK query to an instance that participates
in the q∗∗-th subgroup stage. The probability that ∆ correctly guesses q∗∗ is 1/qSKE, and

Pr[Winake-s
4

] = qSKE

(
Pr[Winake-s

5
]− 1

2

)
+

1
2
.

If the guess is successful then users in the target subgroup remain uncorrupted until the subgroup key
is computed. The target subgroup defines its own cycle for the order of users in which two neighboring
users Ui and Ui+1 may have not been neighbors in the cycle defined by the group stage. Therefore, we
need to apply the same changes as in the previous game with respect to the subgroup’s cycle in order
to achieve uniformity of values z′i,i+1 that will be used to compute the subgroup key.
Game G6. In this game ∆ has access to the private random oracle H′ : {0, 1}∗ → {0, 1}κ. In the
simulation of the guessed q∗∗-th subgroup stage ∆ computes for each pair of consecutive users (Ui, Ui+1)
in the cycle defined by spidsi = (U1, . . . , Um) the intermediate value z′i,i+1 = H′(i, i+ 1, ssidi), that is
independent of k′i,i+1. This replacement remains indistinguishable unless A queries H(k′i,i+1, ssidi) in
which case we again can solve the GDH problem. Since m (the size of the subgroup) is strictly smaller
than the size of the group n ≤ N we have

|Pr[Winake-s
6

]− Pr[Winake-s
5

]| ≤ (N − 1)qHSuccGDHG (κ).

This game implies that in the q∗∗-th subgroup stage the computation of the subgroup key ki,J =
Hg(z′1,2, . . . , z

′
n,1, sidi) uses values z′i,i+1 that are uniform in {0, 1}κ. Hence, the probability that A wins

without querying Hs(z′1,2, . . . , z
′
n,1, ssidi) is 1/2; on the other hand, the probability that A asks such a

query is given by qHs/2
mκ < qHs/2

κ (for the guess of z′1,2, . . . , z
′
n,1). Hence, Pr[Winake-s

6
] ≤ 1/2 + qHs/2

κ.
Summarizing the above equations we obtain a negligible advantage

Advake-s
mBD+S(κ) = |2 Pr[Winake-s

0 ]− 1|

≤ 2N(qEx + qSe)2

Q
+

(qHg + qHs)
2

2κ−1
+ 2NSucceuf-cma

Σ (κ)

+ 2qSe
((
N + (N − 1)qSKE

)
qHSuccGDHG (κ) +

qSKEqHs
2κ

)
.




