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Abstract. We extend the well-known Tree-Diffie-Hellman technique used for the design of group
key exchange (GKE) protocols with robustness, i.e. with resistance to faults resulting from possible
system crashes, network failures, and misbehavior of the protocol participants. We propose a fully
robust GKE protocol using the novel tree replication technique: our basic protocol version ensures
security against outsider adversaries whereas its extension addresses optional insider security. Both
protocols are proven secure assuming stronger adversaries gaining access to the internal states of
participants. Our security model for robust GKE protocols can be seen as a step towards unification
of some earlier security models in this area.

1 Introduction and contributions

In group key exchange (GKE) protocols, users interact over a network to exchange contributions and
finally compute a common group key which is suitable for subsequent cryptographic use. Outsider secu-
rity encompasses scenarios in which all users are honest and the adversary is an external entity, trying to
violate the privacy of the established key (indistinguishability). Outsider security is sufficient for many
applications as it protects the communication between trusted users. However, with the increasing group
size it is quite natural to assume that some users will not follow the protocol execution in a correct way.
Insider security aims to define what security means if some users misbehave. Since the secrecy prop-
erty of the key in this case becomes vacuous (nothing can prevent insiders from learning and disclosing
group keys), the insider security goals usually focus on preventing the dishonest users from disrupting
the protocol execution amongst the remaining honest users.

The Tree-Diffie-Hellman GKE protocol from [12, 26], called TDH1, achieves security against both
outsider and insider attacks. Yet, if any protocol participant fails then this protocol has to abort. In this
work we provide two extensions of TDH1 towards full robustness. Our first protocol, R-TDH1, preserves
the strong outsider security of TDH1 (in the standard model), whereas our second protocol, denoted
IR-TDH1, combines robustness and insider security (in the random oracle model). Our constructions are
based on a technical novelty called the tree replication technique. R-TDH1 is essentially as efficient as the
underlying protocol TDH1, while IR-TDH1 needs some (rather inefficient) NIZK proofs.

1.1 Related work

Outsider Security In most cases (e.g. [8, 9, 11, 15, 24]), security is defined against an adversary that
does not control any player (at least during the target session) resulting in the main requirement called
Authenticated Key Exchange (AKE) security, which ensures the indistinguishability of the established
group key from a random bit string. Usually, AKE-security comes along with forward-secrecy that deals
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with indistinguishability of keys computed in earlier sessions assuming that users can be corrupted at
some later stage, and recently it has been updated to include outsider key compromise impersonation
attacks [19]. Another requirement called Mutual Authentication (MA) has been formalized and studied
for the honest users setting in [8, 9].

Insider Security In 2005, Katz and Shin formalized4 the notion of security against insider impersonation
attacks and key agreement in [23], and Choo et al. defined resistance against unknown-key share attacks
[18]. Another goal — contributiveness — has been identified in [3,10,12,19] and is also related to non-
malleability [21] or key control [31, 34]: briefly speaking, it prevents the adversary from “fixing” the
value of the group key computed by honest users; this property states the main difference between key
exchange and key transport. In particular, it also prevents key-replication attacks [28].

Robustness Executions of GKE protocols that do not provide robustness are aborted if some deviation
from the given protocol specification is detected by the users, e.g. when users are not able to send or
receive messages or if some necessary verification steps fail. Amir et al. [1] were the first to consider
robustness in GKE protocols; they merged the non-robust GKE protocol by Steiner et al. [38] with an
underlying group communication system (GCS) [17]. However their protocol must be restarted in case
of failures. Assuming authenticated channels, Cachin and Strobl [14] proposed and formally proved (in
the framework of Reactive Simulatability [33]) an asynchronous GKE protocol by combining the GKE
protocol by Burmester and Desmedt [5] with an additional k-resilient consensus protocol [13,16]. Their
protocol can tolerate only up to n−2k corruptions to remain forward secure (which is an upper-bound for
the asynchronous setting). Desmedt et al. [21] considered an unauthenticated reliable broadcast setting
and designed a provably secure scheme immune to outsider and insider attacks based on verifiable secret
sharing (VSS). They also explained how to use the authentication compiler by Katz and Yung [24] to
sort out invalid messages and tolerate failures. Jarecki et al. [22] followed by Kim and Tsudik [27]
used reliable broadcast/multicast setting to design robust GKE protocols proven secure against outsider
adversaries. They also defined full-robustness: since a GKE protocol requires at least two users, the
optimal criterion for robustness is the ability to tolerate up to n − 2 (out of n) failed users. We remark
that solutions proposed in [14, 21] are not fully robust.

Corruptions and Opening Attacks Beside formal definitions of outsider and insider security, existing
models for GKE protocols differ in the adversarial abilities to corrupt users: weak corruptions [9,21,24]
allow the adversary to obtain users’ long-lived keys, but not their internal states, whereas strong corrup-
tions [8,10,12,23,29,36,38] reveal both secret types at the same time. The latter gain more and more on
attention due to the significant advances in the field of malware and side-channel attacks used to recover
information stored locally within hardware and software. Corruptions allow to model the requirement
of (strong) forward secrecy [8, 9, 11, 12] whose goal is to ensure AKE-security “in the future”. Strong
corruptions have been recently refined with so-called opening attacks [12] that provide higher flexibility:
they allow the adversary to get users’ ephemeral secrets without necessarily obtaining their long-lived
keys. The formal advantage of this refinement is that it can exclude subsequent impersonation attacks on
the “opened” users who are then treated as honest (rather than corrupted). As an illustrative example,
AKE-security can be extended to capture the leakage of users’ internal states prior to the protocol execu-
tion; thus, GKE protocols which pre-compute their ephemeral secrets off-line (for better efficiency) may
become insecure.

4 First security definitions for insider attacks in non-robust GKE protocols were formalized in [23]. Later, [10, 12]
merged these definitions as part of MA-security and formalized contributiveness. Then, [19] updated MA-security
with insider key compromise impersonation.
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1.2 Organization of the Paper

In Section 2 we present our tree replication technique. Then in Sections 3 and 4, we present the protocols
R-TDH1 and IR-TDH1, respectively. The security model is described in Section 5; interestingly, it can be
viewed as an extension of [12, 19] towards consideration of (full) robustness, and at the same time as an
extension of [21, 22] towards consideration of strong corruptions and opening attacks. In Section 6 we
compare security and efficiency of R-TDH1 and IR-TDH1 with some earlier robust GKE protocols.

2 The Tree-Diffie-Hellman Protocol and Our Tree Replication Technique

First, we recall the basic steps of the non-robust protocol TDH1 (see [12, 26] for more details). Then, we
introduce at a high-level our tree replication technique that achieves full robustness.

2.1 Overview of Basic TDH1

Preliminaries The protocol makes use of a linear binary tree Tn: a full binary tree with one leaf at
each level, except for the deepest one with two leaves, i.e. each node in Tn has a label 〈l, v〉, where
l ∈ [0, n − 1] denotes its level and v ∈ [0, 1] its position within that level. For each node 〈l, v〉, there
are two associated values: a secret value, denoted xl,v , and a public one, denoted yl,v and computed as
yl,v = gxl,v . Moreover, each secret value associated to an internal node is the Diffie-Hellman function
of the public values associated to its children. In other words, for any l we have:

xl,0 = DH(yl+1,0, yl+1,1) = gxl+1,0xl+1,1

In order to be able to “chain” such operations, all operations are performed in a cyclic group G with
generator g in which the classical Decisional Diffie-Hellman (DDH) assumption is assumed to be hard and
for which there exists an efficient, bijective mapping from G to Z|G| (which is not the discrete logarithm!);
this bijection is used to consider multiple-decker exponentiations: the result of an exponentiation (an
element of G) can be in turn re-interpreted as an exponent in Z|G|. A suitable group G of prime order
q generated by a quadratic residue g modulo a large safe prime number p = 2q + 1 has been described
in [12, 25, 26]. In this group if some exponent x is uniform and random in Zq then so is gx in G and
G = Zq (as sets).

Protocol Steps The protocol is based on the following (intuitive) trick: users are associated to the leaf
nodes. Each user Ui knows the secret value associated to its own node, and can reveal the corresponding
public value yi. Using these values, it is easy to check that the users associated to the deepest leaves have
enough information to compute all values (both secret and public) associated to the internal nodes. And
once all public values are available (that is, including public values associated to internal nodes), it is
clear that every user can inductively compute the secret value associated to the root.

– Round 1. User Ui associated to leaf 〈l, v〉 chooses a secret xl,v and broadcasts yl,v := gxl,v ;
– Round 2. The goal of the protocol is to let each Ui compute the secret value x0,0 associated to the

root. Therefore, U1 assigned to 〈n− 1, 0〉 computes a setX1 of secret values xl,0 in its path up to the
root 〈0, 0〉. Each xl,0 can be seen as the output of the Diffie-Hellman function of yl+1,0 and yl+1,1.
Note that for each internal node 〈l, 0〉 user U1 knows the public value yl+1,1 broadcasted by some
other user and the secret value xl+1,0 by induction at level l + 1. Having computed the set X1 user
U1 broadcasts each yl,0 = gxl,0 . We emphasize, however, that y0,0 is never made public —it is not
used in the protocol;

– Group Key Derivation. Once user U1 finishes, all other users Ui 6=1 are also able to compute the
secret values xl,0 in their paths up to the root. Hence, every user finally learns x0,0 and uses it to
derive the group key.
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Fig. 1. Tree Replication Technique. Representation of each user’s computation in the second protocol
round. One of the trees will be used commonly by all active users to derive the group key.

2.2 The Tree Replication Technique

The original TDH1 protocol is not robust, in particular if the second round message is not delivered then
all parties have to abort. In order to achieve robustness, we enhance TDH1 such that, even if some users
fail (they halt and/or are not able to continue), the remaining users are still able to compute a common
tree structure and to compute a common root secret. This feature is achieved through what we call the
tree replication technique.

Intuitively, it means that every user is going to compute its own key tree structure, and act as if it
would be in the position of U1. Then, after some users failed, the “deepest” common structure will be
used by all users to compute the root secret. At a high level the modification is as follows.

– Round 1. Each user Ui chooses its secret exponent xi ∈R G and broadcasts its public value yi :=
gxi . After this round all active users (i.e. those who do not fail) will receive sent public values of
other active users. Based on this information, they are assigned to tree leaves;

– Round 2. Each user Ui computes its own set Xi as visualized in Figure 1. Each set Xi is composed
of secret values x(i)

l,0, where the superscript “(i)” indicates a quantity which is computed by Ui only;

when we write x(i)
l,0 we mean that user Ui computes his own value of the variable named “xl,0”.

Users Ui also broadcasts the public values y(i)
l,0 corresponding to the exponents x(i)

l,0 in Xi (and with

the obvious exclusion of y(i)
0,0);
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– Group Key Derivation. For the computation of the secret root, all users choose the message broad-
casted by the lowest-index alive user. Of importance is that all users who are still active choose the
same broadcast message and compute the same secret value for the root 〈0, 0〉.

Remarks Unlike in TDH1, the lowest-indexed user is not necessarily U1: it can be U2 if U1 has failed
and so on. Note also that Xn and Xn−1 are empty sets: if Un−1 and Un are the only remaining users,
the protocol reduces to two-party Diffie-Hellman. Yet, Un and Un−1 must still broadcast their “liveness”
messages in the second round.

3 A Fully Robust Protocol with Strong Outsider Security: R-TDH1

Here we specify R-TDH1 that achieves full robustness while preserving the constant number of rounds and
strong outsider security of TDH1 [12]. In what follows we assume that each user Ui has a long-lived key
LLi = (ski, pki) generated byΣ.Gen(1κ), whereΣ = (Gen, Sign, Verify) is an existentially unforge-
able signature scheme. By F :=

{{
fk
}
k∈{0,1}κ

}
κ∈N we denote a pseudo-random function ensemble.

Our descriptions are provided from the perspective of one session with the initial set of participants
(U1, . . . , Un).

Formal Description of R-TDH1 We assume that each Ui is initialized with a partner id pidi encom-
passing the identities of all users participating in that session. In the beginning of each round each Ui
will update own pidi by removing users that are no longer active based on the messages it received. We
assume that if at some stage pidi = {Ui} then Ui erases every secret information from it internal state
statei and terminates without accepting.

Round 1. Each user Ui does the following:
– ri ∈R {0, 1}κ; broadcast Ui|1|ri.

Round 2. Each user Ui does the following:
– Remove from pidi every Uj with missing messages;
– noncesi ← r1| . . . |rn′ ;
– xi ∈R G; yi ← gxi ;
– σi ← Σ.Sign(ski, 2|yi|noncesi|pidi);
– Broadcast Ui|2|yi|σi.

Round 3. Each user Ui does the following:
– Remove from pidi every Uj with missing or invalid messages;
– Remove nonces of failed oracles from noncesi;
– Assigned remaining oracles to the leaves of Tn, where n = |pidi|;
– Y ← {yj}1≤j≤n;
– x

(i)
n−i,0 ← xi (renaming);

– For l = n− i− 1 downto 0, iteratively compute a set Xi made of values: x(i)
l,0 = y

x
(i)
l+1,0
l+1,1 ;

– For l = n− i− 1 downto 1, compute a set Ŷi made of values: y(i)
l,0 = gx

(i)
l,0 ;

– σi ← Σ.Sign(ski, 3|M |Y |noncesi|pidi) where M = Ŷi if i < n − 1 and M =‘alive’ if
i ≥ n− 1;

– Broadcast Ui|3|M |σi.
Group Key Derivation. Each user Ui does the following:

– Remove from pidi every Uj with missing messages or invalid signatures;
– Update noncesi by removing the nonces of failed oracles;
– Determine the lowest-indexed oracle Uγ ;
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– xn−i,0 ←

{
yxiγ if i = γ + 1
y
(γ)
n−i+1,0

xi
if i > γ + 1

– For l = n− i− 1 downto 0: xl,0 = y
xl+1,0
l+1,1

– ki ← f
x
(γ)
0,0

(v);
– Erase every ephemeral secret information from statei and accept with ki.

4 Securing R-TDH1 against Strong Insider Attacks

In this section we describe IR-TDH1, an extension of R-TDH1 which provides security against outsider and
insider attacks. To do so, we use a special NIZK proof for the equality of the double discrete logarithm
and a (single) discrete logarithm from [2, 37].

4.1 NIZK Proof Lg2EqLg

Let H : {0, 1}∗ → {0, 1}` be a cryptographic hash function for some `. Let g, y, ỹ1, ỹ2 be public
elements of G. A Non-Interactive Zero-Knowledge Proof for the statement logg(ỹ1) = logy(logg(ỹ2))
is denoted Lg2EqLg[(x) : ỹ1 = gx ∧ ỹ2 = gy

x

] and can be constructed as follows using the witness
x: for i ∈ [1, `], pick at random αi in G and compute t1,i := gαi and t2,i := gy

αi ; then output z :=
(c, s1, . . . , s`) with

c := H(g|y|ỹ1|ỹ2|t1,1| . . . |t1,`|t2,1| . . . |t2,`)

si :=
{
αi if c[i] = 0 (c[i] is the i-th bit of c)
αi − x otherwise.

To verify z one simply checks whether c =?H(g|y|ỹ1|ỹ2|t̄1,1| . . . |t̄1,`|t̄2,1| . . . |t̄2,`) where

t̄1,i :=
{
gsi if c[i] = 0
ỹ1g

si otherwise and t̄2,i :=
{
gy

si if c[i] = 0
ỹy

si

2 otherwise.

Using the Random Oracle Model (ROM) [4] one can show that Lg2EqLg is secure; we denote
by AdvzkLg2EqLg(κ) the maximum advantage of distinguishing a real proof from a simulated one, and by
SuccsndLg2EqLg(κ) the probability of computing a valid proof for a false statement (soundness).

4.2 Description of IR-TDH1

Our protocol is an extension of R-TDH1. We add NIZK proofs in order to prevent corrupted users from
sending bad values. This increases the costs of the protocol. Briefly speaking, the protocol is modified in
the third round, as follows. In addition to computing Xi (a set of values), each user computes a set Zi of
NIZK proofs {z(i)

l }n−i−1≥l≥1:

– for 1 ≤ l ≤ n− i− 2, proof z(i)
l proves that

x
(i)
l+1,0 = logg

(
y
(i)
l+1,0

)
= logyl+1,1

(
logg

(
y
(i)
l,0

))
– for l = n− i− 1, proof z(i)

l proves thatxn−1,0 = logg (yn−1,0) = logyn−1,1

(
logg

(
y
(1)
n−2,0

))
if i = 1

xn−i+1,1 = logg (yn−i+1,1) = logyn−i,1
(

logg
(
y
(i)
n−i−1,0

))
if i > 1

We note that Zn−1 and Zn computed by Un−1 and Un are empty. The remaining of the protocol is
identical to R-TDH1, however, in the Random Oracle Model, the key derivation is simplified as: ki :=
H ′(x(γ)

0,0 |noncesi|pidi), where x(γ)
0,0 is the common secret computed by active users.
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5 Security of R-TDH1 and IR-TDH1

5.1 Security Model

Protocol Participants and Execution Model In order to capture multiple sessions, we model each
user U through different instance oracles Πs

U . Then, the session identifier is of the form sid :=
Ui1 |si1 | . . . |Uin |sin . We say that Πs

U and Πt
U ′ are partners if there exists sid containing U |s and U ′|t

as substrings. For each Πs
U we also define its partner id pidsU and the internal state statesU as men-

tioned in the description of the protocols. Once invoked Πs
U turns into the processing stage where it

communicates and updates pidsU by removing user identities of oracles that it treats as failed. As long as
|pidsU | > 1, the oracle is active (it continues the execution); at some point, it accepts with a session key
ksU and terminates successfully. Otherwise (|pidsU | ≤ 1 or no acceptance), it terminates with a failure.

Communication For the security of R-TDH1 and IR-TDH1 we consider a reliable broadcast channel
without authentication and any ordering guarantees; this is similar to [21] and less restrictive than [22].
The protocol execution is organized in rounds, which are delimited by a local timer δ (within a round,
events are asynchronous): that is participants expect to receive round messages before their timer expires.
At the beginning of each round, the adversary A learns each round message to be broadcast. It can
then block (refuse to deliver) some of these messages. Additionally, it can inject its own messages.
Thus at some point, A will have a set of messages which it “puts” on the broadcast channel before the
timer expires. We model network failures by considering user U as disconnected if no expected message
containing U as sender’s identity is put on the channel. Reliability of the broadcast channel means that
all messages put on it are delivered to all participants that are still connected in that round. The actual
delivery order is determined by the adversary. At the end of the round, each oracle Πs

U updates its
partner id based on the previously received messages: users from whom no message has been delivered
are removed. Reliability of the channel implies consistency of updated partner ids.

Adversarial Queries The adversary A is modeled as a PPT (probabilistic polynomial-time Turing ma-
chine), it is assumed to mount its attacks through the following queries:

Initialize(S): for each user in the set S a new oracle Πs
U is initialized and the resulting session id

sid is given to A.
Invoke(sid,S ′), assuming that sid is a valid session id and S ′ is a set of initialized oracles (S ′ ⊆ S

where S led to the construction of sid). In response, for each U ∈ S ′ the oracle Πs
U turns into the

processing stage and learns pidsU = S . Then,A is given the first protocol message m computed by each
Πs
U and the round timer δ is started. The separation between Initialize and Invoke allows opening attacks

against honest oracles prior to the first protocol round. It also allows A to decide which of these oracles
should proceed with the execution. We require that the Invoke query can be invoked only once with a
given argument.

Broadcast(sid,m): In this query the message m is supposed to contain the identity of its sender U .
The Broadcast queries for the current round are collected in the order of their occurrence; at the end of
the round, message m is delivered to all connected oracles Πs

U in sid (i.e., oracles such that U is part of
m for some collected Broadcast(sid,m) query).A can also provide several messagesm that include the
same sender U . It is the task of the protocol to determine which of these messages should be processed
or dropped. At the end of the round, A receives messages to be sent by the connected oracles in the next
round, and each oracle Πs

U updates its set pidsU according to the protocol specification.
Corrupt(U): A obtains LLU . This allows impersonation attacks, in which A can “talk” on the net-

work pretending to be U .
AddUser(U,Λ), where Λ contains the registration information and a long-lived key LLU : in re-

sponse, a new user with that long-lived key is added to U . This query (which is missing in [12]) allows
A to register new users whose behavior it will fully control.



8 Timo Brecher, Emmanuel Bresson, and Mark Manulis

RevealState(Πs
U ): A obtains ephemeral secrets stored in statesU (which may also be empty, if

erased). This query models opening attacks [12].
RevealKey(Πs

U ): A obtains ksU (only if Πs
U has already accepted).

Terminology We say U is corrupted or malicious if LLU is known to A, either via Corrupt(U) or
AddUser(U,Λ); if no such queries have been asked then U is honest. This terminology also refers to the
oracles of U . However, an opening attack is not sufficient to make Πs

U malicious.

Definition of Robust Group Key Exchange We can now formally specify what a (fully) robust GKE
protocol is.

Definition 1 (Robust GKE Protocol). A robust group key exchange (RGKE) protocol P consists of a
key generation algorithm KeyGen, and a protocol Setup:

– P.KeyGen(1κ): On input a security parameter 1κ, each user is given LLU .
– P.Setup(S): On input a set S ⊆ U a new oracle Πs

U is created for each U ∈ S . A probabilistic
interactive protocol is executed between these oracles such that at the end all active oracles (those
that have not failed and are still connected) accept with the session group key and terminate.

P is correct if all active oracles that are honest accept the same session group key. P is fully robust if it
can tolerate all oracles dishonest except two.

Strong Outsider Security The outsider security of GKE protocols can be expressed through AKE-
security. In this section we define its strong version revising the one from [12] to address robustness.

We use the classical query Test(Πs
U ) to model AKE-security: in response, a bit b is privately flipped

andA is given ksU if b = 1 or a random string if b = 0. The difficulty is in defining how to use this query;
the notion of freshness aims at excluding trivial and meaningless attacks. We provide the following four
conditions: condition (a) excludes prevents A from introducing new users; condition (b) allows A to
corrupt some user of the attacked session but A must remain passive on behalf of that user’s oracle
until the session is complete, this models outsider key compromise impersonation attacks [19] for robust
protocols; condition (c) follows from [12] and allows A to inspect internal states of participants before
and after the attacked session but not during it; condition (d) prevents A from obtaining the key directly
via the RevealKey query.

Definition 2. (Oracle Freshness for RGKE) In a session sid of P an oracle Πs
U that has accepted is

fresh if all of the following holds:

(a) no U ′ included in sid has been added by A via a corresponding AddUser query,
(b) if some U ′ (incl. U ′ = U ) from sid has been asked Corrupt(U ′) prior to the acceptance of Πs

U

then any message m with sender’s identity U ′ asked via a Broadcast(sid, m) query must have been
produced by the corresponding oracle Πt

U ′ partnered with Πs
U ,

(c) neither Πs
U nor any of its partners has been asked for a query RevealState before they terminated,

(d) neither Πs
U nor any of its partners is asked for a query RevealKey after having accepted and termi-

nated.

Definition 3. (Strong AKE-Security for RGKE) Let P be a correct RGKE protocol and b a uniformly
chosen bit. Consider an adversary A against the AKE-security of P. We define the adversarial game
Gameake−b

A,P (κ) as follows:

– A interacts via queries;
– at some point A asks a Test query to an oracle Πs

U which is (and remains) fresh;
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– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define: Advake
A,P(κ) :=

∣∣∣2 Pr[Gameake−b
A,P (κ) = b]− 1

∣∣∣
and denote with Advake

P (κ) the maximum advantage over all PPT adversaries A. We say that a RGKE
protocol P provides strong AKE-security if this advantage is negligible.

Strong Insider Security We now revisit the strong insider security definitions, that is MA-security and
contributiveness, from [12] to address robustness.

In the next definition, condition (a) models robustness since it requires that every honest, non-failed
participant accepts, provided there exists other participants that have not failed as well. In condition (b)
we model mutual authentication in the sense that no user accepts the group key until it is assured of
the active participation of the other users; this takes into account insider key compromise impersonation
attacks [19] as A can obtain the long-lived key of a user, as long as it remains passive with respect to
that user’s oracle. Finally, condition (c) models key confirmation and requires that session group keys
accepted by any two participants are identical.

Definition 4. (Strong MA-Security for RGKE) Let P a correct RGKE protocol andA an adversary who
is allowed to query Initialize, Invoke, Broadcast, AddUser, Corrupt, RevealKey and RevealState. We
denote this interaction as Gamema

A,P(κ). We say that A wins in some session sid if at the end of that
session one of the following conditions is satisfied:

(a) there is an honest oracleΠs
U (with U |s part of sid) which terminated without having accepted some

key but for which other partners exist (i.e., |pidsU | > 1),
(b) there are two partnered oracles Πs

U and Πt
U ′ such that Πs

U has accepted and U ′ ∈ pidsU is uncor-
rupted but Πt

U ′ has not been invoked via Invoke(sid, ·),
(c) there are two honest partnered oracles Πs

U and Πt
U ′ which have accepted and ksU 6= ktU ′ .

The maximum probability of this event is denoted Succma
P (κ); we say that a RGKE protocol P provides

strong MA-security if this probability is negligible.

The following requirement of strong contributiveness resists key control attacks by which a malicious
subset of (at most n− 1) users aims to predetermine the resulting value of the group key [34]. This is in
contrast to the non-malleability property [21], which ensures uniform distribution of group keys in the
presence of malicious participants but in a weaker model in which no opening attacks exist (as discussed
in [12]).

Definition 5. (Strong Contributiveness for RGKE) Let P be a correct RGKE protocol and A an adver-
sary operating in two stages (prepare and attack) and having access to the queries Initialize, Invoke,
Broadcast, AddUser, Corrupt, RevealKey and RevealState. We define the following game Gamecon

A,P(κ):

– A(prepare) interacts via queries and outputs some k̃ ∈ {0, 1}κ, and some state information ζ;
– A set Ψ is built, consisting of all session ids sid for which a query Invoke(sid,S ′) has been asked

during the prepare stage;
– A(attack, ζ) continues interacting via queries and outputs some oracle identifier U |s.

The adversary A wins in Gamecon
A,P(κ) if all of the following holds:

(a) Πs
U is honest, has terminated accepting k̃, and there is no sid ∈ Ψ which contains its identifier U |s.

(b) There are at most n− 1 corrupted oracles that are partnered with Πs
U .
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We define: Succcon
A,P(κ) := Pr[A wins in Gamecon

A,P(κ)]

and denote with Succcon
P (κ) the maximum probability of this event over all PPT adversaries A; we say

P provides strong contributiveness if this probability is negligible in κ.

Since Ψ contains identifiers of sessions that have been invoked during the prepare stage, the requirement
that no sid ∈ Ψ should contain U |s excludes a trivial attack by which A chooses k̃ as a key computed
in some session invoked during the prepare stage.

5.2 Security Results

The following theorems show that R-TDH1 is secure against strong outsiders and that IR-TDH1 is addi-
tionally secure against strong insider attacks.

In our proofs, similar to [8, 12], we assume that Σ.Sign is executed under the same protection
mechanism as ski so that any randomness used to compute the signature will not be revealed in response
to a RevealState query.

As the underlying number-theoretic assumption we use the well-known Square-Exponent Decisional
Diffie-Hellman (SEDDH) assumption [22, 35], i.e. the following probability is assumed to be negligible:

AdvSEDDHG (κ) =max
A′

∣∣Pr
a

[
A′(g, ga, ga

2
) = 1

]
− Pr
a,b

[
A′(g, ga, gb) = 1

]∣∣.
Theorem 1. IfΣ is existentially unforgeable under chosen message attacks, if F is pseudo-random, and
G is SEDDH-hard then R-TDH1 provides strong AKE-security, and

Advake
R-TDH1(κ) ≤ Nq2s

2κ−1
+ 2N2Succeuf−cmaΣ (κ) + qsN

2AdvSEDDHG (κ) + 2qsAdvprf
F (κ).

Proof. We define a sequence of games: Gi, i = 0, . . . , 5 (whereby G4 is a sequence of n − 1 hybrid
games where n is the number of invoked oracles in the attacked session) with the adversary A against
the strong AKE-security of R-TDH1. In each game Winake

i denotes the event that the bit b′ output by A is
identical to the randomly chosen bit b in Game Gi.

Game G0. This is the real game Gameake−b
A,R-TDH1(κ) where a simulator ∆ simulates the execution of

the protocol and answers all queries of A.
Recall that the Test(Ui|s) query is asked to a fresh oracle Πs

Ui
which has accepted, and that A then

receives either a random string or a session group key ksUi . Our definition of the oracle freshness restricts
A from legal participation in the attacked session and from opening oracles that are partnered with Πs

Ui
until these oracles terminate (having erased ephemeral secrets as required in R-TDH1).

Game G1. This game is identical to Game G0 except that∆ aborts and b′ is set at random if any two
honest oracles identified by U |s and U |s′ that have been invoked for two different sessions choose the
same nonce in Round 1. Since there are at most N users and at most qs sessions we get |Pr[Winake

1
] −

Pr[Winake
0

]| ≤ Nq2s/2
κ. This game ensures the uniqueness of nonces computed by each honest oracle

Πs
U in Round 2 over all invoked sessions.

Game G2. In this game the only exception is that ∆ aborts and b′ is set at random if A asks a query
of the form Broadcast(sid,U |t|m|σ) such that t ∈ {2, 3}, the session id sid contains Ui|s and there is
an oracle of sender U which is partnered with Πs

Ui
and is still treated as active during the t-th round,

and σ is a valid signature on m, that has not been previously output by that oracle of U prior to a query
Corrupt(U).

In other words the simulation fails if A outputs a successful forgery of the signature. A classi-
cal reductionist argument (e.g. [19]) can be used to construct a forger algorithm against Σ such that
|Pr[Winake

2
]− Pr[Winake

1
]| ≤ N2Succeuf−cmaΣ (κ).
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Since the concatenation nonces|pid is part of every signed protocol message sent by the oracles this
game prevents successful replay attacks.

Game G3. In this game we add the following rule:∆ chooses q∗ ∈ [1, qs] and aborts if the Test query
does not occur in the q∗-th session. Let Q be the event that this guess for q∗ is correct and Pr[Q] = 1/qs.
Then, similar to the AKE-security proof of TDH1 in [12] we get Pr[Winake

2
] = qs

(
Pr[Winake

3
]− 1

2

)
+ 1

2 .
Game G4,j for j = 1, . . . , n − 1. Each Game G4,j is composed of two Sub-Games G4,j,1 and

G4,j,2.
Sub-Game G4,j,1. In this (sub-)game ∆ is given a tuple from the real SEDDH distribution, i.e.,

(g,A = ga, B = ga
2
) for some unknown a ∈ G, and embeds it into the simulation of the q∗-th session

as follows. In Round 2 for each of n′ active oracles Πi the simulator defines the public value yi := Aαi

for some random αi ∈R G. In Round 3 for every remaining active oracle Πi assigned to the leaf node
〈n− 1, 0〉 (if i = 1) or 〈n− i+ 1, 1〉 (if i > 1), the iterative computation of the values x(i)

c,0 and y(i)
c,0, for

n− i− 1 ≥ c ≥ 0 is modified according to the following three rules (see also Fig. 2 for an example):
Rule 1: For c = n − i − 1 downto n − i − j + 1: the computation of x(i)

c,0 is ignored and y(i)
c,0 is

defined to Aα
(i)
c,0 for a randomly chosen α(i)

c,0; note that the rule is vacuous for j = 1.

Rule 2: For c = n− i− j, define x(i)
c,0 := Bα

(i)
c+1,0αc+1,1 and y(i)

c,0 = gx
(i)
c,0 , where

α
(i)
c+1,0 =

{
αi if j = 1 (value chosen in Round 2)

α
(i)
c+1,0 as chosen in Rule 1, if j > 1

α
(i)
c+1,0 = αi+1 (value chosen in Round 2)

Rule 3: For c = n− i− j − 1 downto 0, the computation is done normally: x(i)
c,0 = y

(i)
c+1,1

x
(i)
c+1,0 and

y
(i)
c,0 = gx

(i)
c,0

Sub-Game G4,j,2. In this game ∆ is given a tuple from the random SEDDH distribution, i.e.,
(g,A = ga, B = gb) for some unknown a, b ∈ G. Since the simulator performs the same steps as
defined for the Sub-Game G4,j,1 the only difference between them is that in G4,j,1 B = ga

2
and in

G4,j,2 B = gb. In each Game G4,j the value B is embedded exactly n− j times (that is once per set Xi

for n − j ≥ i ≥ 1 using the re-randomization exponent α(i)
c+1,0αc+1,1 whose factor α(i)

c+1,0 is different
for each i). Since n ≤ N the probability difference between G4,j,2 and G4,j,1 can be upper-bounded by
(N − j)AdvSEDDHG (κ).

Further we stress that by construction in Sub-Game G4,1,1 (the first sub-game in the sequence) the
distribution of secret values in each Xi is identical to G3. And since j is a running variable from 1 to
n − 1 and n ≤ N we can upper-bound the probability difference between Game G4,n−1 (which ends
with Sub-Game G4,n−1,2) and G3 as follows:

|Pr[Winake
4,n−1]− Pr[Winake

3 ]| ≤
N−1∑
j=1

(N − j)AdvSEDDHG (κ).

The consequence of G4,n−1 is that among different setsXi = {x(i)
c,0}l≥c≥0 computed by∆ in the q∗-

th session all values x(i)
c,0 are random and independent in G = Zq (the equality is due to the construction

of G [12]). In particular, this implies that the value x(γ)
0,0 used by every active oracle Πi to derive the

group key ki in the q∗-th session is uniformly distributed in {0, 1}κ (since κ is the length of q).
Game G5. In this game ∆ replaces in the q∗-th session f by a truly random function. Hence, ki

computed by every active oracle Πi including the one for which the Test query is asked is uniformly
distributed, and |Pr[Winake

5 ] − Pr[Winake
4,n−1]| ≤ Advprf

F (κ). And since ki is uniform: Pr[Winake
5 ] =
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y
(1)
3,0 =A

α
(1)
3,0

x
(1)
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x
(2)
1,0

1,1 x
(3)
0,0 =B

α
(3)
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(4)
0,0 =g

α
(4)
0,0

x
(1)
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x
(1)
2,0

2,1 x
(2)
1,0 =B

α
(2)
2,0α2,1 y

(3)
1,0 =A

α
(3)
1,0

x
(1)
2,0 =B

α
(1)
3,0α3,1 y

(2)
2,0 =A

α
(2)
2,0

X1

X2

X3 X4

part of Ŷ1

part of Ŷ2

part of Ŷ3

x
(i=1,2,3,4)
0,0

x
(i=1,2,3)
1,0

Π5

x
(i=1,2)
2,0

Π4

x
(i=1)
3,0

Π3

y4,0=A
α4,0

Π2Π1

y1,1=A
α1,1

y2,1=A
α2,1

y3,1=A
α3,1

y4,1=A
α4,1

Fig. 2. Snapshot of G4,2,1 and G4,2,2 with oracles Πi, 1 ≤ i ≤ 5. In G4,2,1: (A = ga, B = ga
2
).

In G4,2,2: (A = ga, B = gb). Left side: ∆ embeds A into yli,vi . Right side: ∆ follows the defined

rules, i.e., Rule 1: it defines randomized y(1)
3,0, y(2)

2,0, and y(3)
1,0 leaving corresponding x(1)

3,0, x(2)
2,0, and x(3)

1,0

undefined, uses α(4)
0,0 to define x(4)

0,0 (note that x(4)
0,0 is already randomized at the end of Game G4,1,2);

Rule 2: embeds B in each second value of each Xi (i = 1, 2, 3); Rule 3: computes all subsequent values
within Xi as specified in R-TDH1.

1/2. Combining the previous equations, we obtain the desired inequality for Advake
R-TDH1(κ). negligible

advantage

Theorem 2. IfΣ is existentially unforgeable under chosen message attacks, Lg2EqLg is zero-knowledge,
and G is SEDDH-hard then IR-TDH1 provides strong AKE-security in ROM, and

Advake
IR-TDH1(κ) ≤ Nq2s

2κ−1
+ 2NSucceuf−cmaΣ (κ) + qsN

2
(
AdvzkLg2EqLg(κ) + AdvSEDDHG (κ)

)
.

Proof (Sketch). This proof is identical to the proof of Theorem 1 except that we need to show that
Lg2EqLg proofs computed by every honest oracle Πi within Zi do not reveal any additional information
to the outsider adversary that asks the Test query. For this we need to plug in an additional game prior to
Sub-Game G4,1,1 (the first sub-game of G4,1) in which ∆ simulates the Lg2EqLg proofs {z(i)

l }l in Zi
computed by each active Πi in Round 3. It is clear that the simulation of Lg2EqLg proofs can be done
via the classical technique of programmable random oracles. Hence, we omit the details. Assuming that
n oracles remain active in Round 3 the number of simulated Lg2EqLg proofs within each Zj is n− j− 1
(remember, oraclesΠn−1 andΠn do not compute any proofs). Since j ≤ n−2 and n ≤ N we can upper-
bound the probability difference between G4,1,1 and this game by

∑N−2
j=1 (N − j − 1)AdvzkLg2EqLg(κ).

Since the group key derivation in IR-TDH1 is performed through the random oracle H ′ we can omit
Game G5. The session group key ki computed byΠi to which the Test query is asked is already uniform
at the end of Game G4,n−1. It is easy to see that the combination of probability upper-bounds for the
difference of sequence games gives the desired inequality for Advake

IR-TDH1(κ).

Theorem 3. If Σ is existentially unforgeable under chosen message attacks and if Lg2EqLg is sound
then IR-TDH1 provides strong MA-security in ROM, and

Succma
IR-TDH1(κ) ≤ Nq2s

2κ
+N2Succeuf−cmaΣ (κ) +

qsN
2

2
SuccsndLg2EqLg(κ).

Proof. In the following games, event Winma
i means that A wins in Gi.
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Game G0. This is the real game Gamema
IR-TDH1(κ) played between ∆ and A. Recall that A wins if

at some point there is a session sid for which the last protocol round is finished and one of its honest
oracles Πs

Ui
that does not fail after this round: (a) does not accept a group key although other active

partners exist, or (b) accepts a group key without being assured that all other honest oracles that remain
active after this last round have been invoked, or (c) accepts a different group key.

We observe that, by construction of IR-TDH1, every honest oracle Πs
Ui

which has been invoked
to participate in some session sid and during the group key derivation phase holds pidsUi consisting
of at least two identities (from which one is Ui) will compute the session group key ksUi , and, thus
accept. Hence, the probability that condition (a) ever occurs is 0. Therefore, in the following we focus
on conditions (b) and (c).

Game G1. In this game, as in Game G1 from the proof of Theorem 1, ∆ aborts if any two honest
oracles identified by U |s and U |s′ that have been invoked for two different sessions choose the same
nonce in Round 1. Thus, |Pr[Winma

1
]− Pr[Winma

0
]| ≤ Nq2s/2κ.

Game G2. In this game, as in Game G2 from the proof of Theorem 1, we eliminate signature forg-
eries in queries of the form Broadcast(sid, U |t|m|σ) with t ∈ {2, 3} and get |Pr[Winma

2
]−Pr[Winma

1
]| ≤

N2Succeuf−cmaΣ (κ). As a consequence of Game G1 we also eliminate successful replay attacks.
If an oracle accepts a key, then it is clear that it must have received correctly signed messages from

its partners; having excluded forgeries, it means that these partners have actually been invoked. Thus, we
exclude condition (b).

Further, each active and honest Πs
Ui

must have received the same Round 3 message Uj |3|M |σ′j for
all Uj ∈ pidsUi where M is either Ŷj |Zj or ‘alive’ (depending on the assignments in the tree) and
each Πs

Ui
holds the same set Y constructed from the received Round 2 messages (which is also signed

by σ′j).
Game G3. In this game ∆ aborts if on behalf of any two partnered honest oracles Πs

Ui
and Πt

Uj
that

are active during the group key derivation phase ∆ computes two different values for x(γ)
0,0 which should

be used by Πs
Ui

and Πt
Uj

to derive the session group key.

Assume that this failure event occurs and let Uγ |3|Ŷγ |Zγ |σ′γ be the Round 3 message received by
Πs
Ui

and Πt
Uj

. In line with the notations used in IR-TDH1 upon the construction of Tn we denote Πs
Ui

as
Πi (assigned to the leaf node 〈n− i+ 1, 1〉) and Πs

Uj
as Πj (assigned to the leaf node 〈n− j + 1, 1〉)

and assume w.l.o.g. that i < j. We know that γ < i since Πγ has the lowest index.
Since oracles Πi and Πj receive the same Round 3 message (due to the broadcast channel) and since

in previous games we have excluded any impersonation attacks on honest oracles, we conclude that if
both oracles compute different values for x(γ)

0,0 then Πγ must be malicious.

Now we focus on the computation of x(γ)
0,0 byΠj (still assuming that j > i). The first value computed

by Πj in the key derivation phase using its secret exponent xn−j+1,1 and y(γ)
n−j+1,0 ∈ Ŷγ is x(γ)

n−j,0. Also

Πi computes this value, however, using the secret exponent x(γ)
n−j+1,0 and yn−j+1,1 ∈ Yi. Since the

computation of x(γ)
0,0 is deterministic and both oracles Πi and Πj use identical sets Y (and Yi ⊂ Y ) we

follow thatΠi andΠj compute different values for x(γ)
0,0 only if they compute different values for x(γ)

n−j,0.

Since Πj honestly uses its secret exponent xn−j+1,1 its computed value for x(γ)
n−j,0 is different from

that computed byΠi only if y(γ)
n−j+1,0 ∈ Ŷγ used byΠj does not have the form gx

(γ)
n−j+1,0 where x(γ)

n−j+1,0

is the exponent used by Πi. In turn, Πi assigned to 〈n− i+ 1, 1〉 computes x(γ)
n−j+1,0 through iteration

starting with the computation of x(γ)
n−i,0 for which it honestly uses its secret exponent xn−i+1,1.

By construction, if y(γ)
n−j+1,0 ∈ Ŷγ used by Πj does not have the required form gx

(γ)
n−j+1,0 , then

the set Zγ contains at least one forged proof. Moreover this proof can be discovered by ∆ as follows.
∆ uses xn−i+1,1, Ŷγ , and Y to iteratively compute each x(γ)

l,0 for n − i ≥ l ≥ n − j + 1 and the



14 Timo Brecher, Emmanuel Bresson, and Mark Manulis

corresponding y(γ)
l,0 := gx

(γ)
l,0 . Then, ∆ sequentially checks whether each computed y(γ)

l,0 is the same as
the one included in Ŷγ until it finds the first one which is different. At least one such value must exist;
otherwise, oracles would have computed identical values for x(γ)

n−j,0. When ∆ finds the first such value

y
(γ)
l,0 the corresponding Lg2EgLg proof z(γ)

l must be a forgery since it claims that y(γ)
l,0 = gy

x
(γ)
l+1,0
l+1,1 , a false

statement.
Thus, if the described failure event occurs then ∆ is able to output a forged Lg2EgLg proof. Since for

each oracle Πj with j ≤ n− 2 there are exactly (n− j − 1) Lg2EgLg proofs we can upper-bound

|Pr[Winma
3

]− Pr[Winma
2

]| ≤ qs

N−2∑
j=1

(N − j − 1)SuccsndLg2EqLg(κ).

As a consequence of this game any two honest oraclesΠs
Ui

andΠt
Uj

that are partnered with respect to

some sid and remain active during the key derivation phase compute identical values for x(γ)
0,0 and thus,

accept with identical session group keys ksUi = ksUj . This excludes condition (c). Hence, Pr[Winma
3

] = 0.
Combining the previous equations we obtain the desired inequality for Succma

IR-TDH1(κ).

Theorem 4. IR-TDH1 provides strong contributiveness in ROM, and

Succcon
IR-TDH1(κ) ≤ Nq2s + 2Nqs + q2H′

2κ
.

Proof. In the following games, event Wincon
i means that A wins in Gi.

Game G0. This is the real game Gamecon
A,IR-TDH1(κ), in which the honest players are simulated by ∆.

Recall that A wins if after the stage prepare it returned k̃ and if in the stage attack the honest oracle
Πs
Ui

accepts k̃ .
Game G1. In this game, similar to the previous proofs, ∆ aborts if any two honest oracles identified

by U |s and U |s′ that have been invoked for two different sessions choose the same nonce in Round 1.
Thus, |Pr[Wincon

1
]−Pr[Wincon

0
]| ≤ Nq2s/2κ. This implies that in every session in which Ui participates

through some oracle Πs
Ui

which remains active during the group key derivation phase the concatenation
of random nonces noncesi held by Πs

Ui
contains a fresh nonce ri. Since the concatenation preserves the

lexicographic order of user identities in pidsUi the concatenation noncesi|pidsUi used in addition to x(γ)
0,0

as input for H ′ to derive ksUi is unique for each session.
Game G2. In this game ∆ aborts if A(prepare) returned some k̃ which it did not receive from ∆

in response to some query to the random oracle H ′ but which is computed by ∆ on behalf of some
honest Πs

Ui
as ksUi (as output of H ′) invoked during the attack stage. Since H ′ is modeled as a random

oracle the probability that this event occurs for any honest oracle and any invoked session is given by the
probability for the random guess of the output of H ′, so that |Pr[Wincon

2
]− Pr[Wincon

1
]| ≤ Nqs/2κ.

Therefore, A wins in this game only if it queried H ′ on some input m during the prepare stage and
received k̃ in response, which is then accepted by Πs

Ui
as ksUi .

Casem = x
(γ)
0,0 |noncesi|pidsUi : The probability ofA to win is given by the guess of ri, i.e.Nqs/2κ

(due to Game G1).
Case m 6= x

(γ)
0,0 |noncesi|pidsUi : The probability of A to win is upper-bounded by q2H′/2

κ by the
birthday paradox.

Thus, Pr[Wincon
2

] = (Nqs + q2H′)/2
κ. Combining previous equations gives us the desired inequality

for Succcon
IR-TDH1(κ).
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6 Comparison with Prior Work

At a glance, Table 1 describes how R-TDH1 and IR-TDH1 fit into the current state of the art of provably
secure RGKE protocols in terms of security, robustness and complexity: (i) we indicate whether AKE-
security, MA-security and contributiveness (CON) is achieved, and for which strength of corruptions, (ii)
we indicate the maximum of users that may fail without disrupting the protocol execution (fully robust
protocols have robustness of n− 2), and (iii) we compare the broadcast complexity and the total number
of operations per user.

Table 1. Security, Robustness, and Complexity of R/IR-TDH1 and other Robust GKE Protocols

Out-/Insider Security Robustness Complexity
RGKE Prot. AKE MA CON Model max Faults (k ≤) Rounds Broadcast Ops

adopted [14] strong - - STD n− 2 2 O(n2) O(n)
[21] weak weak weak STD n/2− 1 7 O(nk) O(n)
BD-RGKA [22] weak - - STD n− 2 2 O(n3) O(n2)
RGKA [22] weak - - STD n− 2 2 O(n2) O(n)
t-RGKA [22] weak - - STD 2t− 1 2 O(nt) O(t)
RGKA′ [22] weak - - STD n− 2 O(δ) O(n logn) O(n)

R-TDH1 strong - - STD n− 2 3 O(n2) O(n)
IR-TDH1 strong strong strong ROM n− 2 3 O(n2l) O(nl)

TDH1 [12] strong strong strong STD 0 3 O(n) O(n)

The out-/insider security entries reflect the formally proven properties of the protocols, though
it might be possible to amend the protocols from [14, 21, 22] to achieve strong outsider and
insider security using techniques that are close to those proven secure for R-TDH1 and IR-TDH1.

To ensure fair comparison we adopt [14] to the reliable broadcast setting as described in [22] and add
authentication costs to non-authenticated protocols from [21, 22] based on the technique from [24].

We highlight that R-TDH1 and the reliable broadcast version of [14] are the only RGKE protocols that
have been formally proven to achieve strong outsider security. The protocols from [22] are proven under
consideration of weak corruptions only. In terms of complexity and robustness R-TDH1 is similar to both
RGKA and the modified version of [14].

We proved that IR-TDH1 provides strong outsider and insider security, while [14, 22] did not address
insider security, and [21] did not consider strong corruptions. Compared to R-TDH1, IR-TDH1 has loss
in the broadcast and computation complexity by factor O(l) where l ranges from the number of users
that do not fail (n − k) to 1. Finally, we notice that compared to the original TDH1 from [12] the use of
our tree replication technique achieves full robustness but increases the communication complexity by
factors O(n) and O(nl), respectively.

7 Conclusion

This paper introduced two fully robust versions of the Tree-Diffie-Hellman protocol TDH1 from [12]
based on our novel tree replication technique. R-TDH1 preserves the strong outsider security of the origi-
nal protocol, whereas IR-TDH1 presents the first construction of a fully robust GKE protocol that remains
resilient to strong insider attacks. We proved both protocols in a security model which is of independent
interest as it combines strengths of several previous modeling approaches.

As mentioned, some existing robust GKE protocols can also be modified to achieve insider security
using NIZK proofs, however, this would require random oracles as well. Hence, designing a fully robust
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GKE protocol with strong outsider and insider security in the standard model remains an interesting open
problem.
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