
Hierarchical Attribute-Based Signatures

Constantin-Cǎtǎlin Drǎgan, Daniel Gardham(B), and Mark Manulis

Surrey Centre for Cyber Security, University of Surrey, Guildford, UK
{c.dragan,d.gardham}@surrey.ac.uk, mark@manulis.eu

Abstract. Attribute-based Signatures (ABS) are a powerful tool allow-
ing users with attributes issued by authorities to sign messages while
also proving that their attributes satisfy some policy. ABS schemes pro-
vide a flexible and privacy-preserving approach to authentication since
the signer’s identity and attributes remain hidden within the anonymity
set of users sharing policy-conform attributes. Current ABS schemes
exhibit some limitations when it comes to the management and issue
of attributes. In this paper we address the lack of support for hierar-
chical attribute management, a property that is prevalent in traditional
PKIs where certification authorities are organised into hierarchies and
signatures are verified along roots of trust.

Hierarchical Attribute-based Signatures (HABS) introduced in this
work support delegation of attributes along paths from the top-level
authority down to the users while also ensuring that signatures pro-
duced by these users do not leak their delegation paths, thus extend-
ing the original privacy guarantees of ABS schemes. Our generic HABS
construction also ensures unforgeability of signatures in the presence of
collusion attacks and contains an extended traceability property allow-
ing a dedicated tracing authority to identify the signer and reveal its
attribute delegation paths. We include a public verification procedure
for the accountability of the tracing authority.

We anticipate that HABS will be useful for privacy-preserving authen-
tication in applications requiring hierarchical delegation of attribute-
issuing rights and where knowledge of delegation paths might leak infor-
mation about signers and their attributes, e.g., in intelligent transport
systems where vehicles may require certain attributes to authenticate
themselves to the infrastructure but remain untrackable by the latter.

1 Introduction

Attribute-based Signatures. ABS schemes, introduced independently in [31,
32], offer a flexible, privacy preserving primitive for authenticating messages.
When presented with an attribute-based signature, verifiers are convinced that
the signer owns a set of attributes satisfying the signing policy, however, they
do not learn the signer’s identity nor the set of attributes and hence provide for
signer’s anonymity within a set of users holding policy-conform attributes. Users
who are not in possession of such attributes are not able to produce valid ABS
signatures, even if they collude and try to pool their attributes together. We note
c© Springer Nature Switzerland AG 2018
J. Camenisch and P. Papadimitratos (Eds.): CANS 2018, LNCS 11124, pp. 213–234, 2018.
https://doi.org/10.1007/978-3-030-00434-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00434-7_11&domain=pdf


214 C.-C. Drǎgan et al.

that while [32] enjoys an expressive policy, [31] drops this fine-grained control
in favour of a more efficient threshold-based construction and such trade-off has
commonly been seen in some later ABS schemes, e.g. [21,26,31]. ABS schemes
can also be generalised to policy-based signatures [4].

Existing ABS constructions typically rely on zero-knowledge proofs in the
signature generation phase, with a vast majority of schemes, e.g. [4,17–19,22,
34,35], being proposed in the standard model based on bilinear maps and Groth-
Sahai proofs [24]. A notable exception is the scheme in [26], which uses the RSA
setting yet requires random oracles.

While anonymity makes ABS schemes interesting for fine-grained privacy-
preserving authentication, the ability to trace and identify signers for account-
ability is another useful property that has been considered in the context of
several ABS schemes [15,18,22].

Hierarchy and Delegation. Requiring that all signers obtain their attributes
from a single authority introduces scalability issues if the universe of signers
or attributes becomes large. Therefore, some ABS schemes, e.g. [18,22,32,34],
explicitly consider the case where multiple, possibly independent authorities can
issue attributes directly to the signers. On the other hand, if the ability to issue
attributes requires authorisation then some additional control mechanisms for
delegation of attribute-issuing rights would be needed.

From a more general view, it would require an ABS scheme to support a hier-
archy of attribute authorities, managed by some top-level (root) authority, and
enable delegation of issuing rights (for subsets of attributes) along various dele-
gation paths consisting of intermediate authorities. With such hierarchy, signers
would be able to obtain attributes only from authorities that are authorised to
issue them. For practical purposes the hierarchy should be dynamically expand-
able, i.e., it should be possible to add intermediate authorities (at any level)
at any time. This setting resembles conceptual similarity with traditional PKIs
where certification authorities form a hierarchy. The main difference is that,
in the context of ABS schemes, such hierarchical delegation imposes additional
challenges on the privacy of signers since leakage of the delegation path from
the ABS signature may compromise the signer’s anonymity by leaking informa-
tion about the subsets of attributes that the signer might possess, e.g. if some
authority is only responsible for a small number of attributes or otherwise has
some identifying information (for example, geographic location) that could also
be used to identify the signer. We note that a hybrid solution whereby the hierar-
chy is defined by the CAs, delegation is performed via traditional PKI certifica-
tion and credentials issued to signers are standard ABS credentials would suffer
from the same privacy-leaking problems. Therefore, hierarchical ABS schemes
must incorporate a proof of validity of the delegation paths without disclosing
any information about intermediate authorities, implying that verification must
be done in relation to the public key of the top-level authority and not of the
intermediate authorities.



Hierarchical Attribute-Based Signatures 215

This brings further challenges when it comes to accountability. The associ-
ated tracing mechanism needs to identify not only the signer (as in the case of
existing ABS constructions) but also delegation paths through which attributes
were obtained. This is because the root authority may not be aware that some
particular user was issued attributes by an intermediate authority. In addition,
malicious intermediate authorities in the hierarchy can try to misuse their del-
egation rights and create further fake authorities or users to issue rogue ABS
signatures. The delegation paths disclosed by the tracing algorithm would be able
to detect this behaviour, thus extending accountability to intermediate authori-
ties.

Our Contribution: Hierarchical ABS. In this paper (see also the full version
in [16]) we solve the aforementioned challenges by proposing Hierarchical ABS
(HABS) to enable hierarchical management by a root authority and delegation
of attribute-issuing rights. HABS extends the anonymity guarantees by hiding
not only the signers and their attributes but also the delegation paths (i.e.,
intermediate authorities) that were used for these attributes. We call this new
property path anonymity. HABS supports dynamic hierarchies, enables delega-
tion of attribute-issuing rights to new authorities, and allows signers to obtain
attributes from multiple authorities within the hierarchy with guarantees that
the entire delegation path (incl. the signer) can be revealed by an indepen-
dent tracing authority. Moreover, we require public verifiability for the out-
put of this tracing procedure to address the case where the tracing authority
tries to cheat. Needless to say, HABS offers extended unforgeability guaran-
tees, expressed through the non-frameability requirement, ensuring that only
holders of policy-conform attributes can sign, and in particular, preventing col-
lusions between signers and authorities. We formally define HABS and pro-
pose its generic construction from public key encryption, digital signatures and
non-interactive zero-knowledge proofs of knowledge. Our HABS scheme can be
instantiated using bilinear maps in the standard model under the DLIN, q-SDH
and Simultaneous Flexible Pairing (SFP) [1] assumptions. Our HABS scheme
supports a more general scenario where intermediate authorities and users can
become part of multiple independent hierarchies, each managed by a separate
root authority. We also discuss the revocation of delegation and signing rights
in the context of HABS, which is known to be notoriously challenging for all
hierarchical signature schemes (incl. PKIs).

Applications. HABS can find applications in traditional ABS scenarios (cf.
[32]) while enabling hierarchical delegation of attributes. Due to their distinctive
path-anonymity and path-traceability properties we anticipate further applica-
tions in privacy-preserving authentication where there is a need to also hide the
intermediate authorities that were involved in issuing the attributes.

For example, in intelligent transport systems [39] there is a challenge to
authenticate messages sent by vehicles to other parties (e.g. other vehicles, infras-
tructure, police, etc.) while preventing that vehicles can be tracked. Existing



216 C.-C. Drǎgan et al.

approaches, based either on pseudonymous PKI certificates [23,27], group sig-
natures [25,38] or identity-based signatures [29,40] have all their limitations
with regard to scalability and/or limited expressivity (cf. survey in [36]). As
noted in [33] an attribute-based approach would bring substantial benefits and
while [33] aims at realisations with heavier attribute-based credential systems,
we believe that HABS could offer a more lightweight alternative. For example,
the root authority can be some regulatory authority while manufacturers, autho-
rized dealerships, local garages or testing facilities would define the hierarchy.
Assume some town has a policy that bans diesel vehicles that did not pass an
emission test. By viewing a vehicle’s fuel type and its emission test results as
attributes issued by the manufacturer and some local testing facility, respec-
tively, the vehicle would be able to prove its compliance with the town’s policy
without disclosing any other information such as its make or which local facility
performed the test.

Further Related Work. As explained in [32], group signatures [14] and ring
signatures [37] can be viewed as special cases of ABS satisfying policies that
would contain only disjunctions over the attributes (identities). The proposed
constructions of hierarchical group [41] and ring [30] signatures, seen as spe-
cial cases of HABS, also lack this richer expressivity of the attribute-based set-
ting. Mesh signatures [7], a generalization of ring signatures to monotone access
structures that can be satisfied by combinations of atomic signatures would not
provide unforgeability against colluding signers and would leak verification keys
(attributes) for all atomic signatures used in the clauses. As discussed in [32],
anonymous credentials (AC) [12,13], used for privacy-preserving attribute-based
credentials [11], are a more powerful, yet also less efficient, primitive than ABS.
AC schemes require costly zero-knowledge proofs during attribute acquisition
since their goal is to prevent that authorities can link users to whom they issue
attributes. This property is not provided by (H)ABS and may not even be needed
for its applications (as in our example above where it does not make sense to
hide the manufacturer of a vehicle from the local testing authority that carries
out the emission test). Nonetheless, we note that the concept of delegation has
also been explored for AC schemes [3] where some delegation mechanisms also
require zero-knowledge proofs to provide similar guarantees as in the issue of
anonymous credentials and in addition to prove that the delegator is L levels
away from the (top-level) authority, a property that is not needed for HABS
where intermediate authorities know their delegation paths. Anonymous creden-
tials in this setting have also been proposed [9]. Whilst the construction is more
efficient, it only supports attribute issuance along one delegation path and in
particular, all attributes owned by an authority in the path are required for ver-
ification. We also note the construction of a non-delegatable AC scheme built
from (homomorphic) ABS [28], where multiple root authorities issue attribute
credentials directly to the signers. However, to combine attributes obtained from
distinct authorities requires online collaboration of these authorities. In contrast,
our scheme supports delegation and non-interactive combination of attributes



Hierarchical Attribute-Based Signatures 217

obtained from multiple authorities. Additionally, anonymous proxy signatures
[20] bear similarities with HABS in that the delegation path for the proxy signer
is not revealed upon verification of proxy signatures but can be traced through
a dedicated authority. These signatures are not attribute-based since tasks dele-
gated to the proxy signer, when viewed as attributes, are not hidden. Functional
signatures [2,8] are another primitive that allow for controlled delegation of sign-
ing rights. A signing key is created w.r.t a function f , and one can only sign a
message if it is in the range of f , and in the case of delegatable schemes [2]
allow signatures to be modified by another specified party. When the message
m is viewed as a set of attributes satisfying some policy f , signers require sep-
arate signing keys for each possible policy in the system, which is impractical.
Another related primitive are homomorphic signatures, which have been claimed
to be equivalent to ABS [42]. This implication has only been shown in the single
user setting and thus does not capture the strong unforgeability requirements
provided by HABS. Similarly, in relation to policy-based signatures [4] (which
imply ABS), we observe that, so far, the only delegation mechanism proposed for
these schemes in [4] neither supports separation between users and authorities
nor distinguishes between the signers. This allows authorities to forge signa-
tures on behalf of users (cf. Remark 1) and excludes the possibility of tracing
signatures.

2 Model of Hierarchical Attribute-Based Signatures

In this section we describe the entities, their roles and define the algorithms
for HABS. The involved entities are attribute authorities, users (signers), and a
dedicated tracing authority.

Attribute Authorities. The root authority (RA) with its key pair (ask0, apk0)
is at the top of HABS hierarchy and defines its universe of attributes A. The RA
can delegate subsets from A to other authorities in the scheme, who are then
able to delegate attributes from their subsets further, creating a dynamically
expandable hierarchy of attributes (see Fig. 1). In order to be admitted to the
hierarchy, each intermediate authority (IA) needs to generate its own key pair
(aski, apki), i > 0 and become authorised by some already admitted authority
by obtaining a subset of attributes. In addition to delegation of attributes, each
authority can issue attributes from its set to the end users (signers). It is assumed
that admitting authorities make sufficient checks on whether the entities they
admit are eligible to receive the attributes.

Users. Upon joining, each user generates its own key pair (usk, upk) and is
issued with a subset of attributes by one or more authorities from the hierar-
chy. Any admitted user can generate a valid HABS signature on a message m
with respect to some predicate Ψ using the secret key usk and the set of issued
attributes A as long as this set contains some subset A′ ⊆ A that are needed to



218 C.-C. Drǎgan et al.

Fig. 1. Example of a HABS hierarchy where a user with public key upk receives its set
of attributes Aupk ⊆ Ai ∪ Aj from two IAs i and j, who in turn receive their attribute
sets Ai and Aj from the RA.

satisfy Ψ , i.e. Ψ(A′) = 1. HABS signatures will be verified with respect to Ψ and
the RA’s public key apk0. Note that, unlike authorities, users cannot delegate
their attributes to other entities and can be viewed as the lowest level of the
hierarchy (see Fig. 1). We make use of a label � to denote the end of the delega-
tion path, and prevent the user from further delegating his attributes. Note we
sometimes use j to differentiate users.

Warrants. For delegation of attributes to intermediate authorities and for their
issue to the signers it is convenient to use warrants. That is, upon admission
each HABS entity (IAs and signer) obtains a warrant warr that contains all
attributes a ∈ A (along with their delegation paths) that the entity receives
from the authority. However, upon signing we assume that a “reduced warrant”
warr containing only a reduced attribute set A′ for which Ψ(A′) = 1 will be used
by the signer. Note that by warr[a], for a ∈ warr, we denote the delegation path
(apk0, . . . , {apki, {upk, �}}), starting with RA’s public key apk0 and ending with
the entity’s public key, i.e. apki for the IA i or upk followed by a fixed label �
(which is used to denote that this path cannot be extended further) for the
corresponding user. We use |warr| to denote the total number of attributes in
warr and use |warr[a]| to refer to the length of the delegation path for the
attribute a.

Tracing Authority. A dedicated tracing authority (TA) with its own key pair
(tsk, tpk) is responsible for tracing HABS signatures. The extended tracing pro-
cedure in HABS outputs warr used by the signer. This means that tracing
reveals all attributes and their delegation paths from used warr and also the
identity of the signer since its delegation paths include upk. Note that since users
can use reduced warrants, the tracing procedure does not necessarily reveal all
attributes held by the user but only those that were used to produce the signa-
ture. For accountability purposes we require that the output of TA is publicly



Hierarchical Attribute-Based Signatures 219

verifiable, i.e. is accompanied by some proof that can be verified using a public
judgment procedure.

Definition 1 (Hierarchical ABS Scheme). HABS := (Setup, KGen,
AttIssue, Sign, Verify, Trace, Judge) consists of the following seven processes:

• Setup(1λ) is the initialisation process where based on some security param-
eter λ ∈ N, the public parameters ppof the scheme are defined, and the root
and tracing authority independently generate their own key pair, i.e. RA’s
(ask0, apk0) and TA’s (tsk, tpk). In addition, RA defines the universe A of
attributes, and a label � for users. We stress that due to dynamic hierar-
chy, the system can be initialised by publishing (pp, apk0, tpk) with A and �
contained in pp.

• KGen(pp) is a key generation algorithm executed independently by interme-
diate authorities and users. Each entity generates its own key pair, i.e.,
(aski, apki) for i > 0 or (usk, upk).

• AttIssue (aski,warri, A, {apkj |upkj}) is an algorithm that is used to dele-
gate attributes to an authority with apkj or issue them to the user with upk.
On input of an authority’s secret key aski, i ∈ N0, its warrant warri, a subset
of attributes A from warri, and the public key of the entity to which attributes
are delegated or issued, it outputs a new warrant warr for that entity.

• Sign ((usk,warr),m, Ψ) is the signing algorithm. On input of the signer’s
usk and (possibly reduced) warr, a message m and a predicate Ψ it outputs
a signature σ.

• Verify (apk0, (m, Ψ, σ)) is a deterministic algorithm that outputs 1 if a can-
didate signature σon a message m is valid with respect to the predicate Ψ and
0 otherwise.

• Trace (tsk, apk0, (m, Ψ, σ)) is an algorithm executed by the TA on input of
its private key tsk and outputs either a triple (upk,warr, π̂) if the tracing is
successful or ⊥ to indicate its failure. Note that warr contains attributes and
delegation paths that were used by the signer.

• Judge (tpk, apk0, (m, Ψ, σ), (upk,warr, π̂)) is a deterministic algorithm that
checks a candidate triple (upk,warr, π̂) from the tracing algorithm and out-
puts 1 if the triple is valid and 0 otherwise.

The correctness property of HABS requires that any signature σ output by
any signer with usk in possession of a legitimately issued warrant warr that
contains attributes a ∈ A satisfying Ψ can be successfully verified and traced,
and that a triple (upk,warr, π̂) output by the tracing algorithm for such σ passes
the public judgment procedure.

2.1 Security Properties

In this section, we define three security properties of HABS schemes: path anony-
mity, non-frameability, and path traceability and use game-based definitions
assuming some PPT adversary A that interacts with the entities using oracles.



220 C.-C. Drǎgan et al.

Fig. 2. Oracles used in the HABS security experiments.

We note that our definitions extend earlier definitions for (multi-authority) ABS
schemes, e.g. [4,18,22,32], to account for the hierarchical setting and potential
corruptions within the hierarchy. In addition, our definitions of path-anonymity
and path-traceability focus on hiding resp. verifiable traceability of delegation
paths from the signer’s warrant, a distinctive feature of HABS. Our modeling
techniques for these properties are inspired by definitions behind anonymous
proxy signatures [20] which do not apply directly to the attribute-based setting.

Oracles for A. The oracles available to a PPT adversary A are defined in Fig. 2
and their high-level description is provided in the following. In our oracles we
take into account that only authorities can delegate and issue attributes whereas
only signers can generate HABS signatures.

– OReg: A can register new IAs and users for whom, in response, a key pair will
be honestly generated and the public key given to A. The oracle uses lists
to keep track of the established entities and their keys. Upon registration all
entities are initially considered to be honest.

– OCorr: A can corrupt established entities. On input of the entity’s public
key A receives the corresponding private key, as long as this entity has been
previously established. The oracle keeps track of entities who were corrupted.

– OAtt: A can ask an authority to either delegate attributes for another IA or
to issue attributes to a user, as long as both involved entities are registered.
Note that A can define which attributes the oracle should use. If both entities
are registered and the issuing entity has rights to issue attributes provided
by A then the output warrant warr is given to A.



Hierarchical Attribute-Based Signatures 221

Fig. 3. Path-anonymity experiment

– OSig: A can ask a signer to produce a HABS signature using the input warrant
warr, a message m and a predicate Ψ . If the provided warrant contains a set
of attributes A satisfying Ψ and the signer is not corrupted then the signature
will be given to A.

– OTr: A can ask the TA to perform the tracing procedure on its input, in which
case its output (which can also be ⊥) is returned to A.

Path Anonymity. For HABS we extend the anonymity property of traditional
ABS schemes to achieve privacy of the delegation path, i.e., not only to hide the
signer but also all intermediate authorities that were involved in the delegation
of attributes for that signer. Our game for path anonymity in Fig. 3 requires
the adversary to decide which user’s warrant and private key were used in the
generation of the challenge HABS signature σb. We consider a powerful two-
stage PPT adversary A = (A1,A2), who knows the private keys of the candidate
signers and can moreover establish its own HABS hierarchy (with IAs and users)
by learning the secret key ask0 of the root authority. This also means that the
adversary comes up with the candidate warrants warr0 and warr1 for the two
users in the challenge phase. Since HABS signatures do not aim to hide the
length of the delegation paths nor the number of attributes used to satisfy the
policy we require that both warrants are of the same size and that they both
satisfy the predicate Ψ output by the adversary. Since attributes are contained
in warrants our definition also implies attribute-hiding.

Definition 2 (Path Anonymity). A HABS scheme offers path anonymity if
no PPT adversary A can distinguish between Exppa-0

HABS,A and Exppa-1
HABS,A defined

in Fig. 3, i.e., the following advantage is negligible in λ:

AdvpaHABS,A(λ) =
∣
∣
∣Pr

[

Exppa-0
HABS,A(λ) = 1

]

− Pr
[

Exppa-1
HABS,A(λ) = 1

]∣
∣
∣ .



222 C.-C. Drǎgan et al.

Fig. 4. Non-frameability experiment

Non-Frameability. Another fundamental property for HABS is non-
frameabili-ty that extends unforgeability to ensure only authorized authorities
can delegate and only attribute policy-compliant users can sign. This property
is formalized in Fig. 4, and requires the adversary A to produce valid authoriza-
tions for attributes he does not satisfy: either as a valid HABS signature σ for
some honest user with upk, or as a valid tracing information that includes a
warrant warr issued by an honest authority. In the latter, it is enough for A to
provide a single attribute a for which the delegation path contains one honest
authority i or an honest user with upk without querying OAtt for that author-
ity or user. We consider a PPT adversary A, who can admit IAs to the HABS
hierarchy using the RA’s private key ask0, and act on behalf of the TA using
tsk.

Definition 3 (Non-Frameability). A HABS scheme is non-frameable, if no
PPT adversary A can win the experiment Expnf

HABS,A defined in Fig. 4, i.e., the
following advantage is negligible in λ:

AdvnfHABS,A(λ) = Pr
[

Expnf
HABS,A(λ) = 1

]

.

Remark 1. In the non-frameability experiment we consider a strong adversary
that has full control of the hierarchy through the OReg and OAtt oracles. We
capture the notion that malicious authorities and colluding users should not be
able to produce signatures on behalf of, and therefore framing, honest users. This
is a stronger notion of security than considered in some existing ABS schemes
[4,32].

Path Traceability. The final property we consider for HABS is path traceability
in Fig. 5 that offers accountability for the entire delegation path and the tracing
authority, but also validity of the entities in that delegation path. The adversary
A is required to produce a valid HABS signature σ that either cannot be traced,
or can be traced to a warrant warr that contains at least one “rogue” entity



Hierarchical Attribute-Based Signatures 223

Fig. 5. Path-traceability experiment.

(some authority i or user with upk) within any of its delegation paths that
has not been previously registered through the registration oracle, i.e., is not
contained in List. For honest and registered authorities A can use the attribute-
issuing oracle, which internally checks whether the public key of the entity for
which the warrant needs to be issued has been registered before. This excludes
a trivial attack where A obtains a legitimate warrant for some rogue entity from
some honest authority. In its attack we also equip A with the TA’s private key.

Definition 4 (Path Traceability) . A HABS scheme offers path traceability if
no PPT adversary A can win the experiment Exptr

HABS,A defined in Fig. 5, i.e.,
the following advantage is negligible in λ:

AdvtrHABS,A(λ) = Pr
[

Exptr
HABS,A(λ) = 1

]

.

3 Construction

In this section we describe and analyse our general construction for HABS that
we build from several well-known building blocks.

3.1 Building Blocks

Our construction relies on standard notions of IND-CCA2 secure public key
encryption PKE := (KGen, Enc, Dec) [10] and an unforgeable digital signature
DS:=(KGen, Sign, Verify) [1] that withstands chosen-message attacks. We rely
further on an unforgeable tagged signature TS := (KGen, Sign, Verify) [1] that
can sign blocks of messages, also used in [18], where an additional tag t is used
as input to the signing algorithm and the signature will not verify unless the
verifier uses the same tag. The adversary is allowed to query its signing oracle
on tags that it can use later to create a forgery. Although any unforgeable DS



224 C.-C. Drǎgan et al.

scheme can be used as a tagged signature if its message space admits signing
pairs (t,m), the explicit separation of t allows usage of different spaces for tags
and messages. Our HABS scheme further relies on a strongly unforgeable one-
time signature OTS := (KGen, Sign, Verify) [6], for which the signing oracle can
be queried only once and the adversary succeeds even if it can output a different
signature on the message that it queried. Finally, our HABS construction uses
non-interactive zero-knowledge proofs NIZK = (Setup, Prove, Verify, SimSetup,
Sim) [5,24] for a language L = {x | ∃w. R(w, x) = 1}, where R is some relation
over a witness w and a statement x. Typically, NIZK proofs require a common
reference string crs output during the setup phase. From NIZK we require the
standard properties of completeness, soundness, and zero-knowledge.

3.2 Generic Construction

We use the above general building blocks to construct our HABS scheme, which
is specified in Fig. 6. In the following we provide a high-level intuition behind
its construction. Attribute authorities (RA and IAs) generate their key pairs
(aski, apki), i ∈ N0 for the tagged signature scheme TS. The TA holds a key pair
(tsk, tpk) for the public key encryption scheme PKE. The public parameters ppof
the scheme also contain trusted common reference strings crs1 and crs2 for the
corresponding NIZK proofs.

Attributes a ∈ A are viewed as tags of the TS scheme whereas delegation
paths attL := (apk0, . . . , {apki, {upki+1, �}}) are treated as messages. In order
to create a warrant warr for some authority or signer, the corresponding IA
with its aski will produce a TS signature on each attribute a and its delegation
path and include this signature into warr[a] as part of the list sigL. Thus, a
separate TS signature is used for each attribute and its path such that the signer
can later reduce its warr to attributes that are needed for a policy Ψ .

Each signer, after initialisation, holds a key pair (usk, upk) for the digital
signature scheme DS. A signer with usk and a reduced warr that satisfies Ψ can
generate a HABS signature σ for some message m. The reduced warr together
with the signer’s public key upk and a digital signature σs with message otsvk are
encrypted in a PKE ciphertext C under the TA’s public key tpk with randomness
μ. The signer generates a key pair (otssk, otsvk) for the one-time signature
scheme OTS and uses its usk to compute a digital signature σs on otsvk.

We model Ψ as a span program S with a labelling function ρ that maps
rows from S to attributes in A. The signer attests the satisfiability of Ψ w.r.t its
attributes from the reduced warr by computing a vector of integers z such that
zS = [1, 0, . . . , 0] and for any zi �= 0 we have ρ(i) ∈ warr.

Then, the signer computes a NIZK1 proof π for the statement (C, otsvk,
tpk, apk0, Ψ) using as witness the previously computed (upk, μ, z,warr, σs) such
that the following relation is satisfied:



Hierarchical Attribute-Based Signatures 225

Fig. 6. Algorithms of our general HABS scheme.

PKE.Enc(tpk, (upk,warr, σs, otsvk);μ) = C ∧ DS.Verify(upk, otsvk, σs)

∧ zS = [1, 0, . . . , 0] ∧ (∀i. zi �= 0 =⇒ ai = ρ(i)
∧ ((apk0, apki1 , . . . , apkin , upk, �)(σi1 , . . . , σin , σu)) = warr[ai]

∧ (∀1 ≤ j ≤ n. TS.Verify(apki(j−1) , σij , ai, (apk0, apki1 , . . . , apkij )))

∧ TS.Verify(apkin , σu, ai, (apk0, apki1 , . . . , apkin , upk, �))
)

.

The resulting HABS signature σ contains the aforementioned C, π, and
otsvk, along with an OTS signature σo, generated using otssk to bind these



226 C.-C. Drǎgan et al.

value together with the message m and Ψ . The validity of such HABS signature
σ can be verified using public parameters of the scheme and RA’s public key
apk0 by checking the validity of the NIZK1 proof π and the OTS signature σo.

The tracing algorithm, on input of a valid HABS signature ((σo,C,
π, otsvk),m, Ψ) uses tsk to decrypt the warrant warr from the ciphertext
C. The decrypted warrant contains all attributes and delegation paths, incl.
signer’s public key upk, and signature σs with message otsvk′. Then, it checks
whether otsvk = otsvk′. If true, TA outputs a NIZK2 proof π̂ for the statement
(otsvk,C, tpk, (apk0,warr, σs)) using tsk as its witness to prove the following
relation:

PKE.Dec(tsk,C) = (upk,warr, σs, otsvk′).

The output of TA on a valid HABS signature can be publicly judged by checking
the validity of the NIZK2 proof π̂.

3.3 Security Analysis

In this section we show that our general HABS construction in Fig. 6 satisfies
path-anonymity, non-frameability and path-traceability from assumptions of its
underlying cryptographic building blocks.

Lemma 1. HABS defined in Fig. 6 offers path anonymity, if NIZK1 and NIZK2
are zero-knowledge, PKE is IND-CCA2, and OTS is strongly unforgeable.

Proof. We follow a game-based approach and show that the advantage of the
PPT adversary A in the path-anonymity experiment for the HABS construction
from Fig. 6, is bounded by the advantages of the constructed adversaries for the
underlying primitives.

Game G0: Let this be the experiment corresponding to Exppa-b
HABS,A(λ) in

Fig. 3, where the adversary A = (A1,A2) is required to distinguish between the
signatures σ0 = (σ0

o ,C0, π0, otsvk0) and σ1 = (σ1
o ,C1, π1, otsvk1).

Game G1: This game is obtained from the game G0 where the restriction “A2

did not query OTr(m,Ψ, σb)” is enforced by the OTr oracle available to A2. This
is done by aborting the game, if A2 queries (m,Ψ, σb). We model this by adding
the line “if (σo, C, π, otsvk)=(σo,b, Cb, πb, otsvkb) then return abort”, when the
adversary calls OTr(m,Ψ, (σo, C, π, otsvk)) and σb = (σo,b, Cb, πb, otsvkb). The
games G1 and G0 preserve the exact same probability.

Game G2: We define G2 as game G1 except on the outputs of OTr, where we
replace the NIZK2 proof π̂ with a proof π̂′, provided by the simulator NIZK2.Sim.
Additionally, in game G2 for NIZK2 we replace Setup by SimSetup. These changes
are done to avoid the case where A may “extract”tsk from NIZK2 proofs. Thus,
for all future OTr oracle call we make use of a simulated NIZK2 proof. These two
games are indistinguishable due to the zero-knowledge of NIZK2.

Game G3: Let G3 be the game obtained from G2 where the real NIZK1 proof
πb from the challenge signature σb = (σo,b, Cb, πb, otsvkb) is replaced with the
simulated proof π′

b by calling NIZK1.Sim on the inputs (Cb, otsvkb, tpk, apk0, Ψ).
Similar to the previous step, by now for NIZK1 we replace Setup by SimSetup.



Hierarchical Attribute-Based Signatures 227

We bound the capabilities of A to distinguish between games G3 and G2 by the
advantage of the zero-knowledge adversary for NIZK1.

Game G4: Game G4 is identical to game G3, except we abort if A2 queries
OTr(m,Ψ, (σo,C, π, otsvk)) if (C, otsvk) = (Cb, otsvkb). The adversary A is able
to distinguish between G3 and G4, only if he can produce a valid OTS signature
σo for a statement (Cb, π,m, Ψ) and verification key otsvkb, without knowledge
of the signing key otsskb. Essentially, breaking the strong unforgeability of OTS.

Game G5: This game G5 is the same as G4, except we abort if A2 queries
OTr(m,Ψ, (σo,C, π, otsvk)) when C = Cb. The output of OTr remains unchanged
between these two games, as the oracle return ⊥ if otsvkb from C is different
from otsvk received as input. Game G5 preserves the same probability as G4.

Game G6: Let G6 be the game obtained from G5 where the ciphertext Cb

from the challenge signature σb = (σo,b, Cb, π
′
b, otsvkb) is replaced with C0. The

distinguishing capabilities of the adversary A2 are bounded by the advantage of
the IND-CCA2 adversary for the PKE scheme.

The experiment G6 provides as challenge to A the exact same values inde-
pendent of the random bit b that A is asked to guess. Additionally, due to
zero-knowledge of NIZK2 used in G2, A does not have access to tsk. Therefore,
the advantage of A in winning this experiment is 0. ��
Lemma 2. The generic HABS construction from Fig. 6 is non-frameable, if
NIZK1 is sound, TS and DS are unforgeable, and OTS is strongly unforgeable.

Proof. We model our proof by dividing the non-frameability experiment from
Fig. 4 into two experiments based on the winning condition of the adversary A.
The first experiment, E1, captures the probability of the adversary A to create
a forgery. The second experiments E2 follows the exact same steps as E1 except
that “j ∈ HU ∧ A did not query OSig((uskj ,warr), Ψ,m)” is replaced by

“∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upkj , �) = warr[a] ∧
( (∃0 ≤ i ≤ n − 1. A did not call OAtt(i, · , a, apki+1) ∧ i ∈ HU) ∨

(A did not call OAtt(n, · , a, upkj) ∧ n ∈ HU))”
The probability of winning the non-frameability experiment is bounded by

the probability of A winning either E1 or E2:

Pr
[

Expnf
HABS,A(λ)

]

≤ Pr[E1 = 1] + Pr[E2 = 1] .

We start with the first experiment E1 that we will show has a negligible prob-
ability of success. Intuitively, we want to argue over all the values (upk′,warr′,
m′, Ψ ′), (σ′

o,C
′, π′, otsvk′) that correspond to the input and output of the OSig

oracle. We show that they are not sufficient for the adversary A to create valid
proofs and signatures (σo,C, π, otsvk) for the values (upkj ,warr,m, Ψ) differ-
ent from (upk′,warr′,m′, Ψ ′). More precisely, we take each element of the tuple
(upkj ,warr, m, Ψ) and try to reason about their relation with their prime coun-
terpart from (upk′,warr′,m′, Ψ ′).

The first step considers if”there has been any OSig request that contains
upk”, which sets the direction for the rest of the proof. Next, we follow the



228 C.-C. Drǎgan et al.

same methodology by reasoning that the values warr′,m′, Ψ ′ and otsvk′ have
to coincide with warr,m, Ψ, otsvk for A to actually produce valid proofs and
signatures that pass the verification conditions in E1.

Game G0. The game G0 is defined exactly as E1 except on line “A did
not query OSig((uskj , warr),m, Ψ)” that is replaced with a membership check
(upkj ,warr,m, Ψ) /∈ sL for the list sL. This list sL is initialized empty at the
beginning of the experiment, and gets updated with the inputs of the OSig oracle.
Additionally, we introduce the list spL that stores the input and output of the
OSig oracle. We have that E1 and G0 have the same probability.

Game G1. This game is defined exactly as G0 with the exception the addi-
tional test DS.Verify(upkj , otsvk, σs) performed over the output of the adversary
(((σo,C, π, otsvk),m, Ψ), (upkj , warr, (π̂, σs))). G1 is indistinguishable from G0

due to the soundness of NIZK1: the probability of generating a valid NIZK1 proof
for a false statement (that does not pass DS verification).

Game G2. This game uses the exact steps performed by game G1, except it
returns false if the adversary has not queried at least one signature that contains
user upkj . The adversary A is able to distinguish between these two games if
he can produce a valid digital signature σs for upkj that passes DS verification
without having access to the user’s secret key (as j ∈ HU). Thus, breaking
unforgeability for DS.

Game G3. We define game G3 exactly as G2, except we replace the test on
where A has queried OSig for user upkj : line (upkj , �, �, �) ∈ sL with

∃ warr′. m′. Ψ ′. σ′
o. C′. π′. otsvk′. ((upkj ,warr′, m′, Ψ ′), (σ′

o, C
′, π′, otsvk′)) ∈ spL.

We have (warr,m, Ψ) �= (warr′,m′, Ψ ′), because of (upkj ,warr,m, Ψ) /∈ sL and
(upkj ,warr′,m′, Ψ ′) ∈ sL.

Game G4. We define G4 as the game G3, except we extend the condition
“∃ warr′ . . . ((upkj ,warr′,m′, Ψ ′), (σ′

o,C
′, π′, otsvk′)) ∈ spL” to include otsvk =

otsvk′. The capabilities of the adversary A to distinguish between G4 and G3

are bounded by the unforgeability of the DS.
Game G5. We define game G5 as the game G4, where we add the restriction

(m,Ψ) = (m′, Ψ ′), on the same line and in the same manner as the changes done
in game G4. The adversary A is able to distinguish between these two games, if
he can provide a forgery for the OTS scheme by signing a message that contains
(m′, Ψ ′) without knowledge of otssk.

Game G6. We define game G6 as the game G5, except we add C �= C ′

to the same line that was modified in game G5. Because of the restriction
(warr,m, Ψ) �= (warr′,m′, Ψ ′), we have warr′ �= warr in game G6. Given
warr �= warr′, we now show that C �= C′. This is guaranteed by the correct-
ness property of the encryption scheme PKE that builds C′. There should not
be possible to find warr such that C (equal to C′) decrypts to it. We take
m0 = (upkj ,warr, σs, otsvk) and m1 = (upkj ,warr′, σ′

s, otsvk) be two different
messages that both encrypt to C′. According to the correctness of PKE, C′ must
decrypt with overwhelming probability to one of the two message.



Hierarchical Attribute-Based Signatures 229

The probability of adversary A to win G6 is bounded by the probability of
creating a OTS forgery without knowledge of otssk, that passed the verification
in the body of experiment G6.

From the sequence of games starting G0, . . . , G6, it follows that the proba-
bility of E1 are bounded by unforgeability of DS, strong unforgeability of OTS,
and zero-knowledge of NIZK1.

The experiment E2 models the case where the adversary A is able to provide
a forged TS signature for an honest authority apki and some attribute a. The
capabilities of the adversary A in this case is bounded by the unforgeability
adversary for TS. ��
Lemma 3. The generic HABS construction from Fig. 6 offers path traceability,
if NIZK1 is sound and TS is unforgeable.

Proof. See full version in [16].

Theorem 1. The proposed HABS construction in Fig. 6 offers path anonymity,
non-frameability, and path traceability under the assumptions that PKE is IND-
CCA2 secure, TS and DS are unforgeable, OTS is strongly unforgeable, NIZK1 and
NIZK2 are both sound zero-knowledge proofs.

Proof. The proof follows from Lemmas 1, 2 and 3.

3.4 Instantiating the HABS Building Blocks

Instantiation. We instantiate HABS in the bilinear group setting. For the
digital signature DS we use the constant-sized structure preserving scheme by
Abe et al. [1], whereas for TS we use their unbounded-message version of their
scheme. These are unforgeable under the Simultaneous Flexible Pairing (SFP)
[1] assumption. We use an encryption scheme by Camenish et al. [10] that is
capable of encrypting message vectors for our IND-CCA2 PKE, which relies on
the DLIN assumption. Finally, for the one-time signature OTS we use the full
Boneh-Boyen signature scheme [6], which is strongly unforgeable under the q-
Strong Diffie-Hellman (q-SDH) assumption.

For the proofs NIZK1 and NIZK2, we use Groth-Sahai (GS) proof systems
[24], the security of which is also based on the DLIN assumption in the sym-
metric setting. These are efficient, non-interactive proof systems in the CRS
model that are complete, sound, and zero-knowledge. Briefly, the GS proof sys-
tem works by commiting to the elements of the witness and then showing they
satisfy the source equation. The equation must take the form of either a Pairing
Product Equation (PPE), a Multi-Scalar Multiplication Equation (MSME) or a
Quadratic Equation (QE). We refer to [24] for full details and give an overview
of our constructions for NIZK1 and NIZK2 in the full version [16].



230 C.-C. Drǎgan et al.

Efficiency. We briefly consider the efficiency of our HABS scheme. For our instan-
tiation of OTS, the public key requires 4 group elements and the short signature
only requires 3 elements from G and one element from Zp. The ciphertext C
computed using PKE requires n + 8 elements from G, where n is the number of
elements in the public keys and tagged-signatures from the delegation paths in
the warrant. However, the size of TS used to delegate and issue attributes depends
linearly on the distance of the intermediate authority from the root authority in
the delegation path, simply because the number of messages (authorities’ public
keys) increases by one with each delegation. Therefore, the proof NIZK1 that
includes a proof that the warrant contains a valid path also grows linearly in
this parameter.

To prove satisfiability of the signing predicate Ψ , a proof containing 2β ele-
ments from Zp is constructed, where β is the size of the span program S. The
proof that DS verifies is of constant size and requires 72 elements of G.

Finally, the size of the proof in NIZK1 that C was encrypted correctly is
linear in the number of delegations in the warrant, this is inevitable since we
need to prove the validity for each authority-signature pair on the delegation
path. Similarly, this is also the case for the proof of correctness for decryption
of C in NIZK2.

We note that if we consider HABS in the setting where the maximum delega-
tion path of an attribute has length 1, then the size of a HABS signature is linear
in the size of the policy Ψ , which is consistent with other ABS schemes that also
offer flexible signing policies, e.g., [18,22,32].

3.5 Other Properties

In the following we discuss some further properties that can be adopted within
our general HABS construction.

Revocation. Our generic HABS construction can be extended to support revo-
cation of attribute authorites and users by means of public revocations lists RL
authenticated by the root authority. These lists would include public keys of
revoked authorities and users. To enable detection of revoked entities upon ver-
ification of HABS signatures, the proof NIZK1 can be extended to prove that
for all attributes used to satisfy the policy none of the public keys in the corre-
sponding delegation paths within the signer’s warrant warr is included into these
lists. Since HABS signatures hide delegation paths this approach would preserve
privacy by ensuring that no verifier can identify the revoked signer. Due to its
complexity, O(r

∑

a |warr[a]|) where r is the number of revoked public keys,
this method might not scale well and hence finding more efficient revocation
mechanisms can be seen as an interesting open problem.

Independent Hierarchies. Assume there are multiple HABS hierarchies, each
managed by an independent root authority, and any (intermediate) authority or



Hierarchical Attribute-Based Signatures 231

user should be able to receive attributes from different such hierarchies. Our gen-
eral HABS construction naturally supports this scenario. In particular, warrants
can include attributes (along with their signed delegation paths) that were issued
to the entity by authorities belonging to other hierarchies and consequently the
proof NIZK1 can enable generation of HABS signatures for predicates Ψ requiring
possession of attributes from these hierarchies.

4 Conclusion

The notion of Hierarchical ABS (HABS) introduced in this paper extends the
functionality for existing (multi-authority) ABS schemes with some useful prop-
erties that can help to expand the application domain of ABS signatures, e.g. to
intelligent transport systems. The extended properties of HABS include: (1) sup-
port for dynamically expandable hierarchical formation of attribute authorities,
managed by some root authority, (2) hierarchical delegation of attribute-issuing
rights amongst the authorities, (3) the ability to issue attributes to signers by
multiple authorities, possibly located at different levels of the hierarchy, (4) gen-
erated ABS signatures that hide signers, their attributes together with their
delegation paths, (5) support for a publicly verifiable tracing procedure that
enables accountability for all entities that were involved in the delegation and
issue of an attribute to a signer. This brings ABS schemes closer to traditional
hierarchically-organised PKIs while preserving the valuable privacy properties
and security guarantees of the attribute-based setting. The proposed generic
HABS construction makes use of standard cryptographic building blocks that
can be instantiated in the setting of bilinear maps based on the DLIN, q-SDH and
SFP assumptions. We discussed further how our HABS construction offers natu-
ral support for scenarios where the same authority or user is admitted to multi-
ple, independently managed hierarchies and needs to bundle attributes obtained
in these hierarchies to satisfy some predicate, and how it can be extended to
revoke attribute authorities and signers.

Acknowledgements. DG was supported by the UK Government PhD stu-
dentship scheme. CD and MM were supported by the EPSRC project TAPESTRY
(EP/N02799X). The authors also thank the reviewers of CANS 2018 and Alfredo Rial
for valuable comments.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

2. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9614, pp. 357–386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49384-7 14

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-662-49384-7_14


232 C.-C. Drǎgan et al.

3. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

4. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

5. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC 1988, pp. 103–112 (1988)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

7. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol.
4515, pp. 210–227. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 12

8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

9. Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable
credentials with attributes and their application to blockchain. In: ACMCCS 2017,
pp. 683–699 (2017)

10. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving CCA secure encryption and its application to oblivious third parties.
Cryptology ePrint Archive, Report 2011/319 (2011)

11. Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg, K.,
Zwingelberg, H.: H2.1 abc4trust architecture for developers (2011). abc4trust.eu

12. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

13. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

14. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

15. Ding, S., Zhao, Y., Liu, Y.: Efficient traceable attribute-based signature. In: IEEE
TRUSTCOM 2014, pp. 582–589 (2014)

16. Dragan, C.-C., Gardham, D., Manulis, M.: Hierarchical attribute-based signatures.
IACR Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/610

17. El Kaafarani, A., Ghadafi, E.: Attribute-based signatures with user-controlled link-
ability without random oracles. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol.
10655, pp. 161–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71045-7 9

18. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based
signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 17

19. Escala, A., Herranz, J., Morillo, P.: Revocable attribute-based signatures with
adaptive security in the standard model. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6 14

https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-540-72540-4_12
https://doi.org/10.1007/978-3-642-54631-0_29
http://abc4trust.eu
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://eprint.iacr.org/2018/610
https://doi.org/10.1007/978-3-319-71045-7_9
https://doi.org/10.1007/978-3-319-71045-7_9
https://doi.org/10.1007/978-3-319-04852-9_17
https://doi.org/10.1007/978-3-642-21969-6_14


Hierarchical Attribute-Based Signatures 233

20. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 14

21. Gagné, M., Narayan, S., Safavi-Naini, R.: Short pairing-efficient threshold-
attribute-based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36334-4 19

22. Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based
signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 391–409. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 21

23. Gisdakis, S., Lagana, M., Giannetsos, T., Papadimitratos, P.: SEROSA: service
oriented security architecture for vehicular communications. In: IEEE VNC 2013,
pp. 111–118 (2013)

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

25. Guo, J., Baugh, J.P., Wang, S.: A group signature based secure and privacy-
preserving vehicular communication framework. In: Mobile NVE 2007, pp. 103–108
(2007)

26. Herranz, J.: Attribute-based signatures from RSA. TCS 527, 73–82 (2014)
27. Hubaux, J.-P., Čapkun, S., Luo, J.: The security and privacy of smart vehicles.

IEEE Secur. Priv. 2(3), 49–55 (2004)
28. Kaaniche, N., Laurent, M., Rocher, P.-O., Kiennert, C., Garcia-Alfaro, J.: PCS,

A privacy-preserving certification scheme. In: Garcia-Alfaro, J., Navarro-Arribas,
G., Hartenstein, H., Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017.
LNCS, vol. 10436, pp. 239–256. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67816-0 14

29. Kamat, P., Baliga, A., Trappe, W.: An identity-based security framework for
vanets. In: ACM VANET 2006, pp. 94–95. ACM (2006)

30. Krzywiecki, �L., Sulkowska, M., Zagórski, F.: Hierarchical ring signatures revis-
ited – unconditionally and perfectly anonymous schnorr version. In: Chakraborty,
R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 329–346.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24126-5 19

31. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ACM ASIACCS 2010, pp. 60–69. ACM (2010)

32. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 24

33. Neven, G., Baldini, G., Camenisch, J., Neisse, R.: Privacy-preserving attribute-
based credentials in cooperative intelligent transport systems. In: IEEE VNC 2017,
pp. 131–138 (2017)

34. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 9

35. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 3

36. Petit, J., Schaub, F., Feiri, M., Kargl, F.: Pseudonym schemes in vehicular net-
works: a survey. IEEE Commun. Surv. Tutor. 17(1), 228–255 (2015)

https://doi.org/10.1007/978-3-540-85855-3_14
https://doi.org/10.1007/978-3-642-36334-4_19
https://doi.org/10.1007/978-3-642-36334-4_19
https://doi.org/10.1007/978-3-319-16715-2_21
https://doi.org/10.1007/978-3-319-16715-2_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-319-67816-0_14
https://doi.org/10.1007/978-3-319-67816-0_14
https://doi.org/10.1007/978-3-319-24126-5_19
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-642-36362-7_9
https://doi.org/10.1007/978-3-642-19379-8_3


234 C.-C. Drǎgan et al.

37. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

38. Sampigethaya, K., Li, M., Huang, L., Poovendran, R.: AMOEBA: robust location
privacy scheme for VANET. IEEE J.-SAC 25(8), 1569–1589 (2007)

39. Schaub, F., Ma, Z., Kargl, F.: Privacy requirements in vehicular communication
systems. In: CSE 2009, pp. 139–145 (2009)

40. Sun, J., Zhang, C., Zhang, Y., Fang, Y.M.: An identity-based security system for
user privacy in vehicular ad hoc networks. IEEE Trans. Parallel Distrib. Syst.
21(9), 1227–1239 (2010)

41. Trolin, M., Wikström, D.: Hierarchical Group Signatures. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 446–458. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 37

42. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 16

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/11523468_37
https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-319-70503-3_16

	Hierarchical Attribute-Based Signatures
	1 Introduction
	2 Model of Hierarchical Attribute-Based Signatures
	2.1 Security Properties

	3 Construction
	3.1 Building Blocks
	3.2 Generic Construction
	3.3 Security Analysis
	3.4 Instantiating the HABS Building Blocks
	3.5 Other Properties

	4 Conclusion
	References




