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Abstract. Membership revocation, being an important property for applications
of group signatures, represents a bottleneck in today’s schemes. Most revoca-
tion methods require linear amount of work to be performed by unrevoked sign-
ers or verifiers, who usually have to obtain fresh update information (sometimes
of linear size) published by the group manager. We overcome these disadvan-
tages by proposing a novel group signature scheme, where computation costs for
unrevoked signers and potential verifiers remain constant, and so is the length
of the update information that must be fetched by these parties from the data
published by the group manager. We achieve this complexity by increasing the
amount of work at the group manager’s side, which growths quadratic with the
total number of members. This increase is acceptable since algorithms of the
group manager are typically executed on resourceful devices. Our scheme uses a
slightly modified version of the pairing-based dynamic accumulator, introduced
by Camenisch, Kohlweiss, and Soriente (PKC 2009), which we implicitly com-
bine with the short (non-revocable) group signature scheme by Boneh, Boyen,
and Shacham (CRYPTO 2004). We prove that our revocable scheme satisfies
the desired security properties of anonymity, traceability, and non-frameability in
the random oracle model, although for better efficiency we resort to a somewhat
stronger hardness assumption.

1 Introduction

Revocable Group Signatures. Group Signatures (GS) [17] protect anonymity of sign-
ers, who are considered as members of the group, managed by a Group Manager (GM),
and who can sign on behalf of the group, while remaining traceable (identifiable) only
by the group manager. The tracing ability of the group manager is often used in case of
dispute, e.g. if the signer misused his signing rights. In many situations, identification
of the misbehaving signer should also lead to the revocation of his signing abilities.
Group signatures, allowing the group manager to additionally revoke the signing rights
of group members are called revocable. A revoked group member should no longer be
able to produce valid group signatures. In traditional public key infrastructures revo-
cation is typically handled by certification authorities that publish unique information
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about the revoked certificates and which is then used by verifiers for checking the valid-
ity of certificates. In group signature schemes, however, revocation process must take
into account the anonymity requirements offered by these schemes. Currently, there ex-
ist two main approaches for revocation: The first approach, originated by Camenisch
and Lysyanskaya [16], uses so-called dynamic accumulators, where each secret signing
key of an unrevoked group member contains a witness associated to the public accu-
mulator value; upon revocation of some group member GM updates the accumulator
value and publishes some update information, which in turn allows remaining group
members to update their witnesses. The accumulator value is also used as input to the
verification procedure. The second approach, termed verifier-local revocation (VLR),
originated by Boneh and Shacham [12], requires from the group manager to release a
revocation token associated with the revoked member; all published revocation tokens
are then used as input to the verification procedure, whereas unrevoked signers need not
to update their secret signing keys.

Revocation and Security. Revocation of signing rights should not compromise the
basic security properties of GS schemes. Modern GS schemes are proven secure in
(variants of) the security model, introduced by Bellare, Micciancio, and Warinschi [4],
that defined two main requirements, namely full-anonymity and full-traceability, cap-
turing many previously stated (sometimes informally described) security properties,
with regard to the anonymity of signers, unlinkability of their signatures, unforgeability
of signatures, protection against framing attacks, in particular in the presence of mali-
cious coalitions and possibly corrupted group managers. Security definitions from [4]
were designed for static schemes and later refined in [5] to address caveats with full-
traceability in dynamic schemes; in particular, full-traceability was relaxed to trace-
ability and an additional requirement of non-frameability was used to address possible
corruptions of the group manager in case of framing attacks. We observe that support for
revocation introduces dynamic behavior, even for schemes that do not provide support
for the dynamic admission of new group members. In schemes with VLR property an
additional concern arises due to the implicit opening mechanism that is inherent to all
these schemes, namely published revocation tokens also invalidate signatures that were
produced by the revoked signer before the revocation took place, and by this introduce
linkability amongst all signatures of that signer. More recent VLR schemes were en-
riched with the additional anonymity protection in form of BU-anonymity [25], where
BU stands for “backward unlinkability”, aiming to prevent linkability of signatures that
were produced by the revoked signer while he was a legitimate member of the group.
Note that BU-anonymity in VLR schemes is typically achieved by splitting the lifetime
of the GS scheme in distinct time intervals and revoking a particular signer in all sub-
sequent time intervals, starting with the interval in which his revocation took place for
the first time.

Revocation Costs and Their Impact. Ideally, support for revocation should not in-
troduce significant overhead with respect to the computational complexity, for at least
the most frequent operations on the side of members and verifiers, namely signature
generation and verification. Support for revocation should not significantly increase the
size of main parameters, such as the length of group public keys and signatures. Note
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that many modern group signature schemes (without revocation) offer constant com-
plexity for these parameters. However, all existing revocable GS schemes that either
use dynamic accumulators or utilize VLR introduce linear costs in one or another way.
For example, the length of (public) update information used by signers and/or verifiers
is often linear in at least the number of revoked members: In schemes with dynamic
accumulators public information is used by each (unrevoked) signer to update his se-
cret signing key, resulting in the linear amount of computations on the signer’s side. In
schemes with VLR property public information contains revocation tokens of revoked
signers, which are only used in the verification procedure, resulting in the linear amount
of computations on the verifier’s side (to perform the revocation check). Designing a re-
vocable group signature scheme that would offer constant costs for unrevoked members
to update their secret signing keys, constant costs for verifiers to perform the revocation
check, and constant length of the update information, published by the group manager
remains an open problem1 so far.

2 Prior Work on Revocable Group Signatures

Revocation in group signature schemes was identified as a desirable property by Ate-
niese and Tsudik [1], who suggested that revoked signers should no longer be able
to generate valid group signatures, while their earlier group signatures must remain
anonymous. Thereafter, many revocable group signature schemes were built, e.g. [3,
11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 31, 32]. The first popular approach
for handling revocation in group signature schemes is based on dynamic accumulators,
originally applied by Camenisch and Lysyanskaya [16], and later adopted to further
constructions [20, 15, 30]. With this approach the group manager publishes an updated
accumulator value together with some update information, which is processed by unre-
voked signers prior or during the computation of subsequent group signatures.

An alternative revocation method is used in group signatures with VLR property,
e.g. [12, 13, 19, 25, 26, 31, 32]. These schemes require from the group manager to pub-
lish a revocation list containing partial information about the secret keys of revoked
signers. This list is then used as input to the verification algorithm, which performs the
revocation check by processing all of its entries in the worst case. Unrevoked signers no
longer need to update their signing keys. Many earlier VLR constructions were not able
to offer anonymity with regard to group signatures, output in the past by the meanwhile
revoked signers. This property, known as BU-anonymity, was introduced in [13] and
further considered in [12,19,25,26,31,32]. Many of existing revocable group signature
schemes [3, 11, 12, 13, 14, 15, 16, 19, 25, 26, 31, 32] have linear computation complex-
ity for the generation and/or verification of group signatures, either O(N) with N being
the number of group members, or O(R) with R being the number of revoked members.

1 Jin et al. [18] claim that their revocable group signature scheme has constant costs with regard
to signing/verifying and lengths of signatures, group public key, and individual secret signing
keys. A closer inspection of their scheme (which was also not proven secure) reveals, however,
that one of the components published as revocation information is linear in the number of
group members and that all these components must be fetched by unrevoked signers to perform
the signing operation, resulting in its linear computation costs.
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There exist, however, several more efficient constructions: The scheme by Nakanischi et
al. [23], which improves upon [24], partitions the entire group into several subgroups,
offering constant costs for signature generation and verification, yet requiring the sign-
ers to fetch public update information of size O(N). The scheme by Nakanishi and
Funabiki [20] offers revocation for larger groups by reducing this length to O(

√
N) and

a more recent scheme by Nakanishi et al. [21] succeeded in reducing this size further to
O(R). Camenisch, Kohlweiss, and Soriente [15] introduced an accumulator-based revo-
cation mechanism that can also be applied to achieve revocation for group signatures.
Applying the specified version of their accumulator would increase the signing costs
by O(R) modular multiplications (for signers to update their keys), which is still more
efficient than previous accumulator-based constructions, where the linear amount of
work was dedicated to costlier operations, e.g. modular exponentiations. Furthermore,
the length of the group public key would be increased to O(N) as unrevoked members
would have to download their witnesses to perform the update of secret signing keys.
There is an informal discussion in [15] according to which the update procedure for
witnesses can also be offloaded to GM (or some third party). This tweak would lead
to the constant costs for signers to perform the update procedure and possibly result in
constant-size group public keys.

3 Our Results and Organization

Revocable Group Signature. Our work aims at further improving revocation costs in
group signature schemes. The main idea is to consider the accumulator-based approach
and let the group manager, who is typically responsible for the update of publicly avail-
able revocation information, to invest more computational resources (in comparison to
other schemes), and by this minimize the costs of other parties (signers and verifiers).
In particular, our revocable group signature (RGS) scheme achieves constant computa-
tion costs for signature generation, verification, and update of individual secret signing
keys. It offers constant lengths for the the group public key, the output group signa-
tures, and the amount of public information that each unrevoked signer must fetch in
order to update own secret signing key. Note that algorithms of the group manager are
typically executed on devices with rich computational resources so that increasing the
computation costs for those algorithms is a rather minor issue.

In Table 1 we emphasize our improvement through the comparison with revocable
schemes from [11, 14, 15, 20, 21, 23, 24]. The table does not include VLR schemes,
e.g. [12, 19, 22, 25, 26, 31, 32], which all have an intrinsic limitation of O(R) work in
the verification procedure, typically dedicated to pairing evaluations or modular expo-
nentiations. We compare sizes of the group public key, signatures, and update informa-
tion, which is fetched by unrevoked signers and verifiers to keep an up-to-date view
over the current composition of the group. We further indicate computational costs for
unrevoked signers to perform signature generation, for verifiers to perform signature
verification with revocation check, and for group managers to compute the update infor-
mation, which is newly published after any revocation event. Table 1 uses the following
timing notations: Te denotes the amount of time to perform one modular exponentia-
tion (in a suitable group), Tp is the time of one pairing evaluation, Tm is the time for one
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modular multiplication, Ta measures one modular addition. Additionally, by Ns we de-
note the number of available subgroups (applies to [23, 20]) and ln indicates the length
of the RSA modulus (applies to [24], which is the predecessor of [23]). From the com-
parison we observe that, in general, our scheme performs by a magnitude better than
the schemes from [11, 14, 15, 24]. Although computation costs for signature generation
and verification of the schemes in [20, 21, 23] are comparable to ours, the size of the
group public key in [21] and the length of the update information fetched by signers and
verifiers in [20, 21, 23] are worse. In contrast to previous schemes, the group manager
in our construction has quadratic costs of O(NR). However, these costs refer to modular
additions, which are known to be more efficient than modular multiplications.

Table 1. Comparison of Lengths and Computation Costs in Revocable Group Signature Schemes

lengths computation costs
Schemes GPK GS UI Sign Verify GM Costs
[11] O(1) O(1) O(R) O(R) · Te O(1) · (Tp + Te) O(R) · Te

[14] O(1) O(1) O(R) O(R) · (Te) O(1) · Te O(R) · Te

[15] O(N) O(1) O(R) O(R) · Tm O(1) · (Tp + Te) O(R) · Tm

[20] O(1) O(1) O(Ns) O(1) · Te O(1) · Te O(Ns)
[21] O(

√
N) O(1) O(R) O(1) · (Tp + Te) O(1) · (Tp + Te) O(R) · (Tp + Te)

[23] O(1) O(1) O(Ns) O(1) · Te O(1) · Te O(Ns) · Te

[24] O(1) O(1) O(N) O(N/ln) · Te O(N/ln) · Te O(R) · Ta

Our RGS O(1) O(1) O(1) O(1) · (Tp + Te) O(1) · (Tp + Te) O(NR) · Ta

GPK: group public key GS: group signature UI: update information

Our Techniques. Our RGS scheme implicitly applies a variant of the pairing-based
dynamic accumulator by Camenisch, Kohlweiss, and Soriente [15] to the short pairing-
based group signature scheme by Boneh, Boyen, and Shacham [11]. We stress that
our revocable BBS scheme is different from the revocation mechanism that was dis-
cussed for the BBS scheme in [11] based on the ideas underlying the accumulator
from [16], which is much less efficient than [15]. In our construction we slightly modify
the process by which witnesses in the accumulator from [15] are updated and resort to a
stronger hardness assumption for this purpose. Our modifications shift the computation
costs for all updates from signers to the group manager and the new assumption, which
we call Power Diffie-Hellman Exponent (PDHE) is stronger than the (non-standard)
n-DHE assumption used in [15]. Under this assumption update of individual witnesses
(which we call membership tokens in the scheme) requires quadratic amount O(NR) of
modular additions, performed by the group manager. At the same time we can obtain
constant size for the group public key and for the amount of public update information,
which an unrevoked signer must fetch prior to the generation of new group signatures.
Upon revocation of some group member, the group manager will publish updated mem-
bership tokens of all unrevoked signers. In the signing phase an unrevoked signer will
only use personal membership token (together with the secret signing key). In contrast,
any verifier can check the validity of the group signature using the group public key
and the up-to-date accumulator value. Taking into account the discussion in [15] we
show how to achieve constant revocation costs for signers and constant lengths for the
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group public key. Additionally, we show how to reduce the amount of public update in-
formation that unrevoked signers must fetch prior to updating their secret signing keys
from linear to constant. We observe that our work extends the initial ideas from [15] for
offloading the computation of updated witnesses to GM towards a concrete realization
and with some optimizations: In particular, we show that quadratic computation costs on
the group manager’s side to update witnesses for all members can further be optimized,
i.e. we can replace quadratic amount of multiplications that would be necessary for the
scheme in [15] with the quadratic amount of (considerably more efficient) additions, by
slightly changing the computation of updated witnesses on the group manager’s side.
This modification, however, requires a slightly stronger hardness assumption to prove
the non-frameability property of our scheme.

Organization. We proceed as follows. In Section 4, we recall the setting of bilinear
groups and discuss several number-theoretic assumptions used in our work, including
our PDHE assumption, which we introduce as a stronger variant of n-DHE from [15].
In Section 5, we describe definitions and security model for revocable group signa-
ture schemes. Section 6 provides high-level overview and full specification of our RGS
scheme, whose security we prove in Section 7.

4 Preliminaries

4.1 Bilinear Groups

We will work in the pairing-based setting and thus recall the notion of bilinear groups:

1. G, G′, and GT are cyclic groups, all of prime order p;
2. g1 is a generator of G; g2 is a generator of G′;
3. e : G×G′ → GT is an efficiently computable map with the following two properties:

– Bilinear: for all u ∈ G, v ∈ G′, a, b ∈ Z∗p: e(ua, vb) = e(u, v)ab.
– Non-degenerate: e(g1, g2) � 1GT .

4.2 Hardness Assumptions

Here we first recall the two well-known hardness assumptions — q-SDH [7, 8] and
DLIN [11]. We then introduce our Power Diffie-Hellman Exponent (PDHE) assumption
as a stronger variant of the n-DHE assumption from [15].

Definition 1 (q-SDH Assumption). For all probabilistic polynomial-time algorithms
A, the following success probability ofA is assumed to be negligible:

Pr
[
A(g1, g2, g

γ
2, ..., g

(γq)
2 ) = (g

1
γ+x

1 , x) : g1 ∈ G, g2 ∈ G′, (γ, x) ∈ Z2
p

]
.

Definition 2 (Decision Linear (DLIN) Assumption). For all probabilistic polynomial-
time algorithmsA, the following advantage probability of A is assumed to be negligi-
ble:∣∣∣∣∣∣∣
Pr
[A(u, v, h, ua, vb, ha+b) =1 : (u, v, h) ∈R G

3, (a, b) ∈R Z
2
p
]−

Pr
[A(u, v, h, ua, vb, η) = 1 : (u, v, h, η) ∈R G

4, (a, b) ∈R Z
2
p
]
∣∣∣∣∣∣∣ .
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Note that DLIN assumption serves as a basis for the well-known Linear Encryption
scheme [11]. The following n-DHE assumption was introduced in [15].

Definition 3 (n-DHE Assumption [15]). For all probabilistic polynomial-time algo-
rithmsA, the following success probability ofA is assumed to be negligible:

Pr

⎡⎢⎢⎢⎢⎢⎣A(g, g1, g2, ..., gn, gn+2, ..., g2n) = gn+1 : g ∈ G′, gi =gα
i
, α ∈R Zp,

i = 1, ..., n, n+ 2, ..., 2n, n ∈ N

⎤⎥⎥⎥⎥⎥⎦ .

We will rely on a stronger assumption, which we call PDHE and which can be seen as
a variant of n-DHE. Note that in n-DHE assumption, the adversary must compute gα

n+1

and is only given a set of group elements. In contrast in PDHE assumption the adversary
receives roughly twice as many group elements (from both groups) and an additional
set of integers, each denoted by η j.

Definition 4 (PDHE Assumption). For all probabilistic polynomial-time algorithms
A, the following success probability ofA is assumed to be negligible:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(
g, ĝ,
({gαψ+i

, ĝα
ψ+i
, gβ

ψ+i
, ĝβ

ψ+i}i, {gα2ψ+ j
gβ

2ψ+ j
, ĝα

2ψ+ j
ĝβ

2ψ+ j} j), ĝβ2ψ+n+1
, η j

)
= ĝα

2ψ+n+1

: η j = α
2ψ+ j + β2ψ+ j ∈ Z, (α, β) ∈ Z∗2p , ψ ∈ Zq, ĝ ∈ G, g ∈ G′,

i = 1, ..., n, j = 1, ..., n, n+ 2, ..., 2n, n ∈ N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where α and β generate a subgroup of Z∗p of prime order q, and p is a large prime such
that p = 2q + 1.

Note that values α, β, and ψ remain unknown to the adversary. The main difference to n-
DHE is thatA learns integers η j = α

2ψ+ j +β2ψ+ j and must output ĝα
2ψ+n+1

. In the generic
group model [29] security of PDHE could be argued as follows: A separate analysis can
be performed to prove that the probability of A breaking the PDHE assumption using
only set of elements (g, ĝ, gα

ψ+i
, ĝα

ψ+i
, gβ

ψ+i
, ĝβ

ψ+i
, gα

2ψ+ j
gβ

2ψ+ j
, ĝα

2ψ+ j
ĝβ

2ψ+ j
, ĝβ

2ψ+n+1
) fromG

and G′ remains negligible. This proof is similar to that of the n-DHE assumption. One
can then argue that integers η j perfectly hide the additional values α2ψ+ j and β2ψ+ j used
in the PDHE assumption (note that ψ is unknown to the adversary).

5 Security Model and Definitions for Revocable Group Signatures

The security model of a revocable group signature scheme (RGS) defined in this section
resembles the standard security model for static group signatures from [4], where we
additionally consider the revocation algorithm and augment signing and verification
operations of the group signature with revocation-relevant information. Therefore, this
model has also partial connection to the security model from [12], where revocation
information was handled within the verification procedure only.

Definition 5. A Revocable Group Signature (RGS) scheme consists of the following
algorithms:
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– KeyGen(λ, n): This randomized algorithm takes as input a security parameter λ ∈
N, and an integer n ∈ N (total number of group members). It outputs a group pub-
lic key gpk, a group manager’s secret key gsk, a public membership information
pmi, an n-element vector of membership tokens mt = {mt1, ...,mtn}, an n-vector of
secret signing keys sk = {sk1, . . . , skn}, and a set S of indices of unrevoked group
members (initially set to contain all indices i ∈ [1, n]).

– Sign(gpk, mti, ski, M): On input gpk, mti, a secret signing key ski of user i, and a
message M ∈ {0, 1}∗, this randomized algorithm outputs a group signature σ.

– Verify(gpk, pmi, σ, M): On input gpk, pmi, a candidate group signature σ, and
a message M, this deterministic algorithms outputs either “true" or “false". (The
output of “true" indicates that σ is a valid signature on M, meaning also that its
signer is not revoked.)

– Open(gpk, gsk, σ, M): On input gpk, gsk, a candidate signature σ, and a message
M, this algorithm outputs index i (meaning that i belongs to the signer of σ) or ⊥
(meaning that σ is untraceable for i � [1, n]).

– Revoke(gsk, S, pmi, mt, i): This deterministic algorithm takes as input gsk, the
set S containing indices of unrevoked group member, the up-to-date pmi, the up-to-
date n-element vector mt, and an index i (of the signer to be revoked). The algorithm
updates S = S\{i}, pmi, and mt (from which only pmi and mt will be published, see
below for the explanation).

An RGS scheme is correct if: (1) for all (gpk, gsk, sk, pmi,mt,S) = KeyGen(λ, n), all
i ∈ S, and any message M ∈ {0, 1}∗:

Verify(gpk, pmi, Sign(gpk,mti, ski, M), M) = “true”

and (2) for all (gpk, gsk, sk, pmi,S) = KeyGen(λ, n), all i ∈ S , and any message
M ∈ {0, 1}∗:

Open(gpk, gsk, Sign(gpk,mti, ski, M), M) = i.

In our description of the Revoke algorithm we implicitly assume that revocation is per-
formed by the group manager (not necessarily the same party that also issues secret
signing keys), who in order to revoke some group member i ∈ [1, n] removes the cor-
responding index i from S, and updates pmi and mt according to the new set S. Note
that the up-to-date set S is used by the group manager only to keep track of unrevoked
members and to update pmi. In contrast, the public membership information pmi is dis-
tributed by the group manager and is used as input to the verification procedure. In our
scheme pmi will correspond to the updated value of the accumulator, while individual
membership tokens mti will correspond to the updated witnesses of unrevoked signers.

An RGS scheme should satisfy three main security requirements, discussed in the
following. We start with the notion of full-traceability, which we define similar to [4],
except that in order to account for the introduced dynamic behavior through revocation
support, several modifications must be applied. This makes our definition somewhat
related to the traceability definition from [5] for dynamic groups. In particular, the ad-
versary must come up with a group signature which verifies successfully but for which
the opening algorithm fails to output an index in [1, n]. The adversary is allowed to
corrupt all members of the group.
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Definition 6 (Full-traceability). An RGS scheme is full-traceable if no probabilistic
polynomial-time (PPT) adversary A can win the following game with non-negligible
advantage by interacting with a challenger C.

1. Setup: C runs the algorithm KeyGen(λ, n) to generate a group public key gpk,
a group master secret gsk, a public membership information pmi, an n-element
vector of membership tokens mt, an n-element vector of secret signing keys sk, and
a set S = [1, n]. C also defines an initially empty set U of corrupted members. Then
C invokesA on input (gpk, gsk, pmi,mt,S), while keeping sk private.

2. Oracles: A can make a polynomial number of queries to the following oracles
(which are answered by C):

– Signing oracle: On input a message M and i ∈ S, this oracle outputs σ =
Sign(gpk, mti, sk, M).

– UCorruption oracle: On input i ∈ S, this oracle outputs ski and updates
U = U ∪ {i}.

– Revocation oracle: On input i ∈ [1, n], this oracle responds with the output of
Revoke(gsk, S, pmi, mt, i).

– Opening oracle: On input a signature σ and a message M, this oracle re-
sponds with the output of Open(gpk, gsk, σ, M).

3. Output: Eventually,A stops and outputs a signature σ∗ and a message M∗.

A wins if all of the following holds:

– Verify(gpk, pmi, σ∗, M∗) = true.
– Open(gpk, gsk, σ∗, M∗) = ⊥.

The advantage ofA in breaking full-traceability is defined as:

Advtrace
A (λ) = Pr[A wins in the full-traceability game],

where the probability is taken over the coin tosses ofA and C.

Our next security requirement for RGS schemes is CPA-anonymity. Unlike [4, 5], by
dealing with revocability we have to address anonymity of revoked signers. Our def-
inition of CPA-anonymity comes close to the anonymity definition, that was used in
the context of the BBS scheme in [11], where the adversary is not given access to the
opening oracle.

Definition 7 (CPA-anonymity). An RGS scheme is CPA-anonymous if no PPT adver-
sary A can win the following game with non-negligible advantage by interacting with
a challenger C.

1. Setup: C runs KeyGen(λ, n) to generate a group public key gpk, a group master
secret gsk, a public membership information pmi, an n-vector of membership token
mt, group member’s signing keys sk, and a set S of members’ indices. C defines a
set U of corrupt members’ being empty initially. Then, C gives gpk, pmi, mt, and S
toA, while keeping gsk and sk private.

2. Oracles: A can make a polynomial number of queries to the following oracles
(which are answered by C):
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– Signing oracle: On input a message M and i ∈ S, this oracle outputs σ =
Sign(gpk, mti, ski, M).

– UCorruption oracle: On input i ∈ S, this oracle outputs ski and updates
U = U ∪ {i}.

– Revocation oracle: On input i ∈ [1, n], this oracle responds with the output of
Revoke(gsk,S, pmi, i).

3. Challenge:A selects a message M and two indices i0 and i1 with i0, i1 ∈ S. C picks
random bit b ← {0, 1} and computes σ∗ = Sign(gpk,mti, skib , M). Then, C sends
σ∗ toA.

4. Output: A continues querying the oracles as above until it eventually stops and
outputs a bit b′ as its answer to the challenge.

A wins the game if b′ = b and neither i0 nor i1 are revoked. The advantage of A in
breaking anonymity is defined as:

Advanon
A (λ) = Pr[A wins in the CPA-anonymity game],

where the probability is taken over the coin tosses ofA and C.

The final security requirement is non-frameability [5], which accounts for framing at-
tacks executed by a possibly corrupted group manager. Note that traceability only guar-
anties that any group signature remains traceable. However, it does not take into account
potential attacks mounted by the group manager. As motivated in [5], such attacks can-
not be captured in a meaningful way in the traceability definition for the dynamic setting
(which we have here due to revocability) if the adversary learns the group manager’s
secret key. That is why non-frameability in the presence of corrupted group managers
has to be defined separately.

Definition 8 (Non-frameability). An RGS is non-frameable if no PPT adversary A
can win the following game with non-negligible advantage by interacting with a chal-
lenger C.

1. Setup: C runs KeyGen(λ, n) to obtain a group public key gpk, a group master
secret gsk, a public membership information pmi, an n-vector of membership token
mt, group members’ signing keys sk, and a set S of members’ indices.C also defines
an empty set U as the set of corrupted members’ indices.C then gives gpk, gsk, pmi,
mt, and S toA while keeping sk private.

2. Oracles: A can make a polynomial number of queries to the following oracles
(which are answered by C):

– Signing oracle: On input a message M and i ∈ S, this oracle outputs σ =
Sign(gpk, mti, ski, M).

– UCorruption oracle: On input i ∈ S, this oracle responds with ski and updates
U = U ∪ {i}.

– Revocation oracle: On input i ∈ [1, n], this oracle responds with the output of
Revoke(gsk,S, pmi, i).

– Opening oracle: On input a signature σ and a message M, this oracle re-
sponds with the output of Open(gpk, gsk, σ, M).

3. Output: Eventually,A stops and outputs a signature σ∗ and a message M∗.
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A wins if all of the following holds

– Verify(gpk, pmi, σ∗, M∗) = true.
– Open(gpk, gsk, σ∗, M∗) = i∗, where i∗ ∈ [1, n], and Sign(gpk, mti, ski∗ , M∗) has

never been queried byA.

The advantage ofA in breaking non-frameability is defined as:

Advnon− f rame
A (λ) = Pr[A wins the non-frameability game],

where the probability is taken over the coin tosses ofA and C.

6 Our RGS Scheme with Constant Costs for Signers and Verifiers

In this section we provide specification of our RGS scheme. Prior to detailing its algo-
rithms we give a high-level intuition for its construction.

6.1 High-Level Intuition

Our RGS scheme is mainly based on two previous techniques: The (non-revokable)
group signature scheme by Boneh, Boyen, and Shacham (BBS) [11] and the dynamic
accumulator by Camenisch, Kohlweiss, and Soriente (CKS) [15] (with slight modifi-
cations). The use of the BBS scheme in our RGS constructions helps to achieve con-
stant size for group public keys and group signatures, while the efficient revocation is
achieved due to the deployed CKS accumulator. The main technical problem in combin-
ing BBS scheme with CKS accumulator is as follows: The use of the CKS accumulator
results in the linear length of the group public key and in the linear increase of compu-
tation costs for signers to update their witnesses with each revoked group member. Our
main modification is to change the computation of witnesses in the CKS accumulator
by shifting the significant amount of computation costs from the signers over to the
group manager.

Combining Modified CKS Accumulator with BBS Group Signature Scheme. As
our construction builds on the BBS scheme, we require that key generation is performed
by a trusted key issuer, akin to [11]. The key issuer is responsible for the generation of:
all secret signing keys, the group manager’s secret key (which includes secrets to open
signatures and to revoke members), the group public key, and the initial public mem-
bership information. In particular, the issuer picks a secret exponent xi for each member
i and computes a secret value αψ+i and a corresponding group element ĝxi ĝα

ψ+i
g̃ in G.

It also computes the secret membership certificate Ai = (ĝxi ĝα
ψ+i

g̃)
1

μi+ω , which becomes
part of the secret signing key ski. A group member i receives further a personal witness,
containing Li =

∑
j∈S∧ j�i ηn+1− j+i, gα

ψ+i
, and gβ

ψ+i
, where Li is the initial membership to-

ken mti, which will be publicly updated by the group manager on each revocation event,
as long as i remains unrevoked. The public membership information pmi will contain
up-to-date L = ĝ

∑
j∈S αψ+n+1− j

and L′ = ĝ
∑

j∈S βψ+n+1− j
, which play the role of the public ac-

cumulator value. An unrevoked group member i can thus produce a signature to prove
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that it actually possesses a secret signing key, containing a witness accumulated in pmi.
When a member i′ is revoked, GM updates set S , values L and L′ in pmi, and Li of each
unrevoked signer i. In order to generate a new signature i must first obtain up-to-date L,
L′, and its personal Li (all of constant length). Note that major computation costs are in
the update of corresponding Li, which is performed by the group manager.

Reducing the Computation Cost of Witnesses of Accumulator. As soon as some
member gets revoked remaining group members must implicitly update their secret
signing keys upon the execution of the signing operation. For this purpose members
use information, which is prepared for them by the group manager, who performs the
revocation procedure. In our scheme for every signer there exists an individual public in-
formation (of constant length), which we call membership token, and which is updated
by the group manager for all unrevoked signers. This information is represented by ele-
ments of bilinear groups that correspond to the group elements given to the adversary in
the definition of the PDHE assumption (cf. Section 4.2). Using the CKS-like approach
for witness updates, when applied in construction, each unrevoked signer would have
to compute

∑
j∈S∧ j�i α

2ψ+n+1− j+i + β2ψ+n+1− j+i in the exponent, where i is the index of
the revoked member. This computation can be done by first requiring from the group
manager to update j group elements for j ∈ S∧ j � i, whose discrete logarithms would
correspond to each of the

∑
j∈S∧ j�i α

2ψ+n+1− j+i + β2ψ+n+1− j+i. Unrevoked signers would
then compute a product of j different group elements. Instead, we let the group man-
ager, who knows (α, β, ψ, i, j) anyway, compute and publish η j = α

2ψ+ j + β2ψ+ j for each
j. In this case computation costs for witnesses would become constant on the signer’s
side. Note that each member would have to fetch only his updated witness.

6.2 Specification of RGS Algorithms

– KeyGen(λ, n) The key generation algorithm is executed by a trusted issuer (akin
to [11, 12]), according to the following steps:

1. Select bilinear groupsG, G′, GT of prime order p < 2λ such that q = (p− 1)/2
is a prime, and the bilinear map e. Pick a cryptographic hash function H :
{0, 1}∗ → Z∗p.

2. Select (g̃, ĝ, h, u, v) ∈ G5, g ∈ G′, (ξ1, ξ2) ∈R Z
∗2
p , ω ∈ Z∗p, and ψ ∈ Zq,

where ĝ = uξ1 = vξ2 . Note that (ĝ, u, v) represents a public key of the Linear
Encryption scheme. Selects further two generators (α, β) ∈ Z∗2p of prime order
q from Zp, and computes αψ+i and βψ+i, where i = 1, ..., 2n.

3. Compute z = e(ĝα
2ψ+n+1

, g), z′ = e(ĝβ
2ψ+n+1

, g), gα,i = gα
ψ+i

, gβ,i = gβ
ψ+i

, η j =

α2ψ+ j + β2ψ+ j, where i = 1, ..., n, and j = 1, ..., n, n+ 2, ..., 2n.
4. Define the group master secret key gsk = (ξ1, ξ2, α, β, ψ) and the group public

key gpk = (H, p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v), where Ω = gω.
5. Define S = {1, ..., n} as the index set of group members. Compute L =

ĝ
∑

j∈S αψ+n+1− j
, L′ = ĝ

∑
j∈S βψ+n+1− j

, and Li =
∑

j∈S∧ j�i(α
2ψ+n+1− j+i + β2ψ+n+1− j+i) for

all i ∈ S. Define pmi = {L, L′} to be the public membership information, which
will be updated by the group manager upon revocation of members, and set
mt = {L1, ..., Ln} to be a vector of membership tokens; each unrevoked member
will fetch its own membership token from this vector.
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6. Compute secret signing keys ski = (Ai, gα,i, gβ,i, μi, xi) for each member i ∈ S,

where Ai = (ĝxi ĝα
ψ+i

g̃)
1

μi+ω .
7. Publish gpk, pmi, and mt. Output privately gsk, {Ai}i∈S, and S to the group

manager (GM). Output privately ski to the corresponding member i. (Note that
ω remains secret and should be ideally erased by the issuer.)

– Sign(gpk, mti, ski, M) Let gpk = (H, p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v),
mti = Li, and ski = (Ai, gα,i, gβ,i, μi, xi). In order to sign some message M ∈ {0, 1}∗
the signer i proceeds as follows:
1. Select π, θ, ρ, δ, rπ, rθ, rμi , rρ, rxi , rπμi , rθμi , and rδ at random from Z∗p.
2. Compute T1 = Aiĝπ+θ, T2 = uπ, T3 = vθ, T4 = gρ, T5 = ĝρ, T6 = gρα,i,

T7 = (zz′)ρ, T8 = e(h, T4)δ, T9 = ĝLi hδ, T10 = gρβ,i, R1 = e(T1, T4)rμi · e(T1, Ω)rρ/
e(ĝ, T4)rxi · e(g̃, g)rρ · e(ĝ, T4)rπμi+rθμi · e(T5, Ω)rπ+rθ , R2 = urπ , R3 = vrθ , R4 = grρ ,
R5 = ĝrρ , R6 = T

rμi

2 · u−rπμi , R7 = (zz′)rρ , R8 = e(h, T4)rδ , R9 = e(T9, g)rρ ,
and R10 = T

rμi

3 · v−rθμi , where (T1, T2, T3) is a Linear Encryption ciphertext that
encrypts Ai, and T4 through T10 and R1 through R10 are required to prove the
knowledge of π, θ, μi, ρ, xi, πμi, θμi and of the accumulator {L, L′}.

3. Compute challenge c = H(gpk, M, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1,
R2, R3, R4, R5, R6, R7, R8, R9, R10).

4. Compute sπ = rπ+cπ, sθ = rθ+cθ, sρ = rρ+cρ, sxi = rxi+cxi, sπμi = rπμi+cπμi,
sθμi = rθμi + cθμi, and sδ = rδ + cδ.

5. Output σ = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, sπ, sθ, sρ, sxi , sπμi , sθμi ,
sδ) on M.

– Verify(gpk, pmi, σ, M) Let gpk = (H, p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v),
pmi = (L, L′), and σ = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, sπ, sθ, sρ, sxi , sπμi ,
sθμi , sδ). The validity of a candidate group signature σ on some message M can be
checked according to the following procedure:
1. Compute

R′1 = e(T1, T4)sμi · e(T1, Ω)sρ/e(ĝ, T4)sxi ·e(ĝ, T6)c · e(g̃, g)sρ · e(ĝ, T4)sμiπ+sμiθ ·
e(T5, Ω)sπ+sθ , R′2 = usπ · (T2)−c, R′3 = vsθ · (T3)−c, R′4 = gsρ · (T4)−c, R′5 =
ĝsρ · (T5)−c, R′6 = T

sμi

2 · u−sπμi , R′7 = (zz′)sρ · (T7)−c, R′8 = e(h, T4)sδ · T−c
8 , and

R′9 = (T c
7 · e(T9, g)sρ)/(T8 · e(L, T6) · e(L′, T10))c, R′10 = T

sμi

3 · v−sθμi

2. Compute c′ = H(gpk, M, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R′1, R′2, R′3, R′4,
R′5, R′6, R′7, R′8,R′9, R′10).

3. If c′ = c then output true; else output false.
If the output is true, it means that σ on M is signed by valid signing key ski for
i ∈ S. Otherwise, ski is invalid or revoked (i.e., i � S).

– Open(gpk, gsk, σ, M) Let gpk = (H, p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v),
gsk = (ξ1, ξ2, α, β, ψ), and σ = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, sπ, sθ,
sρ, sxi , sπμi , sθμi , sδ). In order to open some candidate group signature σ the group
manager proceeds as follows:
1. If Verify(gpk, pmi, σ, M)�true then return ⊥.
2. Otherwise, compute Ai = T1/(T

ξ1

2 T ξ2

3 ) with ξ1, ξ2 extracted from gsk and T2,
T3 extracted from σ. Returns i associated to Ai.

– Revoke(gsk, S, pmi, mt, i′) In order to revoke some member i′ the group manager
proceeds as follows:
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1. Update S = S\{i′}, L = L/(gα
ψ+n+1−i′

), and L′ = L′/(gψ+βn+1−i′
).

2. Compute Li = Li − α2ψ+n+1−i′+i − β2ψ+n+1−i′+i in mt for each i ∈ S.
3. Output updated S, pmi, and mt.

7 Security Analysis

Security of our RGS scheme with respect to definitions from Section 5 is established
through the following theorems.

Theorem 1 (Full-traceability). The proposed RGS scheme is fully-traceable in the
random oracle model, based on the q-SDH assumption in bilinear groups G and G′.

Proof. The proof is given in Appendix A and follows some ideas from [11, 15].

Theorem 2 (CPA-anonymity). The proposed RGS scheme is CPA-anonymous in the
random oracle model, based on the DLIN assumption in G.

Proof. The proof is given in Appendix B.

Theorem 3 (Non-frameability). The proposed RGS scheme is non-frameable in the
random oracle model, based on the PDHE assumption and the hardness of computing
discrete logarithms in G.

Proof. The proof is given in Appendix C.

8 Conclusion

In this work we made another step towards better efficiency in revocable group sig-
natures. Our proposed RGS scheme achieves constant costs for signers and verifiers
at the price of a higher amount of work for the group manager and a rather strong
Power Diffie-Hellman Exponent (PDHE) assumption. In addition to constant compu-
tation costs, our scheme keeps group public keys, group signature, and the amount of
public update information, to be fetched by either an unrevoked signer or a verifier, also
constant. Our scheme, which is based on the combination of a modified CKS dynamic
accumulator from [15] with the BBS group signature scheme from [11] preserves the
original security properties of the BBS scheme, while also offering support for the revo-
cation of the signing rights. An open problem would be to find a solution that achieves
similar complexity under somewhat more standard (pairing-based) assumptions.
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A Proof of Theorem 1 (Full-Traceability)

Let A be an adversary that breaks the full-traceability of the proposed protocol by
returning an untraceable signature σi∗ with probability at least ε. We construct a PPT
algorithmB that interacts withA and breaks the q-SDH assumption with probability at
least ε′. The interaction of B withA proceeds as follows.

– Setup: B is given an n-SDH instance (g̃,g,gω,gω
2
, ...,gω

n
) by a challenger Cs of n-

SDH assumption, where g̃ ∈ G, g ∈ G′, and n is the number of group members. B
defines set S = [1, n] and an initially empty set U, and randomly selects an index

 http://eprint.iacr.org/2006/100
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i∗ ∈ S of a member to be attacked by A. B then randomly selects (α, β, τ, ξ1, ξ2) ∈
Z
∗5
p , ψ ∈ Zq, and computes ĝ = g̃τ, {gα,i = gα

ψ+i
, gβ,i = gβ

ψ+i}1≤i≤n. B uses gω as
Ω and computes gpk, gsk, pmi, and mt given to A. After that, B turns an n-SDH

instance into values (g̃, g, Ω = gω) and n − 1 SDH pairs (g̃
1

μi+ω , μi) by Lemma 3.2

from [7] such that e(g
1

μi+ω , Ωgμi) = e(g̃, g). B then transforms the n − 1 SDH pairs

to n − 1 members’ signing key ski = (Ai(= (g̃
1

μi+ω )τ(xi+α
ψ+i)+1 = (ĝxi ĝα

ψ+i
g̃)

1
μi+ω ), gα,i,

gβ,i, μi, xi), where i � i∗.
– Oracles: B simulates RGS by answering the following oracle queries.
• Hash oracle: The hash oracle as a random oracle is simulated by B. B ran-

domly selects element in Zp as the output of hash query and makes sure the
responses are identical to the same queries by maintaining a hash list H-list.

• Signing oracle: On input a pair (i, M), if i ∈ [1, n],B can successfully responds
with the corresponding σ by ski. If i ∈ U, reject this request. If i = i∗, the
simulation fails.

• UCorruption oracle: On input i, if i ∈ S ∧ i � i∗, B responds with ski =

(Ai, gα,i, gβ,i, μi, xi) to A and appends i to U. If i ∈ U, B returns ski without
changing S and U. If i = i∗, the simulation fails.

• Revocation oracle: On inputi, if i ∈ S, B updates S = S\{i}, pmi = {L, L′},
and mt = {Li}i∈S. B outputs S, pmi, and mt toA.

• Opening oracle: On inputσ, A decrypt (T1, T2, T3) of σ to obtain Ai and re-
turns the corresponding i of Ai toA. Otherwise, return ⊥.

– Output: Finally,A outputs a signature-message pair (σ∗, M∗).

A is the adversary to break the proposed scheme if σ∗ is correct and belongs to some
member i � [1, n] with probability at least ε. Then A outputs a forged signature σi∗ of
the member i∗ with probability at least ε/n. By Forking Lemma [27, 28], if A outputs
a valid message-signature tuple (M, σ0 = (T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1,
R2, R3, R4, R5, R6, R7, R8, R9, T10), c, σ1 = (sπ, sθ, sρ, sxi , sπμi , sθμi , sδ)). We rewind the
framework andA with the same random tape and the different random oracle H′. Then
A still can output a forgery (M, σ0, c′, σ′1) with probability at least ε/4. Consequently,
we obtain two valid tuples (M,σ0,c,σ1) and (M,σ0, c′,σ′1) of the same member i∗ with
probability at least ε/4n. B can extract the secrets xi∗ = (s′xi∗ − sxi∗ )/(c

′ − c), π =
(sπ − s′π)/(c− c′), and θ = (sθ − s′θ)/(c− c′) from the above two valid signature tuples of

the member i∗. After that, B computes g̃
1

μi∗ +ω = ((ĝxi∗ ĝα
ψ+ig̃)

1
μi∗ +ω )(τ(xi∗+αψ+i)+1)−1

to obtain

an SDH pair (g̃
1

μi∗+ω , μi∗ ).

B Proof of Theorem 2 (CPA-Anonymity)

SupposeA is an adversary that breaks the CPA-anonymity of our RGS scheme with the
advantage at least ε. We construct a PPT algorithmB that breaks Linear encryption (and
by this the DLIN assumption) with the advantage at least ε by playing the anonymity
game from Definition 7. The interaction between B andA proceeds as follows.

– Setup: First,B selects the groupsG,G′, andGT of prime order p.B is in possession
of a public key (u, v, ĝ) ∈ G3 for the Linear encryption scheme (which it received
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from the Linear encryption challenger Cle). Recall that ĝ = uξ1 = vξ2 for some
unknown (ξ1, ξ2) ∈ Z2

p. B randomly picks g̃ ∈ G, g ∈ G′, ω ∈ Z∗p, (α, β) ∈ Z∗p
of prime order q, and ψ ∈ Zq. B then initializes the sets S = {1, ..., n} and U (set
of corrupted signers). Then, B generates the remaining parts of gpk, pmi, and mt
according to the key generation procedure of the RGS scheme. B computes secret
signing keys ski = {Ai, gα, j, gβ, j, μi, xi} for all i ∈ S. B then provides A with
gpk = (p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v), pmi = {L, L′}, mt = {Li}i∈S, S, U,
and stores ω, α, β, and ψ for later use.

– Oracles: B answers oracle queries ofA as follows.
• Hash oracle: B simulates the random oracle H by maintaining a hash list H-

list, and responds on new queries with random elements from Zp, while making
sure that previous queries when asked again are answered consistently with H-
list.

• Signing oracle: Before the simulation, B also maintains a list E-list for stor-
ing the corresponding identity information of signatures. In the simulation of
signing queries, B responds with σi for the oracle query with the correspond-
ing input (i, M) of A as follows. B selects π and θ ∈R Z

∗
p, and encrypts Ai as

a ciphertext (T1 = Aiĝπ+θ, T2 = uπ, T3 = vθ). B then randomly selects ρ, δ, rπ,
rθ, rμi , rρ, rxi , rπμi , rθμi , rδ, and rδ to generates T4, T5, T6, T7, T8, T9, T10, R1,
R2, R3, R4, R5, R6, R7, R8, R9, and R10. B also updates the output of hash list at
(gpk, M, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1, R2, R3, R4, R5, R6, R7, R8,
R9, R10) is equal to c ∈ Zp and outputs σ = (c, T1, T2, T3, T4, T5, T6, T7, T8,
T9, T10, sπ, sθ, sρ, sxi , sπμi , sθμi , sδ). B also adds (σ, i) into E-list.

• UCorruption oracle: On input i ∈ S, B responds with the corresponding ski

toA and appends i to U.
• Revocation oracle: On input i ∈ S, B removes i from S, re-computes pmi =
{L, L′} and mt = {Li}i∈S, and responds with the updated S, pmi, and mt toA.

• Signing oracle: B also maintains a list E-list for keeping track of output sig-
natures. In the simulation of signing queries, B responds with σi computed on
input (i, M) from A as follows. B selects π and θ ∈R Z

∗
p, and compute Linear

encryption of Ai, i.e. ciphertext (T1 = Aiĝπ+θ, T2 = uπ, T3 = vθ). B then ran-
domly selects ρ, δ, rπ, rθ, rμi , rρ, rxi , rπμi , rθμi , rδ, and rδ to generates T4, T5, T6,
T7, T8, T9, T10, R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10. B defines the output
of H(gpk, M, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10) to be equal to c ∈ Zp and outputs σ = (c, T1, T2, T3, T4, T5, T6,
T7, T8, T9, T10, sπ, sθ, sρ, sxi , sπμi , sθμi , sδ). Finally, B adds (σ, i) into E-list.

• UCorruption oracle: If A corrupts i ∈ S then B hands the corresponding
secret signing key ski over toA and includes i into U.

• Revocation oracle: IfA wishes to revoke some member i ∈ S thenB removes
i from S and updates pmi = {L, L′} and mt = {Li}i∈S as specified in the RGS
scheme. B then hand updated pmi and mt over toA.

– Challenge: In the challenge phase, A selects a message M, two indices i0 and
i1, and sends them to B. If (i0, i1) ∈ S2 ∧ (i0, i1) � U2, B returns Ai0 and Ai1 as
its challenge to Cle. Cle replies with Linear encryption ciphertext (T1, T2, T3) of Aib
according to some random (unknown) bit b ∈ {0, 1}. ThenB randomly selects ρ and
δ to compute T4, T5, T6, T7, T8, T9, and T10. It further selects random sπ, sθ, sρ, sxi ,
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sπμi , sθμi , sδ, and c from Z∗p, and computes R1 = e(T1, T4)sμi · e(T1, Ω)sρ/e(ĝ, T4)sxi

·e(T6, g)c · e(g̃, g)sρ · e(ĝ, T4)sμiπ+sμiθ · e(T5, Ω)sπ+sθ , R2 = usπ · (T2)−c, R′3 = vsθ · (T3)−c,
R4 = gsρ · (T4)−c, R5 = ĝsρ · (T5)−c, R6 = T

sμi

2 · u−sπμi , R7 = (zz′)sρ · (T7)−c, R8 =

e(h, T4)sδ ·T−c
8 , R9 = (T c

7 ·e(T9, g)sρ)/(T8 ·e(L, T6) ·e(L′, T10))c, and R10 = T
sμi

3 ·v−sθμi .
B then sends σib = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, sπ,sθ,sρ, sxi , sπμi , sθμi ,
sδ) toA.

– B continues answering oracle queries ofA as specified above, untilA outputs a bit
b′.

B forwards b′ as its answer on the challenge of Cle in the Linear encryption game.
Clearly, ifAwins thenB breaks the IND-CPA security of the Linear encryption scheme.

C Proof of Theorem 3 (Non-frameability)

We consider two types of adversaries to break non-frameability in the proposed scheme.
Type I adversary can forge group signatures of the member i for i ∈ S and type II
adversary for i ∈ [1, n] ∧ i � S .

Type I Adversary. Let A be the type I adversary of non-frameability of our RGS
scheme with the probability at least ε by forging a group signature of member i for
i ∈ S. We then construct an algorithm B that can break the classical discrete logarithm
(DL) assumption with probability at least ε′ in polynomial time by playing the game in
Definition 8. The algorithm B proceeds as follows.

– Setup:B is given a DL instance (ĝ,U = ĝx) by a challengerCDL of DL assumption,
where ĝ ∈ G and x ∈R Zp. B then prepares the sets S and U, and an index i∗ ∈ S
of the target member to be attacked by A. After that, B generates gsk, gpk, pmi,
mt, and {ski}i∈S as well as the proposed scheme except ski∗ . Here B computes Ai∗ =

(Ug̃)
1

μi+ω and sets xi∗ = x, which is unknown.
– Oracles:

• Hash oracle: The simulation of hash queries is the same as in the proof of
Theorems 2 and 1.

• Signing oracle: Here B also maintains a list E-list for storing the correspond-
ing identity and signature pairs. On input a pair (i, M), if i ∈ S and i � i∗, B
can successfully generate any signature of the member i. If i = i∗, B generates
T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1, R2, R3, R4, R6, R7, R8, R9, and T10 as
in the RGS specification by using random sπ, sθ, sρ, sxi , sπμi , sθμi , and sδ from
Z
∗
p. After that, B responds with σ = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10,

sπ, sθ, sρ, sxi , sπμi , sθμi , sδ).
• UCorruption oracle:On input i ∈ S, if i � i∗ then B returns ski. Otherwise, B

aborts.
• Revocation and opening oracles: The simulations of the revocation and open-

ing oracles are the same as that of Theorem 2 and 1.

– Output: Finally, B outputs a signature-message pair (σ∗, M∗).
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A breaks the proposed scheme if Verify(gpk, pmi, σ∗, M∗) = true. In addition, if A
outputs a forged σi with probability at least ε, thenA outputs a forged σi∗ of the target
member i∗ with probability at least ε/n. B then can successfully obtain two forged
signatures σi∗ = (σi∗0 = (T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1, R2, R3, R4, R5, R6,
R7, R8, R9, R10), c,σi∗1 = (sπ, sθ, sρ, sxi , sπμi , sθμi , sδ) andσ′i∗ = (σi∗0 = (T1, T2, T3, T4, T5,
T6, T7, T8, T9, T10, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10), c′ ,σ′i∗1 = (s′π, s′θ, s′ρ, s′xi

, s′πμi
,

s′θμi
, s′δ)) by applying Forking Lemma [27] and extract xi∗ = (s′xi∗ − sxi∗ )/(c

′ − c) as the
solution of DL problem with probability at least ε/4n. Hence, we have that ε/4n ≤ ε′.
Type II Adversary. Let A be an adversary that breaks the non-frameability of the
proposed scheme with the probability at least ε by forging a group signature of member
i for i ∈ [1, n] ∧ i � S. We then construct an algorithm B to break PDHE assumption
with probability at least ε′′. The construction of B and its interaction with A proceed
as follows.

– Setup: B is given a PDHE instance (g, ĝ, gα
ψ+i

, ĝα
ψ+i

, gβ
ψ+i

, ĝβ
ψ+i

, η j}1≤i, j≤n∧i� j) by
a challenger CPDHE of PDHE assumption, where i = 1, ..., n and j = 1, ..., n, n +
2, ..., 2n. B then prepares sets S and U being the same as that of the simulation for
type I adversary and prepares gsk and gpk as well as that of the proposed scheme
except that α, β, and ψ are unknown. Then B simulates ski = (Ai, gα,i, gβ,i, μi, xi)
for the member i by using PDHE instance, gsk, and gpk.

– Oracles: B answers the following oracles to simulates RGS interacting withA.
• Hash oracle: The simulation of hash queries are the same as that of the simu-

lation for type I adversary.
• Signing oracle:On inputting a pair (i, M), if i ∈ [1, n], B generates the corre-

sponding σ by ski. Otherwise, reject this request.
• UCorruption, revocation, and opening oracles: The simulations of ucorrup-

tion revocation and opening oracles are the same as that for type I adversary.
– Output: Finally,A output a signature-message pair (σ∗, M∗).

A is a type II adversary of non-frameability to break the proposed scheme if σ∗ is
correct and belongs to some i ∈ [1, n] ∧ i � S with probability at least ε. Then B can
successfully break PDHE assumption as follows. B can apply Forking Lemma as well
as the proof for type I adversary to extract secrets ρ and δ such that (zz′)ρ = e(L, T6) ·
e(L′, T11) ·T8/e(T9, g)ρ = (e(ĝα

2ψ+n+1
, g) · e(ĝβ

2ψ+n+1
, g))ρ. This means that ĝα

2ψ+n+1
ĝβ

2ψ+n+1
=∏

j∈S ĝα
2ψ+n+1− j+i ∏

j∈S ĝβ
2ψ+n+1− j+i

T9·(hδ)−1 . B can directly compute
∏

j∈S ĝα
2ψ+n+1− j+i

and
∏

j∈S ĝβ
2ψ+n+1− j+i

since i � S such that i � j. Therefore, B can successfully break PDHE assumption by
extracting ĝα

2ψ+n+1
from the forged signature σ∗ by using ĝβ

2ψ+n+1
.
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