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Abstract. We develop a three-level hierarchy of privacy notions for (unforgeable) digital signature
schemes. We first prove mutual independence of existing notions of anonymity and confidentiality,
and then show that these are implied by higher privacy goals. The top notion in our hierarchy is
pseudorandomness: signatures with this property hide the entire information about the signing process
and cannot be recognized as signatures when transmitted over a public network. This implies very
strong unlinkability guarantees across different signers and even different signing algorithms, and gives
rise to new forms of private public-key authentication.

We show that one way towards pseudorandom signatures leads over our mid-level notion, called in-
distinguishability : such signatures can be simulated using only the public parameters of the scheme.
As we reveal, indistinguishable signatures exist in different cryptographic settings (e.g. based on RSA,
discrete logarithms, pairings) and can be efficiently lifted to pseudorandomness deploying general trans-
formations using appropriate encoding techniques. We also examine a more direct way for obtaining
pseudorandomness for any unforgeable signature scheme. All our transformations work in the standard
model. We keep public verifiability of signatures in the setting of system-wide known public keys. Some
results even hold if signing keys are disclosed to the adversary — given that signed messages have high
entropy.

1 Introduction

A digital signature σ on a message m is generated using a private key sk and is verified in respect to the
corresponding public key pk. Digital signatures shall be unforgeable and offer authenticity of signers and
integrity of signed messages. In the 90’s, however, with the advent of public key infrastructures (PKIs), digital
signatures were criticized for being a threat to user’s privacy [19]. For instance, with system-wide known
(PKI-certified) public keys, and due to the public verifiability of signatures, any transmission of (m,σ) over a
public network such as the Internet implicitly reveals to all intermediate parties the identity of the signer, i.e.
owner of (certified) pk — and not only to the intended recipients/verifiers. Considering public availability of
both σ and pk, we can hope to obtain privacy only by restricting the amount of publicly available information
about message m. Indeed, messages might be delivered through a different communication channel (e.g. in
an online banking scenario with two-factor authentication) or at some earlier or later point in time (e.g.
in anonymous auctions), and thus still remain out of reach of the adversary that obtains signatures and
public keys. Further on, verifiers might expect signatures on messages that need not be transmitted at all:
for example, private outputs computed with secure multi-party computation techniques or in (anonymous)
key exchange protocols can be viewed as messages for which parties may wish to exchange signatures.

? A shortened version of this paper appears in the proceedings of the 8th ACM Symposium on Information, Computer
and Communications Security (ASIACCS 2013), May 8–10, 2013, Hangzhou, China. This is the full version.



Current Privacy Notions and Open Issues. Privacy of digital signatures, where signatures σ are
revealed but associated messages m are not disclosed, has found attention in definitions and security models
of anonymous signatures by Yang et al. [28] and Fischlin [17], and in the notion of confidential signatures
by Dent et al. [16]. These schemes aim at either hiding the identities/public keys of signers (anonymity)
or the content of signed messages (confidentiality). Both privacy notions were defined for high-entropy
message spaces, which is a necessary requirement, presuming the system-wide knowledge of public keys and
signatures. This conceptual similarity raises a question on the possible relationship between anonymity and
confidentiality, and triggers interest in a deeper study on the limits of privacy achievable with traditional
signature schemes: Are there schemes whose signatures σ hide signer’s identity/public key and simultaneously
keep signed messages secret? What are the differences between deterministic and probabilistic schemes in
terms of these goals? Is the property of ‘message recovery’ damaging for privacy? Answers to these questions
would clarify the relationship among the existing notions of privacy for signature schemes, shed light on their
privacy-enabling properties, and possibly pave the way for more sophisticated privacy guarantees. We give
answers to many such questions.

Pseudorandom Signatures and Applications. In fact, the most interesting question in respect to
privacy of signature schemes is whether signatures can look (to observers) completely random. On the one
hand, this property would repel attention of intermediate parties, possibly performing traffic analysis, to the
transmission of signatures. Those parties could not learn whether a given datagram represents something
potentially valuable (in this case a signature) or not. On the other hand, and more importantly, signatures
that cannot be distinguished from random strings (of some fixed length) also hide which signing algorithm
its signer was using — this knowledge alone is often sufficient to identify signers (even if the signature scheme
itself is anonymous).

We give some examples where signers, or groups of signers, naturally use different parameters settings
for (potentially) the same signing algorithm.

For instance, in the new European travel documents, the selection of specific (elliptic curve) parameters
is the priority of respective states [9]. Many banks and health insurance companies issue smart cards to
their customers, initialized with different signing algorithms and parameters. We observe that distinguishing
among different settings, implementations, or instantiations of the same signature scheme S can be seen as
a privacy problem, e.g. if signatures can be used to derive which citizenship or which customer relationship
to which bank or insurance company the signer has. Now assume that different signature schemes S1, S2,
. . . (unforgeable, possibly under different hardness assumptions or with varying levels of security) output
signatures σ1, σ2, . . ., respectively, of fixed length L. If all these signatures looked random to observers,
then σi would hide the applied scheme Si, i.e. only the possession of m and (the expected signer’s) pk would
allow to verify σi. In contrast, any other party (even with knowledge of the keys of the whole system) would
remain totally clueless whether σi represents a signature or not, and, if so, which signing algorithm was used.

Furthermore, pseudorandom signatures give rise to covert public-key authentication, offering crypto-
graphic protection to covert channels, i.e. channels that appear random to any entity other than the com-
munication partner (as defined, e.g. in [10, 20, 27]). With pseudorandom signatures, it would be possible
to perform public-key authentication and execute authenticated key exchange over covert channels with-
out loosing covertness. For example, parties could first run an unauthenticated key exchange protocol that
has random-looking messages (those can easily be constructed using the Diffie-Hellman approach in various
groups based on techniques used in our work (cf. Lemma 13)) and then exchange pseudorandom signatures on
the protocol transcript and an additional high-entropy confirmation token derived from the established shared
key material. Since all exchanged messages are random-looking, the established secure channel between the
two mutually authenticated parties would remain covert. Moreover, if pseudorandomness of signatures can
be preserved even in the unfortunate case where the signing key sk is leaked, then the above protocol would
guarantee ‘forward covertness’ (akin to forward secrecy, e.g. [13]). More generally, pseudorandom signatures
seem to offer very strong and useful privacy guarantees in communication protocols and applications where
authentication should remain unobservable by traffic analysis [22].
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Fig. 1. Privacy Hierarchy for Digital Signatures.
Notation: X → Y means that X is a strictly stronger privacy notion than Y . X 9 Y means that X does not imply

Y . X-FKE stands for X defined with of full key exposure.

1.1 Our Results and Techniques

Privacy Hierarchy for Digital Signatures. We develop a three-level hierarchy of privacy notions for
digital signatures, starting our work with the investigation of the relationship between anonymity and con-
fidentiality, two previously established privacy notions for signatures. Definitions of anonymity were first
given by Yang et al. [28], with later refinements by Fischlin [17]. These definitions presume messages with
high entropy (unlike Bellare and Duan [2] and Saraswat and Yun [24], who regard a more restrictive form
of signatures5). For confidentiality, we use the original definitions by Dent et al. [16] (in its strongest vari-
ant). We show that anonymous signatures and confidential signatures are independent privacy notions6. For
this reason, anonymity (ANON) and confidentiality (CONF) are located at the lowest level of our privacy
hierarchy.

At the mid-level of our hierarchy we have indistinguishability (IND), expressing that signatures can be
simulated from the public parameters of the scheme. We prove that such signatures offer stronger privacy
guarantees than purely anonymous and purely confidential schemes. In particular, any transmission of an IND
signature simultaneously hides both the signer and the associated message. The IND property is thus a
generalization of both ANON and CONF and is sufficient for obtaining privacy in anticipated applications of
both schemes. IND signatures may, however, leak some recognizable structure about the signature scheme in
use.

The strongest privacy notion in our arsenal lets signatures appear to privacy adversaries as (structureless)
strings of random bits, and is hence termed pseudorandom (PR). We show why this property is sufficient to
hide all information about the signing process, including the signature scheme itself. The introduced privacy
hierarchy with the intuitively strongest notion of pseudorandomness on top is thus likely to close the subject
of privacy-preserving signatures.

Each of our privacy notions is defined in two variants, reflecting that adversaries might of might not have
a copy of the signing key. That is, we also address security with full key exposure (FKE), which has been
formalized for anonymous schemes by Fischlin [17] (and is also considered in [2,24], but did not find formal
treatment in the definitions of confidentiality in [16]). In our privacy hierarchy, we further distinguish between
probabilistic and deterministic schemes. Within other, we show that with full key exposure, obtaining any
form of privacy for deterministic schemes is hopeless.

The universe of privacy notions considered in this paper and their relationships is illustrated in Figure 1.

5 Anonymity definitions in [2, 24] assume that σ consists of two parts — signature σ1 and a value σ2 (called de-
anonymizer in [2] or verification token in [24]), both of which are needed to perform the verification. Transmission
of the entire σ = (σ1, σ2), that is amenable to verification, becomes a two-stage process, with σ1 (together with m)
being disclosed in the first stage, and σ2 in the second stage. Anonymity of the signer is then defined with respect
to an adversary that knows σ1 but not σ2. As discussed in [2, 24], this definition essentially implies anonymity
from [17,28], allowing also low-entropy message spaces. Since we look on privacy from a more general perspective
(e.g. consider confidentiality as another privacy goal), it appears more advisable to work with high-entropy messages
and use conceptually simpler anonymity definitions from [17,28].

6 Interestingly, Dent et al. [16] mention similarities between the notions but do not formally investigate their relation-
ship. They only expect it to be similar to the relationship between anonymous (key-private) encryption schemes [1]
and traditional public-key encryption schemes. Arguably, these notions do not seem to be independent, unless
anonymous encryption schemes that do not offer secrecy of encrypted messages are interesting on their own.
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Setting Example scheme IND with FKE PR with FKE Model

RSA FDH-RSA [4] randomized hash with padding IND-to-PR compiler ROM

DL Schnorr [25] X IND-to-PR compiler ROM

Pairings Boneh-Boyen [5] for random `-bit m / hash-then-sign IND-to-PR compiler STD / ROM

any unforgeable signature scheme inherited from PR compiler direct PR compiler STD

Table 1. Indistinguishable and Pseudorandom Signatures (Settings, Techniques, Compilers)

Constructions and Transformations. For a selection of existing signature schemes, we investigate indis-
tinguishability and pseudorandomness properties and, where appropriate, propose modifications and generic
transformations to achieve these goals. We build privacy-preserving signatures in three different crypto-
graphic settings, namely using RSA parameters on the example of the full-domain hash RSA (FDH-RSA)
scheme [4], using cyclic prime-order groups on the example of Schnorr’s scheme [25], and using pairings on
the example of the Boneh-Boyen (BB) scheme [5]. These results are summarized in Table 1 and detailed in
the following.

Indistinguishable Signatures. We formalize the notion of information recovering signatures (as a generaliza-
tion of the known concept of ‘message recovery’) and discuss its negative impact on confidentiality, and hence
on indistinguishability and pseudorandomness. We show that not only known message recovering schemes
(e.g. ‘text-book’ RSA and Nyberg-Rueppel [21], together with their ‘hash-then-sign’-based transformations),
but also several other schemes (in different cryptographic contexts) fall under our more general notion of
‘information recovery’ and thus do not offer indistinguishability. Examples include schemes by Cramer and
Shoup (CS) [15], Camenisch and Lysyanskaya (CL) [11], and Boneh, Lynn, and Shacham (BLS) [7]. That is,
signatures in these schemes leak information even if they do not allow full recovery of signed messages.

We then focus on three cryptographic settings — RSA, discrete logarithms (DL), and pairings — and
provide examples of indistinguishable schemes. In particular, we show that, using appropriate randomization
and padding techniques, FDH-RSA becomes indistinguishable. In DL setting we prove that the (generalized)
signature scheme by Schnorr [25] offers indistinguishability ‘off the shelf’, yet assuming that its cyclic group
is shared among all signers. We notice that anonymity of FDH-RSA and Schnorr’s schemes was previously
analyzed in [28], their confidentiality in [16]. Our analysis essentially shows that both schemes admit much
stronger privacy guarantees. Finally, we prove that the pairing-based Boneh-Boyen (BB) [5] scheme is indis-
tinguishable in the standard model, yet for uniformly distributed (fixed-length) messages only. As suggested
in [5], the ‘hash-then-sign’ approach can be used in standard model to sign longer messages. We show that
in the random oracle model this method readily offers indistinguishability for arbitrary long high-entropy
messages. We note that indistinguishability of all analyzed schemes holds in the presence of full key exposure
(FKE). Bottom line, we show existence of IND schemes in different cryptographic settings, paving the way
towards pseudorandom signature schemes (based on different hardness assumptions).

Pseudorandom Signatures. PR signatures, which cannot be distinguished from random bit strings of the
same length, offer the highest form of privacy that signatures can provide.

Our first result on PR signatures is a generic transformation that strengthens IND signatures to obtain
the PR property (we call it IND-to-PR compiler in Table 1). It uses admissible encodings, introduced in a
different context by Boneh and Franklin [6] for elliptic curves, generalized later by Brier et al. [8], and also
used to preserve privacy in the password-based authentication protocol by Bringer, Chabanne and Icart [9]
(we thus show another interesting application of this primitive). By finding appropriate admissible encodings
for different types of sets, we can immediately obtain the PR property for the IND versions of FDH-RSA,
Schnorr, and BB schemes. We also prove that the obtained PR property holds in the presence of full key
exposure.

Our next result is a second generic transformation that achieves the PR property directly for any (un-
forgeable) digital signature scheme. This PR compiler is powerful enough to guarantee the PR property also
for information recovering schemes and works irrespective of whether the original scheme is probabilistic
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or deterministic. Moreover, the PR property is guaranteed even if secret signing keys are exposed (FKE).
This compiler uses randomness extractors and its techniques have been previously developed by Fischlin [17]
to construct anonymous signatures. We thus prove formally that Fischlin’s anonymous signature admits a
general transformation, which is strong enough to convert any unforgeable signature scheme into a scheme
satisfying the strongest7 privacy property. This direct PR compiler, however, is slightly less efficient than our
IND-to-PR compiler.

1.2 Related Work on Signature Privacy

Anonymity of signers assuming high-entropy messages was initially defined by Yang et al. [28], who analyzed
anonymity of ‘text-book’ RSA, PSS, and Schnorr signatures, after applying some necessary modifications.
Their definition was simplified by Fischlin [17] (and relaxed to full key exposure), who showed how to obtain
anonymity using randomness extractors. Anonymity definitions for arbitrary messages, yet with specific
restrictions on the format of disclosed signatures, were formulated independently by Bellare and Duan [2],
Saraswat and Yun [24], and Zhang and Imai [29]. Using the ‘sign-then-commit’ approach, Bellare and Duan [2]
gave four constructions: Their first scheme (also presented in [24]) uses commitments as black-box to produce
anonymous signatures in the standard model. The second scheme uses randomized hash functions and can
be applied to deterministic signature schemes. Their third solution relies on deterministic hash functions and
can be used with probabilistic signature schemes. The fourth scheme from [2], termed ‘splitting construction’
follows closely the design of Schnorr signatures in the discrete logarithm setting. Saraswat and Yun [24] proved
anonymity of the signature scheme by Boneh and Boyen [5]. Furthermore, both [2] and [24] formalize another
requirement (called unambiguity in [2] and unpretendability in [24]) that prevents the adversary from claiming
the ownership of an anonymous signature at a later stage. Note that this requirement is orthogonal to privacy
and can be handled separately. The anonymous scheme by Zhang and Imai [29] uses what they call ‘collision-
resistant exposure-free functions’ which are instantiated with randomized hash functions in the random
oracle model. Confidentiality of signature schemes has been considered so far formally by Dent et al. [16]
for messages with high entropy, inspired by the definitional treatment of confidentiality for deterministic
public-key encryption [3]. They defined three flavors (weak, mezzo, and strong) with increasing strength and
addressed both deterministic and probabilistic schemes (without full key exposure). Confidentiality of several
schemes used in practice was analyzed as well, including those that use full-domain hash constructions (for
which [16] defined confidentiality of hash functions, following earlier ideas from [12]), those obtained from
Fiat-Shamir transformation, and those based on randomness extractors. Manifold solutions for obtaining
privacy were also proposed with more advanced signing techniques. For example, in group signatures [14],
users obtain membership certificates from the manager of a group and issue signatures that identify the
signer as a valid group member without revealing its actual identity. The latter can be recovered from the
signature only by the group manager. Ring signatures [23] allow the signer to form ‘ad-hoc’ groups and so
hide its own identity (in an unrevocable way) from a potential verifier, who only learns that the signer belongs
to the formed group. As discussed in [17], ring signatures differ substantially from anonymous signatures as,
in the former, anonymity is bound to a (presumably small) group, and in the latter it is guaranteed as long
as some information needed for the public verification of signatures remains secret. Anonymity notions have
also been considered for other signature types, e.g. undeniable and confirmer signatures by Galbraith and
Mao [18]; as discussed in [24], these notions differ from anonymity in ordinary signature schemes.

2 Previous Privacy Notions

We recall the syntax of digital signatures in Definition 1 and the notion of existential unforgeability in
Definition 2. Note that all schemes used in this work are existentially unforgeable.

7 Fischlin [17] mentioned informally that his anonymous signature scheme offers pseudorandomness, although this
notion was not yet defined. Our hierarchy clarifies his intuition formally and further implies indistinguishability
and confidentiality of his scheme (in presence of full key exposure).
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Definition 1 (Digital Signature Scheme). A digital signature scheme S = (KGen,Sign,Ver) is given
by three algorithms: The key generation algorithm KGen, on input security parameter 1λ, generates a key
pair (sk, pk) ← KGen(1λ), the signing algorithm Sign, on input a secret key sk and a message m ∈ {0, 1}∗,
outputs a signature σ ← Sign(sk,m), and the (deterministic) verification algorithm Ver, on input a public
key pk, a message m, and a candidate signature σ, outputs a bit d← Ver(pk,m, σ). The scheme S is correct
if for all λ ∈ N, (sk, pk) ← KGen(1λ), m ∈ {0, 1}∗, and σ ← Sign(sk,m), we have Ver(pk,m, σ) = 1. The
scheme S is deterministic if every two invocations of Sign(sk, ·) on the same input message m result in the
same signature σ.

Definition 2 (Existential Unforgeability). A signature scheme S is existentially unforgeable under
adaptive chosen-message attacks (EUF-CMA) if all PPT adversaries A have negligible probability to out-
put (m∗, σ∗) ← ASign(sk,·)(pk) (where (sk, pk) ← KGen(1λ) and Sign(sk, ·) is a signature oracle) such that
Ver(pk,m∗, σ∗) = 1, provided that m∗ was not queried to Sign(sk, ·) oracle.

We focus in the main part of this paper on privacy of probabilistic schemes in a setting with system-wide
known public keys. Please refer to Appendix A for a discussion of restrictions and impossibility results on
privacy for deterministic schemes.

2.1 Anonymous Signatures

Anonymity of signatures for high-entropy messages [17, 28] hides which signer (presuming the system-wide
knowledge of public keys) generated a given challenge signature σ. Definition 3 is essentially from [17], where
we also let the adversary A choose the challenge message m (similar to [2]). In case of full key exposure, A
receives secret keys, which obsoletes the signing oracle.

Definition 3 (Anonymous Signatures). A signature scheme S is anonymous (ANON), possibly with full
key exposure (ANON-FKE), if for all PPT adversaries A = (A1,A2) the advantage function

Adv
ANON[-FKE]
S,A (λ) :=

∣∣∣Pr
[
Exp

ANON[-FKE],0
S,A (λ) = 1

]
− Pr

[
Exp

ANON[-FKE],1
S,A (λ) = 1

]∣∣∣
is negligible in λ, where Exp

ANON[-FKE],b
S,A (λ), b ∈ {0, 1}, are the anonymity experiments from Figure 2, and

where the following high entropy constraint holds: The function µ(λ) = maxM∈{0,1}∗ Pr[M = m : m← A1]
is negligible in λ, assuming that A1 is provided with all admissible inputs and oracles as specified in the
respective anonymity experiment. The minimum entropy of A is then given by − log2 µ(λ).

ExpANON,b
S,A (λ) :

(sk0, pk0)← KGen(1λ)

(sk1, pk1)← KGen(1λ)

m← ASign(sk0,·),Sign(sk1,·)
1 (pk0, pk1)

σ ← Sign(skb,m)

d← ASign(sk0,·),Sign(sk1,·)
2 (pk0, pk1, σ)

output d

ExpANON-FKE,b
S,A (λ) :

(sk0, pk0)← KGen(1λ)

(sk1, pk1)← KGen(1λ)

m← A1(sk0, pk0, sk1, pk1)

σ ← Sign(skb,m)

d← A2(sk0, pk0, sk1, pk1, σ)

output d

Fig. 2. Anonymity Experiments (without and with Full Key Exposure)

6



2.2 Confidential Signatures

Confidentiality of digital signatures, formalized by Dent et al. in [16], hides information about the message m
that was signed. Definition 4 corresponds to strong confidentiality from [16], the strongest among the three
notions (weak, mezzo, strong) proposed there.

Definition 4 (Confidential Signatures). A signature scheme S is confidential (CONF), possibly with full
key exposure (CONF-FKE), if for all PPT adversaries A = (A1,A2) the following advantage function

Adv
CONF[-FKE]
S,A (λ) :=

∣∣∣Pr
[
Exp

CONF[-FKE],0
S,A (λ) = 1

]
− Pr

[
Exp

CONF[-FKE],1
S,A (λ) = 1

]∣∣∣
is negligible in λ, where Exp

CONF[-FKE],b
S,A (λ), b ∈ {0, 1}, are the confidentiality experiments from Figure 3, and

where the following high entropy constraint holds: The function µ(λ) = maxM∈{0,1}∗ Pr[M ∈m : (m, t) ←
A1] is negligible in λ, assuming A1 is provided with all admissible inputs and oracles as specified in the resp.
confidentiality experiment. The minimum entropy of A is then given by − log2 µ(λ).

ExpCONF,b
S,A (λ) :

(sk, pk)← KGen(1λ)

(m0, t0)← ASign(sk,·)
1 (pk)

(m1, t1)← ASign(sk,·)
1 (pk)

if |m0| 6= |m1| then output 0

σ∗ ← Sign(sk,mb)

t′ ← ASign(sk,·)
2 (pk,σ∗)

if t′ = t0 then output 1, else output 0

ExpCONF-FKE,b
S,A (λ) :

(sk, pk)← KGen(1λ)

(m0, t0)← A1(sk, pk)

(m1, t1)← A1(sk, pk)

if |m0| 6= |m1| then output 0

σ∗ ← Sign(sk,mb)

t′ ← A2(sk, pk,σ∗)

if t′ = t0 then output 1, else output 0

Fig. 3. Confidentiality Experiments (without and with Full Key Exposure).8

Observe that, in the confidentiality experiments from Figure 3, the first-stage adversary A1 outputs a
vector m of messages, each of high entropy, and an additional token t. This token models the intuition that
confidential signatures shouldn’t leak ‘any information’ about signed messages.9

2.3 Independence of ANON and CONF

Lemmas 1 and 2 separate the two notions ANON and CONF. Their independence follows then from the
fact that some unforgeable schemes are neither anonymous nor confidential and that for other schemes both
notions hold simultaneously (cf. Section 4).

Lemma 1 (CONF[-FKE] 6⇒ ANON). Confidential signature schemes (with full key exposure) are not nec-
essarily anonymous.

Proof. Let S be a confidential signature scheme. We construct a confidential but not anonymous signature
scheme S′ from S as follows.

KGen′(1λ) : Output (sk, pk)← KGen(1λ).

8 Values m output by (stateless) A1 are vectors of messages in {0, 1}∗ and |m| denotes the number of elements
in m. Accordingly, by σ ← Sign(sk,m) we denote the process of signing the messages in m element-wise and
independently of each other, resulting in a vector σ of corresponding signatures.

9 We stick here to the confidentiality definition introduced by Dent et al. in [16] using two separate calls of A1.
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Sign′(sk,m) : σ ← Sign(sk,m). Output σ′ := (σ, pk).
Ver′(pk,m, σ′) : Parse σ′ as (σ, pk′). Return 1 iff

(
Ver(pk,m, σ) = 1 ∧ pk = pk′

)
.

As the public verification key pk is extractable from a signature σ′, S′ is not anonymous. Yet, S′ remains
confidential (as the CONF adversary knows pk anyway). Clearly, the construction preserves unforgeability.

ut

Lemma 2 (ANON[-FKE] 6⇒ CONF). Anonymous signature schemes (with full key exposure) are not neces-
sarily confidential.

Proof. Let S be an anonymous signature scheme and last : {0, 1}∗ → {0, 1} denote the function that outputs
the last bit of its argument. We construct an anonymous but not confidential signature scheme S′ from S as
follows.

KGen′(1λ) : Output (sk, pk)← KGen(1λ).
Sign′(sk,m) : σ ← Sign(sk,m). Output σ′ := (σ, last(m)).
Ver′(pk,m, σ′) : Parse σ′ as (σ, b). Return 1 iff

(
Ver(pk,m, σ) = 1 ∧ last(m) = b

)
.

To see that S′ is not confidential, consider the following confidentiality adversary A = (A1,A2). A1 outputs
(m0, t0) (resp. (m1, t1)), where mi = (Mi) for Mi ∈R {0, 1}λ, and ti = last(Mi). A2 parses σ∗ as σ∗ =

((σ, b)) and outputs b. So AdvCONF
S′,A (λ) = |Pr[ExpCONF,0

S′,A (λ) = 1]− Pr[ExpCONF,1
S′,A (λ) = 1]| =

∣∣1− 1
2

∣∣ = 1
2 .

To show anonymity of S′, consider any adversaryA = (A1,A2) against ANON of S′. Flip a coin β ∈R {0, 1}
and define ANON adversary B = (B1,B2) against S as follows: On input pk0, pk1, B1 runs A1(pk0, pk1) as
a black-box and receives a message m. If last(m) = β, m is output, otherwise the simulation aborts

which is modeled by letting B’s simulator output 0, i.e. Pr[ExpANON,b
S,B (λ) = 1|A] = 0 for b ∈ {0, 1}. The

“abort” event A will occur with probability 1
2 . Now, on input pk0, pk1, σ, algorithm B2 appends β to σ, runs

d← A2(pk0, pk1, (σ, β)) and outputs d. Then

Pr[ExpANON,b
S,B (λ) = 1] = Pr[ExpANON,b

S,B (λ) = 1|¬A] · Pr[¬A] + Pr[ExpANON,b
S,B (λ) = 1|A] · Pr[A]

= Pr[ExpANON,b
S′,A (λ) = 1] · 12 + 0 · 12

and hence AdvANON
S,B (λ) = 1

2 · Adv
ANON
S′,A (λ). Thus S′ is anonymous, as the left hand side is negligible by

assumption. ut

3 Digital Signatures with Information Recovery

The following definition of ‘information recovery’, where in the verification procedure signer’s public key
is used together with the signature to compute some information that is then compared to information
determined by the public key and the message, generalizes the known concept of ‘message recovery’.

Definition 5 (Information Recovering Signatures). A digital signature scheme S = (KGen,Sign,Ver)
is called information recovering if there exist two polynomial-time algorithms Inf and Rec such that for all
(sk, pk) ← KGen(1λ), m ∈ {0, 1}∗, and σ ← Sign(sk,m), the verification algorithm Ver(pk,m, σ) outputs 1
if and only if Inf(pk,m) = Rec(pk, σ).

Remark 1. Note that information recovering signature schemes with Inf(pk, ·) = pk = Rec(pk, ·) might be
correct, but are necessarily forgeable. More precisely, if Inf(pk,m0) = Inf(pk,m1) happens with noticeable
probability (for independently drawn m0,m1 ∈R {0, 1}λ), an adversary A against unforgeability can be
constructed by letting A request a signature σ0 on a random message m0 and output (m1, σ0), for random
m1, as a forgery. To see that A has non-negligible success probability, observe that σ0 will verify successfully
for m1 if we have Rec(pk, σ0) = Inf(pk,m1) = Inf(pk,m0), what happens with non-negligible probability by
assumption.

8



3.1 Examples of Schemes with Information Recovery

Classical examples of information recovering schemes include “text-book” RSA and Nyberg-Rueppel [21],
whose signatures can be used to recover messages. Observe that if the “hash-then-sign” approach is used,
e.g. FDH-RSA [4], then signatures computed on hash values H(m) (rather than on messages m) are still
information recovering, even if H is modeled as a random oracle, i.e. the corresponding algorithm Inf(pk,m)
would simply output H(m). This property can also be found amongst signature schemes that are not message
recovering or where messages need not be hashed to compute (unforgeable) signatures, as shown in the
following.

Cramer-Shoup (CS) [15]. The Strong RSA-based CS scheme outputs signatures of the form σ =
(e, s, σ′1, σ

′
2) and its verification algorithm checks whether e is an odd integer of certain length, followed

by two checks of the form σ′e1 ≡ thH(s) modN and σ′ẽ2 ≡ shm modN with ẽ, t, h, and N being part of the
public key pk. These equation can be rewritten to Inf(pk,m) = Rec(pk, σ) using Inf(pk,m) that outputs a
pair (t, hm modN) and Rec(pk, σ) returning a pair (σ′e1 · h−H(s), σ′ẽ2 · s−1 modN) after verifying the appro-
priate form for e. The equality of the outputs of Inf and Rec can then be tested component-wise to verify
the signature.

Camenisch-Lysyanskaya (CL) [11]. The Strong RSA-based CL scheme outputs signatures of the form
σ = (e, s, σ′) and its verification algorithm checks if e is in the appropriate range and σ′e ≡ ambscmodN with
a, b, c, and N being part of the public key pk. By rewriting the verification equation to am ≡ σ′e/(bsc) modN
we can define algorithm Inf(pk,m) to output am modN and Rec(pk, σ) to output σ′e · (bsc)−1 modN if e is
in the appropriate range.

Boneh-Lynn-Shacham (BLS) [7]. The pairing-based BLS scheme, which can be initialized for example
in cyclic groups G = 〈g〉 of prime order q with a suitable bilinear map e : G×G 7→ GT , outputs signatures
of the form σ = H(m)x where H : Z∗q 7→ G is a random oracle and x is a secret key. Its verification equation
e(H(m), y) = e(σ, g) with g, y belonging to pk, immediately defines Inf(pk,m) and Rec(pk, σ).

3.2 Information Recovery Limits Privacy

The property of information recovery of a scheme can be immediately used to break the scheme’s confi-
dentiality by including information derived via algorithm Inf from messages in m into t, as shown in the
following lemma.

Lemma 3. There is no unforgeable information recovering signature scheme that provides confidentiality.

Proof. Let S = (KGen,Sign,Ver) be an information recovering signature scheme. Consider the following
adversary A = (A1,A2) against confidentiality of S: A1 on input pk picks a random λ-bit message m,
computes t← Inf(pk,m), and outputs (m, t). A2 on input (pk, σ∗) outputs t′ ← Rec(pk, σ∗). In this setting,

we observe that correctness of S and the construction of Ver from Inf and Rec implies Pr[ExpCONF,0
S,A (λ) =

1] = 1. We now consider ExpCONF,1
S,A (λ), where we use σ1 to denote the challenge signature σ∗ ← Sign(sk,m1).

Note that by construction of A2 we have t′ = Rec(pk, σ1). We see that

Pr[ExpCONF,1
S,A (λ) = 1] = Pr[t′ = t0] = Pr[Rec(pk, σ1) = Inf(pk,m0)] = Pr[Inf(pk,m1) = Inf(pk,m0)],

which, as S is unforgeable, is negligible (cf. Remark 1). For A we thus proved non-negligible advantage

Adv
CONF[-FKE]
S,A (λ) against confidentiality of signature scheme S. ut
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4 Indistinguishable Signatures

The independence of the notions of anonymity and confidentiality of digital signature schemes places these
concepts at the bottom level of our privacy hierarchy and puts forward the question on the existence of
a more general privacy property that implies both of them. We call this property indistinguishability and
formalize it in Definition 6. We use a simulation-based approach, following the intuition that anonymity and
confidentiality are implied if all information that can be extracted from a real signature can also be extracted
from a ‘signature’ that was simulated without knowledge of keys and messages.10

Definition 6 (Indistinguishable Signatures). A signature scheme S is indistinguishable (IND), possibly
with full key exposure (IND-FKE), if there exists a PPT simulator Sim such that for all PPT adversaries
A = (A1,A2) the following advantage function

Adv
IND[-FKE]
S,Sim,A (λ) :=

∣∣∣Pr
[
Exp

IND[-FKE],0
S,Sim,A (λ) = 1

]
− Pr

[
Exp

IND[-FKE],1
S,Sim,A (λ) = 1

]∣∣∣
is negligible in λ, where Exp

IND[-FKE],b
S,Sim,A (λ), b ∈ {0, 1}, are the indistinguishability experiments from Figure 4,

and where the following high entropy constraint holds: The function µ(λ) = maxM∈{0,1}∗ Pr[M ∈ m :
(m, t) ← A1] is negligible in λ, assuming A1 is provided with all admissible inputs and oracles as specified
in the resp. indistinguishability experiment. The minimum entropy of A is given by − log2 µ(λ).

ExpIND,bS,Sim,A(λ) :

(sk, pk)← KGen(1λ)

(m, t)← ASign(sk,·)
1 (pk)

σ0 ← Sign(sk,m)

σ1 ← Sim(1λ, |m|)

t′ ← ASign(sk,·)
2 (pk,σb)

if t′ = t then output 1, else output 0

ExpIND-FKE,b
S,Sim,A (λ) :

(sk, pk)← KGen(1λ)

(m, t)← A1(sk, pk)

σ0 ← Sign(sk,m)

σ1 ← Sim(1λ, |m|)
t′ ← A2(sk, pk,σb)

if t′ = t then output 1, else output 0

Fig. 4. Indistinguishability Experiments (without and with Full Key Exposure).

Lemmas 4 and 5 confirm the intuition that indistinguishable signatures are also anonymous and confi-
dential (even in presence of full key exposure).

Lemma 4 (IND ⇒ ANON, IND-FKE ⇒ ANON-FKE). Every indistinguishable signature scheme is anony-
mous. The same implication holds in presence of full key exposure.

Proof. Let S be an indistinguishable signature scheme with simulator Sim. For an ANON-adversaryA consider
experiment Exp∗S,Sim,A(λ), which is like ExpANON,0

S,A (λ), except that challenge signature σ is computed as σ ←
Sim(1λ, 1). Construct IND-adversary B by generating random (sk′, pk′)← KGen(1λ) and defining B1 and B2
as follows: B1, on input pk and having oracle access to Sign(sk, ·), runs m← ASign(sk,·),Sign(sk′,·)

1 (pk, pk′) as a
black-box, relaying oracle queries to Sign(sk, ·), and answering Sign(sk′, ·) queries itself. After receiving m,
B1 outputs (m, t) = ((m), 1) and stops. B2, on input pk and challenge signature σ = (σ), feeds σ into A2

10 Since our IND definition involves a simulator Sim that generates signatures in σ without knowledge of (sk,m),
one may ask about the relationship to zero-knowledge proofs, which also, by definition, are simulatable without
knowledge of the secret. We observe that indistinguishable signatures are not zero-knowledge proofs — simulated
IND signatures need not to be convincing (as opposed to simulated proofs), i.e. they do not need to pass the regular
signature verification.
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(together with pk and pk′). Value d output by A2 is used as return value t′ of B2. Careful inspection results
in ∣∣∣Pr

[
ExpANON,0

S,A (λ) = 1
]
− Pr

[
Exp∗S,Sim,A(λ) = 1

]∣∣∣ =
∣∣∣Pr
[
ExpIND,0S,Sim,B(λ) = 1

]
− Pr

[
ExpIND,1S,Sim,B(λ) = 1

]∣∣∣
= AdvINDS,Sim,B(λ).

Equality
∣∣Pr[ExpANON,1

S,A (λ) = 1]−Pr[Exp∗S,Sim,A(λ) = 1]
∣∣ = AdvINDS,Sim,B(λ) can be shown similarly (by swapping

pk and pk′ in the construction of B). All in all we have shown AdvANON
S,A (λ) ≤ 2 · AdvINDS,Sim,B(λ), which is

negligible by assumption. The implication IND-FKE⇒ ANON-FKE is shown analogously. ut

Lemma 5 (IND⇒ CONF, IND-FKE⇒ CONF-FKE). Every indistinguishable signature scheme is confiden-
tial. The same implication holds in presence of full key exposure.

Proof. Let S be an indistinguishable signature scheme with simulator Sim. For a CONF-adversary A con-
sider experiment Exp∗S,Sim,A(λ), which is like ExpCONF,0

S,A (λ), except challenge signatures σ∗ are computed as

σ∗ ← Sim(1λ, |m0|). Construct IND-adversary B defining B1,B2 as follows: B1, on input pk and with or-

acle Sign(sk, ·), runs ASign(sk,·),Sign(sk′,·)
1 (pk) twice as a black-box, relaying oracle queries to Sign(sk, ·) and

answering Sign(sk′, ·) queries itself, to obtain (m0, t0) and (m1, t1), respectively. Algorithm B1 aborts if
|m0| 6= |m1|. Else it outputs (m0, t0) and stops. B2, on input pk and challenge signatures σ, feeds σ into A2

(together with pk). Value t′ output by A2 is used as return value t′ of B2. Now we have∣∣∣Pr
[
ExpCONF,0

S,A (λ) = 1
]
− Pr

[
Exp∗S,Sim,A(λ) = 1

]∣∣∣ =
∣∣∣Pr
[
ExpIND,0S,Sim,B(λ) = 1

]
− Pr

[
ExpIND,1S,Sim,B(λ) = 1

]∣∣∣
= AdvINDS,Sim,B(λ).

Equality
∣∣Pr[ExpCONF,1

S,A (λ) = 1]−Pr[Exp∗S,Sim,A(λ) = 1]
∣∣ = AdvINDS,Sim,B(λ) can be shown similarly (by letting B1

output (m1, t1) instead of (m0, t0)). All in all we have shown AdvCONF
S,A (λ) ≤ 2 · AdvINDS,Sim,B(λ), which is

negligible by assumption. The implication IND-FKE⇒ CONF-FKE is shown analogously. ut

4.1 Techniques and Examples

We now exemplify IND constructions using three known signature schemes: FDH-RSA [4], Schnorr [25], and
Boneh-Boyen [5]. That is, we show that indistinguishable schemes can be obtained in different cryptographic
setting, i.e. RSA, discrete logarithms (DL), and pairings. We notice that our techniques can be applied to
many existing schemes that either fulfill this privacy notion directly or can be slightly modified to become
indistinguishable.

RSA-based Construction. On the example of FDH-RSA [4], which is neither confidential nor anonymous,
we demonstrate two techniques to obtain indistinguishability. First, we apply a randomized hash [2], where
a message m is hashed together with some randomness r, which is chosen within the signing procedure.
The hash value H(m, r) is then used in the signing algorithm (instead of m), and r is appended to the
resulting signature. This method eliminates information recovery since the output of Inf(pk,m) depends now
on H(m, r) (and not only on m), and the probability that the first stage IND adversary learns information
about H(m, r) is negligible (given that r is sufficiently long and chosen in the challenge phase). We can
then apply padding to hide the length of signature components that are elements of ZN , and by this protect
anonymity [28]. These methods turn out to be sufficient for the indistinguishability of the scheme.

Randomized FDH-RSA with Padding. Let GenRSA(1λ) denote an algorithm that outputs tuples (N, e, d)
where N is an RSA modulus, i.e. N = pq for two prime numbers p and q of length λ/2, and e, d ∈ Z×ϕ(N)

with ed = 1 modϕ(N), where ϕ(N) = (p− 1)(q− 1). Let HN : {0, 1}∗ → ZN be a hash function modeled as
random oracle and Zλ be a fixed number of 2λ bits, independently of N . The randomized FDH-RSA scheme
with padding is defined as follows.
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FDH-RSA.KGen(1λ) : Let (N, e, d)← GenRSA(1λ), pk := (N, e), and sk := d. Output (sk, pk).
FDH-RSA.Sign(sk,m) : Choose r ∈R {0, 1}λ and k ∈R [0, bZλ/Nc − 1]. Let σ′ := HN (m ‖ r)d modN .

Output σ := (σ′ + kN, r).
FDH-RSA.Ver(pk,m, σ) : Parse σ as (σ′, r). Let h′ ← HN (m‖r) and h := (σ′)e modN . Output h = h′.

Observe that on each signature σ′ a probabilistic padding is applied, computing k ∈R [0, bZλ/Nc−1], σ :=
σ′ + kN , which can be reversed by computing σ′ := σmodN . It maps uniformly distributed integers from
[0, N − 1] to (nearly) uniformly distributed integers in [0, Zλ − 1] (cf. Lemma 13).

Lemma 6. The probabilistic FDH-RSA scheme with padding is indistinguishable with full key exposure, in
the random oracle model.

Proof. We will consider the simulator Sim that, on input security parameter 1λ and message number `,
outputs a vector of ` integers in [0, Zλ − 1], drawn uniformly at random. Let A = (A1,A2) be any indistin-

guishability adversary against the modified FDH-RSA scheme. Consider experiments ExpIND,0,jFDH-RSA,Sim,A(λ),

similar to ExpIND,0FDH-RSA,Sim,A(λ), except that the first j signatures in σ∗ are simulated using Sim(1λ, j), i.e.

ExpIND,0FDH-RSA,Sim,A(λ) = ExpIND,0,0FDH-RSA,Sim,A(λ) and ExpIND,1FDH-RSA,Sim,A(λ) = ExpIND,0,`FDH-RSA,Sim,A(λ) for some ` polyno-
mially bounded by λ. It will suffice to prove that∣∣∣Pr

[
ExpIND,0,jFDH-RSA,Sim,A(λ) = 1

]
− Pr

[
ExpIND,0,j+1

FDH-RSA,Sim,A(λ) = 1
]∣∣∣

is negligible for all j.
Let Exp be the experiment which is like ExpIND,0,jFDH-RSA,Sim,A(λ) except that, in the generation of the (j+1)th

signature of σ∗, we replace the output of hash function HN by a value h ∈R ZN , picked uniformly at random
(or, equivalently, we use the value hd, for h ∈R ZN ). By the Random Oracle Model, this change can only be
detected by adversaries that correctly guess both: message m and randomizer r. But this will happen only
with negligible probability, since A1 would have to guess r ∈ {0, 1}λ, and A2 would have to guess m, which

has large entropy. Consider now the hop to experiment ExpIND,0,j+1
FDH-RSA,Sim,A(λ), which is exactly like Exp, except

that the returned (j + 1)th ‘signature’ is not computed via the padding, i.e. σ = (h + kN, r), but instead
via σ = (h′, r), where h′ ∈R [0, Zλ − 1]. We will show in Lemma 13 (1) that this introduces only a negligible

statistical difference between the output distributions of Exp and ExpIND,0,j+1
FDH-RSA,Sim,A(λ). ut

DL and Pairing-Based Constructions. We now move to the DL and pairing-based settings and focus
on the signature schemes by Schnorr [25] and by Boneh and Boyen [5], respectively.

Schnorr Signature Scheme. Let G = 〈g〉 be a cyclic group of prime order q, where |q| = λ, and H : {0, 1}∗ →
Zq be a hash function modeled as random oracle. Schnorr’s signature scheme is specified as follows.

SCH.KGen(1λ) : Choose x ∈R Zq. Output (sk, pk) := (x, gx).
SCH.Sign(sk,m) : Choose r ∈R Zq. Let c← H(gr ‖m) and s := sk · c+ rmod q. Output σ := (c, s).
SCH.Ver(pk,m, σ) : Parse σ as (c, s). Compute c′ ← H(pk−c · gs ‖m). Output c = c′.

In the indistinguishability analysis (akin to prior work on anonymity and confidentiality of the scheme [16,28])
we assume that all signers use the same group G.

Lemma 7. The (generalized) Schnorr signature scheme is indistinguishable with full key exposure, in the
random oracle model.

Proof. Consider the following simulator Sim: On input security parameter 1λ and message number `, Sim
independently samples ` random pairs (c′1, s

′
1), . . . , (c′`, s

′
`) ∈R Zq × Zq and outputs σ∗ = (σi)1≤i≤`, where

σi = (c′i, s
′
i). Let A = (A1,A2) be any indistinguishability adversary against the Schnorr signature scheme.

Denote by ExpIND,0,jSCH,Sim,A(λ) the experiment that is like ExpIND,0SCH,Sim,A(λ), except that the first j signatures in σ∗
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are simulated using Sim(1λ, j), i.e. ExpIND,0SCH,Sim,A(λ) = ExpIND,0,0SCH,Sim,A(λ) and ExpIND,1SCH,Sim,A(λ) = ExpIND,0,`SCH,Sim,A(λ)
for some ` polynomially bounded by λ. It suffices to prove that, for all j,∣∣∣Pr

[
ExpIND,0,jSCH,Sim,A(λ) = 1

]
− Pr

[
ExpIND,0,j+1

SCH,Sim,A(λ) = 1
]∣∣∣

is negligible.
Denote by Exp the experiment which is like ExpIND,0,jSCH,Sim,A(λ) except that, in the generation of the (j+1)th

signature of σ∗, we replace the output of hash function H by a value c′ ∈R Zq, picked uniformly at random.
By the Random Oracle Model, this change can only be detected by adversaries that correctly guess both:
group element gr and message m. This will happen only with negligible probability, since A1 would have
to guess gr (with success probability 1

q ≈ 2−λ), and A2 would have to guess m, which has large entropy.
Note that c is now independent of r, i.e., in the calculation of s := sk · c + r, variable r acts like a one-
time pad on sk · c. It follows that also s can be replaced by a uniformly random value s′ ∈R Zq, without

A noticing it. We have just shown that |Pr[ExpIND,0,jSCH,Sim,A(λ) = 1] − Pr[Exp = 1]| is negligible, and that

|Pr[Exp = 1]− Pr[ExpIND,0,j+1
SCH,Sim,A(λ) = 1]| = 0. This concludes the proof. ut

Boneh-Boyen Signature Scheme. The signature scheme by Boneh and Boyen [5] based on pairings works over
cyclic groups G1, G2, GT of prime order q (with |q| = λ) for which an efficient bilinear map e : G1×G2 → GT
is known. Let g1 and g2 be generators of G1 and G2, respectively. The scheme is specified for message space
Zq as follows.

BB.KGen(1λ) : Choose x, y ∈R Zq \ {0}. Let sk := (x, y) and pk := (u, v) = (gx2 , g
y
2 ). Output (sk, pk).

BB.Sign(sk,m) : Choose r ∈R Zq \ {−x+my }. Let σ′ := g
1/(x+m+yr)
1 . Output σ := (σ′, r).

BB.Ver(pk,m, σ) : Parse σ as (σ′, r). Output e(σ, ugm2 v
r) = e(g1, g2).

Lemma 8. The “hash-then-sign” version of the signature scheme by Boneh and Boyen is indistinguishable
with full key exposure, in the random oracle model.

We first prove that this construction is indistinguishable (in the standard model), yet for uniform message
distributions only, and then generalize this result to arbitrary distributions in {0, 1}∗ (in the random oracle
model).

Lemma 9. Signature scheme BB is (perfectly) indistinguishable with respect to full key exposure, for uni-
formly distributed messages.

Proof. Consider the following simulator Sim: On input security parameter 1λ and message number `, Sim in-
dependently samples ` random pairs (σ′, r) ∈R (G1 \{1})×Zq. Let A = (A1,A2) be any indistinguishability
adversary against the BB signature scheme such that A1 outputs uniformly distributed messages in Zq. De-

note by ExpIND,0,j
BB,Sim,A(λ) the experiment that is like ExpIND,0BB,Sim,A(λ), except that the first j signatures in σ∗ are

simulated using Sim(1λ, j), i.e. ExpIND,0BB,Sim,A(λ) = ExpIND,0,0BB,Sim,A(λ) and finally ExpIND,1BB,Sim,A(λ) = ExpIND,0,`BB,Sim,A(λ)
for some ` polynomially bounded by λ.

Note that in BB.Sign the mapping r 7→ σ′ = g
1/(x+m+yr)
1 is one-to-one between domain Zq \ {−x+my }

and range G1 \ {1}. Basically, this is due to the fact that Zq is a finite field, in which all elements but
zero can be multiplicatively inverted. It follows that, if r is picked uniformly at random from the given
domain, then r acts like a one-time pad on m and makes σ′ uniformly distributed, in A1’s eyes. The analog
holds for A2: This time, it is uniformly distributed message m that makes σ′ look uniform. This shows that
Pr[ExpIND,0,jBB,Sim,A(λ) = 1] = Pr[ExpIND,0,j+1

BB,Sim,A (λ) = 1] for all j, and hence concludes the proof. ut

In general, digital signature schemes are expected to support arbitrary message spaces, i.e. messages
m ∈ {0, 1}∗. As pointed out by Boneh and Boyen [5], their scheme can be converted into an unforgeable
signature scheme for arbitrary long messages by using the “hash-then-sign” approach, for a suitable hash
function H : {0, 1}∗ → Zq. Such ‘hybrid’ version of BB can still be proven unforgeable in the standard model,
as the only condition posed on H is that of collision-resistance. If, on the other hand, the hash function H
is additionally modeled as a random oracle (that smoothes the entropy in the message space to a uniform
distribution) the proof of Lemma 8 follows directly from Lemma 9.
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5 Pseudorandom Signatures

Although indistinguishability is already a strong privacy notion it still has one important limitation: The
simulator Sim used to define the IND property depends on the signature scheme S; in particular, it simulates
signatures using public parameters of S. Although both the signer and the message are successfully hidden in
IND signatures, the very scheme that was used to create a given signature might not be, e.g. IND signatures
may have characteristic lengths or follow specific formats, like element representation of the components
of Schnorr signatures, and so on. In practice, usage of some S in an application or network protocol can
be prescribed via standards. However, instantiations with concrete parameters (e.g. prime modulus p in a
Schnorr group G ⊆ Z×p ) is often left unspecified. Different parameter choices may introduce a unique pattern
that can be (mis)used to distinguish among the signing algorithms and by this obtain more information
about signers and about the context in which the signatures were produced.

We address this limitation in Definition 7 with the property of pseudorandomness, where we require that
signatures output by S are indistinguishable from randomly chosen binary strings of length L(λ) = LS(λ).
This simpler definition is sufficient to obtain pseudorandom signatures of some fixed length L∗, viewed as a
global upper bound on the individual lengths LS(λ) for all signature schemes S in the system, using a simple
padding with random bits. That is, all signatures in the system would be L∗ bits long and look completely
random, no matter how they were produced. It would hence become impossible, for some given signature σ
to derive any information about the scheme S that was used to generate it. This seems to be the highest
level of privacy that can be offered by a signature scheme.

Definition 7 (Pseudorandom Signatures). A signature scheme S is pseudorandom (PR), possibly with
full key exposure (PR-FKE), if there is a polynomially bounded function L(λ) such that for all PPT adversaries
A = (A1,A2) the advantage function

Adv
PR[-FKE]
S,A (λ) :=

∣∣∣Pr
[
Exp

PR[-FKE],0
S,A (λ) = 1

]
− Pr

[
Exp

PR[-FKE],1
S,A (λ) = 1

]∣∣∣
is negligible in λ, where Exp

PR[-FKE],b
S,A (λ), b ∈ {0, 1}, are the pseudorandomness experiments from Figure 5,

and where the following high entropy constraint holds: The function µ(λ) = maxM∈{0,1}∗ Pr[M ∈ m :
(m, t)← A1] is negligible in λ, assuming that A1 is provided with all admissible inputs and oracles as specified
in the respective pseudorandomness experiment. The minimum entropy of A is then given by − log2 µ(λ).

ExpPR,bS,A (λ) :

(sk, pk)← KGen(1λ)

(m, t)← ASign(sk,·)
1 (pk)

σ0 ← Sign(sk,m)

σ1 ∈R {0, 1}L(λ)×|m|

t′ ← ASign(sk,·)
2 (pk,σb)

if t′ = t then output 1, else output 0

ExpPR-FKE,bS,A (λ) :

(sk, pk)← KGen(1λ)

(m, t)← A1(sk, pk)

σ0 ← Sign(sk,m)

σ1 ∈R {0, 1}L(λ)×|m|

t′ ← A2(sk, pk,σb)

if t′ = t then output 1, else output 0

Fig. 5. Pseudorandomness Experiments (without and with Full Key Exposure).11

Pseudorandomness is as a special case of indistinguishability, where simulator Sim draws at random from
{0, 1}L(λ). However, PR is strictly stronger than IND, i.e. Lemmas 10 and 11 settle the PR notion at the top
of the privacy hierarchy:

11 We denote by σ ∈R {0, 1}L×|m| the process of picking |m| strings independently at random from {0, 1}L. We
comprehend L(λ) as the fixed length of signatures conforming to security level λ.
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Lemma 10 (PR⇒ IND, PR-FKE⇒ IND-FKE). Every pseudorandom signature scheme is indistinguishable.
The same implication holds with full key exposure.

Proof. The lemma follows directly from Definitions 6 and 7 by choosing the simulator Sim that draws
signatures at random from {0, 1}L(λ) in the indistinguishability experiment.

Lemma 11 (IND[-FKE] 6⇒ PR). Indistinguishable signature schemes (with full key exposure) are not nec-
essarily pseudorandom.

Proof. Let S be an indistinguishable signature scheme, with simulator Sim. We construct an indistinguishable
but not pseudorandom signature scheme S′ from S as follows.

KGen′(1λ) : Output (sk, pk)← KGen(1λ).
Sign′(sk,m) : σ ← Sign(sk,m). Output σ′ := σ‖1.
Ver′(pk,m, σ′) : Parse σ′ as σ‖b. Return 1 iff

(
Ver(pk,m, σ) = 1 ∧ b = 1

)
.

Scheme S′ is not pseudorandom: Define A1 to pick single random messages m ∈R {0, 1}λ, and output (m, 1),
where m = (m). Let A2, on input σ = (σ), output the last bit of σ. We compute A’s advantage as follows:

AdvPRS′,A(λ) =
∣∣∣Pr
[
ExpPR,0S′,A(λ) = 1

]
− Pr

[
ExpPR,1S′,A(λ) = 1

]∣∣∣ =
∣∣1− 1

2

∣∣ = 1
2 .

However, S′ is still indistinguishable: An appropriate simulator Sim′(1λ) is given by Sim(1λ)‖1. It is straight-
forward to show that any successful indistinguishability adversary for S′ can be turned into a successful
adversary against S. ut

5.1 Two Pseudorandomness Compilers

We present two compilers for pseudorandomness of digital signatures. Our first compiler assumes that the
underlying scheme is indistinguishable (with some additional constraints), while our second compiler offers
pseudorandomness for arbitrary (unforgeable) signature schemes. Both transformations work without random
oracles.

IND-to-PR Compiler: From Indistinguishability to Pseudorandomness. Our IND-to-PR compiler
converts any indistinguishable signature scheme into a pseudorandom one. This is done by considering the
different elements that form the signature component-wise (e.g., in case of Schnorr signatures, the elements
c ∈ Zq and s ∈ Zq), and encoding them as binary strings via appropriate admissible encodings. Resulting
strings are concatenated to obtain the pseudorandom signature. The concept of admissible encodings was
created for the main purpose of hashing into elliptic curves in the IBE scheme of Boneh and Franklin [6].
Their definition was later generalized to arbitrary sets by Brier et al. [8], and used recently in the construction
of a privacy-preserving authentication protocol by Bringer, Chabanne and Icart [9].

Definition 8 (Admissible Encoding [8]). Let S, R denote finite sets with |S| > |R|. A function F : S →
R is called ε-admissible encoding for (S,R) if it satisfies the following properties:

1. Computable: F is computable in deterministic polynomial time.
2. Invertible: There exists a PPT algorithm IF such that IF (r) ∈ F−1(r) ∪ {⊥} for all r ∈ R, and for r

uniformly distributed in R the distribution of IF (r) is ε-statistically indistinguishable from the uniform
distribution in S.

If ε is a negligible function of the security parameter then F is called an admissible encoding.

Intuitively, an admissible encoding F : S → R shifts the process of picking elements uniformly at random
in S to the process of picking elements uniformly at random in R, and vice versa. Not surprisingly, the
following aggregation lemma holds.
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Lemma 12 (Aggregation of Admissible Encodings). Let S = S1×. . .×Sn and R = R1×. . .×Rn denote
Cartesian products of finite sets. For each 1 ≤ i ≤ n, let Fi : Si → Ri denote an εi-admissible encoding.
Then F : S → R; (s1, . . . , sn) 7→ (F1(s1), . . . , Fn(sn)) is an ε-admissible encoding, for ε =

∑n
i=1 εi. ut

In our compiler, we will use admissible encodings F : S → R, where S = {0, 1}L(λ) and R is the ‘signature
space’ of the scheme. Note that w. l. o. g. it would even suffice to have S = {0, 1}` for ` < L(λ) as we can
always pad12 with L(λ)− ` random bits at the end in IF , and ignore the last L(λ)− ` bits when evaluating
F . Thus, if σ is indistinguishable then σ′ := IF (σ) ∈ {0, 1}L(λ) is pseudorandom. This admissible encoding-
based compiler works as follows, where the input signature scheme S is assumed to be indistinguishable with
a regular simulator and (F, IF ) denotes an appropriate admissible encoding that maps strings in {0, 1}L(λ)
into the signature space.

AEC.KGen(1λ) : Output (sk, pk)← S.KGen(1λ).
AEC.Sign(sk,m) : Let σ ← S.Sign(sk,m). Output σ′ ← IF (σ).
AEC.Ver(pk,m, σ′) : Let σ ← F (σ′). Output S.Ver(pk,m, σ).

The pseudorandomness of the resulting scheme AEC is proven in Theorem 1. This proof requires the
following notion of regular simulators that can be found in our proofs of IND signature schemes from Section
4.1 and exist for many other schemes.

Definition 9 (Regular Simulators). A simulator Sim in the indistinguishability experiment (cf. Figure 4)
is called regular if it samples uniformly at random from the ‘signature space’ S(λ), i.e. the range of the Sign
algorithm. That is, for regular simulators Sim, running σ∗ ← Sim(1λ, `) and σ∗ ∈R S(λ)` are identical.

Theorem 1. If S is an indistinguishable signature scheme with a regular simulator Sim and F is an ε-
admissible encoding that maps {0, 1}L(λ) into the signature space of S then the AEC signature scheme, ob-
tained via IND-to-PR compiler, is pseudorandom.

Proof. Let A = (A1,A2) be any pseudorandomness adversary against AEC signature scheme. Denote by

Exp the experiment that is like ExpPR,0AEC,A(λ), except that the signatures in σ∗ are not computed individually

as σ := IF (S.Sign(sk,m)), but as σ∗ := IF (Sim(1λ, |m|)), where IF is executed component-wise. As S is

indistinguishable by assumption, we know that
∣∣∣Pr
[
ExpPR,0AEC,A(λ) = 1

]
− Pr [Exp = 1]

∣∣∣ is negligible. Consider

now experiment Expj , which is like Exp except that the first j values in σ∗ are randomly picked strings
in {0, 1}L(λ), i.e. Exp = Exp0 and ExpPR,1AEC,A(λ) = Exp` for some ` polynomially bounded by λ. As Sim is

regular, the distribution of IF (Sim(1λ, 1)) is ε-close to the uniform distribution over {0, 1}L(λ). That is, we
proved that

∣∣Pr
[
Expj = 1

]
− Pr

[
Expj+1 = 1

]∣∣ ≤ ε is negligible for all j. All in all, we showed AdvPRAEC,A(λ) =∣∣∣Pr
[
ExpPR,0AEC,A(λ) = 1

]
−Pr

[
ExpPR,1AEC,A(λ) = 1

]∣∣∣ is negligible. Note that AEC preserves the unforgeability of

scheme S. ut

As shown above, general transformation of indistinguishable signatures into pseudorandom becomes
straightforward — once appropriate admissible encodings are identified. If signatures are formed by tu-
ples of elements of certain sets then by the aggregation lemma it will suffice to identify encodings for these
particular sets. Lemma 13 shows existence of admissible encodings for a variety of algebraic sets that are often
used in practical cryptography, including sets behind the indistinguishable versions of FDH-RSA, Schnorr,
and Boneh-Boyen schemes from Section 4.1.

Lemma 13 (Sets with Admissible Encodings). For the following sets R there exist polynomials `(λ)
and admissible encodings F : {0, 1}`(λ) → R:

(1) Ranges R = {0, . . . , N − 1} = ZN of natural numbers, for arbitrary N ∈ N.

12 Such pad/ignore steps can also be seen as the aggregation of F with the canonical admissible encoding for
{0, 1}L(λ)−` → {0, 1}0 (where {0, 1}0 denotes the language that contains only the empty word).
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(2) The set of quadratic residues modulo safe primes p, i.e. R = QR(p) ⊆ Z×p .
(3) Arbitrary subgroups Gq ⊆ Z×p of prime order q.
(4) The set R = E(F) of rational points on (certain) elliptic curves, defined over a finite field.

Proof. The set {0, 1}`(λ) can be canonically identified with T `(λ) := Z2`(λ) . It will hence, for all considered
sets R, suffice to indicate admissible encodings T `(λ) → R.

(1) Let N ∈ N be a natural number, and λ = |N | its length. Consider polynomial `(λ) = 2λ, function
F : T `(λ) → ZN ; a 7→ amodN , and the probabilistic mapping IF : ZN → T `(λ); b 7→ b + kN for random
k ∈R [0, b2`(λ)/Nc − 1]. It is easy to see that IF inverts F . According to [26, Section 8.8], the statistical
distance ε between IF (r) for r ∈R ZN and the uniform distribution in T `(λ) is bounded by ε < N/2`(λ) ≈
2λ/22λ = 2−λ, and hence negligible.

(2) and (3) Let p = αq + 1 with primes p, q such that gcd(α, q) = 1 and |p| = λ (if α = 2 we have
the safe prime setting). Let g be a generator of G = Z×p . Consider the probabilistic IF : Gq → Z×p ; a 7→
(gq)raα

−1 mod q mod p for r ∈R Zα together with its inversion F : Z×p → Gq; b 7→ bα mod p. As gq and also
(gq)r have order α, it is easy to see that F perfectly ‘inverts’ IF . The encoding is 0-admissible as for every
h ∈ G we have h = gt = (gq)x(gα)y for some t, x, y (by CRT or Euclid), i.e. every element in G is the
(unique) product of the power of an order-α and the power of an order-q element. In above construction, the

role of the former is taken by (gq)r, while element aα
−1 ∈ Gq corresponds to the latter. This encoding can

be composed with (1) for N = p to obtain the desired F : {0, 1}`(λ) → R.
(4) We refer to Brier et al. [8] for an overview of (pairing-friendly) curves with suitable admissible

encodings. ut

Direct PR Compiler. The PR compiler introduced below outputs pseudorandom signatures (with full key
exposure) for any signature scheme S; underlying techniques were proposed in [17] for building anonymous
signatures. Its main building block is a pair of associated randomness extractor E and hash function H.
Here, we only recall the properties of such a pair (E , H) and refer to [17] for a rigorous treatment. Basically,
a randomized hash function H takes a message m and some randomness r ∈R {0, 1}t(λ) and outputs h =
H(m; r). H is called collision-intractable if it is difficult to find m 6= m′ and r ∈ {0, 1}t(λ) with H(m; r) =
H(m′, r), for the same randomness r. The task of the randomness extractor E is to distill uniformly distributed
strings of fixed length from inputs x ← X whose distribution is unknown but where a certain minimum
level of entropy is assumed. As auxiliary input, E gets a uniformly distributed randomness u ∈ {0, 1}d(λ).
The extracted value is denoted by E(m;u). A pair (E , H) is called pseudorandom if tuples (r, y, u, e) and
(r, y, u, v) are computationally indistinguishable, where r ∈R {0, 1}t(λ), y ← H(x; r), u ∈R {0, 1}d(λ), e ←
E(x;u), and v ∈R {0, 1}|e|, for x ← X . Fischlin [17] offers an efficient instantiation for such primitive
in the standard model13. Our analysis shows that this primitive gives rise to the following compiler for
pseudorandom signatures, which are also indistinguishable and confidential (by Lemmas 10 and 5). We
notice that this compiler results in somewhat less efficient schemes as opposed to our IND-to-PR compiler
(e.g. when used with our IND examples).

DPRC.KGen(1λ) : Output (sk, pk)← S.KGen(1λ).
DPRC.Sign(sk,m) : Choose r ∈R {0, 1}t(λ) and u ∈R {0, 1}d(λ). Let h← H(m; r) and σ ← S.Sign(sk, h).

Compute τ := σ ⊕ E(m;u) and output σ′ := τ ‖r‖u.
DPRC.Ver(pk,m, σ′) : Parse σ′ as σ′ = τ ‖ r ‖ u. Let σ := τ ⊕ E(m;u) and h ← H(m; r). Output

S.Ver(pk, h, σ).

Theorem 2. If (E , H) is a pseudorandom pair of an associated randomness extractor E and a hash function
H then for any signature scheme S the DPRC signature scheme, obtained using our direct PR compiler, is
pseudorandom with respect to full key exposure (in the standard model).

13 In the random oracle model H(x; r) := H#(0 ‖ x ‖ r) and E(x;u) := H#(1 ‖ x ‖ r) for a hash function H# is an
efficient instantiation of a pseudorandom associated pair (E , H).
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Proof (Sketch). Anonymity of DPRC is shown in [17] by presenting a game-hopping proof that, in the first
hop, modifies ANON game such that challenge signature σ∗ is computed as specified in DPRC, except that
τ is replaced by τ := σ⊕ v for random v ∈R {0, 1}|E(m;u)|. As v acts as a one-time pad on σ, component τ is
uniformly distributed in {0, 1}|σ|. Obviously, the concatenation σ′ = τ ‖r‖u is uniformly distributed as well,
in {0, 1}|σ|+t(λ)+d(λ). This shows pseudorandomness of DPRC. Note that the transformed scheme inherits its
unforgeability from S under standard assumptions as proven in [17]. ut

6 Conclusion

In this paper we gave a detailed account on the privacy hierarchy for ordinary signature schemes, taking into
account earlier definitions of anonymity and confidentiality in the setting of high-entropic message spaces and
system-wide known public keys. Our major result are pseudorandom signatures that cannot be distinguished
from random strings and thus hide the entire information about message, signer, and signing algorithm. To
obtain such fully private signatures we gave two compilers: the more efficient one adds pseudorandomness to
indistinguishable signature schemes and we have shown that such schemes exist in different cryptographic
settings; our second compiler, based on Fischlin’s work [17], adds pseudorandomness to any unforgeable
signature scheme but is less efficient (though in the standard model). In summary, with our hierarchy of
privacy notions and generic transformations we showed how to efficiently achieve an ultimate form of privacy
for arbitrary signature schemes, both in the random oracle and the standard model.
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A Privacy and Impossibility Results for Deterministic Signature Schemes

In the following, we discuss why the privacy properties anonymity, confidentiality, indistinguishability, and
pseudorandomness from Definitions 3, 4, 6, and 7, respectively, can only be achieved by probabilistic signature
schemes. By specifying further definitional constraints on the respective experiments, we obtain meaningful
notions of these privacy properties for deterministic schemes. In addition, we give several impossibility results
in case of full key exposure.

A.1 Anonymity of Deterministic Signature Schemes.

A trivial attack against anonymity of any deterministic signature scheme S works as follows: Let P (·) be some
efficiently computable non-trivial predicate (e.g. the last bit of its argument) that is hard-coded into both A1

and A2. By random sampling and testing, A1 picks a message m for which P (σ0) = 0 and P (σ1) = 1, where
σ0 ← Sign(sk0,m) and σ1 ← Sign(sk1,m). Adversary A2 outputs P (σ) and clearly breaks the anonymity
of the deterministic scheme S. Hence, any meaningful definition of anonymity for deterministic signature
schemes will require at least the following additional constraint (whose name was coined for confidential
signatures by Dent et al. [16]):

– Signature free: A1 may not output m that has been queried to the signing oracle before.

If we also allow full key exposure, where A1 learns both sk0 and sk1 and can sign messages on its own, then
obviously the above constraint does not help:

Lemma 14. There is no deterministic signature scheme that provides anonymity with full key exposure.

Note that neither Yang et al. [28] nor Fischlin [17] addressed anonymity of deterministic schemes. In
particular, their anonymity notions, used as a basis in Definition 3, did not reflect possible determinism of
schemes.
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A.2 Confidentiality of Deterministic Signature Schemes.

A trivial attack against confidentiality of deterministic signature schemes proceeds as follows: On each
invocation, A1 outputs (m, t), where m = (M) consists of a single random high-entropy message M , and t =
Sign(sk,M). A2 receives σ∗ = (σ), outputs σ, and “wins” the experiment with advantage 1/2. This and
similar more sophisticated attacks can, again, be ruled out by a ‘signature free’ restriction, similar to the
one stated on anonymous schemes, yet extended to message vectors:

– Signature free: A1 may not output m that contains a message m that has been queried to the signing
oracle before.

Note that this constraint was also marked by Dent et al. [16] as being relevant to deterministic signature
schemes in their definition of strong confidentiality.

As in the case of anonymity, the ‘signature free’ restriction cannot prevent the above attack against
confidentiality of deterministic schemes if private signing keys are exposed, as the adversary could always
sign m on its own.

Lemma 15. There is no deterministic signature scheme that provides confidentiality with full key exposure.

Yet, ‘signature free’ is not the only restriction that is necessary to define confidentiality of deterministic
schemes in a reasonable way. In particular, we present another trivial attack against Definition 4: A1 flips
a coin and outputs either (m, 0), where m = (M,M) for a random message M , or outputs (m, 1) with
m = (M,M ′),M 6= M ′. AdversaryA2 just compares the two signatures in σ∗ and outputs 0 or 1, accordingly.
It seems that the following ‘message uniqueness’ constraint is sufficient to exclude this attack.

– Message uniqueness: for each (m, t)← A1 (where A1 is provided admissible inputs and oracles) and all
1 ≤ i, j ≤ |m|, we have i 6= j ⇒ mi 6= mj , i.e. no message is present twice in m.

Intuitively, this is a rather natural constraint: The adversary would not gain any additional knowledge
from asking the same message m ∈ {0, 1}∗ twice to a deterministic signing oracle. Interestingly, Dent et
al. [16] used the equivalent ‘pattern preservation’ constraint14 in their definition, yet without marking it as
being relevant for deterministic schemes only. We could not identify any reason why this constraint should
be relevant for probabilistic schemes: Probabilistic signatures should not carry patterns existing within m
over to σ∗. Posing the constraint on such schemes would thus weaken the general confidentiality definition
unnecessarily.

A.3 Indistinguishability of Deterministic Signature Schemes.

As in the case of deterministic anonymous and confidential signatures, we need additional constraints on the
definition of indistinguishability for deterministic schemes:

– Signature free: A1 may not output m that contains a message m that has been queried to the signing
oracle before.

– Message uniqueness: A1 may not output m that contains a single message twice

Basing on Lemmas 4 and 5 (IND ⇒ ANON and IND ⇒ CONF, respectively), the following two im-
possibility results with regard to information recovering and deterministic signature schemes are implied
immediately by Lemma 3 resp. Lemmas 14 and 15:

Corollary 1. There is no information recovering signature scheme that provides indistinguishability.

Corollary 2. There is no deterministic signature scheme that provides indistinguishability with full key
exposure.

14 The ‘pattern preservation’ constraint is defined as follows [16]: For any adversary A1 there exists a length function
`(λ) and relations �ij ∈ {=, 6=} (1 ≤ i, j ≤ `(λ)) such that for all possible (m, t) ← A1 (where A1 is provided
admissible inputs and oracles) it is required that |m| = `(λ) and mi �ij mj ∀i, j. In other words: If some of the
messages output by A1 are equal to each other (and hence form an “equality pattern”), then this pattern occurs
in all vectors output by A1. For deterministic signature schemes, the notions of pattern preservation and message
uniqueness are clearly equivalent.
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A.4 Pseudorandomness of Deterministic Signature Schemes.

Not surprisingly, we also have to restrict the definition of pseudorandomness to fit deterministic signatures
schemes. As for indistinguishability, the ‘signature free’ and ‘message uniqueness’ constraints have to be
added. Clearly, the impossibility of obtaining deterministic IND schemes in case where secret keys are exposed
(cf. Corollary 2) also applies to PR schemes, as Lemma 10 establishes ‘PR⇒ IND’.

Corollary 3. There is no deterministic signature scheme that provides pseudorandomness with full key
exposure.
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