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Abstract. Multi-Factor Authentication (MFA), often coupled with Key
Exchange (KE), offers very strong protection for secure communication
and has been recommended by many major governmental and industrial
bodies for use in highly sensitive applications. Over the past few years
many companies started to offer various MFA services to their users and
this trend is ongoing.

The MFAKE protocol framework presented in this paper offers a la
carte design of multi-factor authentication and key exchange protocols
by mixing multiple types and quantities of authentication factors in a se-
cure way: MFAKE protocols designed using our framework can combine
any subset of multiple low-entropy (one-time) passwords/PINs, high-
entropy private/public keys, and biometric factors. This combination is
obtained in a modular way from efficient single-factor password-based,
public key-based, and biometric-based authentication-only protocols that
can be executed in concurrent sessions and bound to a single session of
an unauthenticated key exchange protocol to guarantee forward secrecy.

The modular approach used in the framework is particularly attractive
for MFAKE solutions that require backward compatibility with existing
single-factor authentication solutions or where new factors should be
introduced gradually over some period of time. The framework is proven
secure using the state-of-the art game-based security definitions where
specifics of authentication factors such as dictionary attacks on passwords
and imperfectness of the biometric matching processes are taken into
account.

Keywords: two-factor, multi-factor authentication, tag-based authen-

tication, key exchange, framework, modular design.

1 Introduction

Authentication Factors. An authentication factor is used to produce some
evidence that an entity at the end of the communication channel is the one
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which it claims to be. Modern computer security knows different types of au-
thentication factors, all of which are widely used in practice. Their standard
classification considers three main groups (see e.g. [18]), characterized by the
nature of provided evidence: knowledge, possession, and physical presence. The
evidence of knowledge is typically offered by low-entropy passwords. These in-
clude memorizable (long-term) passwords or PINs, e.g. for login purposes and
banking ATMs, and one-time passwords that are common to many online bank-
ing and e-commerce transactions. The evidence of possession corresponds to
physical devices such as smart cards, tokens, or TPMs, equipped with long-term
(high-entropy) secret keys and some cryptographic functionality. These devices
have tamper-resistance to protect secret keys from exposure. The evidence of
physical presence refers to unique biometric identifiers of human beings.

A different approach might be needed for an attacker to compromise a particu-
lar factor, depending on its type and use. For instance, passwords are susceptible
to social engineering (e.g. phishing) and dictionary attacks. Digital devices can be
lost or stolen. Those offering tamper-resistance may nonetheless fall to reverse-
engineering [20,21], side-channel attacks [17], and trojans (e.g. recent Sykipot
Trojan attacks against smart cards). Biometric data can be obtained from a
physical contact with the human or copied if available in a digital form. Since
the number of personal biometrics that permit efficient use in security technolo-
gies is limited, their wide use across different application domains makes it even
harder to keep those factors private.

Multi-Factor Authentication (with Key Exchange). The strength of
Multi-Factor Authentication (MFA) is based on the assumption that if an entity
has many authentication factors, regardless of their nature, then it is hard for the
attacker to compromise them all. That is, by combining different factors within
a single authentication process, MFA aims at higher assurance in comparison
to single-factor schemes. MFA has found its way into practice!, most notable
are combinations of long-term passwords with secret keys, possibly stored in
tokens (e.g. Two-Factor SSH with USB sticks) or any of these with one-time
passwords (e.g. OATH HOTP/TOTP, RSA SecurID, Google Authenticator).
Many companies, e.g. Google, Facebook, Yahoo are now offering their users op-
tional two-factor authentication mechanisms based on one-time passwords. The
increasing use of smart phones to access services and the recent progress by Ap-
ple and Samsung to equip smart phones with fingerprint readers is expected to
further boost the practical deployment of the MFA technology. Since MFA is

! MFA definitions and usage in practice are not consistent. For example, according to
[1, Sec. 8.3], for two-factor authentication it suffices to deploy RADIUS authentica-
tion or use a single tamper-proof hardware token or a VPN access with individual
certificate, whereas using two factors of the same type is not regarded as a two-factor
solution. [2, Level 3] explicitly requires hardware tokens and some additional factor,
e.g. password or biometric. This is in line with the perception of MFA where au-
thentication with a certificate alone is considered single-factor [33] but deployment
of two or more passwords multi-factor [35]. For the purpose of generality, we regard
any approach with at least two factors irrespective of their type as MFA.
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mostly used to authenticate a client/user to a remote server the authentication
of the client becomes its main security goal. The server-side authentication in
MFA protocols offers further protection and is typically performed without using
multiple factors on the server side.

The concept of Multi-Factor Authenticated Key Exchange (MFAKE), for-
malized in [33], extends MFA with establishment of secure session keys. In ad-
dition to authentication goals it aims at key secrecy, usually modeled in terms
of (Bellare-Rogaway style) AKE-security [7,9,14]. Earlier MFAKE protocols fo-
cused mostly on two factors and were often unsuccessful: for instance, password-
token combination from [31] was broken in [37] which itself was broken in [28],
the scheme from [34] was cryptanalyzed in [36], and a biometric-token combina-
tion from [29] has fallen in [30]. Partially, these attacks were due to the missing
modeling and analysis in those works.

A formal approach to MFAKE introduced in [33] was the first to account
simultaneously for all three types of authentication factors. Most notable is
their modeling of biometric factors. Unlike some previous single-factor biometric
schemes, e.g. [16,10], that regarded biometrics as low- or high-entropy secrets,
[33] drops biometric secrecy in favor of the liveness assumption (see also [13,12])
aiming at physical presence of a user. The protocol from [33] has recently been
cryptanalysed in [24], who showed how an adversary that steals user’s password
and impersonates the server can essentially compromise all other authentication
factors of the client. The model in [33] didn’t consider server authentication
and the only way to prevent the above attack against the protocol is to require
mandatory authentication on the server side. The protocol would remain inse-
cure if server authentication is left optional (as intended by the model) due to
the way in which client messages bind different authentication factors together,
as also exploited in [24].

MFAKE protocols may differ not only in nature of factors but also in their
quantity. To this end, [35] introduced Multi-Factor Password AKE (MFPAKE),
extending the PAKE setting [6], where arbitrary many low-entropy passwords
(long-term and one-time) can be combined to authenticate the client. Their
protocol further offers public-key based server-side authentication and supports
verifier-based PAKE setting from [22,23].

Generalized and Modular MFAKE Approach? Various problems in the
design of secure MFAKE protocols, coupled with the fact that existing protocols
differ in nature and quantity of deployed factors and that perception of MFA
varies across products, standards, and research literature, motivates the need for
a simpler and modular MFAKE approach.

Our goal is to build secure MFAKE protocols out of well-known and under-
stood concepts behind existing single-factor solutions. We argue that in general
this approach though not necessarily more efficient helps to avoid caveats, arising
in the combination of factors and results in a cleaner, less error-prone protocol
design. The generality of the approach can further be used to formally explain
the relationships between MFAKE and single-factor authentication schemes, and
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its modularity is beneficial for an independent accommodation of other factors,
e.g. for social authentication [11,15].

A general MFAKE protocol can be built from different types of single-factor
AKE protocols that are then combined in a smart way into a secure MFAKE
solution. The feasibility of this approach and its formal correctness is implied
by our work. A direct combination of different black-box AKE schemes is sub-
optimal since it would include some redundancy in the computations of forward-
secure session keys. Therefore, our approach for a general MFAKE is to use
single-factor authentication-only protocols (to avoid computation of multiple
session keys) and derive one forward-secure session key at the end of the protocol.

1.1 Contributions and Organization

General MFAKE Model. We introduce and model a general framework for
(o, B8,7v)-MFAKE, including its MFA-only version, building on the three-factor
AKE model from [33]. In a standard client-server setting we admit arbitrary
quantities and combinations of low-entropy passwords (long-term and one-time),
high-entropy secret keys (possibly with corresponding public keys), and biomet-
ric factors (with explicit and implicit matching). We model dictionary attacks on
passwords and also account for the imperfect matching process of biometric tem-
plates. When modeling biometrics we follow the liveness assumption of [33] and
do not treat biometric distributions as secret. We discuss why this assumption
is realistic from the practical point of view.

Remark 1. In the full version of this paper [19] we further relate our (a, 8, 7)-
MFAKE framework to several existing authentication models and protocols. By
varying the parameters «, 3, and v we can show that many current single-factor
and multi-factor settings can be seen as special cases of our general framework:
(1,0,0)-MFAKE implies PAKE models from [6,22], (0, 1, 0)-MFAKE implies two-
party AKE models from [7,9], (1,1, 1)-MFAKE subsumes the three-factor client
authentication approach from [33], while («a, 0,0)-MFAKE is related to the MF-
PAKE protocol introduced in [35].

Modular (o, 8,v)-MFAKE Framework. We give a simple generic (a, 5, 7)-
MFAKE protocol construction, based on sub-protocols that can be instantiated
from a wide range of existing, well-understood and efficient authentication-only
schemes. More precisely we consider arbitrary many independent runs of efficient
authentication-only protocols that rely on passwords, secret keys, and biomet-
rics and link them to a single independent session of an Unauthenticated Key
Exchange (UKE) in a way that generically binds authentication and key estab-
lishment and results in an AKE-secure MFAKE protocol (with forward secrecy)
that offers MFA for the client and strong (optional) authentication of the server.

To this end, we define a generalized notion of tag-based MFA, extending the
preliminary concepts from [25] that considered the use of tags (auxiliary strings)
in public key-based challenge-response scenarios. For all types of single-factor
authentication-only protocols we demonstrate existence of efficient tag-based
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flavors and discuss their generic extensions with tags. We show how to use tags in
an («, 8,7)-MFAKE protocol to bind all independent (black-box) sub-protocols
in a secure way. (In this way, for example, we avoid the type of problems identified
in [24] for the protocol in [33].)

ORGANIZATION. Generalized (v, 3,7)-MFAKE, its MFA-only version, and secu-
rity goals are modeled in Section 2. Our modular and generic construction of
(o, B,7)-MFAKE is specified and analyzed in Section 3, along with the underly-
ing sub-protocols and their instantiations.

2 Generalized MFAKE: Definitions and Security

Our definitions of generalized MFAKE extend the model from [33], which in turn
builds on the models from [7,6].

2.1 System Model and Correctness

Participants, Sessions, and Authentication Factors. An MFAKE protocol
is executed between two participants: a client C and a server S. Several instances
of any participant can exist at a time. This models multiple concurrent protocol
sessions. An instance of participant U € {C, S} in session s is denoted as [U, s].
The session id s is the transcript of all messages sent and received by the instance,
except for the very last protocol message. At the end of the protocol each instance
either accepts or rejects.

By pid([U, s]) we denote partner identity with which [U, s] is interacting in
the protocol session. Two instances [U, s] and [U’, '] are said to be partnered if
and only if pid([U, s]) = U’, pid([U’, s']) = U, and their session ids form matching
conversations [7,9], denoted s = s'.

Each client C' may have arbitrary types and quantities of authentication fac-
tors that it may use in multiple protocol sessions as detailed in the following.

PASSWORDS. A client C' may hold an array of a passwords, denoted pwd¢. Each
password pwdg|i], ¢ = 1,...,« is assumed to have low entropy, chosen from a
dictionary Dpuq. Passwords can be used across multiple sessions, in which case
they are considered to be long-term. We also allow for one-time passwords [3,32]
that have been previously registered with the server. Our setting can be extended
to deal with verifier-based password authentication, e.g. [23,8,26], where the
server stores some non-trivial function of pwdc[i] for better protection against
server compromise attacks.

CLIENT SECRET KEYS. A client C may hold an array of 8 secret keys, denoted
skc. Each secret key skc[i] € KeySp, ¢ = 1,...,/ is assumed to have high
entropy. In case of public key-based client authentication there exists an array of
corresponding public keys, denoted pk¢, which is assumed to be known system-
wide. Any skc¢[i] can be stored in a secure hardware token (e.g. in a smartcard
or TPM), in which case its usage in the protocol assumes client’s access to
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the corresponding device, i.e., our model doesn’t distinguish between hardware
tokens and private keys of the client.

BI1oMETRICS For each client C there are y public biometric distributions Distc;,
it =1,...,7. The process of measuring some biometric (being it face, any par-
ticular finger, or iris) is comprehended as drawing a biometric template We ;
according to Distc,;. Upon the enrollment of the client an array W contain-
ing v biometric templates W¢[i], ¢ = 1,...,7 is created and will be used as a
reference for the session-dependent matching process on the server’s side. We do
not need to require that W ¢ is stored in clear on the server’s side. Our model
admits the case, where the server stores some non-trivial transformation of W ¢,
e.g. using secure sketches [16,10].

Functionality of biometric data matching is modeled through an algorithm
BioMatch, which takes as input a candidate template W* and a reference tem-
plate W, which may also be given implicitly in a transformed form, and outputs
1 indicating that W* matches W and 0 otherwise. For example, BioMatch can
require that the Hamming distance between W and W* remains below some
threshold, an approach used, e.g. in [10,33]. We also take into account that bio-
metric measurements are not perfect:

— For any client C,
Pr [BioMatch(Wai, Woli]) =1 | We, « Diste,,ic [1,7]] > 1 — false®,

where false]*® is the probability with which ith biometric of C' is falsely
rejected.
— For any two clients C’, C with C" # C,

Pr [BioMatch(Wél,i, Weli]) =0 | Wer,  Dister i€ [1,7]] > 1 — falseP®,

where false?® is the probability with which ith biometric of C” is falsely
accepted.

While false rejection is important for MFA correctness, false acceptance impacts
the lower bounds of the protocol’s security.

SERVER SECRET KEY We assume that server S may have a high-entropy secret
key skg with the corresponding system-wide known public key pkg.

Generalized MFAKE. We define generalized MFAKE and its correctness
property.

Definition 1 ((a, 8,7)-MFAKE). A multi-factor authenticated key exchange
protocol (o, 8,7)-MFAKE(C, S) is a two-party protocol, executed between a client
instance [C, s] with o passwords, [ secret keys, and ~v biometric templates and
a server instance [S,s'] such that at the end of their interaction each instance
either accepts or rejects. The correctness property of the protocol requires that for
all k € N, if at the end of the protocol session [C, s| accepts holding session key
kc and [S, s] accepts holding session key kg, and [C,s] and [S, s] are partnered,
then Pr[kc = kg] = 1.
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In authentication-only MFA protocols parties either reject or accept their com-
munication partner without computing any session keys. The following definition
of client’s MFA towards the server accounts for imperfect biometric matching
process, where servers may falsely reject clients.

Definition 2 ((a, 8,7)-MFA). A multi-factor authentication-only protocol («,
B,7)-MFA is a two-party protocol, executed between a client instance [C, s] with
«a passwords, B secret keys, and v biometric templates and a server instance
[S, s'] such that at the end of their interaction the server instance either accepts
C' as its communication partner or rejects. Let ‘acc C’ denote the event that
[S, s] accepts the client. The correctness property of the (a, B,7)-MFA protocol
requires that Prlacc C] > 1 — i false]®.
i=1

For server-side authentication the multi-factor aspect is typically irrelevant,
i.e., the client decides whether to accept the server based on pkg. The correctness
property in this case is perfect.

2.2 Security Goals: AKE-Security and Mutual Authentication

MFAKE protocols must guarantee standard goals with respect to session key
security and mutual authentication against any probabilistic polynomial-time
adversary A. Due to asymmetry with regard to the use of multiple factors on
the client side and typically one factor (secret key) on the server’s side, mutual
authentication is dealt with separately for clients and servers.

Liveness Assumption for Biometrics. We assume that biometric data is
public and resort to liveness assumption [33] to ensure physical presence of a
client. Liveness of a client C' is modeled through a special biometric computation
oracle BioComp([C, s], W.4,;): depending on the state of [C,s] this oracle uses
client’s secret keys sk and passwords pwdc together with an input biomet-
ric template W 4,; that must be chosen according to some adversary-specified
distribution Dist 4,; to perform the required computation step that would oth-
erwise be performed using a template W¢ ; chosen according to the distribu-
tion Distc ;. The crucial condition here is that Dist 4 ; must significantly differ
from Distc,; such that Pr[BioMatch(W4 ;, W¢(i]) = 0] > 1 — false?®® for any
W 4,i <R Dist 4 ;. For simplicity, we assume that A queries BioComp only with
templates W4 ; from the distributions Dist 4 ;, 1 < ¢ <+ (alternative modeling
of BioComp would require A to specify some template generation algorithm with
a suitable distribution Dist 4 ; which will be invoked within BioComp on each
new query to pick W4 ;). Liveness assumption requires that any new message
m, whose computation depends on the ith biometric template of C', must be pre-
viously generated by the BioComp oracle, before an active adversary can make
use of it. Using BioComp oracle A can test own biometric templates in client’s
computations. Note that the liveness assumption allows for replay attacks on
biometric-dependent messages, i.e. A can consult the BioComp oracle to obtain
a new message in one session of C' and then replay it in another.
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Remark 2. Hao and Clarke [24] criticized [33] for the assumption that biometric
data is public, arguing that templates that can be obtained by the adversary in
practice are often of poor quality so that obtaining high-quality templates should
be seen as a corruption of the client. This might be a valid argument in certain
use cases, however, for the purpose of generality, it seems more appropriate
to assume that biometric data is public and resort to the liveness assumption,
when modeling security of biometric-based protocols. Since biometric data is
used in many different domains (e.g. e-passports, personal computers, entry ac-
cess systems, etc.) leakage of high-quality templates is not unlikely. In contrast
to private keys, biometric characteristics are produced by nature and are bound
to a specific person. From this perspective, their modeling via liveness assump-
tion, aiming at user’s physical presence seems to be more appropriate. Liveness
assumption has also been in the focus of recent standardization initiatives, e.g.
ISO/IEC WD 30107 Anti-Spoofing and Liveness Detection Techniques.

Client and Server Corruptions. An active adversary A may corrupt au-
thentication factors of a client C' through its CorruptClient(C, type, i) oracle by
indicating the type of the corrupted factor and its position ¢ in the array. Cor-
rupted passwords and secret keys are revealed to A, whereas corrupted biometric
factors imply that A no longer needs to follow restrictions put forth by the live-
ness assumption on those factors. A can ask multiple CorruptClient queries for
different factors of its choice. This models realistic scenarios, where different fac-
tors may require different attacks. Server corruptions are handled through the
CorruptServer oracle, which responds with skg.

Adversarial Queries. Our security definitions will be given in form of games
with a PPT adversary A that interacts with the instances through a set of
oracles, as specified in the following. We assume that U, U’ € {C, S}.

Invoke(U, U’) allows A to invoke a session at party U with party U’. If U is a
client then U’ must be a server, and vice versa. In response, a new instance
[U, s] with pid([U, s]) = U’ is established. [U, s] takes as input the authen-
tication factors of U. If [U, s] is supposed to send a message first then this
message is generated and given to A.

Send([U, s],m) allows A to send messages to the protocol instances (e.g. by
forwarding, modifying, or creating new messages). In general, the oracle
processes m according to the state of [U, s] and eventually outputs the next
message (if any) to A. However, if U = S and m is such that it was not
produced by an instance of C' = pid([S, s]) but its computation was expected
to involve ith biometric of C, then m is processed only if it was output by
BioComp([C, -], W ;) or if A previously queried CorruptClient(C, 3, 7).

BioComp([C, s], W4 ;) outputs message m (if any) computed based on the inter-
nal state of [C, s] using sk¢, pwdc, and Wy ; (from Dist 4, as explained
above).

RevealSK([U, s]) gives A the session key computed by [U, s] (if such key exists).

CorruptClient(C, type,i) allows A to corrupt authentication factors of C. If
type = 1 then A is given pwdcli]; if type = 2 then it receives skc[il;
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if type = 3 then A receives nothing but the liveness assumption for the ith
biometric of C' is dropped.
CorruptServer(S) gives A server’s S secret key skg.

Freshness. The notion of freshness prevents A from using its oracles to attack
the protocol in a trivial way. For instance, key secrecy and authentication goals
will require that no protocol participant was fully corrupted during the protocol
session: a client C' is fully corrupted if and only if all existing authentication fac-
tors of C' have been corrupted via corresponding CorruptClient(C, -, -) queries; a
server S is fully corrupted if and only if a CorruptServer(S) query has been asked.
Our definition of freshness aims at server instances since A will be required to
break AKE-security for their session keys. This is not a limitation since protocol
correctness guarantees that any accepted partnered client instance will compute
the same key as the server instance. In protocols without server authentication A
can impersonate the server and compute the same key as the client. An instance
[S, s] that has accepted is said to be fresh if all of the following holds:

— Upon acceptance of [S, s] neither the server S nor the client C = pid([S, s])
were fully corrupted.

— There has been no RevealSK query to [S, s] or to its partnered client instance
(if such instance exists).

The above conditions allow full corruption of parties after the session ends (upon
acceptance) and thus capture the property of forward secrecy that is equally
important for all types of authentication factors.

Remark 3. Freshness conditions can be made more complicated to incorporate
specialized goals such as security against key compromise impersonation (KCI)
and corruptions of ephemeral secrets (cf. [27] and its variants). These goals how-
ever are factor-dependent. For instance, (a,0,0)-MFAKE protocols with shared
passwords typically wouldn’t offer KCI-security (which by definition makes sense
only in the public key setting). It also seems unlikely that («, 0,0)-MFAKE can
tolerate leakage of ephemeral secrets (the only randomness used in the proto-
col) without enabling an offline dictionary attack. Our conditions thus offer a
common security base for all (o, 3,v)-MFAKE flavors, without narrowing the
possibility of extension towards more complex requirements.

Security of Session Keys. Secrecy of session keys is modeled in terms of
AKE-security in the Real-or-Random indistinguishability framework [4] where
multiple Test queries that can be asked only to fresh instances [S,s]. Their
answers depend on the value of bit b, which is fixed in the beginning of the
game: if b = 1 then A receives the real session key held by [S,s]; if b = 0
then A is given a random key chosen uniformly from the set of all possible
session keys. At the end of the game A outputs bit b’ aiming to guess b. Let
Succﬁé%”gm'MFAKE(ﬁ) denote the probability of the event ¥’ = b in a game
played by A against the AKE-security of («,3,7v)-MFAKE. Let ¢ denote the
total number of invoked sessions. («a, 8, y)-MFAKE is AKE-secure, if for all PPT

adversaries A the following advantage is negligible in &:
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Y
. o o 1
Adv (AaK[;’Y) MFAKE, A( = succ%;%” MFAKE,A(H) _ q(|D . i th?o) -, ‘
Pv i=1

AKE-security is relevant only for («, 8,7)-MFAKE protocols from Definition
1. It doesn’t apply to (a, f,7)-MFA protocols from Definition 2 that do not
support key establishment.

Authentication Requirements. An (a, 8,7)-MFAKE protocol must further
provide authentication, which we treat separately for clients and servers. A pro-
tocol which satisfies both offers mutual authentication.

CLIENT AUTHENTICATION. Let A be an adversary against client authentica-
tion of (v, 8,7)-MFAKE that interacts with client and server instances using the
aforementioned queries (whereby Test queries are irrelevant). A breaks client
authentication if there exists a server instance [S, s] that has accepted a client
C = pid([S, s]), for which there exists no client instance that is partnered with

[S, s], and neither S nor C' were fully corrupted upon the acceptance of [, s].

Let SuccC A’ﬁtﬁ) MFAKE’A(K) denote the success probability in breaking client

authentication. The protocol is CAuth-secure, if for all PPT adversaries A the
following advantage is negligible (in k):

a, MFAKE,. A «a,3,v)-MFAKE, A os
AV A ) = [ucel A ) — o+ Zfa'se" )|
pW

This definition of CAuth-security is directly applicable to («, 8,v)-MFA pro-

tocols from Definition 2. The advantage of A is denoted then Adv(CaAitl) MPAA (k)

and its success probability is subject to the same bounds as SuccCA’ﬁtﬁ) MFAKE’A(K).

For (a, B, v)-MFA protocols CAuth-security is the main property.

Remark 4. The low entropy of passwords and non-perfect biometric matching
impose a lower bound (5" | + >, falsel®) on the success probability of a
CAuth-adversary. This bound is not imposed on the success probability with
regard to server authentication as explained below.

SERVER AUTHENTICATION. An adversary A against server authentication of
(a, B,7)-MFAKE interacts with client and server instances and breaks server
authentication if there exists a client instance [C, s] that has accepted a server
S = pid([C, s]), for which there exists no server instance that is partnered with
[C, s], and neither C' nor S were fully corrupted upon the acceptance of [C, s].

(o, B,7)-MFAKE is SAuth-secure, if for all PPT adversaries A the probability

of breaking server authentication, denoted Succéiftg) MFAKE, A( ) is negligible in

the security parameter k.
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3 Modular Design of MFAKE Protocols

Our general («,f,v)-MFAKE protocol is built in a modular way from sub-
protocols for different authentication factors, yet with some extensions and op-
timizations. We start with the main building blocks.

3.1 Tag-Based Authentication

Tag-based Authentication (TbA) [25] accounts for the use of auxiliary, possibly
public, strings (tags) in authentication protocols. In TbA each party uses a tag, in
addition to the authentication factor, and the protocol guarantees that if parties
accept then their tags match. For instance, the server accepts some client in a
session if and only if that client was alive during that session and used as input
the same tag as the server. For public key-based challenge-response protocols,
[25] gave a signature-based compiler with the ThA property. In our work we
require a more general TbA notion that in addition to public keys encompasses
passwords and biometrics as defined in the following.

Definition 3 (Tag-based MFA). A tag-based MFA protocol (c, B,~)-tMFA is
an (a, B,7)-MFA protocol from Definition 2, where in addition the client instance
[C, s] takes as input tag tc, the server instance [S, s] takes as input tag ts, and
if tc # ts then both parties reject; otherwise, they accept as in the (o, 8,v)-MFA
protocol.

Tag-based CAuth-security: Let A be a PPT adversary against client authentica-
tion of (a, B,v)-tMFA that interacts with the instances of C and S using the same
oracles as for (o, 8,7v)-MFA, except that the Invoke oracle is modified such that it
recetves tag t as an additional input from A. A is said to break CAuth-security
of (a0, B,7)-tMFA if at the end of its interaction there exists a server instance
[S, s] that was invoked with tag ts and has accepted a client C = pid([S, s]), for
which there exists mo client instance that was invoked with tag tc = tg and is
partnered with [S, s], and neither S nor C were fully corrupted upon the accep-
tance of [S, s]. The corresponding advantage of A, denoted Adv(ca[ii’t?l)'tMFA’A(m),
is then defined analog to the advantage in (c, B,7)-MFA.

A is allowed to test tags of its own choice, i.e. existence of a partnered client
instance that was invoked with a tag tc # tg leads to a successful attack. Def-

initions of tag-based server authentication in (a, 8,7)-tMFA and success proba-

bility Succéift’z)_tMFA’A(m) are obtained by reversing the roles of C' and .S, as for

(a0, B,7v)-MFA in Section 2.2.

3.2 Utilized Sub-protocols and Their Examples

Our framework constructs (a, 8,7)-MFAKE in a modular way from simpler
protocols that represent special cases of tag-based MFA. We first describe corre-
sponding (non tag-based) protocols for authentication and provide some exam-
ples, including the discussion on how to extend those protocols with tags.
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PwA : (Tag-Based) Password-Based Authentication Protocol. The first
sub-protocol is for password-based authentication, denoted PwA, in which only
one party (in our case the client) authenticates itself to the other party (server).
In our generalized MFA model the adversarial advantage against client authen-
tication of PwA becomes Adviy ™A (k) = AdvA’(l’O’O)'MFA(n).
CAuth CAuth

For instance, an AKE-secure PAKE protocol with key confirmation from client
to server, which is proven secure in the model from [6] can be used as PwA. On the
other hand, those PAKE protocols can be somewhat simplified since we do not
require PwA to provide session keys. The following is an example for the PAKE
protocol from [5] when only client-side authentication with key confirmation is
applied.

PwA EXAMPLE. Let (G,g,q) be a description of the cyclic group of prime or-
der ¢ with generator g that together with two elements VW € G and a hash
function H : {0,1}* — {0,1}* build public parameters. Assume that pwd €
Z, is shared between C' and S. In a PwA session, derived from [5], S sends
Y* = ¢gyWPv? for some y g Z, to C. C picks x g Z, and responds
with (X*, h) = (VP H(C, S, Y*, X*, (Y*/WP¥))T pwd)). S checks whether
h =H(C,S,Y* X*, (X*/VP4)Y pwd) and accepts the client in this case. It is
easy to see that client authentication of this PwA follows from the security of
PAKE in [5].

VERIFIER-BASED PwA. The (2-method introduced in [23,22] transforms any
PAKE into a verifier-based (aka. asymmetric or augmented) PAKE where pass-
words are stored on the server side in a blinded way using a random oracle
H', a symmetric encryption scheme (Gen, Enc, Dec), and an additional pair of
signing keys (sk, pk), which are not treated as an authentication factor. For a
given password pwd the server stores (H' (pwd), Encpypa(sk)). The £2-method pro-
ceeds as follows. First a (symmetric) PAKE session is executed using H’'(pwd)
as a password on both sides, resulting in an intermediate PAKE key k. This
key is used to derive two independent keys k' and k” and the client is given
Ency (Encpya(sk)). C decrypts sk and sends a signature on the entire protocol
transcript. If this signature verifies using pk the server accepts the client. The
session key of verifier-based PAKE becomes k”. The f2-method can be applied
to obtain verifier-based PwA from plain PAKE protocols, in which case k" can
be omitted.

TAG-BASED (VERIFIER-BASED) PwA. In the symmetric case any PwA protocol
can be transformed into a tag-based tPwA as follows. Parties on input their tags
t first compute Hr(pwd, t) using a cryptographic hash function Hr, which then
serves as a password for the original PwA. Since in Definition 3 the adversary
specifies tags upon invocation of an instance any successful CAuth-adversary
against tPwA can either be used to break CAuth-security of PwA or to find a
collision for H, i.e. Advgxa’f(n) < Advg")ﬁ’gﬁ(ﬁ) + gew (k) in g protocol ses-
sions. A similar trick can be applied to verified-based PwA constructed using
the aforementioned 2-method — instead of H'(pwd) in the initial (symmetric)
PwA session parties would use Hrp(H'(pwd),t). Security of such verifier-based
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tPwA follows from the security of the underlying PwA, the {2-method, and the
collision-resistance of Hr.

PkA: (Tag-Based) Public Key Authentication Protocol. The second sub-

protocol is a single-side authentication protocol in the public key setting, de-

noted PkA, with adversarial advantage against its client authentication defined
A,PKA A,(0,1,0)-MFA

as Adviy (k) = AdeA(uth ) (k).

TAG-BASED PkA. Examples of PkA include challenge-response protocols, where
S sends a (high-entropy) challenge r to C, and C replies with a function of its
secret key, e.g. a signature. A generic extension of such PkA protocols with tags,
denoted tPkA, uses a cryptographic hash function H7 and follows immediately
from [25] — the challenge r received by C' with tag ¢¢ is transformed into
re = Hr(r,tc), which is then used to generated response to S where it is
verified using rs = Hr(r,ts). As shown in [25] this conversion is applicable to
various classes of PkA protocols.

BiA: (Tag-Based) Biometric-Based Authentication Protocol. The third
sub-protocol is a biometric-based authentication protocol, denoted BiA, in which
C authenticates towards S that holds some (possibly blinded) reference template
of C. In line with our model (and [33]) we work with public biometric factors
and denote the adversarial advantage against client authentication of BiA as
AV, (k) = Advgiin M ().

TAG-BASED BiA EXAMPLE. Let (G, g,q) be a cyclic group of sufficiently large
prime order ¢. C' and S first execute an unauthenticated Diffie-Hellman key ex-
change in G by exchanging g* and ¢¥. Consider two hash functions Hy, Hs : G —
{0,1}". Let W(,; resp. We,; denote the ith bit of the corresponding template.
For each bit i the client computes h; = H1 (g%, g%, 9", W, ;,4) using its version
of g"¥ and sends the resulting set {h;}; to S. S re-computes corresponding values
using its version of g*¥ and the reference template W, and accepts the client
if 7 or more hash values from {h;}; match. Note that if liveness assumption is
in place then the adversary is prevented from sending any h; that was not com-
puted beforehand through the BioComp oracle. The tag-based CAuth-security
of the protocol follows then directly from the classical CDH assumption in the
random oracle model.

UKE: Unauthenticated Key Exchange Observe that tag-based authentica-
tion protocols do not offer computation of session keys. In our modular (a, 3,
~)-MFAKE protocol we will use an unauthenticated key exchange, denoted UKE,
as another sub-protocol. We assume that UKE satisfies the following standard
definition (see e.g. [25]) tailored to the client-server scenario.

Definition 4 (Unauthenticated KE). An unauthenticated key exchange pro-
tocol, denoted UKE, is a two-party protocol executed between a client instance
[C,s] and a server instance [S,s'] such that at the end both instances accept
holding respective session keys ko and kg or reject. Let s = tro and s’ = trg be
respective communication transcripts of the two instances. An UKE protocol is
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correct if their partnering, i.e. s = s', implies equality of their session keys, i.e.,
kc = ks.

KE-SECURITY. Consider the following attack game against some correct UKE
protocol: A PPT adversary A receives as input the security parameter k and can
query the Transcript oracle which is parameterized with a random bit b fixed in the
beginning of the game. On an ith query the Transcript oracle executes a protocol
session between two mew instances of C' and S, and hands its communication
transcript tr; and a key k; to A, where k; is real if b = 0 or randomly chosen
(for each new Transcript query) if b = 1. At some point A outputs bit b’. An UKE
protocol is KE-secure if the following advantage is negligible in k for all A:

AdviiEA = ’Pr[b =] -

UKE EXAMPLE. The unauthenticated Diffie-Hellman key exchange protocol in
a cyclic group (G, g, q), where C' and S exchange g” and g¢¥, respectively, and
derive their session keys via H(g", g, g") offers a straightforward KE-secure
UKE scheme in the random oracle model under the CDH assumption.

3.3 Modular (o, 3,v)-MFAKE Protocol Framework

We now detail the modular design of a generalized («, 3,v)-MFAKE protocol,
which supports arbitrary combinations of authentication factors, both in type
and quantity. In addition to the sub-protocols from the previous section, its
construction utilizes four hash functions Hr, He, Hs, Hi : {0,1}* — {0,1}7,
modeled as random oracles that are used for the purpose of tag derivation, key
confirmation, and key derivation.

PROTOCOL DESCRIPTION. (a, f3,7)-MFAKE is built from four sub-protocols:
UKE, tPwA, tPkA, and tBiA. The design is based on the following idea (see
also Figure 1): first, C' and S run one UKE session resulting in unauthenti-
cated session keys kg for the client and k{, for the server, that are then used
by both parties to derive tags (t¢ and tg) through Hp. Then, an appropriate
tag-based sub-protocol is executed independently for each authentication factor
of the client. C' and S thus execute « sessions of tPwA, 3 sessions of tPkA (with
client-side authentication), and v sessions of tBiA, possibly in parallel. S aborts
the protocol and rejects C' if any of those sessions results in the rejection of the
client. The server authentication is optional and is executed through a session of
tPkA (with server-side authentication). After finishing all sub-protocols C' and
S hold their so-far transcripts {tr;}i=o,...a+8+v+1 and {tr;}i=o, _a+p+y+1, T€
spectively, and proceed with the confirmation: C sends a hash value, computed
with H¢, on input its unauthenticated key material from the UKE session and
session identifier s, which comprises its so-far transcripts and the identities of
both parties. S verifies that this hash value is as expected. For the optional
server authentication, S responds with its own hash value, computed using Hg
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C(pwdc, skc,W¢, pks ) ( sks , pwdc ,pkc, W¢ ) S
= |
| UKE \
ko, tro k:f), tl’6
tc <—r7"lT(C7 S,ko,tro) ts (—HT(C,S7 k‘6,tl’6)
pwdcll], tc -— pwdcll], ts
| tPwA \
tri : if acc C : tr}
pwdc[al], tc : pwdclal,ts
| tPwA [
tro if acc C : tr),
skc(l], tc pkC[l],ts
~ A |
| tPkA \
tro+1 . if acc C : triy,
skC[B], tc - pkclf], ts
| tPkA \
tratp if acc C': trj, 5
Well] te - cll] ts
\ tBiA \
tra4+g+1 : ifacc C':trl, 5,4
WC[’Y], to fﬁ W’C [’Y]: ts
| tBiA \
tratsty ifacc C':try 5.,
pks,tc sks,ts
——
| tPkA \
if acc S : tratgtqy+1 et gyt
s:=(C, S, {tri}i=o,....a4+B+v+1) s = (C, S, {tri}izo,....atftr+1)
e — He(s, ko) e ps + He(s', ko)
If pc # ps then reject, else:
Vo — Hs(s, ko) . Vs ,HS(S,a k())
If vs # vc then reject, else
ko +— Hk(s, k‘o) ks + Hx (517 ké))
accept with k¢ accept with kg

Fig. 1. (o, 8,v)-MFAKE Protocol. The inputs sks and pks are optional for the case
of server authentication and so is the server-authenticated execution of tPkA and the
confirmation message vs. These optional parts are shown with a light gray background.
Boxed input pwdc on the server side reflects that client’s passwords could be stored
in some blinded way, in which case tPwA is assumed to follow the steps from [23,8,26].
Boxed input W on the server side means that client’s reference templates are not
necessarily stored in clear, in which case tBiA must provide implicit matching func-
tionality.

on similar inputs as in the client’s case. Upon successful confirmation parties
accept with session keys k¢ resp. kg, derived using Hy.

INSTANTIATIONS. Our general (a, 3, v)-MFAKE protocol can be instantiated us-
ing concrete sub-protocols from Section 3.2. That is, working in prime-order
cyclic groups (G, g, q), we can use unauthenticated Diffie-Hellman key exchange
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for UKE, a tag-based password-based authentication protocol PwA obtained
from the PAKE protocol in [5] (as detailed in Section 3.2), a suitable tag-based
challenge-response protocol for tPkA, e.g. using DSS or Schnorr signatures, and
our simple tBiA protocol with explicit matching based on the Hamming distance
mentioned in Section 3.2. By using the 2-method from [23] (as also discussed in
Section 3.2) we can obtain a verifier-based version of tPwA and use it in our con-
struction. Finally, as evident from the security analysis in Section 3.4, («, 3, 7)-
MFAKE can be instantiated from arbitrary sub-protocols as long as those satisfy
the required authentication goals. Moreover, as discussed in Section 3.2, tPwA
can be obtained generically from PwA, and for a large class of PkA there exists
a generic conversion to tPkA. Hence, all building blocks of («, 3, v)-MFAKE can
be realized using existing efficient (single-factor) authentication solutions.

PERFORMANCE OPTIMIZATIONS. The only dependency amongst the different
black-box runs of tag-based authentication sub-protocols is the input tag ob-
tained after the UKE session. Therefore, all subsequent sub-protocol runs can
be parallelized, resulting in three generic rounds (UKE, tag-based sub-protocols,
and confirmation round). Of course, care should be taken to match client and
server messages within each round, in order to account for the potential mis-
match in the sending and delivery order of messages in parallel sub-protocol
sessions. This can be done by pre-pending labels indicating that a message be-
longs to the ith session and using these labels to construct matching transcripts
on both sides. Further optimizations may include interleaving of messages and
using one random challenge of S for all § sessions of tPkA and another one for
all v sessions of tBiA, resulting in a three-pass protocol for MFA-based client
authentication and five-pass protocol with further authentication of the server.

3.4 Security Analysis

The initial UKE execution contributes to the forward secrecy of the session keys.
In particular, successful key confirmation guarantees that the transcripts trg and
try and the unauthenticated keys ko and k{ match. Independent runs of tag-based
authentication-only protocols for each client’s factor ensure that C' was alive at
least during that part of the protocol execution. This is because at least one
of those factors must remain uncorrupted prior to the acceptance of the server
and all sub-protocol transcripts are linked together in the key confirmation step.
Since tro and tr{, are linked to the transcripts of all authentication-only sub-
protocols the key confirmation step further guarantees that C' was alive during
the UKE session and, hence, the secrecy of unauthenticated keys k¢ and k{ follows
from KE-security of the UKE protocol. The secrecy of ko and k, carries over to
the secrecy of the final session keys ke and kg due to the use of independent
random oracles. The optional server authentication follows the same reasoning as
client authentication using PkA sessions. This intuition is proven in Theorems 1
and 2.
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Theorem 1. Our (a, §,7)-MFAKE protocol is AKE- and CAuth-secure, in the
random oracle model, and

Adv (T MPAKEA () < Adv“KE’B< )+ o AdVEYAE (k) + B - SuccirnB (k)

B _
+ ZAdvtCBthh + (3, + a(qrne + ars)) 277, and

MFA, A MFAKE, A —K
Adv S E MR (o) — A (k) — qlgm, —1)-27".

Proof. We prove this theorem using a series of games that are written for the
AKE-security. To the end of the proof we discuss the impact of game hops on
the CAuth-security. We denote by Succgal’(’%y'MFAKE’A(ﬁ) the success probability
of A in game G4 and define

Ay (k) = |SucclGdi ) M EA (k) — SuecETMINEA ().

Go This is the original AKE-security game, where the simulator answers the
queries of A on behalf of the instances according to the specification of (c,
B,7)-MFAKE.

G; In this game for all simulated server and client instances that have matching
UKE transcripts tro = tr{, the corresponding UKE keys ko and k{, are chosen
at random such that kg = k{, holds. Otherwise, ko and k{ are computed as
in Go.

Claim. Aq(r) < AdvIU;EE’B(m). Proof. For session instances that do not share
matching UKE transcripts both games are identical. Any A that can dis-
tinguish between G; and Gy with non-negligible probability can be used to
break the KE security from Definition 4. The corresponding KE-adversary
B against UKE would interact with .4 and simulate all its (a, 8, v)-MFAKE
oracle queries as specified in Gg, except for the messages and keys of the UKE
sub-protocol. Assume A invokes an instance of U € {C, S}. If this instance
is supposed to send the first message in the UKE session then B queries its
Transcript oracle and uses the first message of the obtained transcript as a
response to A. If A invokes an instance for U’ # U that is expected to send
a message only after having received some incoming message then B waits
for the corresponding Send query of A and checks whether input message is
amongst those output by B from some transcript that it holds and responds
with the next response message from this transcript. If the input message
is unexpected then B runs UKE part on behalf of this instance of U’ with-
out consulting its oracle (and will thus be able to compute the UKE key
for that session). Once UKE session on behalf of some instance is finished B
has always a key to continue its simulation, either from its own UKE run or
from a Transcript query. The way in which B simulates UKE sessions ensures
that the latter type of keys are used in sessions that involve instances with
matching UKE transcripts. If Transcript returns real keys then we are in Gg;
otherwise in G;. Hence, A;(k) < /—\dvIlJ(IEE’B(/{).
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Go In this game the simulator aborts if in the ith tPwA session, for some i €
{1,...,a}, a server instance [S,s’] with tag tg and (partial) transcript tr;
accepts client C' but there exists no instance of C' with matching (partial)
transcript tr; and tc = tg, and pwd]i] is not corrupted.

Claim. Ay(k) < « - Succh?f(ﬁ). Proof. We prove this with a hybrid ar-
gument using sub-games G;pto(j), j=0,...,a. Let tPwA;, i € {1,...,a}
denote the ith tPwA sub-protocol run. In G;pto(]) all tPwA;, 1 < i < j are
handled as in Gy and all tPwA;, j < i < « are handled as in G;. That is,

Gy = Gllpto and Ga GuPto(a) As before, we define A;pto(j)( ) as the dif-

upto 1
ference in A’s success probability in two consecutive games G," =1 and

G;pto(g ) The difference between the two is that G;pto(g ) may still abort even

if Gupto(j =1 does not. Any A that can distinguish between the games must
have successfully caused tPwA; to abort in GuPtO 7 , in which case an instance
[S,s'] accepts C' in tPwA; Whlle no partnered chent instance with the same
tag exists and no CorruptCIient(C’,O,j) was asked. Such A can be used to
break CAuth-security of tPwA. The simulator can act as CAuth-adversary
B against tPwA by invoking new instances of the server in the tPwA game
using tags of server instances that it simulates in the interaction with A.

The simulator relays all tPwA; related queries of A as its own queries in the
tPwA game and wins if A causes G;pto(]) to abort. Therefore AuPto(])(n) <
Succin®B (k) and thus Ay (k) = > AP0 () < - Succh A8 (k).

Gz In this game the simulator aborts if in the ith client side tPkA session, for
some ¢ € {1,..., 5}, a server instance [S, s’]| with tag ts and (partial) tran-
script trf, ,; accepts client C' but there exists no instance of C' with matching
(partial) transcript tro4; and to = tg, and sk¢[i] is not corrupted.

Claim. As(k) < 8- SucctCPAkﬁ;ﬁ(/{). Proof. We can use essentially the same
hybrid argument as in Go, but for tPkA sessions, and thus build a sequence
of B sub-games to show that the difference between any two consecutive
sub-games can be upper-bounded by Succtcpkﬁ;ﬁ(m). This leads to As(k) =

t PKA,B
S0 A9 (k) < 8- Succhant ().
G4 In this game the simulator aborts if in the ith tBiA session, for some i €
{1,...,7}, aserver instance [S, s'] with tag ts and (partial) transcript tr;,, 5,

accepts client C' but there exists no instance of C' with matching (partial)
transcript tro45+: and tc = tg, and the ith biometric is not corrupted.

Claim. Aq(r) < 30 SucctCBX?;t’f(/{). Proof. We denote by tBiA; the tBiA
protocol operating on the ith biometric. Again, using the hybrid argument
as in Go, but for tBiA sessions, we can build a sequence of y sub-games
and upper-bound the difference between any two consecutive sub-games
Gzpto(]_l) and Gzpto(]) with Succfﬁltf( ). The simulator can relay all tBiA;
related queries of A as its own queries in the tBiA game, including those re-

lated to the BioComp oracle since all biometric-dependent tBiA messages
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used in the («, 8,7)-MFAKE protocol remain identical to those of the tBiA
protocol. This leads to Aq(k) =37/, AP () < ST, SuccBReB ().

Remark 5. If the simulation does not abort in this game then it is guar-
anteed that for each server instance [S,s’] that is entering the confirma-
tion round with partial transcripts {tr}}1<i<a+p+y (comprising executions
of tPwA, PkA, and tBiA sub-protocols) and tag tg, and that has not disqual-
ified itself as a candidate for a Test query (i.e. fulfills freshness conditions
from Section 2.2), there exists a client instance [C, s] with partial transcripts
{tri}hi<i<a+p+~y such that there exists an index 4,1 < i < o+ f + v with
tr; = tr;. Moreover, any such client instance holds tag tc = tg.

Gs In this game the simulation aborts if an instance [S, s'] enters the confirma-

tion round with partial transcripts try and {tr; }1<i<a+p+~y and there exists
[C,s] with partial transcripts tro and {tr;}1<i<a+g+y such that for some
index i : tr; = tr}; but trg # try,.

Claim. As(k) < q%T2*”. Proof. G4 already ensures that if [S,s'] accepts
in all authentication sub-protocols then there exists a client instance with
tc = tg. The only difference between the two games is that Gs may still
abort even if G4 does not. If A can distinguish between the games then A
must have successfully caused the simulator to abort in Gs, in which case
[S,s'] and [C,s] hold tags ts = tc but trg # try. We can thus output a
collision for Hp. Since Hr is a random oracle we get As(k) < q%T2*”.

Remark 6. Gy implies that any instance [S, s’] that was not disqualified as
a candidate for a Test query (upon entering the confirmation round) has
a corresponding client instance [C, s] with the same UKE transcript and at
least one matching tag-based sub-protocol transcript.

Gg This game proceeds as Gs, except that on behalf of an instance [S, s] that

is not disqualified as a candidate for a Test query the simulator computes
ps < Hp(s') and kg < H'(s') using two private random oracles Hy, and

> and sets puc = pg and ko = kg for the corresponding [C, s] that has
matching UKE transcript and at least one matching tag-based sub-protocol

transcript.

Claim. Ag(k) < q(que + ) - 277, Considering that in the previous game,
confirmation values and session keys of [S, s'] were derived through random
oracles Heo and Hy on input k{ (which is random as ensured by Gp) and
the transcript s’, any A that can distinguish between the games must ask
at some point a query for H¢ or Hy, containing k{, and s’ for any of the ¢
invoked sessions as input. Therefore, Ag(k) < q(que + qu,) - 27"

Gg implies that if [S, s’] accepts and is not disqualified as a candidate for a Test
query then kg is uniformly distributed in the domain of session keys. Hence, the
probability of A to win in Gg no longer depends on the key, i.e. A can win in Gg
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only by guessing bit b (with probability é)

Summarizing the probability differences across all games we obtain

Succgﬁ’{’%w_MFAKE’A() (D | Zfalsepos> ‘
pwd

6
1 « < 1
Ai(k)+ . — + false!™ | — _|.
a0+ o + 2 :

i=1

MFAKE, A
Adv G (k) =

Taking into account that

6
D Ai(k) < Advi P (k) + a - SuccEamy (k) + B - Succg i (1)
i=1

+ ZSU BB () (@3, + alame + aur)) - 275,

and that
AdvERA B (1) = [Succt YA B (k) — IDde|
AV () = [SuccSis () — ¢ - falsel™
we obtain
AR ) < AT () + o ARG 5 SuccEi )

BiA;,B _
+ ZAd caneh (B) + (@ + dlame + any)) 277,

which is negligible by assumptions on UKE, tPwA, tPkA, and tBiA.

Proof for CAuth-security. With regard to client authentication, consider the
above game sequence from the perspective of the CAuth-security game and suc-
cess probability SuccéaAﬁ’tl)'MFAKE’A(m). Freshness conditions regarding server in-
stances encompass the requirements that are relevant for the CAuth-game. Then,
Remark 6 implies that in Gs for each server instance [S, s’] for which A could
still win the game there exists a client instance [C, s] with the matching UKE
transcript and at least one matching tag-based sub-protocol transcript. In Gg,
ue and pg are computed using private oracle, while for CAuth-security mod-
ifications of k¢ and kg are irrelevant. The probability difference to Gs is thus
upper-bounded by ¢ - g3 - 27". Then, [S, s'] must have received pc = pg with-
out having a partnered client instance. That is A must have asked a Send query
containing a value that matches a uniformly distributed pg. This happens with
probability at most ¢ - 27" for up to g invoked server instances. We thus obtain
the following CAuth-success

(o, 8,7)-MFAKE, .A( ) _ SUCC(a ,B8,7)-MFAKE, A

. 1
SucCopuin AKE (k) —qlgn, —1)-27" — 9
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Taking into account that by definition

2

(03 - « 1

Adv{G T MPAEA () = |Suecl M EA () — g (D d +Zfa'se505> - 2‘
pw i—1

we obtain a negligible CAuth-advantage

vy
:8,7)-MFAKE, A , MFAKE, A a
AdvER (r) = |SuccSan” (k) —q (D ql + falsefos>|
pw .

.B.,7)-MFAKE, A . 1
e M EAR) — gl — 1) 27

false]*®
oo )|
(e, 8,7)-MFAKE, A

= |Adv kR (k) —qlgn, —1)-27"].

= SuccA

O
Theorem 2. Our (a, §,7)-MFAKE protocol with server authentication is SAuth-

secure in the random oracle model, and

Succlyo MPEA (k) < AdviE P (k) + Succiami (K) + (Gep + aans +1)) - 27

Proof. This proof resembles in part the proof of Theorem 1 and proceeds in a
series of similar games. We denote by Succg A’ftg_) MFAKE’A(K) the success prob-
ability of A in game Gy. For each game Gy, we define A, (k) as the difference
in A’s success probability when playing against the two consecutive games Gy_1

. MFAKE, A ,B,7)-MFAKE,.A
and Gy, i.e., Az(k) = \Succéogftz)x (k) — Succéiftz_)(mfl) ()]

Go This is the original SAuth-security game, where the simulator answers the
queries of A on behalf of the instances according to the specification of (c,
B,7)-MFAKE.

G; This game proceeds as Gg, except that for all simulated server and client
instances that have matching UKE transcripts tro = tr(, the corresponding
UKE keys ko and k&, are chosen at random such that ko = k{, holds. Otherwise,
ko and k{, are computed as in Gg.

Claim. Aq(k) < /—\dvIlJ(IEE’B(/{). Proof. For client and server instances that do
not share matching UKE transcripts both games are identical. Any A that
can distinguish between G; and Gy with non-negligible probability can be
used to break the KE security from Definition 4. The description of the UKE
adversary is exactly the same as in G; from the proof of Theorem 1. Hence,
Aq(k) < AdvIU;EE’B(n), as claimed.

G2 This game proceeds as G, except that the simulator aborts if in the server-
side tPkA session a client instance [C, s| with tag tc and (partial) transcript
tra4s4+~+1 accepts server S but there exists no instance of S with matching
(partial) transcript tr/o¢+,8+'y+1 and tag tg = t¢o, and skg is not corrupted.
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Claim. Ax(r) < SucctCPAkﬁ;ﬁ(m). Proof. As already described in games Go
through G4 in proof of Theorem 1 if A can distinguish between the two
games, it can be immediately used to break CAuth-security of tPkA. (In this
game CAuth-security is understood as a security property of PkA in case
where the authenticating party is the server S. Recall that PkA offers single-
side authentication and was defined from the perspective of an authenticating
client. In this game the authenticating party is S but the notion of CAuth-

: : PKA :
security remains as defined.) Hence, As(k) < Succg, Au;ﬁ(m), as claimed.

Remark 7. Note that if the simulation does not abort in G then it is guar-
anteed that for each client instance [C, s] that is entering the confirmation
round with partial transcript tro4g+~+1 and tag tc, there exists a server
instance [S, s'] with partial transcript tr’aJrBJWJrl = tra4g4y+1 and tg = to
if neither C nor S = pid([C, s]) has been fully corrupted.

Gs This game proceeds as Gg, except that simulation aborts if an instance [C, s]
enters the confirmation round with partial transcripts tro and tra4g4y+1
and there exists [S, s'] with partial transcripts tr(, and tr/ 1 such that

a+B+y+
tratpiq+1 = tr, 50 4 but tro # trg.

Claim. As(k) < ¢3,,27". Proof. Gy already ensures that if [C, s'] accepts in
the server side tPkA sub-protocol then there exists a server instance with
ts = tc. The only difference between the two games is that Gz may still
abort even if Gy does not. If A can distinguish between the games then A
must have successfully caused the simulator to abort in Ggz, in which case
[C, s] and [S,s] hold tags tc = tg but trg # tr,. We can thus output a
collision for Hyp. Since Hrp is a random oracle we get As(k) < q%T2*”, as
claimed.

G4 This game proceeds as Gg, except that on behalf of an instance [C, s| for
which neither C nor S = pid([C, s]) is fully corrupted the simulator computes
ve + Hs(s') using a private random oracle Hy, and sets vg = v¢ for the
corresponding [S, s'] that has matching UKE transcript and matching server-
side tPkA sub-protocol transcript.

Claim. A4(k) < q-qug 27", Proof. Considering that in the previous game,
confirmation values of [C, s] were derived through the random oracle Hg on
input ko (which is random as ensured by Gp) and the transcript s, any A
that can distinguish between the games must ask at some point a query for
‘Hs containing kg and s for any of the ¢ invoked sessions as input. Therefore,
Ay(r) < q-qus - 277, as claimed.

Assume that A wins in G4. Then, [C, s] must have received vs = v without
having a partnered server instance. That is, A must have asked a Send query
containing a value that matches a uniformly distributed v¢. This happens with
probability at most ¢ - 27" for up to ¢ invoked client instances. We thus get
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4
SuccSyi ™M EA (k) = 3" Ai(k) +q 27"
=1

< Advii B (k) + Succl v (5) + (g5, + algns +1)) - 277,

which is negligible by assumptions on UKE and tPkA.

4 Conclusion

The proposed framework for multi-factor authentication and key exchange
protocols enables black-box constructions from existing, better-understood single-
factor authentication-only schemes. Our generic construction of the («,3,7)-
MFAKE protocol avoids undesirable interactions amongst the different factors
and bears optimization potential since messages of tag-based authentication sub-
protocols can be interleaved or communicated over different channels. Thanks
to its modularity the framework can easily be extended in the future to ac-
commodate other authentication factors, e.g. based on friend-of-friend or social
authentication [11,15].
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