
Provably Secure Browser-Based User-Aware
Mutual Authentication over TLS

(Full version)

Sebastian Gajek1 and Mark Manulis2 and Ahmad-Reza Sadeghi1 and Jörg Schwenk1

1 Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany
{sebastian.gajek|joerg.schwenk}@nds.rub.de

ahmad.sadeghi@trust.rub.de
2 UCL Crypto Group, Belgium

mark.manulis@uclouvain.be

Abstract. The standard solution for user authentication on the Web is to establish a TLS-based secure
channel in server authenticated mode and run a protocol on top of TLS where the user enters a password
in an HTML form. However, as many studies point out, the average Internet user is unable to identify the
server based on a X.509 certificate so that impersonation attacks (e.g., phishing) are feasible. We tackle this
problem by proposing a protocol that allows the user to identify the server based on human perceptible au-
thenticators (e.g., picture, voice). We prove the security of this protocol by refining the game-based security
model of Bellare and Rogaway and present a proof of concept implementation.

Key words: Browser-based security protocols, human-perceptible authentication, TLS, phishing

1 Introduction

1.1 Motivation

The World Wide Web has grown and become a fundamental technology of the information society whereby
the browser plays an indispensable function both as the user’s interface to access the rich world of Web-based
services and provider of security tools in order for safeguarding a honest perception of the Web. This constrains
the design of applications and security protocols to TLS, HTTP and higher order protocols, such as AJAX,
AFLEX or SOAP. We call protocols realizable within the constraints of commodity Web browsers browser-
based protocols.

An immediate need on the Web is to authenticate users and permit access to services or private information.
A widely adopted approach is to use TLS in server authenticated mode and execute a protocol on top of TLS
whereby the user enters a password in a Web form. A folklore belief is that the user is able to authenticate
the server through a X.509 certificate. Recent studies point out however that average-skilled Internet users
understand neither server certificates nor browsers’ security indicators [17, 25, 37]. Users are overstrained by
the verification procedure and tend to ignore browser’s warnings; in fact, they evaluate Web sites on the basis of
non-technical indicators (e.g., brands, logos). This ceremony3 provides a wrong sense of security. An adversary
may fake the site and disclose the user’s password (“phishing attacks”).

Apart from the user, an alternative problem is the X.509 public key infrastructure for server authentication.
Various Certification Authorities (CAs) have stored their root certificates in browsers and are thus trusted per
se. Although CAs may considerably differ in their issuing policies browsers equally treat the certificates. Adver-
saries may exploit weak issuing policies, retrieve certificates for rogue servers, and do a lot of harm (e.g., [21]).

In addition to that, the browser remains a potential point of attack. The browser is partly controllable by
a remote party, using the facets of Web languages. An adversary is capable of sending queries that alter the
internal state of the browser or reveal temporary connection information, including access to the browser’s user
interface (chrome), cache, cookies, history and has led to several vulnerabilities in browser-based protocols
(e.g., [22, 29, 35]).

3 Carl Ellison coined at Crypto 2005 Rump Session the term ceremony to denote the paradigm that a provably secure
cryptosystem becomes insecure when it is interfaced to a user. See [19].

This is the full version of the extended abstract which appeared in:
Proceedings of the ACM Symposium on Information, Computer and Communications Security (ASIACCS'08), March 18-20, 2008
M. Abe, V. Gligor (Eds.), ACM, pp. 300--311.

2 Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk

1.2 Our Contribution

We solve the above problems by presenting a protocol that explicitly considers the user and the browser as
protocol participants, and ties the user’s authentication to the TLS secure channel. We relieve the user from the
responsibility of authenticating the server by mediating the roles of authentication between the user, browser
and server.

We first make the server identify the browser on the basis of client certificates. This step ensures that the
server establishes a secure channel to the browser, however does not authenticate the user. In order to prove
its identity to the user, the server sends a human perceptible authenticator (HPA) (e.g., personal picture, voice
recording). The user has to recognize the authenticator; verification of server certificates (and the underlying
public key infrastructure) and any security indicator (e.g., URL, padlock) is irrelevant. Finally, the user au-
thenticates to the server, using a password. We call the proposed protocol BBMA and the corresponding security
goal browser-based mutual authentication (BBMA). Using BBMA has the following advantages over previous
browser-based protocols:

1. BBMA provides user-aware authentication which takes into account human skills. BBMA reduces the secu-
rity of browser-based protocols to the assumption that users are capable of identifying human perceptible
authenticators—as they are used to do in the physical world where identities are provided in an easily
recognizable fashion. Based on results of human authentication protocols [15, 16, 26, 38], visual authenti-
cators are appealing; however, BBMA is flexible in the choice of authenticators. TLS in client authentication
mode, by contrast, ensures browser-aware server authentication. In this context browser-aware authentica-
tion means that the browser authenticates whenever the server certificate is valid. This is especially true for
rogue servers using valid certificates. Client certificates prevent the adversary from the impersonation of the
browser; they do not prevent that a user discloses sensitive information requested by such rogue servers, as
the browser indicates an authenticated communication.

2. We prove BBMA secure in the refined model for authentication due to Bellare and Rogaway [7]. The refine-
ments concern partitioning of the client entity into user and browser entities, since both entities are active
participants of browser-based protocols and target of different attacks. This requires to formulate the user
and browser behavior. To the best of our knowledge, it is the first browser-based protocol that has been
formally analyzed in the model.

3. BBMA is flexible. The protocol fits into the standard TLS specification since the human perceptible au-
thenticator and the password are exchanged as HTML payloads over the secure TLS channel. We have
implemented the protocol [32] in a proof of concept. The implementation comprises an online registration
protocol where the user may setup client certificates for different browsers in a user-convenient way. That
is, we do not need client certificates to be issued by a trusted CA. They may be self-signed. The server has
to store the hash value of the public key as a unique cryptographic identifier of the browser.

The use of both client certificates and passwords in BBMA may seem redundant at first glance, since the meth-
ods are commonly regarded as orthogonal mechanisms to authenticate the user. We stress the fact that a client
certificate only authenticates the browser. It rules out the ability to distinguish between multiple users, having
access to the browser. Moreover, some business models require a fine-grained access control where the user is
permitted to sign on different accounts (e.g., online banking). Using passwords in addition to client certificates
(instead of multiple client certificates) is a design solution for ease of use that complies with requirements of
browser-based protocols and is provably secure in our model.

1.3 Related Work

Browser-based authentication protocols originate from HTTP Basic Authentication [20] which has been a stan-
dard tool to authenticate users for static Web pages. With the advent of dynamic Web page generation, it proved
more useful to deliver the password to the scripting language as the value of an HTML form input field.

Another, independent line of development are password-based authenticated key exchange protocols (PAKE).
Bellovin and Merritt [10], Bellare et al. [6,9], Boyko et al. [11], and McKenzie [11,30] proposed various PAKE
structures that have been augmented to provide resiliency against offline dictionary attacks [27] and to provide

Provably Secure Browser-Based User-Aware Mutual Authentication over TLS 3

forward secrecy under various assumptions [2, 12, 13, 28]. Later Abdalla and Pointcheval [3] proposed SPAKE
a simplified PAKE structure that provides more flexibility in the choice of groups. Steiner et al. [36] and Abdalla
et al. [1] have shown that PAKE structures may be incorporated into the TLS protocol framework and proposed
provably secure ciphersuites for password-based authenticated key exchange.

The analysis of these PAKE protocols has in common that protocol participants are assumed to be machines
that are able to strictly obey the protocol specification. From this follows a model for authentication that idealizes
the user and browser. Such a model does not thoroughly reflect the Web where ordinary Internet users are
involved in the protocol and browsers naively trust certificates that origin from any pre-installed authority. The
model presented in this paper relaxes these assumptions in a way that neither a trusted CA exists nor the user
understands the meaning of public key infrastructures. Under these assumptions PAKE protocols are vulnerable
to attacks where the adversary simply mimics the password dialog. In order to thwart such attacks, BBMA
makes use of passwords and client secret keys. Then, impersonation of the user without compromising the
client secret is infeasible, even if the adversary has revealed the password.

So far, few browser-based protocols have been subject to rigorous security analysis: Kormann and Rubin [29]
show that Microsoft’s .NET passport, a Web-based realization of the Kerberos protocol for single sign on, is
susceptible to attacks where the adversary steals the ticket granting ticket cookie. Groß [22] analyzes SAML,
an alternative single sign on protocol, and shows that the protocol is vulnerable to adaptive attacks where the
adversary intercepts the authentication token contained in the URL. Soghoian and Jakobsson [35] investigate
the SiteKey-protocol (a.k.a. PassMark Security Inc.’s Two-Factor-Two-Way AuthenticationTM) that displays a
previously negotiated image in addition to password forms in order to signal that the user is connected to the
benign server. The authors show the feasibility of stealing the shared secret that is stored in a cookie.

By contrast, BBMA has formal security arguments and is provably secure in a revised version of the standard
model for authentication due to Bellare and Rogaway. The model takes into account that the adversary controls
the network and may circumvent the browser’s same origin policy (see Section 2.1) in order to corrupt weak
identifiers, such as cookies. BBMA uses cryptographically strong bindings, i.e., client certificates that are not
affected in case of possible violation of the same origin policy.

Groß et al. prove in [24] the security of WS-Federation passive Requestor Profile—a browser-based protocol
for federated identity management. The proof is carried out in the browser model [23] that is build on the
Reactive Simulatability framework due to Pfitzmann and Waidner [31]. The model abstracts away the TLS-
protected channel through an ideal functionality that captures the same cryptographic task and presupposes
ideal users who are able to identify servers based on certificates. There exists no soundness proof that TLS is
simulatable and realizes such functionality, especially with respect to the user behavior. BBMA takes explicitly
into account the TLS protocol and is shown to be provably secure in the Random Oracle Model when instantiated
with the key transport ciphersuite in server authentication mode.

1.4 Organization

The remaining sections are structured as follows. In Section 2, we present the formal security model for browser-
based authentication protocols. We describe BBMA in a high level description of TLS and prove that it is secure
in Section 3. In Section 4, we discuss variants of realizing BBMA. Finally, we conclude the paper in Section 5.

2 Modeling Browser-Based Mutual Authentication (BBMA)

In this section we refine the original security model for mutual authentication from [7] according to our idea on
partitioning the client party into the entities representing the participating user and browser. Similar to [7] we
consider an active probabilistic polynomial time (PPT) adversary who interacts with involved parties through
queries and controls all the communication.

2.1 Communication Model

Protocol Participants and Long-Lived Keys We consider the server S, the browser B, and the human user
U as participants of a BBMA protocol Π . Furthermore, by C we denote the client given by a pair (U ,B).

4 Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk

According to our refinement and contrary to the current cryptographic literature, we explicitly model the user as
a stand-alone entity. We start from scratch and make the weakest security assumptions to represent a practical
setting namely that U is security-unaware and B supports standard techniques of commodity Web browsers.

The human user U is modeled as a probabilistic machine with “very limited” computational capabilities.
Intuitively, it is clear that human users are not able to perform the same computations as browser and server.
More specifically, we assume that human users are unable to perform cryptographic operations, but may rec-
ognize high-entropy data if it is in a human-recognizable form and may output low-entropy passwords. More
technically, we assume that U holds a long-lived key LLU ∈ {0, 1}p1(κ) which is typically some set of pairs
that consists of a human-memorable password pw ∈ D and a human perceptible authenticator (HPA) w ∈ W .
Here and in the following pi : N → N, i ∈ [1, 5] is a polynomial, κ ∈ N is a security parameter and D,W are
dictionaries.

The browser B is modeled as a PPT machine that exchanges protocol messages with S through physical
communication links and interacts with U , using various visualization techniques and user input (e.g., via HTML
forms). We assume that B holds a high-entropy long-lived secret LLB ∈ {0, 1}p2(κ). Typically, LLB consists
of a private key skB for which B maintains the corresponding public key certificate. The server S is modeled
in a classical way namely as a PPT machine with the long-lived key LLS ∈ {0, 1}p2(κ) which usually consists
of the own private key and further secrets shared with U and B. We model the communication flow from B
to U through an abstract channel whose input is interfaced to the visualization function render and output is
interfaced to the human perception function recognize. We also assume that there is a channel allowing U
to provide inputs to B running on the user’s device, i.e., through common interfaces such as keyboards, mice,
touch-screens, etc. In the following we specify the relationship between the functions render and recognize.
In its simplest form, we could model the user as a deterministic Turing machine that waits for a certain, high-
entropy input (the authenticator), and then outputs a low-entropy secret (the password). By using the render
and recognize functions, we are able to express a more complex behavior of the user.

Modeling Browser Message Processing via render-Function The browser plays the role of a messenger and
translates the messages from user and server, however, is unaware of the semantic meaning: It takes a message
m ∈ M from the message space M ∈ {0, 1}λ1(κ) (the space of all HTML documents) that the server S
wishes to send to user U and presents the information according to the browser’s state Ψ ∈ {0, 1}λ2(κ) to U as
a Web page. Here and in the following, λi : N → N, i ∈ [1, 2] is a polynomial. State Ψ denotes the browser’s
configuration for processing the retrieved message that may be altered by querying the browser’s DOM4 model.

Loosely speaking, the DOM model describes the browser’s tree-based view of a Web page and defines access
to document nodes, browser and connection information through Web scripting languages (e.g., Javascript).
The same origin security policy which is universally supported in browsers controls access to the nodes and
ensures that there is no information retrieval between pages that have different domains, including access to the
browser’s chrome, cache, cookies, and history. Access to any ephemeral and long-term secrets which are stored
in separated containers, or the ability to open, create or delete a file from the operating system, are subject to
different security policies which normally involve user interaction.
B communicates to U calling the visualization function render :M×Ψ →M∗. More precisely, whenever

B wishes to communicate a protocol messagem to U it calls render, which takesm and current browser’s state
Ψ as input and outputs the appropriate visualization m∗ to U .

Modeling User Behavior via recognize-Function The overall goal of browser-based authentication proto-
cols is to provide mutual authentication between the entity user U and the entity server S. Since the user is
involved in the protocol execution, we need to formulate the behavior. The necessity for modeling the user
behavior is due to the fact that the adversary may mount attacks that target the user.

Devising a rigorous model that captures user behavior clearly raises various issues, both technical and philo-
sophical. For instance, which human abilities can we model? Should we restrict the user behavior to certain
skills, say perceive certain objects. If so, how can we model the quality of skills? Do users behave “correctly”

4 Document Object Model, see [39] for details.

Provably Secure Browser-Based User-Aware Mutual Authentication over TLS 5

in the sense that they always behave in the same way? The problem becomes even more intricate when one
wishes to quantify the behavior. This work takes a rather simplistic approach. We assume that the user is able to
recognize the high-entropy HPA w and remembers a low-entropy password pw.

The communication between B and U is established in a consistent way across through the boolean human
perception function recognize : M∗ ×W → {0, 1} which on input a visualized message m∗ ∈ M∗ and w
outputs 1 if U recognizes w among the content of m∗; otherwise the output is 0. In this paper we assume that
if m∗ contains w (denoted as m∗|w) then recognize outputs 1, i.e., the ability of U to recognize w is perfect.
On the other hand, we do not assume that w is the only HPA for which recognize outputs 1, i.e., we do not
idealize U as there can be some setW∗ ⊆ W which contains HPAs that are perfectly human-indistinguishable
from U according to the following definition.

Definition 1 (Perfect Human-Indistinguishability of HPAs5). Let w ∈ W be some given HPA. For anym∗ ∈
M∗ and any w∗ ∈ W , we say that w and w∗ are perfectly human-indistinguishable, if for any human user U∣∣ Pr[U .recognize(m∗|w,w) = 1]− Pr[U .recognize(m∗|w∗, w) = 1]

∣∣ = 0

where the probabilities are computed over the choices of w∗. By W∗ ⊆ W we denote the set of all perfectly
human-indistinguishable HPAs for some given w ∈ W assuming that w ∈ W∗.

Our main idea in designing user-aware security protocols based on HPAs is to opt for authenticators for
which W∗ is sufficiently small for most of the users. In this case the probability that an adversary chooses or
guesses some HPA that cannot be distinguished from w by U can be kept low. The ideal case would be ifW∗
would consist only of w. We call w a good HPA if the size of the set W∗ is sufficiently small such that the
term |W∗|/|W|6 which addresses user-awareness in our proof and is used (beside further cryptography-related
terms) to compute the overall probability of a successful attack is negligible.

For our protocol we assume that the HPA used by U in the execution of our protocol is good.

Remark 1. An interesting topic of future work would be to consider the similarity of authenticators in order to
model users’ fuzziness. Consider the following example. Let w be an authenticator that consists of an image,
and let w∗ be the same image, but marginally compressed. Some users would be able to distinguish w∗ and w
whereas some would fail. Many metrics exist that allow for scaling the meaning of “some” and quantify the
similarity for different types of HPAs. Using such metrics is an interesting challenge, since it allows to refine
the assumptions on user behavior.

Protocol Sessions and Instances In order to model participation of C = (U ,B) and S in distinct executions of
the same BBMA protocol Π we consider instances [C, sidC] and [S, sidS] where sidC , sidS ∈ N are respective
session identifiers. If sidC = sidS then we assume that both instances belong to the same session, and say the
instances are partnered. Note that in our protocol sidC and sidS will be given by the concatenation of random
nonces exchanged between B and S in the beginning of the protocol. For simplicity, we sometimes omit the
indication of the instance and write C and S instead. Whether, C or S denote the actual party or its instance is
usually visible from the context.

Execution States Each instance [C, sidC] and [S, sidS] may be either used or unused. The instance is consid-
ered as unused if it has never been initialized. Each unused instance can be initialized with the corresponding
long-lived key. The instance is initialized upon being created. After the initialization the instance is marked as
used, and turns into the stand-by state where it waits for an invocation to execute the protocol. Upon receiving
such invocation the instance turns into a processing state where it proceeds according to the protocol speci-
fication. The instance remains in the processing state until it collects enough information to decide whether

5 The definition we use in this full version differs from the one given in the published conference version of this paper as it
no longer uses a security parameter for the estimation of the ability of human users to recognize HPAs.

6 In the published conference version of this paper this term was mistakenly denoted as 2|W
∗|−|W| though the text descrip-

tion explicitly mentions the relation between the sizes ofW∗ andW .

6 Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk

the execution was successful or not, and to terminate then. If the execution is successful then we say that the
instance accepts before it terminates. The acceptance in case of the client instance [C, sidC] with C = (U ,B) is
implied by the acceptance of the user U regardless of the state of the browser B, as U is the ultimate endpoint
of the communication and controls the browser. In case that the execution was not successful (due to failures)
instances terminate without accepting, i.e., they abort. Note that the client instance aborts whenever the user or
the browser aborts.

2.2 Security Model

Assumptions The adversary A controls all communication between the protocol parties. This implies:

- The adversary controls the domain name resolution. Upon sending forged domain resolution responses, the
adversary is capable of foiling browsers’ same origin policy, thus accessing through the DOM model the
browser’s chrome, cache, cookies, and history. However, the adversary is prevented from opening, creating
or deleting a file from the operating system. Since the long-term secrets are prevented from caching and
part of different security policies, this implies that the adversary is incapable of accessing passwords and
HPAs.

- There exists no trusted third party in the sense of a trusted CA. A certified public key in a X.509 server
certificate is treated as a public key that can be identified by a unique identifier (i.e., hash value of the public
key). Disburden the model from certified public keys captures the fact that (i) the adversary has retrieved
from a trusted CA certified public keys for rogue servers such that B accepts the keys without any user
notification and (ii) the behavior of users who ignore the certificate validation warnings.

- The adversary is unable to corrupt B. Note that in this model we do not deal with malware7 attacks against
the browser and server, therefore, do not consider the case where A reveals the ephemeral and longterm
secrets stored inside B.

- The adversary is unable to corrupt S. Note also that in this model we do not deal with malware attacks
against the server. This means that the adversary is excluded from revealing the ephemeral and longterm
secrets stored inside S .

- The communication within the client C that is the communication between U and B is not authenticated.
Note that in this model we do not deal with physical attacks against the user; otherwise over-the-shoulder
surfers are enabled to see the human perceptible authenticator and the user password.

Adversarial Queries The adversary A participates in the actual protocol execution via the following queries:

- Execute(C,S): This query models passive attacks. The adversary A eavesdrops the execution of the new
protocol session between C and S. A is given the corresponding transcript.

- Invoke(C,S): This is a special query used by an active adversary A to invoke the actual protocol execution.
This query is described in detail in the next paragraph.

- Send(P,m): This query models active attacks whereA sends a message to some instance of P ∈ {U ,B,S}.
That is, messages addressed to U are implicitly handled as messages addressed to the associated browser
B with the subsequent execution of the render(m,Ψ) function while messages to the server S from U are
processed by browser B and then send in a machine-readable form. The information flow in the Send(P,m)-
query is implicitly denoted by including the sender and receiver identities in m.

- RevealState(B): This query models attacks which reveal information stored with the browser’s state Ψ .

It should be mentioned that corruptions of the browser and server cannot be allowed because of the weakness of
the underlying TLS protocols (see Section 3). Such corruptions would immediately compromise all previously
executed sessions.

7 Consideration of malware attacks and augmentation of the proposed model with Trusted Computing functionalities to
model resistance against malware attacks is surely an interesting aspect for the future work on security of browser-based
protocols.

Provably Secure Browser-Based User-Aware Mutual Authentication over TLS 7

Protocol Execution in the Presence of A By asking the Execute(C,S) query A obtains the transcript of
the complete protocol execution between new instances of C and S without being able to perform any further
actions during this execution.

On the other hand, if A wishes to actively participate in the execution of Π then it can ask a special invoca-
tion query Invoke(C,S) implying that a new instance of U starts the protocol execution with the new instance of
S using the associated instance of browser B. A obtains then the first protocol message returned by B (which is
usually generated on some input received from U , e.g., the entered URL). Active participation of A is defined
further through the Send queries.

Correctness and Mutual Authentication in BBMA Protocols The following definition of correctness speci-
fies the purpose of BBMA protocols.

Definition 2 (Correctness). A BBMA protocolΠ is correct if each Execute(C,S) query results in two instances
[C, sidC] and [S, sidS] which are partnered (sidC = sidS) and accept prior to termination.

If two instances [C, sidC] and [S, sidS] would accept and terminate without being partnered (sidC 6= sidS),
then interleaving attacks are feasible.

In the following we define the main security goal of BBMA protocols, namely the requirement of mutual
authentication between participating U and S.

Definition 3 (Browser-Based Mutual Authentication). LetΠ be a correct BBMA protocol and GamebbmaΠ (A, κ)
the interaction between the instances of C = (U ,B) and S with a PPT adversary A who is allowed to query
Execute, Invoke, Send, and RevealState. We say that A wins if at some point during the interaction:

1. An instance [C, sidC] accepts but there is no partnered instance [S, sidS], or
2. An instance [S, sidS] accepts but there is no partnered instance [C, sidC].

The maximum probability of this event over all adversaries is denoted SuccbbmaΠ (A, κ) = max
A |Pr[A wins in

GamebbmaΠ (A, κ)]|. We say that a BBMA protocol Π provides mutual authentication if this probability is a
negligible function of the security parameter κ.

Recall, the acceptance in case of the client instance [C, sidC] with C = (U ,B) is implied by the acceptance of
the user U (regardless of the state of B) since U is the ultimate endpoint of the communication and controls the
browser. Then, the first requirement ensures that client C authenticates to the matching server S. The second
requirement ensures that the server S authenticates to the matching client C.

3 Browser-Based Mutual Authentication Protocol based on TLS

In this section we describe our protocol for browser-based authentication based on the standard TLS protocol.
We call the proposed protocol BBMA.

3.1 Building Blocks

TLS Protocol A main pillar of BBMA is the mutually authenticated key transport. This complies with RSA-
based ciphersuites as specified in [4]. These suites are preferentially negotiated between standard browsers and
servers. (It is notable that BBMA can be likewise designed for DH-based key exchange.) We write in parenthesis
the corresponding TLS messages.

Cryptographic Primitives BBMA uses the (well-known) cryptographic primitives from the cryptographic suites
of the TLS protocol, namely:

8 Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk

– A pseudo-random function PRF : {0, 1}p3(κ) × {0, 1}∗ → {0, 1}∗. Note that TLS defines PRF with data
expansion s.t. it can be used to obtain outputs of a variable length which becomes useful for the key deriva-
tion phase. By AdvprfPRF (κ) we denote the maximum advantage over all PPT adversaries in distinguishing the
outputs of PRF from those of a random function better than by a random guess. Let l1, l2, l3 and l4 denote
the publicly known labels specified in TLS for the instantiation of PRF (see [18, Sect. 5]).

– A symmetric encryption scheme which provides indistinguishability under chosen plaintext attacks (IND-
CPA). The symmetric encryption operation is denoted Enc and the corresponding decryption operation
Dec. By Advind−cpa(Enc,Dec)(κ) we denote the maximum advantage over all PPT adversaries in breaking the
IND-CPA property of (Enc,Dec) better than by a random guess.

– An IND-CPA secure asymmetric encryption scheme whose encryption operation is denoted E and the cor-
responding decryption operation D. By Advind−cpa(E,D) (κ) we denote the maximum advantage over all PPT
adversaries in breaking the IND-CPA property of (E ,D) better than by a random guess.

– A cryptographic collision-resistant hash function Hash: {0, 1}∗ → {0, 1}p4(κ). By SucccollHash(κ) we denote
the maximum success probability over all PPT adversaries in finding a collision, i.e., a pair (m,m′) ∈
{0, 1}∗ × {0, 1}∗ such that Hash(m) = Hash(m′).

– A digital signature scheme which provides existential unforgeability under chosen message attacks (EUF-
CMA). The signing operation is denoted Sig and the corresponding verification operation V er. We denote
the maximum success probability over all PPT adversaries given access to the signing oracle in finding a
forgery by Succeuf−cma(Sig,V er)(κ).

– A message authentication code function HMAC which is believed to satisfy weak unforgeability under chosen
message attacks (WUF-CMA) [5]. By Succwuf−cmaHMAC (κ) we denote the maximum success probability over
all PPT adversaries given access to the tagging/verification oracle in finding a forgery.

3.2 Protocol Description

Before BBMA can be executed, a registration phase is necessary where every party obtains its own long-lived key.
Then, the long-lived key LLU consists of the low-entropy password pw and the HPA w which are shared with
S. The long-lived key LLB stored in the credential store of the browser B consists of the certified private/public
key pair (skB, certB); the corresponding public key pkB is part of the certificate. Finally, the long-lived key
LLS consists of the certified private/public key pair (skS , certS), the password pw and authenticator w. The
server maps (pw,w) to certB in order to select the matching authenticator during the protocol execution. In the
following we briefly describe the execution of our BBMA protocol illustrated in Figure 1.

1. Protocol Invocation. The user U initiates the protocol by communicating the server’s URL to the browser
B. Upon resolving the corresponding address B chooses a nonce rC of length p5(κ) at random and forwards
it to S (ClientHello). In response S chooses a random nonce rS and a TLS session identifier sid of
length p5(κ) and appends it to the own certificate certS (ServerHello). We stress that sid chosen by S
is not the session identifier sidS used in our security model but a value specified in TLS.

2. Key Material Negotiation. B chooses a pre-master secret kp of length p5(κ) at random and sends it to S
encrypted with the received public key pkS (ClientKeyExchange). The pre-master secret kp is used to
derive the master secret km through a pseudo-random function PRF on input (l1, rC |rS) with kp as the secret
seed. This key derivation is performed based on the standard TLS pseudo-random function PRF (see [4, Sect.
5]). The master secret is then used as secret seed for the instantiation of the pseudo-random function PRF
on input (l2, rC |rS) to derive the session keys (k1, k2) used to encrypt and authenticate session messages
exchanged between B and S. TLS specifies the generation of six session keys: A symmetric encryption key,
a MAC key, and an IV for block ciphers only (either for client and server). For simplicity, we denote k1 as
the encryption key and k2 as the authentication key which are the same for B and S. The browser B also
proves possession of the private key skB by signing the hash hσC over all previously negotiated messages,
i.e., signature σC (ClientVerify).

Provably Secure Browser-Based User-Aware Mutual Authentication over TLS 9

User U
{LLU := (pw,w)}

Browser B
{LLB := (skB, certB)}

Server S
{LLS := (pw,w, skS , certS)}

choose URL

−
URL
−−−−−−−→

rC ∈r {0, 1}p5(κ)

A := rC

−
A

−−−−−−−→
rS , sid ∈r {0, 1}p5(κ)

sidS := rC|rS
B := rS |sid|certS

←−
B

−−−−−−−
sidC := rC|rS
kp ∈r {0, 1}p3(κ)

km := PRFkp (l1, sidC)

C′ := EpkS (kp)

C := C′|certB
hσC = Hash(A|B|C)
σC := SigskB (hσC)

(k1|k2) := PRFkm (l2, sidC)
h1 := Hash(A|B|C|σC)
FC := PRFkm (l3, h1)
D := Enck1 (FC|HMACk2 (FC))

−
C|σC|D
−−−−−−−−→

parse C as C′ and certB
if NOT V er(certB, A|B|C, σC)
then ABORT else
kp := DskS (C′)

km := PRFkp (l1, sidS)

(k1|k2) := PRFkm (l2, sidS)
h1 := Hash(A|B|C|σC)
(FC|ηC) := Deck1 (D)
if FC 6= PRFkm (l3, h1)
or ηC 6= HMACk2 (FC) then ABORT
else
h2 := Hash(A|B|C|σC|FC)
FS := PRFkm (l4, h2)
E := Enck1 (FS |HMACk2 (FS))
F := Enck1 (w|HMACk2 (w))

←−
E |F
−−−−−−−

(FS |ηS) := Deck1 (E)
(w|µS) := Deck1 (F)
h2 := Hash(A|B|C|σC|FC)
if FS 6= PRFkm (l4, h2)
or ηS 6= HMACk2 (FS)
or µS 6= HMACk2 (w)
then ABORT else
w∗ := render(w, Ψ)

←−
w∗

−−−−−−−
if recognize(w∗, w) = 0
then ABORT else

−
pw

−−−−−−−→
ACCEPT

G := Enck1 (pw|HMACk2 (pw))
ERASE pw,w

−
G

−−−−−−−→
(pw′|µC) := Deck1 (G)

if µC 6= HMACk2 (pw′)
then ABORT else
if pw′ 6= pw
then ABORT else ACCEPT

Fig. 1. BBMA Protocol over TLS with Mutual Authentication between User U and Server S. Boxed messages denote the standard TLS handshake.

10 Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk

3. Session Key Confirmation. B confirms the session key generation, i.e., FC is the first message that is au-
thenticated via HMAC computed with k2 and encrypted via the symmetric encryption scheme computed with
k1. FC is computed as output of PRF on input (l3, h1) with km as the secret seed; whereby h1 denotes the
hash value computed over all messages previously processed by B (Finished). S verifies σC , using the
public key pkB. Further, S generates km and derives the session keys (k1, k2) in a similar way. S uses
the own session keys (k1, k2) to ensure that it communicates with B through the verification of FC . If the
verification fails, S aborts the protocol. Otherwise, it confirms the negotiated session parameters, using PRF
on input (l4, h2) with km as secret seed; whereby h2 denotes the hash value over the received messages.
The output of PRF is first authenticated via HMAC computed with k2 and then encrypted via the symmetric
encryption scheme computed with k1.

4. Authenticate to the User. The actual authentication between U and S proceeds in the last communication
rounds. S sends authenticatorw encrypted with k1 with the attached message authentication code computed
using k2. We call the message in a high-level description the HumanAuth message. B communicates the
decrypted authenticator to U through execution of the render function which takes as input the authenti-
cator w and state Ψ and outputs the visualization of w named w∗. The abstract human perception function
recognize is used to model the ability of U to decide whether the authenticator w∗ matches the origi-
nal authenticator w which is shared with S after the initialization stage. Upon the successful recognition
U communicates the password pw to B and accepts. The browser in turn forwards pw to the server over
the established secure channel, i.e., authenticated via HMAC computed with k2 and encrypted with k1. We
call the response message in a high-level description the HumanResponse message. S accepts upon the
successful verification of the received password.

Before we continue with the security analysis we reemphasize the triangular model of authentication deployed
in BBMA. When verifying FC , S is sure to deal with B. Then, S resolves certB to look up for the corresponding
authenticator w. If no matching pair (certB, w) exists, S aborts the protocol; otherwise S proceeds by sending
FS . Upon the stage, S knows that it can establish a secure channel with B. When verifying FS , B knows that
it can establish a secure channel to S . Upon the stage, the protocol ensures that S and B are able exchange
confidential messages. As with TLS in client authentication mode, the channel does not prevent U from con-
tacting a rogue server and disclosing sensitive information. However, when verifying w through the execution
of recognize, U is sure to communicate to S through B, since S is the only owner of w apart from U . Upon
this stage, the protocol ensures that S is authenticated to U . Finally, when verifying pw, S is sure to deal with
the matching client C := (U ,B).

3.3 Security Analysis

In the following we analyze the security of BBMA. We recall that the goal of the protocol is to provide browser-
based mutual authentication between U and S according to Definition 3. Although not stated in Theorem 1
explicitly, the security proof of proposed BBMA based on the current TLS standard is valid in the Random
Oracle Model (ROM) [8]. The reason is that the specification of TLS prescribes the use of the RSA encryption
according to PKCS#1 (a.k.a. RSA-OAEP) which in turn is known to provide IND-CPA security in ROM (see
[33] for the proof). However, Theorem 1 assumes (E ,D) to be IND-CPA secure (independent of ROM). Thus,
using an encryption scheme whose security holds under standard assumptions would also disburden the current
security of BBMA from the strong assumptions of ROM.

Theorem 1 (BBMA-Security). Let q denote the total number of executed protocol sessions. If PRF is pseudo
random, (Enc,Dec) and (E ,D) are IND-CPA secure, Hash is collision-resistant, (Sig, V er) is EUF-CMA
secure, and HMAC is WUF-CMA secure, then BBMA provides mutual authentication in the sense of Definition 3
and

SuccbbmaBBMA (κ) ≤ 3q2

2p5(κ)
+

q2

2p3(κ)
+ 4qAdvind−cpa(Enc,Dec)(κ) + 4qAdvprfPRF (κ) + 3qSucccollHash(κ) +

4qSuccwuf−cmaHMAC (κ) + qAdvind−cpa(E,D) (κ) + qSucceuf−cma(Sig,V er)(κ) +
q|W∗|
|W|

.

Provably Secure Browser-Based User-Aware Mutual Authentication over TLS 11

Proof. (Sketch) In this proof we apply the meanwhile classical proving technique from [34]. We construct
a sequence of games Gi, i = 0, . . . , 21 and denote by Wini the event that adversary A breaks the mutual
authentication of the protocol in game Gi, i.e., wins in the corresponding interaction as described in Definition
3.

Game G0. [Real protocol] This is the real GamebbmaBBMA (κ) played between a simulator∆ and a PPT adversary
A. ∆ simulates protocol participants according to the natural protocol specification and answers all queries of
the adversary.

Game G1. [Same TLS Session Id] In this game the simulation aborts if during the interaction the simulator
on behalf of the browser B chooses the same TLS session id sid in two different protocol sessions. Considering
the probability for the collision of two random choices we obtain

|Pr[Win1]− Pr[Win0]| ≤
q2

2p5(κ)
.

Game G2. [Same Nonces] In this game the simulation aborts if during the interaction the simulator on
behalf of the browser B or server S chooses the same random nonce rC or rS in two different protocol sessions.
Similar to Game G1 we obtain

|Pr[Win2]− Pr[Win1]| ≤
2q2

2p5(κ)
.

Note that since in our protocol both session ids – sidC and sidS – are computed as concatenation rC |rS this
game rules out the occurrence of different (uncorrupted) client or server instances having the same session id,
i.e., for the honest party each new session is associated with a different session id.

Game G3. [Hash collision of hσC] This game proceeds exactly as Game G2 except that the simulation
aborts if during the interaction ∆ computes the same hash value hσC := Hash(A|B|C) in two different session.
Note that games G1 and G2 ensure that values A and B are fresh in different protocol sessions. Hence, the
simulation aborts in the current game if ∆ computes a hash collision. Due to the collision-resistance of Hash
we obtain

|Pr[Win3]− Pr[Win2]| ≤ qSucccollHash(κ).

This game implies that hσC is fresh for each new session.
Game G4. [Signature Forgery of σC] In this game the simulation aborts if A asks a Send query for the

message C ′|certB|σC |FC such that σC is a valid signature on some string rC |sid|rS |certS |C ′|certB which has
never been signed by B before, i.e., if a signature forgery occurs. It is possible to construct a forger algorithm F
which will simulate all protocol participants and answer all queries of A such that if A wins in this game then
F breaks the EUF-CMA security of the applied digital signature scheme (Sig, V er). Thus,

|Pr[Win4]− Pr[Win3]| ≤ qSucceuf−cma(Sig,V er)(κ).

Note that with this game we have also excluded replay attacks on the protocol messages containingA = rC |sid,
B = A|rS |certS and the part C ′|certB from the third protocol message in Figure 1.

Game G5. [Same Pre-master Secret] In this game the simulation aborts if during the interaction the sim-
ulator on behalf of the browser B chooses the same pre-master secret kp in two different protocol sessions.
Thus,

|Pr[Win5]− Pr[Win4]| ≤
q2

2p3(κ)
.

Game G6. [Indistinguishability of C’] This game proceeds exactly as Game G5 except for the following
actions of ∆: if ∆ receives a message B = rS |sid|certS as part of the adversarial Send query then ∆ computes
C ′ := EpkS (α) for some additional randomly chosen α 6= kp. Otherwise, if B = A|rS |cert′S with some
cert′S 6= certS then ∆ computes C ′ := EpkS (kp), i.e., exactly as specified in the protocol. We denote this
certificate injection event by InjCert. With the above modification we consider in our proof attacks against
users that do not properly verify the validity of server’s certificate. That is, the protocol proceeds in a natural
way even if the user accepts some forged or invalid certificate. On the other hand, if the real server’s certificate is
received (no InjCert occurred) then the purpose of this game is to show that the security of the used asymmetric

12 Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk

encryption scheme has an impact on the secrecy of the transmitted pre-master secret kp. Due to the IND-CPA
property of (E ,D) and since InjCert can occur only in a session invoked via the Invoke query we obtain

|Pr[Win6]− Pr[Win5]| ≤ qAdvind−cpa(E,D) (κ).

Note that the specification of TLS prescribes the use of the RSA encryption according to PKCS#1 (a.k.a. RSA-
OAEP) which in turn is known to provide IND-CPA security in ROM (see [33] for the proof).

Game G7. [Pseudo-randomness of km] This game proceeds exactly as Game G6 except that if no InjCert
occurred then the simulator chooses the master secret km at random instead of computing it using the pseudo-
random function PRF. This can be done since the secret seed (given by the pre-master secret kp) used in the
computation is uniformly distributed. Note that if InjCert has occurred then these modifications are not applied.
Due to the pseudo-randomness of PRF we obtain

|Pr[Win7]− Pr[Win6]| ≤ qAdvprfPRF (κ).

Game G8. [Pseudo-randomness of k1 and k2] This game proceeds exactly as Game G7 except that if no
InjCert occurred then the simulator chooses k1|k2 at random instead of computing it using PRF. Note that the
master secret km is already uniform if InjCert has not occurred (according to Game G7). On the other hand,
if InjCert has occurred then k1|k2 are computed as specified in the protocol. Due to the pseudo-randomness of
PRF we obtain

|Pr[Win8]− Pr[Win7]| ≤ qAdvprfPRF (κ).

Game G9. [Hash collision of h1] This game proceeds exactly as Game G8 except that the simulation aborts
if during the interaction ∆ computes the same hash value h1 := Hash(A|B|C|σC) in two different sessions.
Note that games G1 to G3 ensure that values A, B, and σC are fresh in different protocol sessions. Hence, the
simulation aborts in the current game if ∆ computes a hash collision. Due to the collision-resistance of Hash
we obtain

|Pr[Win9]− Pr[Win8]| ≤ qSucccollHash(κ).

Note, this game implies that h1 is fresh for each new session.
Game G10. [Pseudo-randomness of FC] This game proceeds exactly as Game G9 except that if no InjCert

occurred then the simulator chooses FC at random instead as computing it using PRF. Due to the pseudo-
randomness of PRF we obtain

|Pr[Win10]− Pr[Win9]| ≤ qAdvprfPRF (κ).

Note, this game implies that FC does not leak any information about km. Note also, this and the previous games
exclude replay and forgery attacks on A,B and C|σC , since the pseudo-random function is instantiated with
fresh values, i.e., h1, and different labels.

Game G11. [Forgery of ηC] This game proceeds exactly as Game G10 except that the simulation aborts if
no InjCert occurred and there has been a Send query containing valid ηC which has not been previously returned
by ∆ on behalf of the browser (i.e., if A outputs a successful forgery for ηC). Thus,

|Pr[Win11]− Pr[Win10]| ≤ qSuccwuf−cmaHMAC (κ).

Game G12. [Indistinguishability of D] The only difference to Game G11 is that if no InjCert occurred
then the simulator computes D := Enck1(β) using some additional randomly chosen β 6= FC |ηC ; otherwise
D is computed as specified in the protocol. The purpose of this game is to show that the symmetric encryption
protects secrecy of the transmitted encrypted and authenticated client finished message FC . Due to the IND-CPA
property of (Enc,Dec) we obtain

|Pr[Win12]− Pr[Win11]| ≤ qAdvind−cpa(Enc,Dec)(κ).

Note that this and the previous games exclude replay and forgery attacks on D resulting in the acceptance by S.
Game G13. [Hash collision of h2] This game proceeds exactly as Game G12 except that the simulation

aborts if during the interaction ∆ computes the same hash value h2 := Hash(A|B|C|σC |FC) in two different

Provably Secure Browser-Based User-Aware Mutual Authentication over TLS 13

sessions. Since as observed in Game G1 to Game G3 and Game G10 the input of h2 is fresh for each new
session the probability of such collision in this game is given by the collision-resistance of Hash, i.e.,

|Pr[Win13]− Pr[Win12]| ≤ qSucccollHash(κ).

Game G14. [Pseudo-randomness of FS] This game proceeds exactly as Game G13 except that if no InjCert
occurred then the simulator chooses FS at random instead as computing it using PRF. Due to the pseudo-
randomness of PRF we obtain

|Pr[Win14]− Pr[Win13]| ≤ qAdvprfPRF (κ).

Note, this game implies that FS does not leak any information about km. Note also, this and the previous games
exclude replay and forgery attacks on A,B,C|σC , and FS , since the pseudo-random function is instantiated
with fresh values, i.e., h2, and different labels.

Game G15. [Forgery of ηS] This game proceeds exactly as Game G14 except that the simulation aborts
if no InjCert occurred and there has been a Send query containing valid ηS which has not been previously
returned by ∆ on behalf of the server (i.e., A outputs a successful forgery for ηC), thus

|Pr[Win15]− Pr[Win14]| ≤ qSuccwuf−cmaHMAC (κ).

Game G16. [Indistinguishability of E] The only difference to Game G15 is that if no InjCert occurred then
the simulator computes D := Enck1(γ) using some additional randomly chosen γ 6= FS |ηS ; otherwise E
is computed as specified in the protocol. The purpose of this game is to show that the symmetric encryption
protects secrecy of the transmitted encrypted and authenticated server finished message FS . Due to the IND-
CPA property of (Enc,Dec) we obtain

|Pr[Win16]− Pr[Win15]| ≤ qAdvind−cpa(Enc,Dec)(κ).

Note, this and the previous games exclude replay and forgery attacks on E resulting in the acceptance by B.
Game G17. [Forgery of µS] This game proceeds exactly as Game G16 except that the simulation aborts

if no InjCert occurred and there has been a Send query containing valid µS which has not been previously
returned by ∆ on behalf of the server (i.e., if A outputs a successful forgery for µS). Thus,

|Pr[Win17]− Pr[Win16]| ≤ qSuccwuf−cmaHMAC (κ).

Game G18. [Indistinguishability of F] The only difference to Game G17 is that if no InjCert occurred then
the simulator computes F := Enck1(δ) using some additional randomly chosen δ 6= (w|µS); otherwise F
is computed as specified in the protocol. The purpose of this game is to show that the symmetric encryption
protects secrecy of the transmitted encrypted authenticator w. Due to the IND-CPA property of (Enc,Dec) we
obtain

|Pr[Win18]− Pr[Win17]| ≤ qAdvind−cpa(Enc,Dec)(κ).

Note, this and the previous games exclude replay and forgery attacks on F resulting in the acceptance by B.
Game G19. [Forgery of µC] This game proceeds exactly as Game G18 except that the simulation aborts

if no InjCert occurred and there has been a Send query containing valid µC which has not been previously
returned by ∆ on behalf of the client (i.e., if A was able to output a successful forgery for µC). Thus,

|Pr[Win19]− Pr[Win18]| ≤ qSuccwuf−cmaHMAC (κ).

Game G20. [Indistinguishability of G] The only difference to Game G19 is that if no InjCert occurred then
the simulator computes G := Enck1(ε) using some additional randomly chosen ε 6= pw|µC ; otherwise G is
computed as specified in the protocol. The purpose of this game is to show that if no certificate injection took
place then A does not obtain any information about the encrypted password pw. Due to the IND-CPA property
of (Enc,Dec) we get

|Pr[Win20]− Pr[Win19]| ≤ qAdvind−cpa(Enc,Dec)(p3(κ)).

Note, this and the previous games exclude replay and forgery attacks on G resulting in the acceptance by S.

14 Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk

Game G21. [Random Guess of the Authenticator w] This game proceeds exactly as Game G20 except
that the simulation aborts if during the interaction there is a client instance which accepts but there exists no
partnered server instance, i.e., the first condition for the adversarial success from Definition 3 is satisfied. Note
that according to the protocol specification U accepts after having recognized the authenticator w. Obviously
the adversary succeeds only if B has received a Send query containing a message of the form E|F which has
not been previously returned by S such that decryption of F to (w′|µS) and rendering of w′ results in the
acceptance by U . Having excluded forgeries of µS in Game G17 we follow that the success probability of A is
conditioned by the occurrence of InjCert (by which A learns k1 and k2) and is given by the probability of A
to find some authenticator w ∈ W excluding the subset of human-indistinguishable authenticatorsW∗ which
will then be visualized to U . Obviously, the success probability of A in finding such HPA depends on the size
ofW∗. Thus, this is precisely the point in our security analysis of BBMA where human skills to distinguish the
authenticators become important. We get

|Pr[Win21]− Pr[Win20]| ≤
q|W|
|W∗|

.

Note, this excludes attacks resulting in the impersonation of the server towards the user. Hence, A wins in
this game if there is a server instance which accepts but no partnered client instance, i.e., if the second condition
from Definition 3 is satisfied. Note, S accepts only after having verified the authenticity of µC and that the
decrypted password pw′ matches the one shared with U . Having excluded replays and forgeries of µC in Game
G19 and Game G20 we follow that there must be a client instance which sends this message. This also implies
that the mentioned client instance should be using the same session id as the server instance, thus is partnered;
otherwise, the server instance would have aborted upon the verification of the client’s signature σC . Hence,
Pr[Win21] = 0.

Considering Games G1 to G21 we obtain the desired inequality. ut

4 Realization

In our realization of BBMA the TLS protocol is first executed in the bilateral authentication mode to establish a
secure channel; then, HumanAuth and HumanResponse are exchanged. Recall, HumanAuth contains the
authenticated and encrypted human authenticator whereas HumanResponse contains the authenticated and
encrypted user password. Thus, the authenticator and password are protected by the message authentication and
encryption mechanisms, using the keys provided by the TLS record layer. The flexibility of choosing the higher
order protocol makes this realization especially interesting. Processing and displaying of the authenticator is
modular and outsourced to the Web application. This allows to use authenticators that are personally tailored for
a user. By personally, we mean the way in which the authenticators are presented to the user. Since technically
sophisticated users might opt for classical Web authentication, our realization makes it feasible to downgrade to
TLS in server authentication mode only.

We used HTTP over TLS in client authentication mode, executing a stand-alone Web application (in order to
avoid cross-site-scripting attacks) that is written in the widely adopted script language PHP. In order to avoid a
performance penalty for servers that have a large-scale penetration a TLS accelerator may be used. The protocol
consists of two stages. In the register stage the user opts for an image and generates a client certificate as defined
in PKCS#10. In the login stage, the image is displayed while the user is requested to enter a password into a
Web form. A demonstration is available at [32].

As with any password-based key exchange protocol, we assume that there is no (active) adversary who
intercepts the setup of credentials. (In the setup phase, the protocol is vulnerable to man-in-the-middle attacks.).
When the user requests the Web site (Fig. 2), she may opt for registration. (Here the server may already test if
a client certificate is present in the browser by sending a CertificateRequest message.) Then, she has to
enter an email address, a username and password, and upload an image.

If no client certificate is stored in the browser, the server may trigger the generation of a public key pair
and a PKCS#10 certificate signing request. (For the protocol to work, it would be sufficient that the browser
generates a self-signed certificate. However, this is not implemented in modern browsers.) Upon receiving the

Provably Secure Browser-Based User-Aware Mutual Authentication over TLS 15

Fig. 2. Registration (left), Login (right)

PKCS#10 request, the server issues a certificate. Since the server is the issuer, no third party is required. The
certificate is provided with attributes chosen by the server in order to relieve the user from filling out the (se-
curity) parameters. Finally, the server displays a link where the user downloads the client certificate. The client
certificate’s fingerprint in addition to the credentials are stored in the server’s database and used to identify the
user in the login stage. The overhead to install the client certificate is minimal. Today’s browsers provide an
easy-to-use interface. For instance, in the current release of Firefox the user has to click a link in order to store
the certificate; no more interaction is required.

Upon requesting the login page (Fig. 2), the server checks that the browser is in possession of a valid
client certificate as specified by TLS (CertificateRequest). Then, it displays the corresponding image
above the login form (HumanAuth); otherwise, the protocol halts and the user is prevented from seeing the
login page (and the authenticator). In order to get access to the site, the user has to enter username and password
(HumanResponse). The messages HumanAuth and HumanResponse are authenticated and then encrypted
by the TLS record layer. However, TLS-protected messages are secured while in transit on the network; after
reception, the message plaintext as recovered by the record layer is forwarded to the browser where it can persist
in the cache. In order for preventing the adversary from revealing cache information and disclosing the HPA we
set up the server using the HTTP cache-response-directive [20, Sect. 14.9.2] so that the browser avoids caching
the HumanAuth message.

5 Conclusion

Authenticating the user on the Web is an essential primitive and target to various attacks. We have introduced and
analyzed a browser-based authentication protocol that makes weakest assumptions on users’ skills. They have to
detect a human perceptible authenticator. The protocol is specifically designed for those users who are security-
unaware and used to evaluate Web sites through easy-to-recognize indicators. It remains an open question, if
indeed all users detect the human perceptible authenticator. This requires to conduct usability experiments that
specify the choice of “good” authenticators and keep the human fuzziness low. The presented protocol makes
first steps towards bridging the gap between protocols that are provably secure, interfaced to users who are
prone to errors, and implementable within the design constraints of standard browsers.

Interesting approaches to make BBMA more lightweight include the automatic generation of self-signed
X.509 certificates in the browser or modifications of the mature browser security model that allows for securely
handling cookies. Another interesting challenge is a cryptographic compiler that composes browser-based pro-
tocols in a general and provably secure sense. A last issue is to model alternative human skills such as the ability
to solve human-hard puzzles (e.g., CAPTCHAs). First steps towards a formal treatment of solving such puzzles
have been recently made by Canetti, Halevi, and Steiner [14].

Acknowledgement

This work has been partially supported by the European Commission under contract IST-2002-507932 through
the ECRYPT Network of Excellence.

16 Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk

References

1. M. Abdalla, E. Bresson, O. Chevassut, B. Möller, and D. Pointcheval. Provably secure password-based authentication
in tls. In ASIACCS’06, pages 35–45. ACM, 2006.

2. M. Abdalla, O. Chevassut, and D. Pointcheval. One-time verifier-based encrypted key exchange. In PKC’05, volume
3386 of LNCS, pages 47–64. Springer, 2005.

3. M. Abdalla and D. Pointcheval. Simple Password-Based Encrypted Key Exchange Protocols. In CT-RSA’05, volume
3376 of LNCS, pages 191–208. Springer, 2005.

4. C. Allen and T. Dierks. The TLS Protocol — Version 1.1. Internet proposed standard RFC 4346, 2006.
5. M. Bellare and C. Namprempre. Authenticated Encryption: Relations among Notions and Analysis of the Generic

Composition Paradigm. In ASIACRYPT’00, volume 1976 of LNCS, pages 531–545. Springer, 2000.
6. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary Attacks. In

EUROCRYPT’00, volume 1807 of LNCS, pages 139–155. Springer, 2000.
7. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In CRYPTO’93, volume 773 of LNCS, pages

232–249. Springer, 1993.
8. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In ACM

CCS’93, pages 62–73. ACM, 1993.
9. M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenticated Key Exchange. Contributions to

IEEE P1363, 2000. http://grouper.ieee.org/groups/1363/passwdPK/contributions.html.
10. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-based protocol secure against dictio-

nary atttacks and password file compromise. In ACM CCS’93, pages 244–250. ACM, 1993.
11. V. Boyko, P. D. MacKenzie, and S. Patel. Provably Secure Password-Authenticated Key Exchange using Diffie-

Hellman. In EUROCRYPT’00, volume 1807 of LNCS, pages 156–171. Springer, 2000.
12. E. Bresson, O. Chevassut, and D. Pointcheval. Security Proofs for an Efficient Password-Based Key Exchange. In ACM

CCS’03, pages 241–250. ACM, 2003.
13. E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted Key Exchange. In PKC’04, volume

2947 of LNCS, pages 145–158. Springer, 2004.
14. R. Canetti, S. Halevi, and M. Steiner. Mitigating Dictionary Attacks on Password-Protected Local Storage. In

CRYPTO’06, volume 4117 of LNCS, pages 160–179. Springer, 2006.
15. S. Chiasson, P. C. van Oorschot, and R. Biddle. Graphical Password Authentication using Cued Click Points. In

ESORICS’07, volume 4734 of LNCS, pages 359–374. Springer, 2007.
16. R. Dhamija and J. D. Tygar. The Battle against Phishing: Dynamic Security Skins. In SOUPS’05, pages 77–88. ACM,

2005.
17. R. Dhamija, J. D. Tygar, and M. A. Hearst. Why Phishing Works. In CHI’06, pages 581–590. ACM, 2006.
18. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol, Version 1.1. RFC 4346, IETF, 2006. Proposed

Standard.
19. C. Ellison. Ceremony Design and Analysis. Cryptology ePrint Archive, Report 2007/399, 2007.
20. R. T. Fielding, J. Gettys, J. Mogul, H. F. Nielsen, L. Masinter, P. J. Leach, and T. Berners-Lee. Hypertext Transfer

Protocol — HTTP/1.1. Technical Report 2616, Internet Engineering Task Force, June 1999.
21. I. Giang. SSL Phishing, Microsoft Moves to Brand, and Nyms. In FC’06, 14 February 2006. https://www.

financialcryptography.com/mt/archives/000654.html.
22. T. Groß. Security Analysis of the SAML Single Sign-On Browser/Artifact Profile. In ACSAC’03. IEEE Computer

Society, 2003.
23. T. Groß, B. Pfitzmann, and A.-R. Sadeghi. Browser Model for Security Analysis of Browser-Based Protocols. In

ESORICS’05, volume 3679 of LNCS, pages 489–508. Springer, 2005.
24. T. Groß, B. Pfitzmann, and A.-R. Sadeghi. Proving a WS-Federation Passive Requestor Profile with a Browser Model.

In ACM SWS’05, pages 54–64. ACM, 2005.
25. A. Herzberg. Why Johnny Can’t Surf (Safely)?, 2007. (Personal communication, work in progress).
26. M. Jakobsson and S. Myers. Delayed Password Disclosure. In ACM DIM’07, pages 17–26. ACM, 2007.
27. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange using Human-Memorable Pass-

words. In EUROCRYPT’01, volume 2045 of LNCS, pages 475–494. Springer, 2001.
28. J. Katz, R. Ostrovsky, and M. Yung. Forward Secrecy in Password-Only Key Exchange Protocols. In SCN’02, volume

2576 of LNCS, pages 29–44. Springer, 2002.
29. D. Kormann and A. Rubin. Risks of the Passport Single Sign-On Protocol. Computer Networks, 33(1–6):51–58, 2000.
30. P. MacKenzie. The PAK Suite: Protocols for Password-Authenticated Key Exchange. Technical Report 2002-46,

DIMACS, 2002.

Provably Secure Browser-Based User-Aware Mutual Authentication over TLS 17

31. B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Application to Secure Message
Transmission. In IEEE S&P’01, pages 184-201, 2001.

32. Proof of Concept Implementation of BBMA, 2007. http://www.demo.nds.rub.de/bbma.
33. V. Shoup. OAEP Reconsidered. Journal of Cryptology, 15(4):223–249, 2002.
34. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs. Cryptology ePrint Archive, Report

2004/332, 2006.
35. C. Soghoian and M. Jakobsson. A Deceit-Augmented Man in the Middle Attack against

Bank of America’s SiteKey Service, 2007. http://paranoia.dubfire.net/2007/04/
deceit-augmented-man-in-middle-attack.html.

36. M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure Password-Based Cipher Suite for TLS. ACM Trans. on Inf.
and Sys. Sec, 4(2):134–157, 2001.

37. A. O. Stuart Schechter, Rachna Dhamija and I. Fischer. The Emperor’s New Security Indicators. In IEEE S&P’07,
pages 51–65. IEEE CS, 2007.

38. X. Suo, Y. Zhu, and G. S. Owen. Graphical Passwords: A Survey. In ACSAC’05, pages 463–472. IEEE CS, 2005.
39. W3C. Document Object Model (DOM), 2005. http://www.w3.org/DOM.

