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Abstract. The standard solution for mutual authentication between human users
and servers on the Internet is to execute a TLS handshake during which the server
authenticates using a X.509 certificate followed by the authentication of the user
either with own password or with some cookie stored within the user’s browser.
Unfortunately, this solution is susceptible to various impersonation attacks such
as phishing as it turned out that average Internet users are unable to authenticate
servers based on their certificates.
In this paper we address security of cookie-based authentication using the con-
cept of strong locked same origin policy for browsers introduced at ACM CCS’07.
We describe a cookie-based authentication protocol between human users and
TLS-servers and prove its security in the extended formal model for browser-
based mutual authentication introduced at ACM ASIACCS’08. It turns out that
the small modification of the browser’s security policy is sufficient to achieve
provably secure cookie-based authentication protocols considering the ability of
users to recognize images, video, or audio sequences.

1 Introduction

Motivation The browser plays an indispensable function as the user’s interface to ac-
cess the rich world of Web based services. In order to serve the purpose of an universal
client, commodity browsers have been augmented with numerous functionalities. Ex-
amples include extensions of the HTTP header to control caching and transport cookies,
or the HTML markup language to enable high-level scripting and supply technologies
like AJAX, AFLEX or SOAP. By contrast, much effort to amend the browser security
model and provide new cryptographic services has not been spent. Since its adaption
more than a decade ago [9], the Transport Layer Security (TLS) framework is the main
pillar of browser-based protocols to provide Web applications with a security layer.
After the protocol framework has been peer-reviewed without finding any significant
vulnerabilities [22, 24, 25, 28], it has been believed to be the holy grail for secure Web
authentication. However, recent studies point out that average-skilled Internet users
understand neither TLS nor its indication in commodity Web browsers at all [7, 27].
Users tend to ignore browser’s warnings and prefer to identify Web sites on the basis
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of non-technical indicators (e.g., brands, logos). This attitude provides a wrong sense
of security. An adversary may fake the site and disclose the user’s password (“phishing
attacks"). The advent of these large-scale fraud attacks has led to several modifications
in the visualization of TLS. Unfortunately, it seems to turn out that the changes do not
meet their high expectations either [16].

Another line of research addresses the design of authentication protocols that pro-
vide user-awareness. The essence of user-aware protocols is to relax the assumptions
on user behavior and provide secure authentication ceremonies. Recently, the authors
of this paper introduced a formal security model for browser-based mutual authenti-
cation (BBMA) between a human user and a server where the browser is modeled as
the mediator of the communication [11]. Their model is an extension of the classical
model for authentication from [3] towards consideration of user-awareness within the
authentication protocols on the Internet whereby user-awareness is modeled via hu-
man perceptible authenticators (HPAs) that are implied by natural human senses, such
as recognition of images, videos, and audio sequences. In addition to the model, [11]
describes a protocol called BBMA (based on the ideas of the PassMark Security Inc.’s
Two-Factor-Two-Way AuthenticationTM) which can be implemented within the stan-
dard specification of the TLS protocol. In this protocol the human user authenticates
via password which is typed into an HTML form only after the successful recognition
of some expected HPA sent by the server. In order to protect the disclosure of this HPA
to unauthorized parties, the TLS protocol uses client (possibly self-generated) certifi-
cates which serve as a cryptographic identifier for the corresponding HPA.

Extending this line of research, we deal with user-awareness in cookie-based au-
thentication protocols. These protocols execute a server-only authenticated TLS ses-
sion, where the user authenticates through a cookie that has been previously set by the
server and stored in the browser’s cache. The technique has the advantage that the user
is refrained from retyping the password. Further, the cookie is taken from a sufficiently
large random distribution. There is no need to expect a “security defect" due to the use
of low-entropy passwords. These simplifications of user authentication have led to a
wide adaption of cookie-based authenticated channels in browser-based protocols and
there are many protocols that build upon this technique. Unfortunately, they have been
shown to be vulnerable when taking the mature browser security model into account
(see Section 2 for more discussions). The crux is that the browser decides on the basis
of the server’s domain name whether to reveal the cookie. The adversary is feasible to
steal the cookie by spoofing the domain names and there are many attacks allowing the
adversary to do this (e.g., dynamic pharming, DNS rebinding [15, 19].

To protect against the growing presence of these threats, Karlof et. al. propose
refinements of the browser’s cookie disclosure policy [19, 23]. Their contribution is
to augment the browser with some additional functionality which uses cryptographic
mechanisms to enforce restricted access policies without relying on DNS, dubbed the
strong locked same origin (SLSO) policy. In the context of cookie-based authentication
protocols over the TLS channel, the SLSO policy enforcement means that the browser
sends a cookie to the server only after the server proves the possession of a valid crypto-
graphic identifier, namely the server’s public key, i.e., the server proves the knowledge
of the corresponding private key.



Contributions In this paper we extend our model from [11] towards cookie-based au-
thentication and consideration of the browser’s SLSO policy. Using the extended model
we analyze the security of the cookie-based version of BBMA from [11] re-engineered
under the SLSO policy. We call the modified protocol BBMA-SLSO. It turns out that
some minor changes of the browser security model to enforce the SLSO policy—which
is a straightforward task compared to the large scale deployment of, say secure domain
name resolution protocols (DNSSEC)—turns an insecure protocol into a provably se-
cure one. Additionally, the use of SLSO policy allows us to eliminate the costly use of
the client certificates, which are essential to prove security of BBMA. In addition to the
formal security definition, BBMA-SLSO has additional advantages over previous cookie-
based authentication protocols. The advantages include

1. BBMA-SLSO is user-aware. In order to authenticate, the server sends a HPA, which
serves (i) as non-cryptographic identifier for the user to validate the server as in the
physical world where identities are provided in an easily recognizable fashion and
(ii) as fail-stop mechanism to hamper that she discloses private information on a
faked site.

2. BBMA-SLSO fits into the standard TLS specification. There is no need to modify
commodity server implementations. In fact, the necessary augmentations address
browsers, more precisely their functionality to access cookies corresponding to the
SLSO policy. See [23] for more details.

We remark that the enforcement of the SLSO policy is ineligible to protect against
cross-site scripting (XSS) attacks. The anatomy of XSS attacks is to exploit weaknesses
of application servers and inject malicious scripts into the communication that enable
the adversary to invoke certain browser functionalities. Since the scripts are in the same
security context the SLSO policy does not help. Consequently, the adversary would
have access to the user’s password typing, the cookie and HPA in BBMA-SLSO. Though
we treat XSS attacks as (server) corruptions in our model and exclude them in the anal-
ysis, a work-around to make BBMA-SLSO resistant against the attacks is to completely
isolate the named security critical information and prevent that they are accessible from
the surrounding (potentially malicious) scripts. Such a feature is already available in
the Internet Explorer for cookies [21]. The approach has to be extended for passwords
and HPAs. Since the implementation of the SLSO policy requires the modification of
the current browser’s security policy anyway, we suggest to enrich this policy with the
private/public tagging of elements. An element such as a password field tagged with a
private value shall signal the browser that any script is prevented from access, regardless
of its security context. See [10] for more details.

Organization The remainder sections are structured as follows. We review related
work in Section 2. In Section 3, we describe the formal security model for cookie-
based BBMA protocols under consideration of the SLSO policy. In Section 4 we spec-
ify a concrete protocol called BBMA-SLSO using the high level description of the TLS
handshake in the key transport mode and prove that it is user-aware and satisfies the
defined authentication requirement. Finally, we conclude the paper in Section 5.



2 Related Work

So far, few browser-based protocols have been subject to rigorous security analysis:
Kormann and Rubin [20] show that Microsoft’s .NET passport, a Web-based realization
of the Kerberos protocol for single sign on, is susceptible to attacks where the adversary
steals the ticket granting ticket cookie. Soghoian and Jakobsson [31] investigate the
SiteKey-protocol that displays a previously negotiated image in addition to password
forms in order to signal that the user is connected to the benign server. The authors
show the feasibility of stealing the shared secret that is stored in a cookie. Groß [12]
analyzes SAML, an alternative single sign on protocol, and shows that the protocol is
vulnerable to adaptive attacks where the adversary intercepts the authentication token
contained in the URL. By contrast, BBMA-SLSO has formal security arguments and is
provably secure in a model which takes into account the adversarial control over the
network and attacks against the classical browser’s security policies that reveal weak
identifiers, such as cookies.

Groß et al. prove in [14] the security of WS-Federation passive Requestor Profile—
a browser-based protocol for federated identity management. The proof is carried out
in the browser model [13] that builds on the Reactive Simulatability framework due
to Pfitzmann and Waidner [26]. The model abstracts away the TLS-protected channel
through an ideal functionality that captures the same cryptographic task and presup-
poses ideal users who are able to identify servers based on certificates. There exists
no soundness proof that TLS is simulatable and realizes such functionality, especially
with respect to the relaxed user behavior assumptions. BBMA-SLSO takes explicitly into
account the TLS protocol and is shown to be provably secure in the Random Oracle
Model when instantiated with the widely deployed key transport cipher suite in server
authentication mode.

3 Modeling BBMA with SLSO Policy

In this section we extend our security model for browser-based mutual authentication
from [11] towards consideration of cookie-based authentication and the SLSO policy
implemented within the browser.

3.1 Protocol Participants and Communication Model

User, Browser, Server, and their Long-Lived Keys Let U denote a human user for
whom we do not make any further assumptions except for the ability to use some natu-
rally born senses. We assume that U remembers some (high-entropy) human perceptible
authenticator (HPA) w ∈ W (e.g. an image or a video/audio sequence from some space
W) as its long-lived key LLU .

To the contrary, the browser B and the server S are modeled as PPT machines. LLB
is the browser’s high-entropy long-lived key which contains (S, pkS , cky) where S is
the identity (domain name) of the server, pkS ∈ {0, 1}p1(κ) its certified public key,
and cky ∈ {0, 1}p2(κ) is the cookie set by S during the establishment of the security
association with the client which is denoted by C = (U ,B). (Here and in the following,



pi : N → N, i ∈ [1, 5] is a polynomial and κ ∈ N the security parameter.) We assume
that cky contains secret information (e.g. obfuscated or cryptographically processed
password) which allows S to uniquely identify U . Similarly, LLS contains the private
key skS ∈ {0, 1}p1(κ) and the tuple (U , cky, w).

Additionally, by C we denote the traditional client given by a pair (U ,B).

Communication between B and U via render-Function Let λi : N → N, i ∈ [1, 2]
be two polynomials. B communicates to U through the visualization function render :
M× Ψ → M∗ where M ∈ {0, 1}λ1(κ) is the message space (space of all HTML
messages) and Ψ ∈ {0, 1}λ2(κ) is the browser’s configuration for message processing
that may be altered by querying the browser’s DOM model.

Modeling User-Awareness via recognize-Function Similar to [11] we assume that
U can recognize some previously remembered high-entropy HPA w ∈ W . The recog-
nition is handled by a boolean human perception function recognize : M∗ ×W →
{0, 1} which on input a visualized message m∗ ∈ M∗ and w the recognize function
outputs 1 if U recognizes w among the content of m∗; otherwise the output is 0. In
this paper we assume that if m∗ contains w (denoted as m∗|w) then recognize out-
puts 1, i.e., the ability of U to recognize w is perfect. On the other hand, we do not
assume that w is the only HPA for which recognize outputs 1, i.e., we do not ide-
alize U as there can be some set W∗ ⊆ W which contains HPAs that are perfectly
human-indistinguishable from U according to the following definition.

Definition 1 (Perfect Human-Indistinguishability of HPAs). Let w ∈ W be some
given HPA. For any m∗ ∈ M∗ and any w∗ ∈ W , we say that w and w∗ are perfectly
human-indistinguishable, if for any human user U∣∣ Pr[U .recognize(m∗|w,w) = 1]− Pr[U .recognize(m∗|w∗, w) = 1]

∣∣ = 0

where the probabilities are computed over the choices of w∗. ByW∗ ⊆ W we denote
the set of all perfectly human-indistinguishable HPAs for some given w ∈ W assuming
that w ∈ W∗.

The main idea in designing user-aware security protocols based on HPAs is to opt for
authenticators for whichW∗ is sufficiently small for most of the users. In this case the
probability that an adversary chooses or guesses some HPA that cannot be distinguished
from w by U can be kept low. The ideal case would be ifW∗ would consist only of w.
We call w a good HPA if the size of the set W∗ is sufficiently small such that the
term |W∗|/|W| which is used in our proof beside other cryptography-related terms to
compute the overall probability of a successful attack is negligible.

For our protocol we assume that the HPA used by U in the execution of our protocol
is good. We stress that in order to identify good HPAs extensive user experiments,
possibly under consideration of specific statistic models, have to be conducted. We
conjecture that good HPAs may be found from the personal digital images, audio and
even video sequences.



Protocol Sessions and Participating Instances Participation of C = (U ,B) and S
in distinct executions of Π is modeled via instances [C, sidC ] and [S, sidS ] where
sidC , sidS ∈ N are respective session ids and if sidC = sidS then the instances are
partnered – belong to the same session. We sometimes write C and S instead of their
instances when the difference is visible from the context.

Execution Stages Once initialized with the corresponding long-lived key an instance
[C, sidC ] or [S, sidS ] is marked as used and turns into the stand-by stage where it waits
for an invocation to execute the protocol. Upon receiving such invocation the instance
turns into a processing stage where it proceeds according to the protocol specification
until it collects enough information to decide whether the execution was successful or
not, and to terminate then. If the execution is successful then we say that the instance
accepts before it terminates; otherwise we say it aborts. The acceptance of [C, sidC ]
with C = (U ,B) is implied by the acceptance of U regardless of B, as U is the ultimate
endpoint of the communication and controls the browser. However, [C, sidC ] aborts if
either U or B does so.

3.2 Security Model

In the following we specify attacks and security goals for BBMA protocols from the
perspective of fixed identities S and (U ,B).

Assumptions on the Initialization We assume that the establishment of the security
association between S and (U ,B) during which B receives (certified) pkS and cky, and
S receives w is trusted. In practice, this can be done through the execution of the very
first TLS handshake in the key transport mode under the assumption that this first ses-
sion is not compromised. We remark that this assumption has practical substantiation.
For example, assume that the protocol should be deployed for the login access to the
online banking service of some bank UFB (for User Friendly Bank). If some U who
does not have any online banking account at UFB receives phishing emails with the
invitation to access some fake website of UFB there will be no damage even if U ac-
cepts. However, after U subscribes for the corresponding online service of UFB and
receives the user guide that usually includes information on the connection establish-
ment, it is likely that U , especially if U is technology-unaware and has no experience in
online banking, will follow the guidelines, at least for the very first session in which the
required security association through the upload of w will be established. Thus, for a
successful attack the phishing email should be received by U in the time period between
the subscription and the registration on the site.

Assumptions on the Adversary The PPT adversary A controls all communication
between the protocol parties. This implies:

- A controls the domain name resolution. This also allows A to mount phishing
and pharming attacks. Due to the SLSO policy we assume that the adversary can
establish security association (S ′, pkS′ , cky′) with the client (U ,B) for any server
identity S ′ as long as it can prove the knowledge of the corresponding private key



skS′ .3 Upon sending forged domain resolution responses, the adversary obtains
access to the parts of the browser’s DOM model which are not protected by the
policy. Note also that since the human recognizable authenticator is not cached, it
can not be accessed using the DOM model.

- A can issue public keys which B accepts. There is no trusted third party in the sense
of a trusted CA. Hence, a certified public key in a X.509 server certificate is treated
as a public key that can be identified by a unique identifier (i.e., hash value of the
public key).

- A is unable to corrupt B. Note that in this model we do not deal with malware4

attacks against B and S, therefore, do not consider the case where A reveals the
ephemeral and long-lived secrets stored inside B. In particular this implies that
the adversary is not able to access the secure cookie cky unless its request is suc-
cessfully verified by B based on the SLSO policy. By the same token we do not
consider attacks resulting from the physical access of the adversary to the user’s
digital device running B.

- A is unable to corrupt S. Note also that in this model we do not deal with malware
attacks against the server. This means that the adversary is excluded from revealing
the ephemeral and long-lived secrets stored inside S.

Adversarial Queries A can participate in the actual protocol execution via the follow-
ing queries:

- Execute(C,S): A eavesdrops the execution of the new protocol session between C
and S and receives its transcript.

- Invoke(C,S): U starts the protocol execution with the new instance of S using the
associated instance of browser B and A obtains the first protocol message returned
by B (which is usually generated on some input received from U , e.g., the entered
URL).

- Send(P,m): In an active attack A can send a message to some (instance) of P ∈
{U ,B,S}whereby messages addressed to U are implicitly handled as messages ad-
dressed to the associated browserB with the subsequent execution of render(m,Ψ)
and visualization of its output to U . A receives the response which P generates af-
ter having processed m according to the specification of Π (or an empty string if
m is unexpected).

- RevealState(B): A receives information stored within the browser’s state Ψ and
which is not protected via the SLSO policy. Additionally, it returns (S, pkS), i.e.,A
may learn which servers have security associations with the client, without learning
their secure cookies.

3 Assuming that the initialization process is done during the trusted TLS key transport session
between (U ,B) and S, the adversary must be able to decrypt messages encrypted with pkS′ .
Under the assumption that the deployed asymmetric encryption scheme is sufficiently secure
the decryption operation can be seen as the required proof of possession.

4 Consideration of malware attacks and augmentation of the proposed model with Trusted Com-
puting functionalities to model resistance against malware attacks is surely an interesting as-
pect for the future work on security of browser-based protocols.



- SetCKY(B, (S ′, pkS′ , cky′)): With this query (which is new in comparison to [11])
A sets up a new security association with (U ,B) on behalf of some server S ′ as
long as pkS′ 6= pkS (note that due to our assumptions that A controls the domain
name resolution and can issue certificates that B will accept we explicitly allow
S ′ to be equal to S.) A receives the HPA w′ ∈ W chosen by U such that it is
distinguishable from w, i.e., w′ 6∈ W∗ according to the Definition 1.5

Correctness and Browser-Based Mutual Authentication The following definition
specifies the correctness requirement for BBMA protocols.

Definition 2 (Correctness). A BBMA protocolΠ is correct if each Execute(C,S) query
results in two instances, [C, sidC ] and [S, sidS ] which are partnered (sidC = sidS ) and
accept prior to termination.

In the following we define the main security requirement of browser-based mutual
authentication between participating U and S with B acting as a mediator of the com-
munication.

Definition 3 (Browser-Based Mutual Authentication). Let Π be a correct protocol
according to Definition 2 and GamebbmaΠ (A, κ) the interaction between the instances of
C = (U ,B) and S with a PPT adversary A who is allowed to query Execute, Invoke,
Send, RevealState, and SetCKY. We say that A wins if at some point during the inter-
action:

1. An instance [C, sidC ] accepts but there is no partnered instance [S, sidS ], or
2. An instance [S, sidS ] accepts but there is no partnered instance [C, sidC ].

The maximum probability of this event (over all adversaries running in time κ) is de-
noted SuccbbmaΠ (A, κ) = max

A |Pr[A wins in GamebbmaΠ (A, κ)]|. We say thatΠ provides
browser-based mutual authentication if this probability is a negligible function of κ.

The first requirement ensures that U authenticates to the matching server S. Since the
acceptance of [C, sidC ] with C = (U ,B) is implied by the acceptance of U the second
requirement ensures that S authenticates to the matching user U . In both cases B plays
the role of the mediator of the communication and can be queried by A; thus, not
mentioning B in the above definition would be incorrect from the formal point of view.

4 User-Aware BBMA over TLS with the SLSO Policy

In this section we specify the BBMA-SLSO protocol which can be seen as the modifi-
cation of the BBMA protocol from [11] towards cookie-based authentication and SLSO
policy.

4.1 Building Blocks of BBMA-SLSO

TLS Protocol The main pillar of BBMA-SLSO is the server authenticated key trans-
port, where the server’s identity is a cryptographic value independent from the Internet
infrastructure. This complies with RSA-based ciphersuites as specified in [1]. These
suites are preferentially negotiated between standard browsers and servers.

5 Thus, we assume that users do not use same HPAs with different servers.



Cryptographic Primitives BBMA-SLSO uses (well-known) cryptographic primitives
that are deployed in the cryptographic key transport suites of the TLS protocol, namely:

– A pseudo-random function PRF : {0, 1}p3(κ) × {0, 1}∗ → {0, 1}∗. Note that TLS
defines PRF with data expansion s.t. it can be used to obtain outputs of a vari-
able length which becomes useful for the key extraction phase. We refer to [8]
for the proof that the key extraction function in TLS is indeed pseudo-random. By
AdvprfPRF (κ) we denote the maximum advantage over all PPT adversaries (running
within security parameter κ) in distinguishing the outputs of PRF from those of a
random function better than by a random guess.

– A symmetric encryption scheme which provides indistinguishability under chosen
plaintext attacks (IND-CPA). The symmetric encryption operation is denoted Enc
and the corresponding decryption operation Dec. By Advind−cpa(Enc,Dec)(κ) we denote
the maximum advantage over all PPT adversaries (running within security param-
eter κ) in breaking the IND-CPA property of (Enc,Dec) better than by a random
guess;

– An IND-CPA secure asymmetric encryption scheme whose encryption operation is
denoted E and the corresponding decryption operation D. By Advind−cpa(E,D) (κ) we
denote the maximum advantage over all PPT adversaries (running within security
parameter κ) in breaking the IND-CPA property of (E ,D) better than by a random
guess; Note that the general case of RSA-OAEP encryption which is used in the
TLS key transport mode has been proven in [29] based on the assumptions of the
Random Oracle Model [4] to satisfy indistinguishability under adaptive chosen ci-
phertext attacks (IND-CCA2), which is stronger than IND-CPA. Also [18] provides
such proof which is tailored specifically to the construction used in the TLS proto-
col. Still, we emphasize that for the security of BBMA-SLSO the weaker requirement
of IND-CPA which is implied by IND-CCA2 is fully sufficient.

– A cryptographic collision-resistant hash function Hash : {0, 1}∗ → {0, 1}p4(κ). By
SucccollHash(κ) we denote the maximum success probability over all PPT adversaries
(running within security parameter κ) in finding a collision, i.e., a pair (m,m′) ∈
{0, 1}∗ × {0, 1}∗ s.t. Hash(m) = Hash(m′).

– A digital signature scheme which provides existential unforgeability under chosen
message attacks (EUF-CMA). The signing operation is denoted Sig and the corre-
sponding verification operation V er. By Succeuf−cma(Sig,V er)(κ) we denote the maximum
success probability over all PPT adversaries (running within security parameter κ)
given access to the signing oracle in finding a forgery;

– The well-known message authentication code function HMAC which is believed
to satisfy weak unforgeability under chosen message attacks (WUF-CMA) [2].
Here we remark that security of HMAC is not relevant for the security analysis of
BBMA-SLSO. A detailed look on the protocol from the formal perspective shows
that using HMAC is redundant since all HMAC values are encrypted prior to the trans-
mission. Nevertheless, we do not omit protocol parts where HMAC is computed from
our description since this is what happens in the today’s execution of TLS.

SLSO Policy in BBMA-SLSO During the initialization procedure which is assumed to be
trusted server S establishes a security association with the client (U ,B) using the TLS



protocol in key transport with its (certified) public key. For the successful verification of
the SLSO policy in subsequent connections B stores pkS and the http cookie provided
by S. This cookie contains information which allows S to authenticate U . On each
connection with S, B has to make a decision whether to send cky or not. Following the
definition of the SLSO policy in [19], B decides by comparing the public key used by
the candidate server during that particular TLS handshake to the stored pkS . If the keys
are equal then cky is transmitted, otherwise not. However, since the browser is a very
general piece of software that must be able to communicate with any http server on the
Internet, we design BBMA-SLSO in such a way that it does not abort the communication
if this verification fails; otherwise this would pose a lot of compatibility problems and
could be seen as an impractical solution. Instead, if the verification fails, the browser
will simply continue with the protocol, by sending the empty cookie which we consider
as some constant publicly known value ζ ∈ {0, 1}p2(κ). In this way the decision on
whether the communication should be continued or not is mitigated to S, which will
normally abort the communication since otherwise U remains unauthenticated.

4.2 Protocol Description

In the following we describe the execution of the BBMA-SLSO protocol specified in Fig-
ure 1. Let l1, l2, l3 and l4 denote the publicly known labels specified in TLS for the
instantiation of PRF. (We write in parenthesis the corresponding standard TLS mes-
sages.)

Initiate the Protocol. The user U initiates the protocol by communicating server’s
URL to the own browser B. Upon resolving the corresponding address B chooses his
own nonce rC of length p5(κ) at random and forwards it to S (ClientHello). In
response S chooses own random nonce rS and a TLS session identifier sid of length
p5(κ) and appends it to the own certificate certS (ServerHello). We stress that sid
chosen by S is not the session identifier sidS used in our security model but a value
specified in TLS.

Negotiate Key Material. B chooses a pre-master secret kp of length p3(κ) at random
and sends it to S encrypted with the received public key pkS (ClientKeyExchange)
taken from the servers certificate CertS . The pre-master secret kp is used to derive the
master secret km through a pseudo-random function PRF on input (l1, rC |rS) with kp
as the secret seed. This key derivation is performed based on the standard TLS pseudo-
random function PRF (see [1, Sect. 5]). The master secret is then used as a secret seed
for the instantiation of the pseudo-random function PRF on input (l2, rC |rS) to derive
the session keys k1|k2 used to encrypt and authenticate session messages exchanged be-
tween B and S. TLS specifies the generation of six session keys: A symmetric encryp-
tion key, a MAC key, and an IV for block ciphers only (either for client and server). For
simplicity, we denote k1 as the encryption key and k2 as the authentication key which
are the same for B and S. Here we remark that as shown later in our security analysis
the use of different keys for encryption and authentication in TLS is redundant from the
formal point of view. The reason is that each computed HMAC value is encrypted using
k1 prior to its transmission over the network. Since the computed value k1|k2 can be



seen as a single output of PRF the security of the applied encryption scheme is already
sufficient to achieve symmetric authentication of the encrypted message.

Session Key Confirmation. B confirms the session key generation, i.e., FC is the first
message that is authenticated via HMAC computed with k2 and encrypted via the sym-
metric encryption scheme computed with k1. FC is computed as output of PRF on input
(l3, h1) with km as the secret seed; whereby h1 denotes the hash value computed over
all messages previously processed by B (ClientFinished). Further, S generates
km and derives the session keys (k1, k2) in a similar way. S uses the own session keys
(k1, k2) to ensure that it communicates with B through the verification of FC . If the
verification fails, S aborts the protocol. Otherwise, it confirms the negotiated session
parameters, using PRF on input (l4, h2) with km as secret seed; whereby h2 denotes the
hash value over the received messages. The output of PRF is first authenticated via HMAC
computed with k2 and then encrypted via the symmetric encryption scheme computed
with k1 (ServerFinished). The client C checks this message analogously.

Mutual Authentication between Browser and Server. The browser B now exploits
the fact that the server S has been authenticated in the previous step by showing that
he knows the private key associated with pkS . This value is used as a key to the cre-
dential store of the browser, and the corresponding cookie cky is retrieved and sent to
the server, encrypted with k1 together with the attached message authentication code
computed using k2.

Human Perceptible Server Authentication. The server selects the HPA w associated
with cky, and sends it (encrypted with k1 together with the attached message authen-
tication code computed using k2) for display to the browser. We call the message in a
high-level description the HumanAuth message. B communicates the decrypted au-
thenticator to U through execution of the render function which takes as input the
authenticator w and state Ψ and outputs the visualization of w named w∗. The ab-
stract human perception function recognize is used to model the ability of U to decide
whether the authenticator w∗ matches the original authenticator w which is shared with
S after the initialization stage.

Before we continue with the security analysis we reemphasize the triangular model
of authentication in BBMA-SLSO. When verifying FS , B knows the identity of S. B re-
solves pkS to look up for the corresponding cookie cky. If no matching triple (S ,pkS ,
cky) exists, B sends an empty cookie ζ and continues with the protocol (it is now in
responsibility of the server to abort); otherwise, B continues by sending cky confiden-
tially to S.

However, TLS in server authentication mode does not prevent U from contacting to
a rogue server in order to disclose sensitive information. When verifying w∗ through
the execution of recognize, U is sure to be communicating to S through B, since S
is the only owner of w apart from U . Upon this stage, the protocol ensures that S is
authenticated to U .



Client (U,B)
{LLU := w, LLB := (S, pkS , cky)}

Server S
{LLS := (cky, w, skS , certS)}

get URL of S from U
rC ∈r {0, 1}p5(κ)

A := rC

−
A

−−−−−−−−−−−−−−→
rS , sid ∈r {0, 1}p5(κ)

sidS := rC|rS
B := rS |sid|certS

←−
B

−−−−−−−−−−−−−−
sidC := rC|rS
kp ∈r {0, 1}p3(κ)

km := PRFkp (l1, sidC)

[validate certS ]
get pk′S from certS
C := Epk′S (kp)

k1|k2 := PRFkm (l2, sidC)
h1 := Hash(A|B|C)
FC := PRFkm (l3, h1)
D := Enck1 (FC|HMACk2 (FC))

−
C|D

−−−−−−−−−−−−−−→
kp := DskS (C)

km := PRFkp (l1, sidS)

k1|k2 := PRFkm (l2, sidS)
h1 := Hash(A|B|C)
FC|µD := Deck1 (D)
if FC 6= PRFkm (l3, h1)
or µD 6= HMACk2 (FC)
then ABORT else
h2 := Hash(A|B|C|FC)
FS := PRFkm (l4, h2)
E := Enck1 (FS |HMACk2 (FS))

←−
E

−−−−−−−−−−−−−−
FS |µE := Deck1 (E)
h2 := Hash(A|B|C|FC)
if FS 6= PRFkm (l4, h2)
or µE 6= HMACk2 (FS)
then ABORT else
[SLSO policy test]
if pk′S = pkS
then F := Enck1 (cky, HMACk2 (cky))
else F := Enck1 (ζ, HMACk2 (ζ))

−
F

−−−−−−−−−−−−−−→
cky′|µF := Deck1 (F )

if µF 6= HMACk2 (cky′)

or cky′ 6= cky
then ABORT else
G := Enck1 (w|HMACk2 (w))
ACCEPT

←−
G

−−−−−−−−−−−−−−
w|µG := Deck1 (G)
if µG 6= HMACk2 (w)
then ABORT else
visualize w∗ := render(w, Ψ) to U

Fig. 1. Sketch of the BBMA-SLSO protocol between (U,B) and S based on the SLSO policy of B. Boxed messages denote
the standard TLS handshake. U accepts in the protocol execution only if U.recognize(w∗, w) = 1.



4.3 Security Analysis

In the following we argue on the security of the proposed BBMA-SLSO protocol. We
recall that the goal of the protocol is to provide mutual authentication between U and S
communicating via B according to Definition 3.

Theorem 1 (BBMA-Security). Let q denote the total number of executed protocol ses-
sions during the interaction with an adversaryA participating in GamebbmaBBMA-SLSO(A, κ).
If PRF is pseudo-random, Hash is collision-resistant, (Enc,Dec) and (E ,D) are IND-
CPA secure andW∗ is sufficiently small, then BBMA-SLSO provides browser-based mu-
tual authentication in the sense of Definition 3, and

SuccbbmaBBMA-SLSO(κ) ≤
q|W∗|
|W|

+
3q2

2p5(κ)
+

q2

2p3(κ)
+

q

2p2(κ)
+ qAdvind−cpa(E,D) (κ) +

4qAdvind−cpa(Enc,Dec)(κ) + 4qAdvprfPRF (κ) + 2qSucccollHash(κ).

Proof. (Sketch) In this proof we apply the meanwhile classical proving technique from
[30]. We construct a sequence of games Gi, i = 0, . . . , 14 and denote by Wini the event
that adversaryA breaks the mutual authentication of the protocol in game Gi, i.e., wins
in the corresponding interaction as described in Definition 3.

Game G0. [Real protocol] This is the real GamebbmaBBMA-SLSO(κ) played between a
simulator ∆ and a PPT adversary A. ∆ simulates the actions of the server S and the
browser B according to the natural protocol specification and answers all queries of A.
Although we treat the human user U as part of ∆ we explicitly assume that U performs
the simulated tasks on its own.

Game G1. [Same TLS Session Id] In this game the simulation aborts if during the
interaction the simulator chooses the same TLS session id sid on behalf of B in two
different protocol sessions. Considering the probability for the collision of two random
choices we obtain

|Pr[Win1 ]− Pr[Win0 ]| ≤
q2

2p5(κ)
. (1)

Game G2. [Same Nonces] In this game the simulation aborts if during the interac-
tion the simulator chooses the same random nonce rC resp. rS on behalf of B resp. S in
two different protocol sessions. Similar to Game G1 we obtain

|Pr[Win2 ]− Pr[Win1 ]| ≤
2q2

2p5(κ)
. (2)

Note that since in our protocol both session ids – sidC and sidS – are computed as
concatenation rC |rS this game rules out the occurrence of different (uncorrupted) client
or server instances having the same session id, i.e., for the honest party each new session
is associated with a different session id.

Game G3. [Same Pre-master Secret] In this game the simulation aborts if during
the interaction the simulator chooses the same pre-master secret kp on behalf of B in
two different protocol sessions. Thus,

|Pr[Win3 ]− Pr[Win2 ]| ≤
q2

2p3(κ)
. (3)



Game G4. [Indistinguishability of C] This game proceeds exactly as Game G3

except for the following actions of ∆: if ∆ receives a message B = A|rS |certS
such that certS contains the public key pkS stored by B as part of the adversarial
Send query then ∆ computes C := EpkS (α) for some additionally randomly chosen
α ∈ {0, 1}p3(κ). Otherwise, if B = A|rS |cert′S such that cert′S contains a different
public key pk′S 6= pkS then ∆ computes C := Epk′S (kp), i.e., exactly as specified in
the protocol. We denote this public key injection event by InjPK. With the above mod-
ification we consider in our proof attacks against users that do not properly verify the
validity of server’s certificate. Note that one of our assumptions onA is that it can issue
certificates that B accepts. That is, the protocol proceeds in a natural way even if the
user/browser accepts some forged or invalid certificate. On the other hand, if the real
server’s public key pkS is part of the received certificate (no InjPK occurred) then the
purpose of this game is to show that the security of the used asymmetric encryption
scheme has an impact on the secrecy of the transmitted pre-master secret kp. Due to the
IND-CPA property of (E ,D) we get

|Pr[Win4 ]− Pr[Win3 ]| ≤ qAdvind−cpa(E,D) (κ). (4)

Note that the specification of TLS prescribes the use of the RSA encryption according
to PKCS#1 (a.k.a. RSA-OAEP) which in turn is known to provide IND-CPA security
in ROM (see [29] for the proof).

Game G5. [Pseudo-randomness of km] This game proceeds exactly as Game G4

except that if no InjPK occurred then the simulator chooses the master secret km at
random instead of computing it using the pseudo-random function PRF. This can be
done since the secret seed (given by the pre-master secret kp) used in the computation
is uniformly distributed. Note that if InjPK has occurred then these modifications are
not applied, i.e., the simulator proceeds as specified in the protocol. Due to the pseudo-
randomness of PRF we obtain

|Pr[Win5 ]− Pr[Win4 ]| ≤ qAdvprfPRF (κ). (5)

Game G6. [Pseudo-randomness of k1 and k2] This game proceeds exactly as Game G5

except that if no InjPK occurred then the simulator chooses k1|k2 at random instead of
computing it using PRF. Note that the master secret km is already uniform if InjPK has
not occurred (according to Game G5). On the other hand, if InjPK has occurred then
k1|k2 are computed as specified in the protocol. Due to the pseudo-randomness of PRF
we obtain

|Pr[Win6 ]− Pr[Win5 ]| ≤ qAdvprfPRF (κ). (6)

This game implies that km as well as k1|k2 is fresh for every new session.
Game G7. [Hash collision of h1] This game proceeds exactly as Game G6 except

that the simulation aborts if during the interaction ∆ computes the same hash value
h1 := Hash(A|B|C) in two different sessions. Note that Games G1 and G3 ensure that
values A and B are fresh in different protocol sessions. Hence, the simulation aborts
in the current game if ∆ computes a hash collision. Due to the collision-resistance of
Hash we obtain

|Pr[Win7 ]− Pr[Win6 ]| ≤ qSucccollHash(κ). (7)



Note, this game implies that h1 is fresh for each new session.
Game G8. [Pseudo-randomness of FC and Indistinguishability of D] This game

proceeds exactly as Game G7 except that if no InjPK occurred then the simulator
chooses FC at random instead of computing it using PRF. This substitution implies also
the randomization of the message FC |HMACk2(FC) encrypted in D. Due to the pseudo-
randomness of PRF and IND-CPA security of (Enc,Dec) we obtain

|Pr[Win8 ]− Pr[Win7 ]| ≤ qAdvprfPRF (κ) + qAdvind−cpa(Enc,Dec)(κ). (8)

Note, this game implies that FC does not leak any information about km and that D
does not leak any information about k1. Since k1|k2 is treated as the single output of
PRF and by definitions of the security model the adversary is not allowed to reveal either
of these keys there is no need to consider secrecy of k2 explicitly. Thus, our proof omits
security of HMAC. This is not surprising since the protocol would provide the same level
of security even in case where HMAC is not used.

Game G9. [Hash collision of h2] This game proceeds exactly as Game G8 except
that the simulation aborts if during the interaction ∆ computes the same hash value
h2 := Hash(A|B|C|FC) in two different sessions. As observed in Games G1, G2, and
G8 the input to Hash is fresh for each new session the probability of such collision in
this game is given by the collision-resistance of Hash, that is

|Pr[Win9 ]− Pr[Win8 ]| ≤ qSucccollHash(κ). (9)

Game G10. [Pseudo-randomness of FS and Indistinguishability of E] This game
proceeds exactly as Game G9 except that if no InjPK occurred then the simulator
chooses FS at random instead of computing it using PRF. By the same argument as
in Game G8 we obtain

|Pr[Win10 ]− Pr[Win9 ]| ≤ qAdvprfPRF (κ) + qAdvind−cpa(Enc,Dec)(κ). (10)

Note, this game implies that also server messages do not leak any information about km
and k1|k2.

Game G11. [Indistinguishability of F ] This game proceeds exactly as Game G10

except that if no InjPK occurred then the simulator chooses a random value β ∈
{0, 1}p2(κ) and computes F := Enck1(β, HMACk2(β)). Considering IND-CPA secu-
rity of (Enc,Dec) we obtain

|Pr[Win11 ]− Pr[Win10 ]| ≤ qAdvind−cpa(Enc,Dec)(κ). (11)

Note, this game implies that message F does not leak any information about the cookie
cky to an outsider adversary if cky is revealed to S upon the successful verification of
the SLSO policy.

Game G12. [Impersonation of (U ,B)] This game proceeds exactly as Game G11

except that the simulation aborts if no InjPK occurred and there has been a Send query
addressed to S containing some F which has not been previously returned by ∆ on
behalf of B and which leads to the acceptance by S (i.e., if A impersonating the client
causes the server to accept after the successful verification of cky). As noticed in Game



G11 the encryption F does not leak any information about cky if revealed to an authen-
ticated server; moreover, as implied previously by Game G6 the keys k1|k2 computed
by the browser B are fresh for each new session. This also excludes replay attacks on
the ciphertext F . Therefore, the occurrence of the mentioned Send query addressed to
S is upper-bounded by the probability of forgery of F which in turn is upper-bounded
by the probability of a random guess from {0, 1}p2(κ). Thus, we have

|Pr[Win12 ]− Pr[Win11 ]| ≤
q

2p2(κ)
. (12)

In fact this game implies that if a server instance accepts in the execution of BBMA-SLSO
then there exists a corresponding partnered client instance, i.e., BBMA-SLSO satisfies the
second requirement of Definition 3.

Game G13. [Indistinguishability of G] This game proceeds exactly as Game G12

except that if no InjPK occurred then the simulator chooses a (random) value γ ∈
W \W∗ and computesG := Enck1(γ, HMACk2(γ)). We assume that this choice is done
in cooperation with the user U , i.e., U advises ∆ which γ to choose so that U knows
which HPA should be accepted in the simulated protocol run. Note that the goal of this
game is to ensure that message G does not leak any information about the original HPA
w used in BBMA-SLSO to an outsider adversary if w is sent over the TLS channel to
the authenticated client (U ,B). Therefore, it is important that γ is chosen such that U
can distinguish it from w, i.e., from the setW \W∗. Considering IND-CPA security of
(Enc,Dec) we obtain

|Pr[Win13 ]− Pr[Win12 ]| ≤ qAdvind−cpa(Enc,Dec)(κ). (13)

Game G14. [Impersonation of S] This game proceeds exactly as Game G13 ex-
cept that the simulation aborts if during the interaction there is a client instance which
accepts but there exists no partnered server instance, i.e., the first condition for the
adversarial success from Definition 3 is satisfied. Note that according to the protocol
specification U accepts after having recognized the authenticator w. Obviously, the ad-
versary succeeds only if B has received a Send query containing a message of the form
Gwhich has not been previously returned by (the simulator on behalf of) S such that the
decryption of G to (w′|µG) and rendering of w′ results in the acceptance by U . Note
that in BBMA-SLSO browser B does not abort if the verification of the SLSO policy
fails, or if no cookie has been previously set. This in turn allows the malicious server
to proceed with the protocol run trying to influence U to accept the communication.
Having excluded leakage of information concerning k1|k2 in previous games we fol-
low that the success probability of A is conditioned by the occurrence of InjPK (by
which A learns k1 and k2) and is given by the probability of A to find some perfectly
human-indistinguishable authenticator w∗ ∈ W∗ which will then be visualized to U .
Obviously, the success probability ofA in finding such HPA depends on the size ofW∗.
Thus, this is precisely the point in our security analysis of BBMA-SLSO where human
skills to distinguish the authenticators become important. We get

|Pr[Win14 ]− Pr[Win13 ]| ≤
q|W∗|
|W|

. (14)



Note that for sufficiently small setW∗, i.e., better ability of the human user to dis-
tinguish between two different authenticators this excludes attacks resulting in the im-
personation of the server towards U . Since Game G12 has excluded the adversarial
impersonation of (U ,B) towards S, and since this game excludes the impersonation of
malicious S towards (U ,B) we follow that the probability of A to win in this game is
given by Pr[Win14 ] = 0.

Considering Equations (1) to (14) we get the desired inequality

SuccbbmaBBMA-SLSO(κ) = Pr[Win0]

≤ q|W∗|
|W|

+
3q2

2p5(κ)
+

q2

2p3(κ)
+

q

2p2(κ)
+ Advind−cpa(E,D) (κ) +

4qAdvind−cpa(Enc,Dec)(κ) + 4qAdvprfPRF (κ) + 2qSucccollHash(κ).

Remark 1. Although not stated in Theorem 1 explicitly, the security proof of BBMA-SLSO
based on the current TLS standard is valid in the Random Oracle Model (ROM) [4].
The reason is that the specification of TLS prescribes the use of the RSA encryption
according to PKCS#1 (a.k.a. RSA-OAEP) which in turn is known to provide IND-CPA
security in ROM (see [29] and [18] for the proof of the general construction and the
TLS-specific construction, respectively). On the other hand, Theorem 1 assumes (E ,D)
to be IND-CPA secure (independent of ROM). Hence, whether BBMA-SLSO is secure
under standard assumptions or not heavily relies on the assumptions underlying the
security of (E ,D).

Remark 2. Another look on Theorem 1 reveals that the success probability of the adver-
sary strongly depends on the size ofW∗, i.e., the set of authenticators that are perfectly
human-indistinguishable from the HPA w used in the BBMA-SLSO protocol. In fact the
protocol is secure if the size ofW∗ is sufficiently small such that the factor q|W∗|/|W|
can be seen as negligible. This happens in case that the chosen HPA is good and is
precisely what makes BBMA-SLSO user-aware.

Remark 3. As already mentioned during the description of BBMA-SLSO the HMAC con-
struction used in the standard specification of the TLS protocol, formally, does not play
any role for the security of the protocol. This is not surprisingly since every output
of HMAC is encrypted using session key k1 before being sent over the network. Since
k1|k2 is treated as a single output of PRF the separation into k1 and k2 can be seen as
redundant from the theoretical point of view. Note also that Krawczyk has proved the
MAC-then-encrypt construction as secure in [22]. Though he mentions some problems
in the general construction he shows that they do not apply to TLS.

5 Conclusion

Authenticating the user on the Web is an essential primitive and target to various attacks.
We have introduced and analyzed a cookie-based authentication protocol BBMA-SLSO
that makes very weak assumptions on user’s skills and requires little modifications of
the browser security model to enforce the SLSO policy in order to be provably secure.



The protocol is specifically designed for security-unaware users who wish to identify
Web sites through some easy-to-recognize indicators. The main assumption underlying
the protocol security is that good HPAs w exist for which the size of their perfectly
human-indistinguishable set W∗ remains sufficiently small (for most of the users). It
remains an open question, to find such HPAs. We have conjectured that good HPAs
might be found among images, audio and video sequences. For example, a personal
image taken during own summer vacation and extended with some additional personal
text using graphic editor might be better recognizable than an image without such text.
However, extensive usability experiments in this interesting research direction have still
to be conducted. Nevertheless, the presented protocol is another step towards bridging
the gap between protocols that are provably secure, interfaced to users who are prone
to errors, and implementable within the design constraints of standard browsers.
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