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Abstract. The publication of private data in user profiles in a both secure and
private way is a rising problem and of special interest in, e.g., online social net-
works that become more and more popular. Current approaches, especially for
decentralized networks, often do not address this issue or impose large storage
overhead. In this paper, we present a cryptographic approach to private profile
management that is seen as a building block for applications in which users main-
tain their own profiles, publish and retrieve data, and authorize other users to
access different portions of data in their profiles. In this course, we provide: (i)
formalization of confidentiality and unlinkability as two main security and pri-
vacy goals for the data which is kept in profiles and users who are authorized to
retrieve this data, and (ii) specification, analysis, and comparison of two private
profile management schemes based on different encryption techniques.

1 Introduction

Publishing personal profiles and other means of sharing private data are increasingly
popular on the web. Online social networks (OSN) arguably are the most accepted net-
worked service, today. Facebook alone, serving a claimed base of over 500 Million
active users1, surpassed google, and currently enjoys the highest utilization duration
by their users and one of the highest access frequencies of all web sites since January
20102. Its users share 90 pieces of content per month on average, mainly consisting of
personally identifiable information. Protecting this data against unauthorized access is
of utmost importance, since users store private and sensitive data in their OSN profiles.

The confidentiality of published data, meant to be shared with only a chosen group
of users, is already important in centralized services. Yet, it becomes even more press-
ing when establishing decentralized OSN, which have been proposed recently [8,4,13]
in an attempt to avoid the centralized control and omnipotent access of commercial ser-
vice providers. Unlinkability is the more subtle requirement of protecting the identity
of users who are successively interact or access certain chunks of published data. It
frequently is missed and only few general solutions achieve this privacy goal [2].

? A preliminary version of this paper appears in FC 2011, RLCPS Workshop. This is the full
version.

1 http://www.facebook.com/press/info.php?statistics, Oct 2010
2 http://blog.nielsen.com/nielsenwire/, Oct 2010
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A serious corpus of solutions has been proposed to address these issues in the past.
Yet, there so far exist no appropriate definitions for secure and private management of
user profiles, even from the cryptographic point of view, as we show in Section 2.

In this paper, we hence take a cryptographic approach to address the management
of user profiles in a secure and privacy-friendly way. To this end, our goal is to come up
with a well-defined model and provably secure solutions, both to ensure the confiden-
tiality of data, which individually is published by users in their social profiles, as well
as for the privacy of the users who are allowed to access this data. For this purpose we
formally define confidentiality and privacy in the given context, first. Our model fur-
ther addresses several fundamental properties of a profile management scheme (PMS).
They comprise of the ability of users (profile owners) to publish and remove data, as
well as their ability to grant, modify, and revoke access rights to the published data. In
particular, we consider PMS as an independent building block, without relying on the
higher-level application or any other parties to perform these tasks.

After the specification of the model, we describe two provably secure solutions
that use different techniques: our first solution, called PMS-SK, combines symmet-
ric encryption with shared keys that are then distributed amongst the authorized users.
Our second solution, called PMS-BE, involves broadcast encryption techniques. Both
solutions have their advantages and disadvantages with respect to their performance
and privacy, as we show in our subsequent analysis. In particular, PMS-SK provides
confidentiality and perfect unlinkability, but imposes an overhead of keys linear in the
number of attributes a user is allowed to access, and which have to be stored by her.
PMS-BE reduces the key overhead to a constant value at the cost of lower privacy, ex-
pressed through the requirement of anonymity, which we also model and formally relate
to the stronger notion of unlinkability. We further discuss the trade-off between privacy
and efficiency by evaluating some complexity characteristics of both approaches and
suggest several optimizations that could enhance their performance, while preserving
their security and privacy guarantees.

The rest of the paper is organized as follows: In Section 2 we discuss previous
cryptographic and non-cryptographic work on private management of user profiles. In
Section 3, we introduce our formal model for such schemes and define two require-
ments: confidentiality and unlinkability. In Sections 4 and 5 we specify our PMS-SK
and PMS-BE solutions, evaluate their complexity (including possible optimizations)
and formally address their security and privacy properties as well as the notion of
anonymity. In Section 6 we discuss the impact of both schemes on real-world online
communities such as Facebook, Twitter and Flickr.

2 Related Work

Substantial amount of work has been done in the field of secure and private publication
of sensitive data in online social networks (OSNs), demonstrating threats and propos-
ing countermeasures. For example, Gross et al. [14] and Zheleva et al. [24] studied how
access patterns of users to the information stored in user profiles and how membership
of users in different groups can be exploited for the disclosure of private data. Amongst
the non-cryptographic solutions is the approach proposed by Carminati et al. [7], where
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access to private data is modeled using semantic rules taking into account the depth
of social relationships and the amount of trust amongst the users. In addition to being
semi-centralized, this approach requires synchronous communication — a significant
limitation in our case. There exist several cryptographic approaches to improve confi-
dentiality and privacy in existing, mostly centralized OSNs: Lucas et. al [16] presented
flyByNight, an application to encrypt sensitive data in Facebook. Tootoonchian [21] pro-
posed a system called Lockr to improve privacy in both centralized and decentralized
social networks. Yet, both approaches are not able to keep security and/or privacy up un-
der certain attacks: flyByNight relies on the Facebook servers as middlemen and thus en-
ables them to introduce malicious code or keys whilst in Lockr malicious users are able
to reveal relationship keys or disclose relationship metadata for access control, compro-
mising privacy properties of the system. Another cryptographic approach is Scramble!
[19], a Firefox plugin that uses the OpenPGP standard [5] to encrypt data relying on its
public-key infrastructure. Moreover, Scramble! tries to achieve recipient anonymity by
omitting the public identifiers of recipients in the ciphertext and allows for data storage
on third-party storage using “tiny URLs”, thus reducing the size of ciphertexts. Never-
theless, the approach implies linear storage overhead and, as it relies on OpenPGP, is
vulnerable to active attacks as shown by Barth et al. [2]. A number of solutions aim at
binding the access to private data with some fine-grained access policies. For example,
Graffi et al. [12] implemented an approach based on symmetric encryption of profile
items with independent shared keys, yet without actually specifying or formally ana-
lyzing the desired security and privacy properties. OSN Persona, presented by Baden et
al. [1], implements ciphertext-policy attribute-based encryption (CP-ABE) [3] for the
enforcement of access rules to the encrypted profile data (e.g., “ ’neighbor’ AND ’foot-
ball fan’ ”). Their approach aims at confidentiality of attributes but does not guarantee
privacy. Similarly, EASiER [15] which in addition to CP-ABE requires a semi-trusted
proxy for the update of decryption keys upon revocation events does not consider pri-
vacy. Recently, Zhu et al. [25] proposed a collaborative framework to enforce access
control in OSNs by the use of a new group-oriented convergence cryptosystem. Their
scheme is centralized and focuses on joint publication of data within communities, less
on the individual users and protection of their own profiles and data. A somewhat more
general construct for privacy-preserving distribution of encrypted content was proposed
by Barth et al. [2] using public-key broadcast encryption. Of particular interest is their
notion of recipient privacy, which is supposed to hide the identities of recipients of the
broadcast content and can be applied for the private distribution of shared keys in our
PMS-SK approach (cf. Remark 1) at the cost of linear storage overhead in the number
of recipients. Their scheme could also be used as a building block for a private pro-
file management scheme that would, however, require linear storage overhead for the
distribution of ciphertexts.

3 Private User Profiles: Model and Definitions

3.1 Management of User Profiles

Users. Let U denote a set of at most N users. We do not distinguish between users and
their identities but assume that each identity U ∈ U is unique. Furthermore, we assume



4 Felix Günther, Mark Manulis, and Thorsten Strufe

that users can create authentic and, if necessary, confidential communication channels.
This assumption is motivated by the fact that the profile management scheme will likely
be deployed as a building block within an application, like an online social network,
where users typically have other means of authentication. In this way we can focus on
the core functionality of the profile management scheme, namely the management of
and access to the profile data.

Profiles. A profile P is modeled as a set of pairs (a, d̄) ∈ I×{0, 1}∗ where I ⊆ {0, 1}∗
is the set of possible attribute indices a and d̄ are corresponding values stored in P . We
assume that within a profile P attribute indices are unique. Furthermore, we assume
that each profile P is publicly accessible but is distributed in an authentic manner by
its owner UP ∈ U . Also, every user U owns at most one profile and the profile owned
by U is denoted PU . The authenticity of profiles means that their content can only
be manipulated by their respective owner who is in possession of the corresponding
profile management key pmk. Since one of the goals will be to ensure confidentiality
of attributes we assume that for each publicly accessible value d̄ there exists the actual
attribute d and that for any pair (a, d̄) ∈ P the profile owner UP can implicitly retrieve
the corresponding d as well as the group G ⊆ U of users who are currently authorized to
access d. By G∗a,P we denote the set of users that have ever been authorized to access the
attribute indexed by a within the profile P (we assume that UP ∈ G∗a,P for all attributes
in P ).

We are now ready to define the syntax of the profile management scheme.

Definition 1 (Profile Management Scheme). A profile management scheme PMS con-
sists of the five algorithms Init, Publish, Retrieve, Delete and ModifyAccess
defined as follows:

Init(κ) : On input the security parameter κ, this probabilistic algorithm initializes
the scheme and outputs an empty profile P together with the private profile man-
agement key pmk. Init is executed by the owner UP .

Publish(pmk, P, (a, d),G) : On input a profile management key pmk, a profile P , a
pair (a, d) ∈ I ×{0, 1}∗ (such that a is not yet in the profile), and a group of users
G, this probabilistic algorithm transforms the attribute d into value d̄, adds (a, d̄) to
P , and G to G∗a,P . It outputs the modified P and a retrieval key rkU for each U ∈ G
(that may be newly generated or modified). Optionally, it updates pmk. Publish
is executed by the owner UP .

Retrieve(rkU , P, a) : On input a retrieval key rkU , a profile P , and an attribute index
a, this deterministic algorithm checks whether (a, d̄) ∈ P , and either outputs d or
rejects with ⊥. Retrieve can be executed by any user U ∈ U being in possession
of the key for a in rkU .

Delete(pmk, P, a) : On input a profile management key pmk, a profile P , and an
attribute index a, this possibly probabilistic algorithm checks whether (a, d̄) ∈ P ,
and if so outputs modified profile P = P \ (a, d̄). Optionally, it updates pmk and
rkU of all U ∈ G where G denotes the set of users authorized to access the pair
with index a at the end of the execution. Delete is executed by the owner UP .
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ModifyAccess(pmk, P, a, U) : On input a profile management key pmk, a profile P ,
an attribute index a, and some user U ∈ U this probabilistic algorithm checks
whether (a, d̄) ∈ P for some d̄, and if so finds the set G of users that are authorized
to access the attribute d. The algorithm then proceeds according to the one of the
following two cases:

– If U ∈ G then it updates G = G \ {U} (i.e., user U is removed from G).
– If U 6∈ G then it updates G = G ∪ {U} and G∗a,P = G∗a,P ∪ {U} (i.e., U is

added to both G and G∗a,P ).
Finally, the algorithm outputs the modified profile P . Optionally, it updates pmk
and the retrieval keys rkU of all U ∈ G ∪ {U}. ModifyAccess is executed by the
owner UP .

We remark that some profile management schemes may include an additional al-
gorithm ModifyAttribute allowing UP to modify the attribute d behind some pair
(a, d̄) ∈ P in a more efficient way than by consecutive execution of Delete and
Publish. However, for the security treatment of profile management schemes it is suf-
ficient to consider only Delete and Publish that make the modification of attributes
possible.

3.2 Adversarial Model

In order to define security and privacy of a profile management scheme PMS we con-
sider a PPT adversary A that knows all users in the system, i.e., the set U is assumed to
be public, and interacts with them via the following set of queries:

Corrupt(U) : This corruption query gives A all secret keys known to U , including the
profile management key pmk and all retrieval keys rkU (with which U can access
other users’ profiles).
U is added to the set of corrupted users that we denote by C ⊆ U .

Publish(P, (a, d),G) : In response, Publish(pmk, P, (a, d),G) is executed using pmk
of UP . A is then given the modified profile P and all updated keys of corrupted
users U ∈ C.

Retrieve(P, a, U) : In response, Retrieve(rkU , P, a) is executed using rkU of U and
its output is given back to A.

Delete(P, a) : In response, Delete(pmk, P, a) is executed using pmk of UP . A is
then given the modified profile P and all updated keys belonging to corrupted users
U ∈ C.

ModifyAccess(P, a, U) : In response, ModifyAccess(pmk, P, a, U) is executed using
pmk of UP . A is then given the modified profile P and all updated keys belonging
to corrupted users U ∈ C.

3.3 Security and Privacy Requirements

Subsequently, we define two security requirements for a profile management scheme.
Our first requirement, called confidentiality, aims to protect attributes d stored in a pro-
file from unauthorized access. Our second requirement, called unlinkability aims at pro-
tecting the privacy of users in the following sense: a profile management scheme should
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hide information on whether a user U has been authorized to access some attribute in
a profile of another user UP , and, moreover, it shouldn’t leak information whether dif-
ferent attributes within a profile can be accessed by the same user, even if the adversary
has access to these attributes as well.

Confidentiality. We model confidentiality in Definition 2 using the standard indistin-
guishability approach, similar to the one used in definitions of secure encryption, i.e. it
should be computationally infeasible for an adversary A to decide which attribute d is
referenced by an index a.

Definition 2 (Confidentiality). Let PMS be a profile management scheme from Defi-
nition 1 and A be a PPT adversary interacting with users via queries from Section 3.2
within the following game Gameconf

A,PMS:

1. Init(κ) is executed for all users U ∈ U .
2. A can execute arbitrary operations and ask queries. At some point it outputs (a, d0),

(a, d1) ∈ I × {0, 1}∗, Gt ⊂ U , and UP ∈ U \ Gt such that neither UP nor any
U ∈ Gt is corrupted (i.e., ({UP } ∪ Gt) ∩ C = ∅) and |d0| = |d1| (i.e., d0 and d1

have the same length).
3. Bit b ∈R {0, 1} is chosen uniformly, Publish(pmk, P, (a, db),Gt) with pmk of
UP is executed, and the modified P is given to A.

4. A can execute arbitrary operations and ask queries. At some point it outputs bit
b′ ∈ {0, 1}.

5. A wins, denoted by Gameconf
A,PMS = 1, if all of the following holds:

– b′ = b,
– UP 6∈ C,
– A did not query Retrieve(P, a, U) with U ∈ G∗a,P .
– G∗a,P ∩ C = ∅ (users that have ever been authorized to access the attribute

indexed by a in P are not corrupted).

The advantage probability of A in winning the game Gameconf
A,PMS is defined as

Advconf
A,PMS(κ) :=

∣∣∣∣Pr
[
Gameconf

A,PMS = 1
]
− 1

2

∣∣∣∣
We say that PMS provides confidentiality if for any PPT adversary A the advantage
Advconf

A,PMS(κ) is negligible.

Unlinkability. We model unlinkability in Definition 3 using the indistinguishability
approach as well, but this timeAmust decide which user, U0 or U1, has been authorized
(via Publish or ModifyAccess) to access an attribute in a profile P even if A has
access to P . Our definition also models access unlinkability of users across different
profiles, e.g. P and P ′, since A can corrupt the owner of any other profile P ′ and thus
learn all secrets that U0 and U1 might possess in these other profiles.

Definition 3 (Unlinkability). Let PMS be a profile management scheme from Defini-
tion 1 and A be a PPT adversary interacting with users via queries from Section 3.2
within the following game Gameunlink

A,PMS:
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1. Init(κ) is executed for all users U ∈ U .
2. A can execute arbitrary operations and ask queries. At some point it outputs U0,
U1, (a, d), and UP (owner of some profile P ).

3. Bit b ∈R {0, 1} is chosen uniformly and:
– If (a, ∗) 6∈ P then Publish(pmk, P, (a, d), {Ub}) with pmk ofUP is executed.
– If (a, ∗) ∈ P then ModifyAccess(pmk, P, a, {Ub}) with pmk of UP is exe-

cuted.
A is given the modified P and the possibly updated retrieval keys rkU for allU ∈ C.

4. A can execute arbitrary operations and ask queries. At some point it outputs a bit
b′ ∈ {0, 1}.

5. A wins, denoted by Gameunlink
A,PMS = 1, if all of the following holds:

– b′ = b,
– {U0, U1, UP } ∩ C = ∅,
– A neither queried Retrieve(P, a, U0) nor Retrieve(P, a, U1).

The advantage probability of A in winning the game Gameunlink
A,PMS is defined as

Advunlink
A,PMS(κ) :=

∣∣∣∣Pr
[
Gameunlink

A,PMS = 1
]
− 1

2

∣∣∣∣
We say that PMS provides unlinkability if for any PPT adversary A the advantage

Advunlink
A,PMS(κ) is negligible.

4 Private Profiles with Shared Keys

Our first construction, called PMS-SK, is simple and uses shared keys to encrypt profile
attributes for a group of authorized users. An independent symmetric key Ka is chosen
by the owner of a profile P for each pair (a, d) and distributed to the group G of users
that are authorized to access d. The key is updated on each modification of G. We use
a symmetric encryption scheme SE = (SE.KGen, SE.Enc, SE.Dec) for which we
assume classical indistinguishability against chosen-plaintext attacks (IND-CPA) and
denote by AdvIND−CPA

A,SE (κ) the corresponding advantage of the adversary.
The distribution of Ka may be performed in two ways: Ka can be communicated

to the authorized users online (over secure channels) or offline, e.g., by storing Ka

securely (possibly using asymmetric encryption) either within the profile or at some
centralized server. Our specification of PMS-SK leaves open how distribution of shared
keys is done. In particular, the use of one or another technique may be constrained by
the application that will use the scheme.

4.1 Specification of PMS-SK

In our constructions we implicitly assume that the uniqueness of indices a in a profile
P is implicitly ensured or checked by corresponding algorithms.

Init(κ) : Output P ← ∅ and pmk ← ∅.



8 Felix Günther, Mark Manulis, and Thorsten Strufe

Publish(pmk, P, (a, d),G) : Ka ← SE.KGen(1κ), add (a, SE.Enc(Ka, d)) to P ,
Ka to rkU for each U ∈ G, and Ka to pmk.

Retrieve(rkU , P, a) : Extract Ka from rkU . If (a, d̄) ∈ P for some d̄ then output
SE.Dec(Ka, d̄), else ⊥.

Delete(pmk, P, a) : Delete (a, d̄) from P . Delete Ka from pmk.
ModifyAccess(pmk, P, a, U) : If U ∈ G then remove U from G, otherwise add U to
G. Execute Delete(pmk, P, a) followed by Publish(pmk, P, (a, d),G) where d
is the attribute indexed by a.

The description of ModifyAccess is kept general in the sense that it does not spec-
ify how the profile owner UP reveals an attribute d indexed by a. Our scheme allows
for different realizations: d can be stored by UP locally (not as part of P ) or it can be
obtained through decryption of d̄ using Ka which is part of pmk.

4.2 Complexity Analysis

PMS-SK requires each profile owner UP to store one key per attribute (a, d̄) currently
published in P . Additionally, each user has to store one key per attribute she is allowed
to access in any profile. Therefore, assuming the worst case where all users in U have
profiles containing |P | attributes that can be accessed by all other users, PMS-SK re-
quires each U ∈ U to store N · |P | keys from which |P | keys are stored in its pmk and
(N − 1) · |P | in the retrieval keys rkU for all others users’ profiles. For each Publish
or ModifyAccess operation the profile owner needs further to perform one symmetric
encryption.

4.3 Security and Privacy Analysis

In this section we prove that PMS-SK ensures confidentiality of attributes and provides
unlinkability for the authorized users.

Theorem 1 (Confidentiality of PMS-SK). If SE is IND-CPA secure, then PMS-SK
provides confidentiality from Definition 2, and

Advconf
A,PMS-SK(κ) ≤ (1 + q) · AdvIND−CPA

A∗,SE (κ)

with q being the number of invoked ModifyAccess operations per attribute.

Proof. Assume a PPT adversaryA against the confidentiality of PMS-SK. We construct
a PPT adversaryA∗ against IND-CPA security of SE which simulates the execution of
PMS-SK operations and interacts with A as specified in Gameconf

A,PMS:
After initializing PMS-SK for all users in U , A∗ responds to the queries issued by

A, acting on behalf of the respective profile owners as specified for the scheme (e.g.,
choosing attribute keys Ka, changing profiles, etc.).

At some point in time, A outputs its challenge (a, d0), (a, d1),Gt, UP . A∗ then for-
wards (m0,m1) = (d0, d1) as its own IND-CPA challenge and obtains the ciphertext c
(for mb). A∗ picks i ∈ [1, q + 1] at random. If i = 1 then A∗ adds (a, c) to P as part
of corresponding Publish operation and outputs P to A. Otherwise, (a, c) is added to
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P by A∗ as part of the ith ModifyAccess operation on a. In all other operations on
a the IND-CPA adversary A∗ proceeds according to the specification of PMS-SK by
choosing corresponding keys Ka on its own.
A∗ continues responding to the queries issued by A. At some point in time, A out-

puts a bit b′, whichA∗ forwards as its own bit b′ to the IND-CPA challenger. Assuming
that A breaks the confidentiality of PMS-SK the bit b′ forwarded by A∗ is equal to
the bit b chosen by the IND-CPA challenger with probability 1

1+q , which is due to the
independence of keys Ka chosen by A∗ in all but the ith operation on a and the suc-
cessful guess of A∗ with regard to i. In this way we obtain the desired upper-bound for
Advconf

A,PMS-SK(κ) which is negligible assuming the IND-CPA security of SE. ut

Theorem 2 (Unlinkability of PMS-SK). PMS-SK provides perfect unlinkability as
defined in Definition 3, i.e., Advunlink

A,PMS−SK(κ) = 0.

Proof. The attribute keys Ka are statistically independent of the identities of users in
G who have been authorized to access the attribute indexed by a. Therefore, A cannot
win in Gameunlink

A,PMS better than by a random guess, i.e., with probability 1
2 . ut

Remark 1. The perfect unlinkability property of our PMS-SK construction proven in
the above theorem should be enjoyed with caution when it comes to the deployment of
the scheme in practice. The reason is that PMS-SK does not specify how shared keys
are distributed, leaving this to the application that will use the scheme. One approach
to distribute keys in a privacy-preserving manner is given by Barth, Boneh, and Waters
[2] and the CCA recipient privacy of their scheme, which however comes with storage
overhead linear in the number of recipients and may be undesirable when encrypting
small-sized attributes in social profiles. In any case it is clear that the distribution pro-
cess will eventually have impact on the unlinkability property of the scheme, maybe to
the point of ruling out its perfectness.

4.4 Further Optimizations

Regardless of the question, whether shared keys Ka are distributed by the application
in an online or an offline fashion, there is a way to further optimize and further improve
the actual management of these keys. In our specification of PMS-SK these keys are
currently chosen fresh for each modification of the authorized group G. However, by
using group key management schemes that allow efficient update of group keys such as
LKH [23,22] or OFT [6,20,17] with all the resulting efficiency differences, the overhead
for the distribution can be further reduced.

Another optimization concerns generation of shared keysKa in case a profile owner
UP does not wish to store corresponding attributes d (outside of the profile). Instead of
storing linear (in the number of attributes in P ) many shared keys in pmk, the profile
owner can derive each Ka using some pseudorandom function fs(a, i) where s is a
seed used for all attributes, a is the unique attribute index, and i is a counter that is
updated on each execution of ModifyAccess on a to account for possible repetitions
of the authorized group G over the life time of the profile. This optimization allows to
trade in the storage costs for pmk for the computation overhead for deriving Ka.
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We do not analyze the efficiency effects of the proposed optimizations in detail here,
as the construction based on broadcast encryption presented in the next section has only
a constant overhead of retrieval keys.

5 Private Profiles with Broadcast Encryption

Our second generic construction of a profile management scheme, called PMS-BE, is
based on an adaptively secure (identity-based) broadcast encryption scheme, e.g. [9],
whose syntax and requirements we recall in the following.

Definition 4 (Broadcast Encryption Scheme [9]). A broadcast encryption scheme
BE = (BE.Setup,BE.KGen,BE.Enc,BE.Dec) consists of the following algo-
rithms:

BE.Setup(κ, n, `) : On input the security parameter κ, the number of receivers n, and
the maximal size ` ≤ n of the recipient group, this probabilistic algorithm outputs
a public/secret key pair 〈PK,SK〉.

BE.KGen(i, SK) : On input an index i ∈ {1, . . . , n} and the secret key SK, this
probabilistic algorithm outputs a private (user) key ski.

BE.Enc(S, PK) : On input a subset S ⊆ {1, . . . , n} with |S| ≤ ` and a public key
PK, this probabilistic algorithm outputs a pair 〈Hdr,K〉 where Hdr is called the
header and K ∈ K is a message encryption key.

BE.Dec(S, i, ski, Hdr, PK) : On input a subset S ⊆ {1, . . . , n} with |S| ≤ `, an
index i ∈ {1, . . . , n}, a private key ski, a header Hdr, and the public key PK, this
deterministic algorithm outputs the message encryption key K ∈ K.

Correctness ofBE requires that for all S ⊆ {1, . . . , n} and all i ∈ S, if 〈PK,SK〉 ←R

BE.Setup(κ, n, `), ski ←R BE.KGen(i, SK), and 〈Hdr,K〉 ←R BE.Enc(S,
PK), then BE.Dec(S, i, ski, Hdr, PK) = K.

The adaptive security of BE against chosen plaintext attacks as defined in [9] can
be extended to chosen-ciphertext attacks as follows.

Definition 5 (Adaptive CCA-Security of BE). Let BE be a broadcast encryption
scheme from Definition 4 and A be a PPT adversary in the following game, denoted
Gamead−CCA

A,BE,n,`(κ):

1. 〈PK,SK〉 ←R BE.Setup(κ, n, `). A is given PK (together with n and `).
2. A adaptively issues private key queries BE.KGen(i) for i ∈ {1, . . . , n} and ob-

tains corresponding ski. In addition, A is allowed to query BE.Dec(S, i,Hdr,
PK) to obtain message encryption keys K.

3. A outputs a challenge set of indices S∗, such that noBE.KGen(i) with i ∈ S∗ was
asked. Let 〈Hdr∗,K0〉 ←R BE.Enc(S∗, PK) and K1 ∈R K. Bit b ∈R {0, 1} is
chosen uniformly and A is given (Hdr∗,K∗) with K∗ = Kb.

4. A is allowed to queryBE.Dec(S, i,Hdr, PK), except on inputs of the form 〈S∗, i,
Hdr∗, PK〉, i ∈ S∗.
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5. A outputs bit b′ ∈ {0, 1} and wins the game, denoted Gamead−CCA
A,BE,n,`(κ) = 1, if

b′ = b.

We define A’s advantage against the adaptive CCA-security of BE as

Advad−CCA
A,BE,n,`(κ) =

∣∣∣∣Pr
[
Gamead−CCA

A,BE,n,`(κ) = 1
]
− 1

2

∣∣∣∣
We say that BE is adaptively CCA-secure if for all PPT adversaries A the advan-

tage Advad−CCA
A,BE,n,`(κ) is negligible.

5.1 Specification of PMS-BE

The main idea behind PMS-BE is that each profile owner UP manages independently
its own instance of the BE scheme in the following way: UP assigns fresh indices i,
which we call pseudonyms, to the users from U (upon their first admission to P ) and
gives them corresponding private (user) keys ski. In order to publish an attribute d for
some authorized group G, the owner encrypts d using the BE scheme and the set of
indices assigned to the users in G. This process allows for very efficient modification of
the authorized group G: In order to admit or remove a member U with regard to d the
profile owner simply adjusts G and re-encrypts d. In particular, there is no need to dis-
tribute new decryption keys. However, this flexibility comes at the price of a somewhat
weaker privacy, since BE schemes include indices i into ciphertext headers, which in
turn allows for linkability of an authorized user U across multiple attributes within P .
Yet, the use of pseudonyms still allows us to show that PMS-BE satisfies the weaker
requirement of anonymity, which we introduce and formally relate to unlinkability in
Section 5.4.

Init(κ) : Execute 〈PK,SK〉 ← BE.Setup(κ, n, `) with n = ` = N 3. Output
P ← ∅ and pmk ← {PK,SK}. Additionally, PK is made public.

Publish(pmk, P, (a, d),G) : For every U ∈ G without pseudonym for P pick an un-
used pseudonym i at random from [1, n], extract ski ← BE.KGen(i, SK), and
define new rkU ← 〈i, ski〉. For every U ∈ G add the corresponding pseudonyms to
the set S. Compute 〈Hdr,Ka〉 ← BE.Enc(S, PK), d̂ ← SE.Enc(Ka, d), and
d̄ ← 〈Hdr, S, d̂〉. Add (a, d̄) to P and Ka to pmk. Output P , all new rkU , and
pmk.

Retrieve(rkU , P, a) : Extract (a, d̄) from P . Parse d̄ as 〈Hdr, S, d̂〉. Extract 〈i, ski〉
from rkU . Set Ka ← BE.Dec(S, i, ski, Hdr, PK) and output SE.Dec(Ka, d̂).

Delete(pmk, P, a) : Delete (a, d̄) from P . Delete Ka from pmk.
ModifyAccess(pmk, P, a, U) : If U ∈ G remove U from G; otherwise add U to G.

Execute Delete(pmk, P, a) followed by Publish(pmk, P, (a, d),G), where d is
the attribute indexed by a.

3 We use this upper bound for simplicity here. One may cut down both on n and ` to improve
the efficiency of BE.
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5.2 Complexity Analysis

PMS-BE requires each profile owner UP to store one key per index-attribute pair (a, d̄)
currently published in P as well as the key pair 〈PK,SK〉. For each profile containing
at least one attribute a user is allowed to access, this user has to store its secret key
〈i, ski〉 contained in rkU . Assuming the worst case where all users in U have profiles
containing |P | attributes that can be accessed by all other users, PMS-BE requires each
U ∈ U to store |P |+N + 1 keys from which |P |+ 2 keys are stored in pmk and N −1
secret keys 〈i, ski〉 are stored in the retrieval keys rkU of all others users’ profiles. For
each Publish or ModifyAccess operation the profile owner needs further to perform
one broadcast encryption BE.Enc and one symmetric encryption.

The storage overhead may be reduced by omitting the storage of attribute keys Ka

in pmk as the profile owner is able to reconstructKa by executing ski ← BE.KGen(i,
SK) for any index i in the set of authorized indices S for a. With the authorized user’s
secret key ski, the profile owner is able to execute BE.Dec, receiving Ka. That way,
the total number of stored keys is reduced by |P | to N + 1, traded in for a higher
computation overhead when executing ModifyAccess.

Obviously, the main advantage of the PMS-BE construction over the PMS-SK ap-
proach is the number of keys that have to be stored in rkU , which is only one in PMS-BE
whereas PMS-SK imposes key overhead linear in the number of attributes. However,
this efficiency benefit comes at the cost of a weaker privacy, as we discuss below.

5.3 Confidentiality of PMS-BE

We first analyze the confidentiality property of the PMS-BE scheme.

Theorem 3 (Confidentiality of PMS-BE). If SE is IND-CPA secure andBE is adap-
tively CCA-secure, PMS-BE provides confidentiality from Definition 2, and

Advconf
A,PMS-BE(κ) ≤ (1 + q) ·

(
AdvIND−CPA

B1,SE
(κ) +N · Advad−CCA

B2,BE,n,`
(κ)
)

with q being a number of invoked ModifyAccess operations per attribute.

Proof. Assume an PPT adversary A against the confidentiality of PMS-BE. We show
how to construct an adversary B1 against the IND-CPA security of SE and an adversary
B2 against adaptive CCA-security of BE.

Construction of B1. This is similar to the adversary A∗ against IND-CPA of SE
in the proof of Theorem 1. While responding to queries issued by A in Gameconf

A,PMS on
behalf of the respective profile owners (by executing all operations honestly as speci-
fied for PMS-BE), B1 upon receiving the challenge ((a, d0), (a, d1),Gt, UP ) from A,
forwards (m0,m1) = (d0, d1) as its own challenge to the IND-CPA challenger and ob-
tains a ciphertext c. It then picks j ∈ [1, q+1] at random, and adds (a, d̄) as 〈Hdr, S, c〉
to the challenge profile P either as part of the Publish (if j = 1) or as part of the jth

ModifyAccess operation on a (if j 6= 1). At the end, B1 forwards the output bit of A
as its own bit in the IND-CPA game.

Construction of B2. B2 receives PK as part of Gamead−CCA
B2,BE,n,`

(κ). B2 now picks a
user UP ∈ U at random, i.e., it guesses the profile owner that A will use as target in its
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attack. For all other users B2 generates all PMS-BE parameters and performs operations
on their behalf honestly by itself. Only for the profile P of selected UP it responds to
the queries of A using own oracle access to the underlying BE scheme, i.e.,

– B2 answers Publish(P, (a, d),G) queries using its own BE.Enc(S, PK) oracle
with the set of pseudonyms S which correspond to the users in G. From the obtained
〈Hdr,Ka〉 it then uses Ka to encrypt d as specified in Publish operation. Note
that the assignment of pseudonyms i to users U is done by B2 and that B2 does not
know the private keys ski.

– B2 answers Retrieve(P, a, U) queries using its own oracle BE.Dec(S, i,Hdr,
PK) oracle where i is the pseudonym of U within the profile P , and S and Hdr is
part of the ciphertext d̄ indexed with a.

– B2 answers Corrupt(U) queries by identifying all indices i that U has in all other
profiles P ′ 6= P and returning corresponding ski to A. For the profile P it queries
the oracle BE.KGen(i) to obtain ski of U in that profile and gives ski to A. In
addition it gives A all retrieval keys rkU of U for all the profiles.

– B2 answers ModifyAccess(P, a, U) queries similarly to Publish queries above us-
ing its BE.Enc(S, PK) oracle.

At some point in time, A outputs (a, d0), (a, d1),Gt, UP . UP matches the target
user guessed by B2 with probability 1

N . Then, B2 assigns to each U ∈ Gt an unused
pseudonym i (unless U already has a pseudonym for P ). Next, B2 picks j ∈ [1, q + 1]
at random.

If j = 1, B2 queries itsBE.KGen(i) oracle with all so-far unassigned pseudonyms
i to obtain private keys ski. (Note that B2 does not obtain private keys of users in Gt but
can still answer Corrupt queries of A regarding other users later.) Finally, B2 outputs
set S∗ containing pseudonyms of users in Gt as part of Gamead−CCA

B2,BE,n,`
(κ), receives the

challenge (Hdr∗,K∗), and uses K∗ to encrypt the attribute db for a random bit b of its
choice, i.e. B2 adds (a, d̄) where d̄ = 〈Hdr∗, S∗, SE.Enc(K∗, db)〉 to P .

However, if j 6= 1 then B2 replies to the challenge by computing (a, d̄) still with the
help of its BE.Enc oracle. Later, in response to the jth ModifyAccess(P, a, U) query
ofA that leads to the jth update of the target group Gt, it queries itsBE.KGen(i) oracle
with all so-far unassigned pseudonyms i to obtain private keys ski and outputs set S∗

containing pseudonyms of users in the updated Gt as part of Gamead−CCA
B2,BE,n,`

(κ) to re-
ceive the challenge (Hdr∗,K∗), and adds (a, d̄) where d̄ = 〈Hdr∗, S∗, SE.Enc(K∗,
db)〉 to P . Note that the updated group Gt never included corrupted users.

In both cases B2 continues answering queries of A as described in the beginning
until A outputs its bit b′. If b′ = b, meaning that A was successful, then B2 outputs 0 in
Gamead−CCA

B2,BE,n,`
(κ), indicating that the received key K∗ was real; otherwise B2 outputs

1. If A wins then B2 wins with probability 1
N(1+q) to account for the correct guess of

the profile owner UP and j.
By combining the advantages of B1 and B2 that both use the confidentiality adver-

saryA in their respective games we can give an upper-bound Advconf
A,PMS-BE(κ), which is

negligible assuming the security of SE and BE. ut
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5.4 Privacy of PMS-BE

Our PMS-BE construction does not provide unlinkability as defined in Definition 3
since the indices of users are linkable across different published attributes. The at-
tack is simple: After initialization of PMS-BE, unlinkability adversary A outputs two
arbitrary users U0, U1, some pair (a, d) and a profile owner UP . Then, A executes
Publish(P, (a′, d′), {U0}) for an arbitrary pair (a′, d′) and extracts the two pairs (a, d̄)
and (a′, d̄′) from P such that d̄ = 〈Hdr, S, d̂〉 and d̄′ = 〈Hdr′, S′, d̂′〉). If S = S′, A
outputs 0, otherwise 1.

Since PMS-BE has simpler management and distribution of retrieval keys it would
be nice to see whether it can satisfy some weaker, yet still meaningful privacy property.
It turns out that PMS-BE is still able to provide anonymity of users that are members
of different authorized groups G within the same profile, even in the presence of an
adversary in these groups.

We formalize anonymity in Definition 6 based on the following intuition: An adver-
sary shall not be able to decide the identity of some user Ub ∈ {U0, U1} in the setting
where the adversary is restricted to publish attributes or modify access to them either
by simultaneously including both U0 and U1 into the authorized group or none of them.
This definition rules out linkability of users based on their pseudonyms, while keeping
all other privacy properties of the unlinkability definition.

Definition 6 (Anonymity). Let PMS be a profile management scheme from Defini-
tion 1 and A be a PPT adversary interacting with users via queries from Section 3.2
within the following game Gameanon

A,PMS:

1. Init(κ) is executed for all users U ∈ U .
2. A can execute arbitrary operations and ask queries. At some point it outputs U0,
U1, (a, d), and UP (owner of some profile P ).

3. Bit b ∈R {0, 1} is chosen uniformly and:

– If (a, ∗) 6∈ P then Publish(pmk, P, (a, d), {Ub}) with pmk ofUP is executed.
– If (a, ∗) ∈ P then ModifyAccess(pmk, P, a, {Ub}) with pmk of UP is exe-

cuted.

In both cases A is given the modified profile P and the possibly updated retrieval
keys rkU for all U ∈ C.

4. A can execute arbitrary operations and ask queries. At some point it outputs a bit
b′ ∈ {0, 1}.

5. A wins, denoted by Gameanon
A,PMS = 1, if all of the following holds:

– b′ = b,
– {U0, U1, UP } ∩ C = ∅,
– A neither queried Retrieve(P, a, U0) nor Retrieve(P, a, U1).
– Publish(P, (â, ∗),G) has not been executed with U0 ∈ G but U1 6∈ G or with
U1 ∈ G but U0 6∈ G for any â.

– ModifyAccess(P, â, U) has not been executed with U = U0 or U = U1 for any
â.
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The advantage probability of A in winning the game Gameanon
A,PMS is defined as

Advanon
A,PMS(κ) :=

∣∣∣∣Pr
[
Gameanon

A,PMS = 1
]
− 1

2

∣∣∣∣
We say that PMS provides anonymity if for any PPT adversary A the advantage

Advanon
A,PMS(κ) is negligible.

We prove that PMS-BE provides perfect anonymity using similar arguments as we
used for the perfect unlinkability of the PMS-SK scheme. Nevertheless, we observe that
our discussion in Remark 1 regarding the potential loss of perfectness for the unlink-
ability of PMS-SK when deployed in the concrete application applies to PMS-BE as
well, due to the distribution of private user keys ski.

Theorem 4 (Anonymity of PMS-BE). The PMS-BE scheme provides perfect anonymity
as defined in Definition 6, i.e., Advanon

A,PMS-BE(κ) = 0.

Proof. The pseudonym i of a user U ∈ U for a profile P is chosen uniformly by
the owner UP from [1, N ] and remains independent of the user identity U and other
pseudonyms that U may have in other profiles. As long as the adversary A does not
corrupt U0, U1, or the profile owner UP (which is prohibited by Definition 6) and since
the bit b chosen in Gameanon

A,PMS is statistically independent of the identities U0 and U1,
A cannot infer any information about Ub by invoking publishing and modification op-
erations due to the final two restrictions of Gameanon

A,PMS. Therefore, A cannot break the
anonymity of PMS-BE better than by a random guess, i.e., Pr

[
Gameanon

A,PMS = 1
]

= 1
2 .
ut

We complete our security analysis by showing that the unlinkability requirement for
a profile management scheme is strictly stronger than the anonymity requirement. Our
separation result holds unconditionally in that it preserves the properties of the starting
scheme.

Theorem 5 (Unlinkability⇒Anonymity). Let PMS be a profile management scheme
from Definition 1 providing unlinkability from Definition 3. Then PMS also provides
anonymity from Definition 6.

Proof. The construction of an unlinkability adversaryA∗ that is given black-box access
to an anonymity adversaryA is straightforward.A∗ answers all queries ofA by relaying
them as queries to its own challenger and outputs whatever A outputs. If A wins then
so does A∗, i.e., Advunlink

A,PMS(κ) ≥ Advanon
A,PMS(κ). ut

Theorem 6 (Unlinkability : Anonymity). Let PMS be a profile management scheme
from Definition 1. Then there exists a profile management scheme PMS′ such that for
any adversary A′ against anonymity of PMS′ there exists an adversary A against
anonymity of PMS. Furthermore, there exists an adversary B against the unlinkabil-
ity of PMS′.
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Proof. Take any PMS scheme which provides anonymity. PMS can be modified to
PMS′ as follows: (i) PMS′.Init ≡ PMS.Init, PMS′.Delete ≡ PMS.Delete; (ii)
algorithms PMS′.Publish and PMS.Publish as well as PMS′.ModifyAccess and
PMS.ModifyAccess differ in that PMS′ operations update a profile P with pairs of the
form (a, d̄′)) ∈ P with d̄′ = d̄||S, where a and d̄ are computed using corresponding
PMS operations, and appended set S contains profile-specific indices i of users U from
the authorized group G (for the attribute d), such that unique i is chosen at random from
[1, N ] within these operations for each U ∈ U upon the first admission of U to P ; (iii)
PMS′.Retrieve and PMS.Retrieve differ in that PMS′.Retrieve first computes d̄
by removing S from d̄′ and then invoking PMS.Retrieve on the corresponding pair
(a, d̄).

The PMS′ scheme remains anonymous, as the additional indices in S do not leak
any information about the corresponding identities of users G. The PMS′ scheme clearly
does not provide unlinkability since the indices of users are linkable across different
published attributes within the profile. ut

6 Analysis and Discussion for Real-World Social Communities

We analyze the impact imposed by PMS-SK and PMS-BE schemes on the most repre-
sentative online social community Facebook as well as the two well-known services
Twitter and Flickr, and focus on the main complexity difference between both ap-
proaches, namely on the average overhead for the storage of private keys.

Being a very general platform for social networking, Facebook users share data
with a high amount of contacts. Facebook’s own statistics4 indicates an average of 130
contacts per user, while Golder et al. [11] found a mean of about 180. According to
Facebook’s statistics, about 500 million active users share more than 30 billion pieces
of content (e.g., web links, blog posts, photo albums, etc.) each month. Assuming a
rather short lifetime of only three months per item, each user stores on average about
180 pieces of content, i.e., attributes in our profile management scheme.

Assuming an average of 150 contacts per user and 180 attributes per profile we
obtain 332 keys that have to be stored by each user when using PMS-BE in contrast to
over 27000 keys that would be required by PMS-SK. Considering a key length of 192
bits for the private (decryption) key as a basis, this results in a storage overhead of about
8 KB for PMS-BE, compared to about 650 KB for PMS-SK.

Regarding the microblogging service Twitter, where users have on average approxi-
mately 50 contacts (“followers”) and publish about 60 attributes (“tweets”) per month5,
the number of stored keys per user is 232 in PMS-BE and over 9000 in PMS-SK, result-
ing in about 6 KB respectively 220 KB storage overhead (assuming again a lifetime of
three months). Flickr, an online community for image and video hosting, has a very low
average of only 12 contacts (“friends”) per user according to a study of Mislove et al.
[18] in 2007. Assuming the limit of 200 images for a “free account”6 as average number

4 http://www.facebook.com/press/info.php?statistics, Oct 2010
5 http://www.website-monitoring.com/blog/2010/05/04/
twitter-facts-and-figures-history-statistics/, Oct 2010

6 http://www.flickr.com/help/limits/, Oct 2010

http://www.facebook.com/press/info.php?statistics
http://www.website-monitoring.com/blog/2010/05/04/twitter-facts-and-figures-history-statistics/
http://www.website-monitoring.com/blog/2010/05/04/twitter-facts-and-figures-history-statistics/
http://www.flickr.com/help/limits/


Cryptographic Treatment of Private User Profiles 17

(a) PMS-SK (b) PMS-BE

Fig. 1. Plots of the number of keys each user has to store in PMS-SK resp. PMS-BE, depending
on the average number of contacts n and the average number of attributes per profile |P |.

of attributes per profile, the number of keys each Flickr user has to store would be 214
in the PMS-BE construction and 2600 in PMS-SK, which yields a storage overhead of
about 5 KB respectively 62 KB.

We observe that in these average settings the absolute difference of both approaches
in storage overhead is not very high. Although relatively differing by a factor of roughly
100, the absolute storage overhead for the assumed average parameters remains below
1 MB in all three networks. We observe that these costs are practical not only for desk-
top computers but also for modern smart phones. Hence, in practice the two construc-
tions PMS-SK and PMS-BE would allow for a trade-off between minimization of the
storage overhead and maximization of privacy (as PMS-BE only provides anonymity,
but not unlinkability).

On the other hand, when applied to very large profiles (with more contacts and
attributes than assumed above) the difference in storage overhead increases rapidly as
illustrated in Figure 1. For example, a profile with 300 contacts7 and 2000 attributes
leads to the overhead of about 15 MB in PMS-SK compared to only 55 KB in PMS-BE.
Therefore, using PMS-BE is advisable in this case.

7 Conclusion and Future Work

Privacy preserving publication of personal data in user profiles is a valuable building
block that can be used to boot-strap various collaborative and social data sharing ap-
plications. So far, security and privacy of user profiles have been addressed in a rather
informal way, resulting in several implementations with unclear requirements.

In this work, we gave a rigorous security model for private user profiles, capturing
the confidentiality of profile data and privacy of users that are allowed to retrieve this
data. Our model allows for the construction of private profile management schemes,

7 More than 10% of the Facebook users have more than 300 contacts [10].
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independently of the social application that will use them. It aims at local schemes,
which can be used both in centralized and distributed environments.

Furthermore, we gave two concrete constructions of profile management schemes,
using symmetric and broadcast encryption techniques. Our analysis showed that these
constructions differ in the privacy guarantees they provide. While one offers strong pri-
vacy with the notion of unlinkability, the other represents a trade-off for better efficiency
and key management, yet, consequently offers only anonymity of the users.

A couple of interesting open questions regarding the real-world use of profile man-
agement schemes still remains:

– Can unlinkability of users being authorized to access different attributes within a
profile be achieved with a sub-linear overhead?

– How do concrete implementations of PMS-SK and PMS-BE behave regarding the
imposed overhead for retrieval key distribution? This will obviously depend on the
used distribution mechanism, which seems more complex in case of PMS-SK.
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