
Password Authenticated Keyword Search

Kaibin Huang
Department of Computer Science

National Chengchi University

Taiwan

Email: 100753504@nccu.edu.tw

Mark Manulis
Surrey Centre for Cyber Security

University of Surrey

United Kingdom

Email: mark@manulis.eu

Liqun Chen
Surrey Centre for Cyber Security

University of Surrey

United Kingdom

Email: liqun.chen@surrey.ac.uk

Abstract—In this paper we introduce Password Authenticated
Keyword Search (PAKS), a cryptographic scheme where any user
can use a single human-memorizable password to outsource
encrypted data with associated keywords to a group of servers
and later retrieve this data through the encrypted keyword search
procedure. PAKS ensures that only the legitimate user who knows
the initially registered password can perform outsourcing and re-
trieval of the encrypted data. In particular, PAKS guarantees that
no single server can mount an offline attack on the user’s pass-
word or learn any information about the encrypted keywords.
The concept behind PAKS protocols extends previous concepts
behind searchable encryption by removing the requirement on
the client to store high-entropy keys, thus making the protocol
device-agnostic on the user side. In this paper we model three
security requirements for PAKS schemes (indistinguishability
against chosen keyword attacks, authentication and consistency)
and propose an efficient direct construction in a two-server
setting those security we prove in the standard model under the
Decisional Diffie-Hellman assumption. Our efficiency comparison
shows that the proposed scheme is practical and offers high
performance in relation to computations and communications
on the user side.

I. INTRODUCTION

Searchable encryption. Using protocols for Searchable
Encryption [1]–[4] clients with limited computing and storage

resources can outsource encrypted data to a server or a

collection of servers, perform search over the encrypted data

(typically using encrypted keywords) and eventually retrieve

searched data while preserving its privacy against the servers.

Existing searchable encryption schemes can be broadly split

into those where the keyword search procedure requires either

high-entropy shared keys such as Symmetric Searchable En-
cryption (SSE) schemes from [3], [5], [6] or a private-public

key pair such as Public Key Encryption with Keyword Search
(PEKS) schemes from [1], [2], [6]–[10] on the user side.

In practice, the requirement to maintain high-entropy keys

on the user side results in less flexibility when it comes to the

use of multiple, different devices for outsourcing and retrieval

of data. The user is effectively prevented from using different

devices unless the private key is made available to every such

device.

Password Authenticated Keyword Search (PAKS). The

idea of basing searchable encryption solely on passwords,

proposed in this paper, helps to avoid costly and risky key

management on the user side and enables the whole process

to be device-agnostic. This, however, comes with challenges

considering that both passwords and keywords typically have

low entropy. Amongst the core security properties of PAKS

there is a need to guarantee that only the legitimate user,

who knows the password, can outsource, search and retrieve

data. Hence, basing security of searchable encryption schemes

on passwords introduces the need for a distributed server

environment where trust is spread across at least two non-

colluding servers, as is also the case in many password-based

protocols for authentication and secret sharing, e.g. [11]–[19].

While a more general secret sharing architecture with t-out-

of-n servers would be applicable as well, the use of two

servers can be seen as the most practical scenario and the

minimum requirement to achieve protection against offline

dictionary attacks. The use of two servers is required not only

to protect passwords but also to prevent keyword guessing

attacks, like those demonstrated in [10] for (public key-based)

PEKS schemes.

We model PAKS as a cryptographic scheme where users

can register their passwords with the servers and then re-use

these passwords for multiple sessions of the outsource and

retrieval protocols. In each outsource session the user can

outsource encrypted keywords along with some (encrypted)

document to both servers. The retrieval protocol realises the

search procedure based on the keyword that the user inputs

to the protocol and provides the user with all documents

associated with that keyword allowing the user to also verify

the integrity of the retrieved documents. We define security

of the PAKS scheme using BPR-like models [20], [21] that

have been widely used for password-based protocols. We

define privacy of PAKS keywords through indistinguishability
against chosen keyword attacks (IND-CKA) while considering

active adversaries, possibly in control of at most one server,

who can also register own passwords in the system. While

IND-CKA security protects against the adversary who does

not know the password from successfully retrieving outsourced

data, we additionally require authentication to protect the

outsourcing operation itself, thus preventing the adversary

from outsourcing data on behalf of the user; this requirement

must also hold even if the adversary controls one of the

servers. Our third PAKS requirement, consistency, akin to [1],

ensures the correctness of the retrieval process, in particular

prevents cases where one keyword is used to outsource data

that can then be retrieved using a different keyword.

Our direct PAKS construction follows conceptually the

2017 IEEE Symposium on Privacy-Aware Computing

978-1-5386-1027-5/17 $31.00 © 2017 IEEE

DOI 10.1109/PAC.2017.11

129

following more general approach that combines ideas behind

Password Authenticated Secret Sharing (PASS) [11]–[17] and

SSE [3], [5], [6]. In the registration phase, the user picks a

password π and a high-entropy symmetric key K that will

be used to encrypt keywords and secret-shares K protected

with π across both servers. In order to outsource keywords the

user engages into the PASS reconstruction protocol to obtain

K and then into the SSE outsource protocol to outsource

the keywords. In order to search for keywords and retrieve

data the user again reconstructs K using PASS and performs

the keyword search using SSE. We stress however that our

construction is direct and does not use PASS and SSE as

generic building blocks. A generic construction from these

two primitives remains currently out of reach due to significant

differences in the syntax, functionality and security amongst

the existing PASS protocols. First, PASS protocols do not

separate registration from secret sharing phase and therefore

do not enforce user authentication upon secret sharing which

would be required for the outsourcing protocol in PAKS.

Existing PASS protocols were proven in different security

models, e.g. BPR-like in [11], [15] and UC-based in [12], [16],

[17], and do not necessarily follow the same functionality and

syntax, which makes it hard to use PASS as a generic building

block in PAKS without revising the syntax and security models

of those PASS protocols. While we could update the syntax

of PASS protocols to allow for a generic usage in PAKS such

update would introduce changes to the original PASS protocols

and require new security proofs. Moreover, generic construc-

tions often lead to less efficient instantiations than directly

constructed schemes. For all the aforementioned reasons we

are not formally proposing a generic PAKS construction in this

paper and opt for a direct and efficient scheme (cf. Section IV)

based on well-known assumptions in the standard model.

Paper organization. We introduce preliminaries and build-

ing blocks in Section II. The syntax and security of the PAKS

scheme are formalized in Section III. Our direct PAKS con-

struction (along with efficiency considerations and comparison

with prior work) is proposed in Section IV and its security is

analysed in Section V.

II. PRELIMINARIES AND BUILDING BLOCKS

Pedersen commitments [22]. Let g, h be two generators

in a multiplicative cyclic group G with order q, and the

discrete logarithm between h and g is unknown. For a message

m ∈ Z
∗
q , the Pedersen commitment is computed as c← grhm

where r
$← Z

∗
q and is opened by providing (r,m). We recall

that Pedersen commitments offer computational binding based

the discrete logarithm problem, i.e. assuming AdvDLA (κ) is

negligible, and provide perfect hiding.

Pseudorandom function (PRF) [23], [24]. Let k ∈ KPRF be

a high min-entropy key in the PRF key space. A pseudorandom

function PRF is called (t, q, ε(κ))-secure if for any PPT algo-

rithm A running in time t with at most q oracle queries the

probability AdvPRFA (κ) ≤ ε(κ) for distinguishing the outputs of

PRF(k,m) from the outputs of a truly random function f of

the same length, assuming that A has oracle access to OPRF(·)

which contains either PRF(k, ·) or f(·) and which cannot be

queried on m.

Key derivation function (KDF) [25]. Let Σ be a source

of key material. A key derivation function KDF is called

(t, q, ε(κ))-secure with respect to Σ if for any PPT algorithmA
running in time t with at most q oracle queries the probability

AdvKDFA (κ) ≤ ε(κ) for distinguishing the output of KDF(k, c)
from uniformly drawn random strings of the same length,

assuming that (k, α) ← Σ where k is the secret key material

and α is some side information. It is assumed that A knows

α, has control over the context information c and has oracle

access to KDF(k, ·) which cannot be queried on c.
Message authentication code [26]. A message authentica-

tion code (KGen, Tag, Vrfy) is comprised of the algorithms

• KGen(κ): on input security parameter κ output key mk←
{0, 1}κ.

• Tag(mk,m): on input a key mk and a message m, output

tag μ← Tag(mk,m).
• Vrfy(mk,m, μ): on input a key mk, a message m and a

tag μ outputs 1 if μ is valid or 0 otherwise.

A MAC is secure if any PPT algorithm A without knowledge

of mk has only negligible probability AdvMACA (κ) to forge a

tag μ∗ for some message m∗. A has access to the tag oracle

OTag(·) which returns μ← Tag(mk,m) on input m. The only

restriction is that m∗ is never queried to OTag(·).
III. PASSWORD AUTHENTICATED KEYWORD SEARCH:

SYNTAX AND DEFINITIONS

In this section we provide definitions for the functionality

of PAKS and its security properties.

A. Syntax of PAKS

After initialization, the functionality of PAKS is defined

by three protocols. These protocols are themselves defined as

interactive algorithms executed by the protocol participants.

Functionality of PAKS. Our PAKS functionality allows any

user U to perform initial registration procedure with any two

servers S0 and S1 in the system and then use the registered

password π (from some dictionary D) to outsource and retrieve

data based on associated keywords w ∈ W . Each server Sd,

d ∈ {0, 1} maintains its own database where for each user it

records the associated secret information infod obtained dur-

ing the registration procedure and the outsourced data (C, ix)
obtained from multiple executions of the outsource protocol;

C represents ciphertexts for the keywords whereas ix stands

for the outsourced (and typically encrypted) document that

is associated with the encrypted keywords. Similar to other

searchable encryption schemes (e.g. [1]) we do not explicitly

model the encryption of outsourced documents and use indices

ix ∈ III as placeholders instead.

• Setup(1κ) is an initialisation algorithm that on input a

security parameter κ ∈ N generates public parameters

par of the scheme.

• Register is a registration protocol executed between

some user U (running interactive algorithm RegisterU)

and two servers S0 and S1 (running interactive algorithms

130

RegisterSd, d ∈ {0, 1}) according to the following

specification:

– RegisterU(par, π, S0, S1): on input par and some

password π ← D, this algorithm interacts with

RegisterSd, d ∈ {0, 1} and outputs a flag s ∈
{succ, fail}. If (s = succ), the user remembers

π and forgets all other informations.

– RegisterSd(par, U, S1-d): on input par this al-

gorithm interacts with RegisterU (and possibly

RegisterS1-d) and at the end of successful interac-

tion stores some secret information infod associated

with U at Sd.

• Outsource is an outsourcing protocol executed between

some user U (running interactive algorithm OutsourceU)

and two servers S0 and S1 (running interactive algorithms

OutsourceSd, d ∈ {0, 1}) according to the following

specification:

– OutsourceU(par, π, w, ix, S0, S1): on input π, a

keyword w, and some index ix this algorithms

interacts with OutsourceSd, d ∈ {0, 1} and outputs

a flag s ∈ {succ, fail}.
– OutsourceSd(par, U, infod): on input infod

this algorithm upon successful interaction with

OutsourceU (and possibly OutsourceS1-d) stores

a record (C, ix) in its database CCCd.

• Retrieve is a retrieval protocol executed between some

user U (running interactive algorithm RetrieveU) and

two servers S0 and S1 (running interactive algorithms

RetrieveSd, d ∈ {0, 1}) according to the following

specification:

– RetrieveU(par, π, w, S0, S1): on input π and a key-

word w this algorithm upon successful interaction

with RetrieveSd, d ∈ {0, 1} outputs set III contain-

ing all ix associated with w.

– RetrieveSd(par, U, infod): on input infod this

algorithm interacts with RetrieveU (and pos-

sibly RetrieveS1-d) and outputs a flag s ∈
{succ, fail}.

Correctness. The PAKS scheme is correct if for all κ ∈
N, ix ∈ I, w ∈ W , π ∈ D, par← Setup(1κ) the probability

Pr[ix ∈ III] = 1 iff

〈succ, info0, info1〉 ← 〈RegisterU(par, π, S0, S1),
RegisterS0(par, U, S1), RegisterS1(par, U, S0)〉;

〈succ, (C, ix), (C, ix)〉 ← 〈OutsourceU(par, π, w, ix, S0, S1),
OutsourceS0(par, U, info0), OutsourceS1(par, U, info1)〉;

〈III, succ, succ〉 ← 〈RetrieveU(par, π, w, S0, S1),
RetrieveS0(par, U, info0), RetrieveS1(par, U, info1)〉;

In other words, the user should always be able to retrieve

all indices ix that were previously outsourced under some

keyword w as long as this user is registered and has used its

registered password π in those outsourcing and in the retrieval

protocol sessions.

ExpIND-CKA-bPAKS,A (κ)
τττ ← ∅; i∗ ← (−1); j ← 0;

Set← ∅; par← Setup(1κ);
b′ ← AChind(b,·,·,·,·),Reg(·),Out(·,·,·),Ret(·,·),RetS(·)(par);
return b′

ExpAuthPAKS,A(κ)
τττ ← ∅; j ← 0; Set← ∅; par← Setup(1κ);
(i∗, w∗, ix∗)← AReg(·),Out(·,·,·),OutS(·),Ret(·,·)(par);
〈III, succ, succ〉 ← Ret(i∗, w∗);
if (((i∗, w∗, ix∗) �∈ Set) ∧ (ix∗ ∈ III)) return 1
else return 0

ExpConPAKS,A(κ)
τττ ← ∅; i∗ ← (−1); j ← 0;

Set← ∅; par← Setup(1κ);
w1 ← AChcon(·,·,·),Reg(·),Out(·,·,·),Ret(·,·),RetS(·)(par);
〈III, succ, succ〉 ← Ret(i∗, w1);
if (((i∗, w1, ix

∗) �∈ Set) ∧ (ix∗ ∈ III)) return 1
else return 0

Fig. 1. PAKS security experiments. The oracles are defined in Section III-B.

B. Security definitions of PAKS

We define security of PAKS using three main requirements:

indistinguishability against chosen keyword attacks (IND-CKA),

authentication and consistency. We adopt a BPR-like modeling

approach [21] for password-based cryptographic protocols and

define security through experiments (cf. Figure 1) where a PPT

adversary A has full control over the communication channels

and can interact with parties (controlled by a simulator)

through the set of oracles defined in the following.

Adversary model and oracles. For each user U we allow

A to take full control over at most one of the two servers S0
and S1 that were chosen by U during the registration phase to

capture the required distributed trust relationship. We mostly

use Sd to denote the uncorrupted server and S1-d to denote

the server controlled by the adversary. The oracles allow A to

invoke interactive algorithms for all protocols of PAKS which

will be executed (honestly) by the simulator. A can interact

with these algorithms and by this participate in the protocol.

In particular, we allow A to participate in outsourcing and

retrieval protocols on behalf of some corrupted server and also

as some (illegitimate) user who tries to guess the registered

password during the execution of the protocol.

Let τττ be an initially empty array that will be populated

with tuples of the form τττ [j]← (d, π, infod) at the end of each

successful j-th registration session such that π is the registered

password and infod is the secret data stored at the server Sd at

the end of that session. We also use variables i∗ ∈ Z, ix∗ ∈ I
and a set Set that are maintained by the experiments. The

adversary A can access the following oracles.

• Challenge oracle Chind(b, ·, ·, ·, ·): on input (i, w0, w1,
ix∗), the oracle aborts if ((i∗ ≥ 0)∨ (i ≥ j)∨ ((i, w0) ∈

131

Set) ∨ ((i, w1) ∈ Set)). Otherwise, it sets i∗ ← i and

invokes oracle Out(i∗, wb, ix
∗). Note that this oracle will

be used to model IND-CKA security of PAKS.

• Challenge oracle Chcon(·, ·, ·): on input (i, w0, ix
∗), the

oracle aborts if ((i∗ ≥ 0) ∨ (i ≥ j)). Otherwise, it sets

i∗ ← i and invokes oracle Out(i∗, w0, ix
∗). Note that

this oracle will be used to model consistency of PAKS.

• Registration oracle Reg(·): on input d ∈ {0, 1}, the exper-

iment first initializes CCCd,j ← ∅ as a database for session

j. Then, it randomly picks fresh (π
$← D)∧((i, π, ·) �∈ τττ)

for all i ∈ [0, j − 1]. The Register protocol is executed

with A where the oracle plays the roles of honest U and

Sd executing algorithms RegisterU(par, π, S0, S1) and

RegisterSd(par, U, S1-d), respectively, and A plays the

role of corrupted S1-d. After interactions, the experiment

records τττ [j]← (d, π, infod), delivers j to the adversary

and increases j ← j + 1.

• Outsource oracle Out(·, ·, ·): on input (i, w, ix), the

oracle aborts if i ≥ j; or otherwise, it ob-

tains (d, π, infod) ← τττ [i]. The Outsource pro-

tocol is then executed with A where the ora-

cle plays the roles of honest U and Sd execut-

ing algorithms OutsourceU(par, π, w, ix, S0, S1) and

OutsourceSd(par, U, infod), respectively, and A plays

the role of malicious S1-d. In both Auth and Con exper-

iments, the oracle additionally computes Set ← Set ∪
(i, w, ix).

• Outsource oracle (server only) OutS(·): on input i, the or-

acle aborts if i ≥ j; otherwise, it obtains (d, π, infod)←
τττ [i]. The Outsource protocol is then executed with A
where the oracle plays the role of honest Sd executing

algorithm OutsourceSd(par, U, infod) and A plays the

roles of (illegitimate) U and corrupted S1-d. Note that this

oracle will be used to model authentication of PAKS.

• Retrieve oracle Ret(·, ·): on input (i, w), the oracle

aborts if i ≥ j. In the IND-CKA experiment, the or-

acle also aborts if ((i = i∗) ∧ (w ∈ {w0, w1})).
Otherwise, it obtains the parameters (d, π, infod) ←
τττ [i]. The Retrieve protocol is then executed with A
where the oracle plays the roles of honest U and Sd
executing algorithms RetrieveU(par, π, w, S0, S1) and

RetrieveSd(par, U, infod), respectively, and A plays

the role of corrupted S1-d. In the IND-CKA experiment,

if (i∗ = −1) the oracle additionally computes Set ←
Set ∪ (i, w).

• Retrieve oracle (server only) RetS(·): on input i, the ora-

cle aborts if i ≥ j; otherwise, it obtains (d, π, infod)←
τττ [i]. The Retrieve protocol is then executed with A
where the oracle plays the role of honest Sd executing

algorithm RetrieveSd(par, U, infod) and A plays the

roles of (illegitimate) U and corrupted S1-d. Note that this

oracle will be used to models IND-CKA and Con-security

of PAKS.

Indistinguishability against Chosen Keyword Attacks
(IND-CKA). The IND-CKA property for PAKS is defined through

the experiment ExpIND-CKA-bPAKS,A (κ) (cf. Figure 1) and is closely

related to [5] except that our setting is based on passwords. A
is given the public parameters par and permitted to adaptively

access oracles Chind(b, ·, ·, ·, ·), Reg(·), Out(·, ·, ·), Ret(·, ·)
and RetS(·) at most 1, qr, qo, qt and qs times, respectively.

In particular, our IND-CKA experiment captures the following

ways that A may try to retrieve data: (i) from interaction with

an honest user U and the honest server Sd playing the role of

corrupted S1-d (which is captured through the oracle Ret(·, ·)),
or (ii) from interaction with the honest server Sd playing the

role of illegitimate user, e.g. trying to guess the registered

password, and the corrupted server S1-d (which is captured

through the oracle RetS(·)).
Let AdvIND-CKAPAKS,A (κ)

def
= Pr[b′ = b : b′ ← ExpIND-CKA-bPAKS,A (κ)]− 1

2
denote the advantage of A in the IND-CKA security experiment.

A PAKS scheme is called IND-CKA-secure if the probability

AdvIND-CKAPAKS,A (κ) ≤ qs
|D| + ε(κ) where |D| is the dictionary size

and ε(κ) is negligible in the security parameter κ. Note that

probability qs
|D| relates to the use of oracle RetS(·) that models

on-line dictionary attacks and assumes uniform distribution of

passwords within D, as is also common in BPR-like models.

Authentication (Auth). The property of authentication for

PAKS is defined using experiment ExpAuthPAKS,A(κ) in Figure 1.

A is given the public parameters par and permitted to access

oracles Reg(·), Out(·, ·, ·), OutS(·) and Ret(·, ·) with at most

qr, qo, qs and qt times, respectively. Our experiment effectively

captures attacks where A tries to outsource some data ix∗ on

behalf of some user U without knowing the registered password

(via OutS(·) oracle), possibly after having interacted with U

and the honest server Sd. In its attack on authentication A can

play the role of a corrupted server S1-d and also mount man-in-

the-middle attacks on sessions of Outsource and Retrieve

protocols involving user U.

A PAKS scheme provides authentication if for all PPT A
the probability AdvAuthPAKS,A(κ) = Pr[1 ← ExpAuthPAKS,A(κ)] ≤
qs
|D| + ε(κ). As in the IND-CKA case, we again need to account

for the possibility of online guessing attacks via the oracle

OutS(·).
Consistency (Con). We define consistency of PAKS using

experiment ExpConPAKS,A(κ) in Figure 1, adapting this notion

from [1] to the PAKS setting. The property aims to rule

out false positives when performing the keyword search. A
is given the public parameters par and permitted to access

oracles Chcon(·, ·, ·), Reg(·), Out(·, ·, ·), Ret(·, ·) and RetS(·)
with at most 1, qr, qo, qt and qs times, respectively. In

particular, A should not be able to come up with different

keywords w0 and w1 from which w0 will be used by an honest

user to outsource some data ix∗ (via Chcon(·, ·, ·) oracle)

and w1 used to retrieve this data later. A PAKS scheme is

called consistent if the probability AdvConPAKS,A(κ) = Pr[1 ←
ExpConPAKS,A(κ)] ≤ qs

|D| + ε(κ).

IV. OUR DIRECT PAKS CONSTRUCTION

In this section we propose a direct and efficient construction

of PAKS. It follows our general idea of combining suitable

132

public inputs: G, q, g, h,H, KDF1, KDF2, PRF, MAC

User U(π,w, ix) Server Sd(xd, g
r1 , gr2 , Cπ ,Kd, mkd)

a
$← Z∗

q , A← gahπ A sd, yd
$← Z∗

q , Yd ← gyd

Rd ← (gr2)yd , cd ← gsdhH(Yd,Rd) cd

c1-d

on input c1-d Yd, Rd, sd

if (c1-d = gs1-dhH(Y1-d,R1-d)) Y1-d, R1-d, s1-d

Y ← Y0Y1, R← R0R1

e
$← {0, 1}κ Zd ← Kd(CπA-1)yd (gr1R)-xd

on input (Y, Z0, μ0), (Y, Z1, μ1) Y, Zd, μd μd ← Tag(mkd, (A, Y, Zd))

K ← Z0Z1Y a else abort;
for all d ∈ {0, 1}

mkd ← KDF1(K, Sd, ‘1’)

if (Vrfy(mkd, (A, Y, Zd), μd) = 0)

abort;
t← KDF2(K,w), v ← PRF(t, e)

mku ← KDF1(K, U, ‘0’)

μc ← Tag(mku, (e, v, ix))

skd ← KDF1(mkd, A, Y, ‘2’) skd ← KDF1(mkd, A, Y, ‘2’)

C ← (e, v, μc), μskd ← Tag(skd, (C, ix)) (C, ix), μskd if (Vrfy(skd, (C, ix), μskd) = 1)

store (C, ix) on CCCd

else abort;

Fig. 2. The Outsource protocol between U and Sd. The server-side algorithm includes communication between servers Sd and S1-d.

password-authenticated secret sharing with symmetric search-

able encryption techniques. In the introduction we explained

the difficulties behind an attempt to construct PAKS generi-

cally using PASS and SSE schemes and motivated our choice

for a direct construction.

High-level idea. Our PAKS protocol is inspired by the

techniques used in the recent password-authenticated secret

sharing protocol from [15] which we modified to address the

functionality and requirements of PAKS and extended with a

suitable mechanism for symmetric searchable encryption of

keywords. In particular, we define a new registration protocol

Register upon which the user registers its password π en-

crypted in Cπ with both servers and also picks a symmetric key

K for which it computes appropriate shares K0 and K1 which

are then sent to the corresponding servers. The reconstruction

of K is protected by π and MAC codes μd are used to

ensure the validity of K upon its reconstruction. The protocols

Outsource and Retrieve proceed according to the similar

pattern. First, the user reconstructs K using its password π
after communication with both servers. Then, in Outsource

protocol U uses K in combination with its keyword w to derive

a trapdoor t ← KDF2(K,w) and a fresh randomness e to

derive verifier v ← PRF(t, e). The pair (e, v) becomes part

of the outsourced ciphertext C which is bound to some data

ix. During the Retrieve protocol the user can recompute

the trapdoor t for a given keyword w and then send it to

the servers who can the find all outsourced ciphertexts C for

which v ← PRF(t, e) holds and hence identify which data ix

needs to be returned. In order to prevent servers from creating

their own pairs (e, v) for a given t the outsourced ciphertext C
additionally includes a MAC tag μc which authenticates (e, v)
and also ix and which can only be computed and verified

using K. During the Retrieve protocol the user will ensure

that it final search result contains only data that passes this

integrity and authenticity check. In addition both protocols

make use of MACs to ensure authenticity of messages, where

the MAC keys are derived from K on the user side. We

emphasis that our PAKS construction is in the password-only

setting where servers are not required to possess any public

keys for the security of the PAKS scheme. However, if the

registration protocol Register is performed remotely over a

public network then this protocol needs to be executed over

server-authenticated secure-channels (e.g. TLS). In order to

enable reconstruction of K by the user and to protect this

phase with the password both servers communicate with each

other as part of the Outsource and Retrieve protocols.

While in practice this communication between the two servers

will likely be protected using a secure channel (e.g. TLS) we

133

public inputs: G, q, g, h,H, KDF1, KDF2, PRF, MAC

User U(π,w) Server Sd(xd, g
r1 , gr2 , Cπ ,Kd, mkd)

a
$← Z∗

q , A← gahπ A sd, yd
$← Z∗

q , Yd ← gyd

Rd ← (gr2)yd , cd ← gsdhH(Yd,Rd) cd

c1-d

on input c1-d Yd, Rd, sd

if (c1-d = gs1-dhH(Y1-d,R1-d)) Y1-d, R1-d, s1-d

Y ← Y0Y1, R← R0R1

Zd ← Kd(CπA-1)yd (gr1R)-xd

on input (Y, Z0, μ0), (Y, Z1, μ1) Y, Zd, μd μd ← Tag(mkd, (A, Y, Zd))

K ← Z0Z1Y a else abort;
for all d ∈ {0, 1}

mkd ← KDF1(K, Sd, ‘1’)

if (Vrfy(mkd, (A, Y, Zd), μd) = 0)

abort; AAAd ← ∅
skd ← KDF1(mkd, A, Y, ‘2’) skd ← KDF1(mkd, A, Y, ‘2’)

t← KDF2(K,w), μskd ← Tag(skd, t) t, μskd if (Vrfy(skd, t, μskd) = 1)

for all (C, ix) ∈ CCCd

(e, v, μc)← C

mku ← KDF1(K, U, ‘0’) if (v = PRF(t, e))

AAA← AAA0 ∪AAA1, III ← ∅ AAAd AAAd ← AAAd ∪ (C, ix)

for all (C, ix) ∈ AAA else abort;

(e, v, μc)← C

if (v = PRF(t, e) ∧ Vrfy(mku, (e, v, ix), μc) = 1)

III ← III ∪ ix

return III

Fig. 3. The Retrieve protocol between U and Sd. The server-side algorithm includes communication between servers Sd and S1-d.

stress that in our protocols this communication can take place

over an insecure channel.

Detailed description. In the following we provide a detailed

description of all algorithms and protocols underlying our

direct PAKS scheme, along with Figures 2 and 3 that illustrate

the protocols Outsource and Retrieve, respectively.

• Setup(1κ): Generated public parameters par contain

{G, q, g, h, KDF1, KDF2, PRF, MAC}, where (G, q, g, h) rep-

resents a multiplicative cyclic group G with a prime order

q and generators g, h
$← G where the discrete logarithm

of h with respect to base g is unknown. H : G×G→ Z
∗
q

is a collision-resistant hash function. KDF1 : {0, 1}∗ →
KMAC and KDF2 : G×W → KPRF are two key derivation

functions. PRF : KPRF × {0, 1}κ → {0, 1}κ is a pseudo-

random function. MAC = (KGen, Tag, Vrfy) is a message

authentication code with Tag : KMAC×{0, 1}∗ → {0, 1}κ
and Vrfy : KMAC × {0, 1}∗ × {0, 1}κ → {0, 1} where

KPRF and KMAC are PRF and MAC key spaces, respectively.

We assume that passwords from D are represented as

elements of Z∗q .

• Protocol Register: User U picks r1, r2, x0, x1
$← Z

∗
q

and K,K0
$← G; computes X ← gx0+x1 , K1 ←

Xr1K(K0)
-1 and Cπ ← Xr2hπ . Then, for d ∈

{0, 1}, the user computes mkd ← KDF1(K, Sd, ‘1’), sets

infod ← (xd, g
r1 , gr2 , Cπ,Kd, mkd) and sends infod to

server Sd, d ∈ {0, 1} over server-authenticated secure

channels. Finally, U memorizes π.

• Protocol Outsource: For d ∈ {0, 1}, the Outsource

protocol between U and Sd is illustrated in Figure 2

and detailed in the following. Note that as part of the

Outsource protocol both S0 and S1 communicate with

each other, possibly over an insecure channel.

1) User U randomly selects a
$← Z

∗
q , e

$← {0, 1}κ and

sends A← gahπ to both servers.

2) On input A, server Sd executes following steps:

a) Pick sd, yd
$← Z

∗
q , compute Yd ← gyd , Rd ←

(gr2)yd .

b) Send Pedersen commitment cd ← gsdhH(Yd,Rd)

to server S1-d and wait for its response c1-d.

134

TABLE I
EFFICIENCY COMPARISON WITH PASSWORD-ONLY PASS SCHEMES.

Computation cost (unit: exp) Communication cost (unit: bits) Rounds
Sharing Retrieval Sharing Retrieval Sharing Retrieval

user server user server user-server user-server server-server
BJSL11 [11] 6 0 33 16 24q + 4κ 22q + 2κ 0 1 2
JKK14 [14] 4 1 11 4 8q + 4κ 8q + 4κ 0 1 1
YCHL15 [15] 1 0 7 12 6κ 10q 8q 1 1
JKKX16 [17] 3 1 3 1 8q + 4κ 8q + 4κ 0 2 1
In our PAKS scheme 6 0 3 8 8q + 2κ 6q 6q + 2κ 1 1

c) Send the opening (Yd, Rd, sd) to server S1-d and

wait for its response (Y1-d, R1-d, s1-d). If c1-d �=
gs1-dhH(Y1-d,R1-d) then abort.

d) Send (Y, Zd, μd) to U where Y ← Y0Y1, R ←
R0R1, μd ← Tag(mkd, (A, Y, Zd)) and Zd ←
Kd(CπA

-1)yd(gr1R)-xd .

3) Upon receiving (Y, Z0, μ0) and (Y, Z1, μ1) from

both servers, user U executes following steps:

a) If Vrfy(mkd, (A, Y, Zd), μd) = 0 for any d ∈
{0, 1} then abort, else compute K ← Z0Z1Y

a.

b) Compute t ← KDF2(K,w), v ← PRF(t,
e), mku ← KDF1(K, U, ‘0’), μc ←
Tag(mku, (e, v, ix)) and C ← (e, v, μc).

c) Send ((C, ix), μskd) to server Sd, d ∈ {0, 1}
where μskd ← Tag(skd, (C, ix)) using skd ←
KDF1(mkd, A, Y, ‘2’).

4) On input ((C, ix), μskd), server Sd stores (C, ix) in

its database CCCd if Vrfy(skd, (C, ix), μskd) = 1 for

skd ← KDF1(mkd, A, Y, ‘2’), else Sd aborts.

• Protocol Retrieve: For d ∈ {0, 1}, the Retrieve

protocol between U and Sd is illustrated in Figure 3

and detailed in the following. Note that as part of the

Outsource protocol both S0 and S1 communicate with

each other, possibly over an insecure channel.

1) User U randomly selects a
$← Z

∗
q and sends A ←

gahπ to both servers.

2) On input A, server Sd executes following steps:

a) Pick sd, yd
$← Z

∗
q , compute Yd ← gyd , Rd ←

(gr2)yd .

b) Send Pedersen commitment cd ← gsdhH(Yd,Rd)

to server S1-d and wait for its response c1-d.

c) Send opening (Yd, Rd, sd) to server S1-d and

waits for its response (Y1-d, R1-d, s1-d). If

c1-d �= gs1-dhH(Y1-d,R1-d) then abort.

d) Send (Y, Zd, μd) to U where Y ← Y0Y1, R ←
R0R1, μd ← Tag(mkd, (A, Y, Zd)) and Zd ←
Kd(CπA

-1)yd(gr1R)-xd .

3) Upon receiving (Y, Z0, μ0) and (Y, Z1, μ1) from

both servers, U executes following steps:

a) If Vrfy(mkd, (A, Y, Zd), μd) = 0 for any d ∈
{0, 1} then abort, else compute K ← Z0Z1Y

a.

b) Compute t ← KDF2(K,w) and μskd ←
Tag(skd, t) using skd ← KDF1(mkd, A, Y, ‘2’).
Send (t, μskd) to Sd, d ∈ {0, 1}.

4) On input (t, μskd), server Sd executes following

steps:

a) If Vrfy(skd, t, μskd) = 0 then abort, else com-

pute skd ← KDF1(mkd, A, Y, ‘2’).
b) Initialize set AAAd ← ∅. For all (C, ix) ∈ CCCd,

parse (e, v, μc) ← C and add (C, ix) to AAAd if

v = PRF(t, e). Finally, send AAAd to U.

5) Upon receiving AAA0 and AAA1, user U initializes an

empty set III ← ∅. Then, for all (C, ix) ∈ (AAA0∪AAA1),
parses (e, v, μc) ← C and adds ix to III if v =
PRF(t, e) and Vrfy(mku, (e, v, ix), μc) = 1. This

step guarantees that only outsourced data for which

the integrity check was performed successfully will

be added to the output set III .

The correctness of the protocol can be easily verified once

we illustrate here that if the correct password π is used by

the user in the Outsource and Retrieve protocols then the

reconstruction through Z0Z1Y
a results in a correct key K:

Z0Z1Y
a =K0(CπA

-1)y0(gr1R)-x0 ·
K1(CπA

-1)y1(gr1R)-x1 · ga(y0+y1)

=Xr1K(Xr2g-a)y0+y1(gr1R)-(x0+x1)ga(y0+y1)

=Xr1KXr2(y0+y1)X-(r1)X-r2(y0+y1) = K

A. Efficiency comparison

Given that our direct PAKS construction follows the general

idea of building PAKS protocols based on the techniques used

for password-authenticated secret sharing, we compare perfor-

mance with existing PASS protocols. Since our PAKS scheme

assumes password-only setting (except for the registration) we

restrict our comparison to password-only PASS schemes [11],

[14], [15], [17] and compare only the costs that arise from

the sharing and retrieval of the symmetric key K — note that

in our PAKS scheme sharing of K is performed as part of

the Register protocol whereas retrieval of K is part of both

Outsource and Retrieve protocols and is accomplished in

step 3 of these protocols. Since our PAKS scheme adopts a

two-server architecture but the aforementioned PASS schemes

were designed for a more general t-out-of-n threshold setting

we consider their costs for the special case of t = n = 2
to ease the comparison. The results of the comparison are

presented in Table I. We compare computation costs through

the number of modular exponentiations for the user and each

135

of the servers during the sharing and retrieval phases of the

symmetric key K. We also compare communication costs

in the number of bits communicated in both phases, while

considering user-server and server-server communications. For

the lengths of elements in G and Z
∗
q we use |G| = q and

|q| = κ bits, respectively. We also compare the number of

rounds needed for the sharing and retrieval of K.

We observe that in terms of computation and communi-

cation costs key sharing and reconstruction phases in our

PAKS scheme compare fairly well with those of existing

PASS protocols. In particular, only [17] which is the most

computationally efficient PASS protocol today offers better

overall computation and communication performance. We

stress however that for PAKS protocols the efficiency of the

retrieval phase is of greater importance than of the sharing

phase. This is because in PAKS sharing of K is performed

only once as part of the registration procedure, but retrieval of

K occurs each time the user wants to outsource data or search

for keywords. Furthermore, due to the simplified key manage-

ment (i.e. reliance on passwords only) PAKS offers device-

agnostic use of the functionality to the user and can possibly

be executed on different client devices (ranging from desktops

over to smartphones). In this case it becomes important to

keep the costs associated with computations on the user side

and the user-server communication low. Considering this we

observe that in comparison to [17] our PAKS scheme achieves

similar and even partly better performance for computations

and communication involving the user device.

As a result of our comparison we conclude that our PAKS

scheme is sufficiently practical since the additional costs

arising from the encrypted keyword search functionality within

our PAKS protocols are negligible (due to the nature of

computations involved) in comparison to the costly key sharing

and retrieval steps.

B. Extensions with multiple keywords

In the given specification of our PAKS construction users

can use only one keyword w in each execution of Outsource

and Retrieve protocols at a time. Often, users may want to be

able to outsource or search for documents associated with mul-

tiple keywords. Our PAKS scheme can be extended to provide

efficient support for multiple keywords. Let www = (w1, . . . , wn)
be a set of outsourced keywords for some document ix and

let www′ = (w′1, . . . , w
′
m) be a set of searched keywords. In the

following we show how to support (i) outsourcing of ix with

www through a single session of the Outsource protocol and (ii)

search for all suitable documents ix using www′ through a single

session of the Retrieve protocol, based on three different

types of search queries [8]: conjunctive queries (www = www′),
disjunctive queries (|www ∩www′| > 0), and those for a subset of

keywords (www′ ⊆ www).

Outsourcing documents with multiple keywords. In order

to outsource some document ix associated with multiple

keywords www = (w1, . . . , wn), user U can compute vvv =
(v1, . . . , vn), ti ← KDF2(K,wi) and vi ← PRF(ti, e) for

i = 1, · · · , n, and μc ← Tag(mku, (e,vvv)) as part of the same

Outsource execution and outsource C ← (e,vvv, μc) as the

resulting ciphertext to both servers.

Search queries with multiple keywords. In order to search

for documents using multiple keywords, i.e. w′1, . . . , w
′
m, m ≤

n, within a single execution of the Retrieve protocol, user

U can send a set of authenticated trapdoors ti = KDF2(K,wi)
for all searched keywords w′i, i = 1, · · · ,m to both servers.

Then, for all (C, ix) = (e,vvv, μc, ix) stored in the database

CCCd, server Sd can initialize an empty output set AAAd, compute

vvv′ = (v′1, · · · , v′m) where v′i = PRF(ti, e), i = 1, . . . ,m, and

update the output set AAAd ← AAAd ∪ (C, ix) according to the

following conditions, depending on the type of search search

query, i.e.

• for conjunctive queries w′1 ∧ . . . ∧ w′m: if vvv = vvv′

• for disjunctive queries w′1 ∨ . . . ∨ w′m: if |vvv ∩ vvv′| > 0
• for subset queries (w′1, . . . , w

′
m) ⊆ www: if vvv′ ⊆ vvv.

C. Password change

Our PAKS scheme allows users to change their pass-

words without changing the encryption keys K, avoiding re-

encryption of outsourced keywords. A new password π∗ can

be registered with the knowledge of the current π as follows:

1) User U sends A ← gahπ to both servers (as in

Outsource and Retrieve). Each server Sd, d ∈ {0, 1}
uses its infod to respond with (Y, Zd, g

r2 , Cπ, μd)
where μd ← Tag(mkd, (Y, Zd, g

r2 , Cπ)).
2) Upon reconstructing mkd as in Outsource and

Retrieve protocols and verifying μd, the user picks

random r∗ $← Z
∗
q , computes Cπ∗ ← (Cπh

-π)r
∗
hπ∗

and μ∗d ← Tag(mkd, (g
r2)r

∗
, Cπ∗), and sends

(gr2r
∗
, Cπ∗ , μ∗d) to both servers.

3) If Vrfy(mkd, (g
r2r

∗
, Cπ∗), μ∗d) = 1 then each Sd re-

places (gr2 , Cπ) in its infod with (gr2r
∗
, Cπ∗).

Note that current π is used to authenticate the user towards

both servers. If the user no longer remembers π then changing

the password while keeping the encryption key K would

require additional authentication mechanisms based on which

U would be able to retrieve infod from Sd to reconstruct and

re-share K with the new π∗, as in the registration phase.

V. SECURITY ANALYSIS OF PAKS

In the following we prove the security of our direct PAKS

scheme using our definitions from Section III-B. In the proofs

we adopt the standard game-hopping technique. Let succn
denote the event that the adversary wins in the experiment n.

A. IND-CKA-security of our PAKS scheme

Theorem 1: Our direct PAKS construction is IND-CKA-

secure assuming the hardness of the DDH problem and security

of KDF1, KDF2, PRF and MAC.

Proof. Experiment ExpIND0 . The simulator initializes

τττ , i∗, j, Set and par ← {G, q, g, h,H, KDF1, KDF2, PRF, MAC}
as defined in the real security experiment ExpIND-CKA-bPAKS,A (κ).
The oracles Chind(b, ·, ·, ·, ·), Reg(·), Out(·, ·, ·), Ret(·, ·) and

RetS(·) are implemented as follows.

136

• Chind(b, ·, ·, ·, ·): on input (i, w0, w1, ix
∗) the oracle

aborts if ((i∗ ≥ 0)∨(i ≥ j)∨((i, w0) ∈ Set)∨((i, w1) ∈
Set)); otherwise, it sets i∗ ← i and invokes oracle

Out(i∗, wb, ix
∗).

• Reg(·): on input d ∈ {0, 1} the simulator randomly

selects fresh π
$← D and K

$← G and initialises an

empty database CCCd,j . The simulator and A complete

the Register protocol, where the simulator plays the

roles of U and Sd, and A plays the role of S1-d. The

oracle sends j to A as a session identifier. Finally,

it records τττ [j] ← (d, π, infod, r2, x1-d), infod ←
(S1-d, xd, g

r1 , gr2 , Cπ,Kd, mkd), increments j ← j + 1,

and stores r2 and x1-d for later use in the proof.

• Out(·, ·, ·): on input (i, w, ix), the simulator aborts if

(i ≥ j); otherwise, it obtains (d, π, infod, r2, x1-d) ←
τττ [i]. Then, the simulator plays the roles of U and Sd
and interacts with A who plays the role of S1-d in the

Outsource protocol.

• Ret(·, ·): on input (i, w), the simulator aborts if (i ≥
j)∨ ((i = i∗)∧ (w ∈ {w0, w1})); or otherwise, it obtains

(d, π, infod, r2, x1-d)← τττ [i]. Then, it plays the roles of

U and Sd and interacts with A who plays the role of S1-d
party in the Retrieve protocol. Finally, the simulator

computes Set← Set ∪ (i, w) if (i∗ = −1).
• RetS(·): on input i, the simulator aborts if (i ≥ j); other-

wise, it obtains parameters (d, π, infod, r2, x1-d)← τττ [i]
and executes RetrieveSd(par, U, infod).

Lemma 1: AdvIND-CKAPAKS,A (κ) = Pr[succIND0]− 1/2

Experiment ExpIND1 . This experiment is similar to ExpIND0

except that the simulator aborts if some value for yd used on

behalf of honest server Sd appears in two different protocol

sessions through oracles Out(·, ·, ·), Ret(·, ·) and RetS(·).
Lemma 2: Pr[succIND0] = Pr[succIND1]

Experiment ExpIND2 . This experiment is similar to ExpIND1

except that the simulator aborts if some value for Y appears

in two different protocol sessions executed through oracles

Out(·, ·, ·), Ret(·, ·) and RetS(·).
1) By the perfect hiding property of Pedersen commit-

ments, value Y1-d is guaranteed to be independent from

Yd because the adversary acquires nothing from cd.

2) Due to the binding property of Pedersen commitments,

which is based on the hardness of the DL problem, it is

hard to open c1-d to a different Y ′1-d �= Y1-d.

Since Y1-d is guaranteed to be independent from Yd; and Yd

is fresh, we can follow that Y is fresh based on the hardness

of the DL problem.

Lemma 3: |Pr[succIND1]− Pr[succIND2]| ≤ AdvDLA (κ)

Experiment ExpIND3 . This experiment is similar to ExpIND2 ex-

cept that in oracles Out(·, ·, ·), Ret(·, ·) and RetS(·), the mes-

sage (Zd, μd) from the honest server Sd to the user is replaced

with (E, μ′d) where E
$← G and μ′d ← Tag(mkd, A, Y,E). We

discuss the following two cases:

1) For the oracles Out(·, ·, ·) and Ret(·, ·), let (g, gα, gβ , Q)
be an instance of the DDH problem, the simulator aims

to output 1 if Q = gαβ ; or 0 otherwise. The simulator

sets A← gαhπ , Yd ← gβ , Rd ← (gβ)r2 and

Zd ← Kd(g
β)r2(x0+x1)Q-1(gr1 · (gβ)r2 ·R1-d)

-xd

If Q = gαβ , this experiment is identical to ExpIND2 ;

otherwise, to ExpIND3 . The hardness of the DDH problem

implies the indistinguishability of ExpIND2 from ExpIND3 .

2) For oracle RetS(·), assume π′ is the password

tried by A, the key K (in ExpIND2) is equal to

Z0Z1Y
ah(π−π′)(y0+y1); under the DDH assumption, the

adversary cannot distinguish h(π−π′)(y0+y1) (in ExpIND2)

from a random number in G (in ExpIND3) unless π′ = π
which denotes a successful on-line dictionary attack. By

the uniform distribution of passwords, its probability is

estimated as qs ·AdvDDHA (κ) + qs
|D| .

Lemma 4: |Pr[succIND2] − Pr[succIND3]| ≤ (qs +
1)AdvDDHA (κ) + qs

|D|
Experiment ExpIND4 . This experiment is similar to ExpIND3

except that in each session i, values mku ← KDF1(K, U, ‘0’),
mkd ← KDF1(K, Sd, ‘1’), mk1-d ← KDF1(K, S1-d, ‘1’) are

replaced with mku ← F1(i, U, ‘0’), mkd ← F1(i, Sd, ‘1’) and

mk1-d ← F1(i, S1-d, ‘1’), respectively. A table T1 is initialized

to be empty in the beginning of ExpIND4 . The deterministic

function F1 : {0, 1}∗ → KMAC is defined as follows: if

∃(i, id, k, mk) ∈ T1 then F1(i, id, k) returns mk; otherwise,

the simulator randomly picks a fresh mk
$← KMAC, stores

(i, id, k, mk) in T1 and returns mk where fresh means that no

record of the form (·, ·, ·, mk) ∈ T1 exists so far. Since A
only acquires mk1-d, by the uniform distribution of K and the

security of KDF1, we obtain

Lemma 5: |Pr[succIND3]− Pr[succIND4]| ≤ qr ·AdvKDFA (κ)
Experiment ExpIND5 . This experiment is similar to ExpIND4

except that in each session i of oracles Out(·, ·, ·) and Ret(·, ·),
value t ← KDF2(K,w) is replaced with t ← F2(i, w). T2

is initialized as an empty table in the beginning of ExpIND5 .

F2 returns t if ∃(i, w, t) ∈ T2; otherwise, F2 picks a fresh

t
$← KPRF, stores (i, w, t) in T2 and returns t where fresh

means that no record of the form (·, ·, t) exists in T2. By the

uniform distribution of K and the security of KDF2, we have

Lemma 6: |Pr[succIND4] − Pr[succIND5]| ≤ (qo +
qt)AdvKDFA (κ)
Experiment ExpIND6 . This experiment is similar to ExpIND5

except for one of the following cases:

1) For the oracle Out(·, ·, ·), the adversary success-

fully forges ((C, ix), μskd) which satisfies Vrfy(skd,
(C, ix), μskd) = 1.

2) For the oracles Ret(·, ·) or RetS(·), the adversary suc-

cessfully forges (t, μskd) which satisfies Vrfy(skd, t,
μskd) = 1.

By the unforgeability of MAC, we have

Lemma 7: |Pr[succIND5] − Pr[succIND6]| ≤ (qo + qt +
qs)AdvMACA (κ)
Experiment ExpIND7 . This experiment is similar to ExpIND6

except that in oracles Out(·, ·, ·) and Ret(·, ·), the value v is set

in a different way. Let OPRF(·) be the oracle from the security

137

experiment of the pseudorandom function PRF; and let Tv be

initialized as an empty table in the beginning of ExpIND7 . When

the simulator needs to compute v ← PRF(t, e) in session i, it

obtains v using table Tv . If ∃(i, t, e, rv, v) ∈ Tv , the simulator

uses v from Tv; otherwise, it randomly picks rv
$← {0, 1}κ,

stores (i, t, e, rv,OPRF(rv)) in Tv and obtains v ← OPRF(rv).
Assuming the pseudorandomness of PRF, we have

Lemma 8: Pr[succIND7] ≤ 1/2 + (qo + qt)AdvPRFA (κ)
As a consequence, based on Lemmas 1 to 8 we can

conclude that our proposed PAKS construction is IND-CKA-

secure assuming the intractability of the DDH problem and

security of KDF1, KDF2, PRF and MAC.

B. Authentication property of our PAKS scheme

Theorem 2: Our proposed PAKS construction provides

authentication based on the hardness of the DDH problem and

security of KDF1, KDF2 and MAC.

Proof. Experiment ExpAuth0 . The simulator initializes

τττ , j, Set and par ← {G, q, g, h,H, KDF1, KDF2, PRF, MAC} as

defined in the real security experiment ExpAuthPAKS,A(κ). The

oracles Reg(·), Out(·, ·, ·), OutS(·) and Ret(·, ·) are executed

by the simulator as follows.

• Reg(·): on input d ∈ {0, 1} the simulator randomly

selects a fresh π
$← D and K

$← G, and initializes

an empty database CCCd,j . Then, the simulator and A
execute the Register protocol, where the simulator

plays the role of U, Sd and A plays the role of S1-d. The

simulator then sends j to A as a session identifier. Finally,

the simulator records τττ [j] ← (d, π, infod, r2, x1-d),
infod ← (S1-d, xd, g

r1 , gr2 , Cπ,Kd, mkd), increments

j ← j + 1, and stores r2 and x1-d for later use in the

proof.

• Out(·, ·, ·): on input (i, w, ix), the simulator aborts if (i ≥
j); otherwise, it obtains (d, π, infod, r2, x1-d) ← τττ [i].
Then, it sets Set← Set∪ (i, w, ix). Finally, it plays the

roles of U and Sd, and interacts with A who plays the

role of S1-d party in the Outsource protocol.

• OutS(·): on input i, the simulator aborts if (i ≥ j); other-

wise, it obtains parameters (d, π, infod, r2, x1-d)← τττ [i]
and executes OutsourceSd(par, U, infod).

• Ret(·, ·): on input (i, w), the simulator aborts if (i ≥ j);
otherwise, it obtains parameters (d, π, infod, r2, x1-d)←
τττ [i]. Then, it plays the roles of U and Sd, and interacts

with A who plays the role of S1-d in the Retrieve

protocol.

Lemma 9: AdvAuthPAKS,A(κ) = Pr[succAuth0]
Experiment ExpAuth1 . This experiment is similar to ExpAuth0

except that the value yd is ensured to be fresh in every session

executed by the simulator through the oracles Out(·, ·, ·),
OutS(·) and Ret(·, ·).

Lemma 10: Pr[succAuth0] = Pr[succAuth1]
Experiment ExpAuth2 . This experiment is similar to ExpAuth1

except that the simulator aborts if a value for Y repeats in two

different sessions of the protocol executed by the simulator

through oracles Out(·, ·, ·), OutS(·), and Ret(·, ·).

1) By the perfect hiding of Pedersen commitments, values

of Y1-d are guaranteed to be independent from Yd

because the adversary acquires nothing from cd.

2) Because of the binding property of Pedersen commit-

ments, which is based on the hardness of the DL

problem, it is hard to open c1-d to a different value

Y ′1-d �= Y1-d.

Since Y1-d is guaranteed to be independent from Yd and Yd

is fresh, the freshness of Y is implied by the hardness of the

DL problem.

Lemma 11: |Pr[succAuth1]− Pr[succAuth2]| ≤ AdvDLA (κ)
Experiment ExpAuth3 . This experiment is similar to ExpAuth2

except that in oracles Out(·, ·, ·), Ret(·, ·) and OutS(·), the

message (Zd, μd) from the honest server Sd to the user

is replaced with (E, μ′d) where E
$← G and μ′d ←

Tag(mkd, A, Y,E). We consider the following two case:

1) For oracles Out(·, ·, ·) and Ret(·, ·), let (g, gα, gβ , Q) be

an instance of the DDH problem, the simulator aims to

output 1 if Q = gαβ ; or 0 otherwise. The simulator sets

A← gαhπ , Yd ← gβ , Rd ← (gβ)r2 and

Zd ← Kd(g
β)r2(x0+x1)Q-1(gr1 · (gβ)r2 ·R1-d)

-xd

If Q = gαβ , then this experiment is identical to ExpAuth2 ;

otherwise, it is identical to ExpAuth3 . The hardness of the

DDH problem directly implies the indistinguishability of

ExpAuth2 from ExpAuth3 .

2) For the oracle OutS(·), assume π′ is a password used

by the adversary, the key K (in ExpAuth2) is equal

to Z0Z1Y
ah(π−π′)(y0+y1); under the DDH assumption,

the adversary cannot distinguish h(π−π′)(y0+y1) (in

ExpAuth2) from a random number in G (in ExpAuth3)

unless π′ = π which denotes a successful on-line dictio-

nary attack. By the uniform distribution of passwords,

its probability is estimated as qs ·AdvDDHA (κ) + qs
|D| .

Lemma 12: |Pr[succAuth2] − Pr[succAuth3]| ≤ (qs +
1)AdvDDHA (κ) + qs

|D|
Experiment ExpAuth4 . This experiment is similar to ExpAuth3

except that in each session i, values for mku ←
KDF1(K, U, ‘0’), mkd ← KDF1(K, Sd, ‘1’), mk1-d ←
KDF1(K, S1-d, ‘1’) are replaced with mku ← F1(i, U, ‘0’),
mkd ← F1(i, Sd, ‘1’) and mk1-d ← F1(i, S1-d, ‘1’), respec-

tively. A table T1 is initialized to be empty in the beginning

of ExpAuth4 . A deterministic function F1 : {0, 1}∗ → KMAC

is defined as follows: if ∃(i, id, k, mk) ∈ T1, F1(i, id, k)
then return mk; otherwise, the simulator randomly picks a

fresh mk
$← KMAC, stores (i, id, k, mk) on T1 and returns

mk ← F1(i, id, k) where fresh means that no record of the

form (·, ·, ·, mk) ∈ T1 exists so far. Since the adversary only

acquires mk1-d, by the uniform distribution of K as well as

the security of KDF1, we obtain

Lemma 13: |Pr[succAuth3]−Pr[succAuth4]| ≤ qr ·AdvKDFA (κ)
Experiment ExpAuth5 . This experiment is similar to ExpAuth4

except that in each session i for the oracles Out(·, ·, ·) and

Ret(·, ·), the value t ← KDF2(K,w) is replaced with t ←
F2(i, w). T2 is initialized as an empty table in the beginning

138

of ExpAuth5 . Function F2 returns t if ∃(i, w, t) ∈ T2; otherwise,

the simulator randomly picks a fresh t
$← KPRF, stores (i, w, t)

on table T2 and returns t where fresh means that no record of

the form (·, ·, t) exists so far in T2 . By the uniform distribution

of K and the security of KDF2, we obtain
Lemma 14: |Pr[succAuth4] − Pr[succAuth5]| ≤ (qo +

qt)AdvKDFA (κ)
We observe that ExpAuth5 is simulated independent the key

K. The only probability of winning ExpAuth5 comes from

the adversary successfully forging μc for (e, v, ix) such that

Vrfy(mku, (e, v, ix), μc) = 1. Assuming that MAC is unforge-

able, we obtain
Lemma 15: Pr[succAuth5] = AdvMACA (κ)

To sum, by Lemmas 9 to 15, we can conclude that our direct

PAKS scheme provides authentication based on the hardness

of the DDH problem and security of KDF1, KDF2 and MAC.

C. Consistency property of our PAKS scheme
Theorem 3: Our direct PAKS construction offers consis-

tency based on the hardness of the DDH problem and security

of KDF1, KDF2, PRF and MAC.
Proof. Experiment ExpCon0 . The simulator initializes

τττ , i∗, j, Set and par ← {G, q, g, h,H, KDF1, KDF2, PRF, MAC}
as defined in the real security experiment ExpConPAKS,A(κ). The

oracles Chcon(·, ·, ·), Reg(·), Out(·, ·, ·), Ret(·, ·) and RetS(·)
are answered as follows.

• Chcon(·, ·, ·): on input (i, w0, ix
∗), the simulator aborts

if ((i∗ ≥ 0) ∨ (i ≥ j)). Otherwise, it sets i∗ ← i and

invokes oracle Out(i∗, w0, ix
∗).

• Reg(·): on input d ∈ {0, 1} the simulator randomly

selects fresh π
$← D and K

$← G, and initializes an

empty database CCCd,j . Then, the simulator and A execute

the Register protocol, where the simulator plays the

roles of U and Sd, and interacts with A that plays the role

of S1-d. The simulator then sends j toA as a session iden-

tifier. Finally, it records τττ [j] ← (d, π, infod, r2, x1-d),
infod ← (S1-d, xd, g

r1 , gr2 , Cπ,Kd, mkd), increments

j ← j + 1, and stores variables r2 and x1-d for later

use in the proof.

• Out(·, ·, ·): on input (i, w, ix), it aborts if (i ≥ j);
otherwise, it obtains (d, π, infod, r2, x1-d)← τττ [i]. Then,

it sets Set← Set∪ (i, w, ix). The simulator and A then

execute the Outsource protocol, where the simulator

plays the roles of U and Sd, and interacts with A that

plays the role of S1-d.

• Ret(·, ·): on input (i, w), it aborts if (i ≥ j); or otherwise,

it obtains parameters (d, π, infod, r2, x1-d) ← τττ [i]. The

simulator and A then execute the Retrieve protocol

where the simulator plays the roles of U and Sd, and

interacts with A that plays the role of S1-d.

• RetS(·): on input i, the simulator aborts if (i ≥ j); other-

wise, it obtains parameters (d, π, infod, r2, x1-d)← τττ [i]
and executes RetrieveSd(par, U, infod).

Lemma 16: AdvConPAKS,A(κ) = Pr[succCon0]
Experiment ExpCon1 . This experiment is similar to ExpCon0

except that the value yd is ensured to be fresh in every session

executed by the simulator through the oracles Out(·, ·, ·),
Ret(·, ·) and RetS(·).

Lemma 17: Pr[succCon0] = Pr[succCon1]
Experiment ExpCon2 . This experiment is similar to ExpCon1

except that the simulator aborts if a value for Y repeats in two

different sessions of the protocol executed by the simulator

through oracles Out(·, ·, ·), Ret(·, ·) and RetS(·).
1) By the perfect hiding of Pedersen commitments, values

of Y1-d are guaranteed to be independent from Yd

because the adversary acquires nothing from cd.

2) Because of the binding property of Pedersen commit-

ments, which is based on the hardness of the DL

problem, it is hard to open c1-d to a different value

Y ′1-d �= Y1-d.

Since Y1-d is guaranteed to be independent from Yd and Yd

is fresh, this implies that the freshness of Y is based on the

hardness of the DL problem.

Lemma 18: |Pr[succCon1]− Pr[succCon2]| ≤ AdvDLA (κ)
Experiment ExpCon3 . This experiment is similar to ExpCon2

except that in oracles Out(·, ·, ·), Ret(·, ·) and RetS(·), the

message (Zd, μd) from the honest server Sd to the user

is replaced with (E, μ′d) where E
$← G and μ′d ←

Tag(mkd, A, Y,E). We discuss the following two cases:

1) For the oracles Out(·, ·, ·) and Ret(·, ·), let (g, gα, gβ , Q)
be an instance of the DDH problem, the simulator aims

to output 1 if Q = gαβ ; or 0 otherwise. The simulator

sets A← gαhπ , Yd ← gβ , Rd ← (gβ)r2 and

Zd ← Kd(g
β)r2(x0+x1)Q-1(gr1 · (gβ)r2 ·R1-d)

-xd

If Q = gαβ , this experiment is identical to ExpCon2 ;

otherwise, identical to ExpCon3 . The hardness of the DDH

problem thus implies the indistinguishability of ExpCon2

from ExpCon3 .

2) For oracle RetS(·), assume π′ is the password

tried by A, the key K (in ExpCon2) is equal to

Z0Z1Y
ah(π−π′)(y0+y1); under the DDH assumption, the

adversary cannot distinguish h(π−π′)(y0+y1) (in ExpCon2)

from a random number in G (in ExpCon3) unless π′ = π
which denotes a successful on-line dictionary attack. By

the uniform distribution of passwords, its probability is

estimated as qs ·AdvDDHA (κ) + qs
|D| .

Lemma 19: |Pr[succCon2] − Pr[succCon3]| ≤ (qs +
1)AdvDDHA (κ) + qs

|D|
Experiment ExpCon4 . This experiment is similar to ExpCon3 ex-

cept that in each session i, values for mku ← KDF1(K, U, ‘0’),
mkd ← KDF1(K, Sd, ‘1’), mk1-d ← KDF1(K, S1-d, ‘1’) are

replaced with mku ← F1(i, U, ‘0’), mkd ← F1(i, Sd, ‘1’)
and mk1-d ← F1(i, S1-d, ‘1’), respectively. An empty table

T1 is initialized in the beginning of ExpCon4 . The function

F1(i, id, k) returns mk if ∃(i, id, k, mk) ∈ T1; otherwise, it

picks a fresh mk
$← KMAC, stores (i, id, k, mk) in T1, and returns

mk← F1(i, id, k). Since the adversary only obtains mk1-d, by

the uniform distribution of K and the security of KDF1, we

obtain

Lemma 20: |Pr[succCon3]− Pr[succCon4]| ≤ qr ·AdvKDFA (κ)

139

Experiment ExpCon5 . Let C0 = (e0, v0, μc) be the ciphertext

that has been outsourced in response to the query of A
to the oracle Chcon(·, ·, ·) on input (i, w0, ix

∗). Note that

v0 = PRF(t0, e0) where t0 ← KDF2(K,w0). This experiment

is similar to ExpCon4 except that while processing Ret(i∗, w1)
on behalf of honest U and Sd the simulator aborts if t0 ←
KDF2(K,w1). In this case we obtain a KDF2 collision, i.e.

KDF2(K,w0) = KDF2(K,w1) for w0 �= w1, and hence

Lemma 21: |Pr[succCon4]− Pr[succCon5]| ≤ qo ·AdvKDFA (κ)
Experiment ExpCon6 . This experiment is similar to ExpCon5

except that while processing Ret(i∗, w1) on behalf of honest

U and Sd the simulator aborts if v0 = PRF(t1, e0) for some

t1 ← KDF2(K,w1). In this case we obtain a PRF collision, i.e.

PRF(t0, e0) = PRF(t1, e0) for t0 �= t1, and hence

Lemma 22: |Pr[succCon5]− Pr[succCon6]| ≤ qo ·AdvPRFA (κ)
ExpCon6 ensures that the original ciphertext C0 = (e0, v0, μc)
that has been outsourced in response to the query (i, w0, ix

∗)
will never pass the verification performed by honest U and

Sd. Hence, in order to win in ExpCon6 the adversary needs to

come up with C∗ = (e∗, v∗, μ∗c) where v∗ = PRF(t1, e
∗) for

t1 ← KDF2(K,w1) and μ∗c is a valid authentication tag on the

message (e∗, v∗, ix∗), which would constitute a MAC forgery.

Assuming that MAC is unforgeable, we conclude

Lemma 23: Pr[succCon6] = AdvMACA (κ)
As a result, based on Lemmas 16 to 23, our PAKS construction

offers consistency based on the assumed hardness of the DL,

DDH problems and the security of KDF1, KDF2, PRF and MAC.

VI. CONCLUSION

We introduced Password Authenticated Keyword Search

(PAKS) as a new concept where search over encrypted key-

words can be performed solely with the help of a human-

memorizable password. In comparison to earlier formats of

searchable encryption the use of passwords simplifies key

management and by removing the need for storing and man-

aging high-entropy keys on the user side makes the whole

process device-agnostic. The use of passwords introduces

however new challenges to the design of PAKS protocols; in

particular, creating the need for a distributed server architec-

ture to achieve security against offline dictionary attacks.

In this paper we modeled the functionality and security

properties of PAKS, incl. IND-CKA-security for keyword pri-

vacy, authentication for outsourcing, and consistency for the

search procedure, and proposed a direct PAKS construction

those security and privacy has been proven under standard

assumptions. Our direct PAKS construction is an optimised

version of a more general concept for building PAKS protocols

based on techniques underlying password-authenticated secret

sharing and symmetric searchable encryption. The proposed

PAKS scheme is practical and offers high performance in

relation to computations and communications on the user side.

REFERENCES

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange,
J. Malone-Lee, G. Neven, P. Paillier, and H. Shi, “Searchable Encryption
Revisited: Consistency Properties, Relation to Anonymous IBE, and
Extensions,” J. Cryptology, vol. 21, no. 3, pp. 350–391, 2008.

[2] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
Key Encryption with Keyword Search,” in EUROCRYPT’04, 2004, pp.
506–522.

[3] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[4] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in CCS’12, ACM, 2012, pp. 965–976.

[5] L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient conjunctive
keyword searches over encrypted data,” in ICICS’05, ser. LNCS, vol.
3783. Springer, 2005, pp. 414–426.

[6] C. Örencik, A. Selcuk, E. Savas, and M. Kantarcioglu, “Multi-keyword
search over encrypted data with scoring and search pattern obfuscation,”
Int. J. Inf. Sec., vol. 15, no. 3, pp. 251–269, 2016.

[7] D. J. Park, K. Kim, and P. J. Lee, “Public key encryption with
conjunctive field keyword search,” in WISA’04, ser. LNCS, vol. 3325.
Springer, 2004, pp. 73–86.

[8] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in TCC’07, ser. LNCS, vol. 4392. Springer, 2007, pp.
535–554.

[9] V. Kuchta and M. Manulis, “Public Key Encryption with Distributed
Keyword Search,” in INTRUST’15, ser. LNCS, vol. 9565. Springer,
2016, pp. 62–83.

[10] R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang, “Dual-server public-key
encryption with keyword search for secure cloud storage,” IEEE Trans.
Information Forensics and Security, vol. 11, no. 4, pp. 789–798, 2016.

[11] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu, “Password-protected
secret sharing,” in CCS’11. ACM, 2011, pp. 433–444.

[12] J. Camenisch, A. Lysyanskaya, and G. Neven, “Practical yet univer-
sally composable two-server password-authenticated secret sharing,” in
CCS’12, ACM, 2012, pp. 525–536.

[13] J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven, “Memento:
How to reconstruct your secrets from a single password in a hostile
environment,” in CRYPTO’14, ser. LNCS, vol. 8617. Springer, 2014,
pp. 256–275.

[14] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-optimal password-
protected secret sharing and T-PAKE in the password-only model,” in
ASIACRYPT’14, ser. LNCS, vol. 8874. Springer, 2014, pp. 233–253.

[15] X. Yi, F. Hao, L. Chen, and J. K. Liu, “Practical threshold password-
authenticated secret sharing protocol,” in ESORICS’15, ser. LNCS, vol.
9326. Springer, 2015, pp. 347–365.

[16] J. Camenisch, R. R. Enderlein, and G. Neven, “Two-server password-
authenticated secret sharing uc-secure against transient corruptions,” in
PKC’15, ser. LNCS, vol. 9020. Springer, 2015, pp. 283–307.

[17] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “Highly-efficient and
composable password-protected secret sharing (or: How to protect your
bitcoin wallet online),” in EuroS&P’16. IEEE, 2016, pp. 276–291.

[18] F. Kiefer and M. Manulis, “Universally Composable Two-Server PAKE,”
in ISC’16, ser. LNCS, vol. 9866. Springer, 2016, pp. 147–166.

[19] ——, “Blind Password Registration for Two-Server Password Authen-
ticated Key Exchange and Secret Sharing Protocols,” in ISC’16, ser.
LNCS, vol. 9866. Springer, 2016, pp. 95–114.

[20] M. Abdalla, P. Fouque, and D. Pointcheval, “Password-based authenti-
cated key exchange in the three-party setting,” in PKC’05, ser. LNCS,
vol. 3386. Springer, 2005, pp. 65–84.

[21] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key ex-
change secure against dictionary attacks,” in EUROCRYPT’00, ser.
LNCS, vol. 1807. Springer, 2000, pp. 139–155.

[22] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in CRYPTO’91, ser. LNCS, vol. 576. Springer,
1991, pp. 129–140.

[23] M. Luby and C. Rackoff, “How to construct pseudorandom permutations
from pseudorandom functions,” SIAM J. Comput., vol. 17, no. 2, pp.
373–386, 1988.

[24] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom
generator from any one-way function,” SIAM J. Comput., vol. 28, no. 4,
pp. 1364–1396, 1999.

[25] H. Krawczyk, “Cryptographic extraction and key derivation: The HKDF
scheme,” in CRYPTO’10, ser. LNCS, vol. 6223. Springer, 2010, pp.
631–648.

[26] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions
for message authentication,” in CRYPTO’96, ser. LNCS, vol. 1109.
Springer, 1996, pp. 1–15.

140

