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Abstract. Two-Server Password Authenticated Key Exchange
(2PAKE) protocols apply secret sharing techniques to achieve protec-
tion against server-compromise attacks. 2PAKE protocols eliminate the
need for password hashing and remain secure as long as one of the servers
remains honest. This concept has also been explored in connection with
two-server password authenticated secret sharing (2PASS) protocols for
which game-based and universally composable versions have been pro-
posed. In contrast, universally composable PAKE protocols exist cur-
rently only in the single-server scenario and all proposed 2PAKE proto-
cols use game-based security definitions.

In this paper we propose the first construction of an universally
composable 2PAKE protocol, alongside with its ideal functionality. The
protocol is proven UC-secure in the standard model, assuming a com-
mon reference string which is a common assumption to many UC-secure
PAKE and PASS protocols. The proposed protocol remains secure for
arbitrary password distributions. As one of the building blocks we define
and construct a new cryptographic primitive, called Trapdoor Distrib-
uted Smooth Projective Hash Function (TD-SPHF), which could be of
independent interest.

1 Introduction

Password Authenticated Key Exchange (PAKE) protocols have been extensively
researched over the last twenty years. They allow two protocol participants shar-
ing a low-entropy secret (password) to negotiate an authenticated secret key.
Several PAKE security models are widely used such as the game-based PAKE
model, called BPR, by Bellare, Pointcheval and Rogaway [4,8] and the PAKE
model in the Universal Composability (UC) framework by Canetti [18]. PAKE
protocols are often considered in a client-server scenario where the client pass-
word is registered and stored in a protected way on the server side such that it
can be used later to authenticate the client. This approach however leads to an
intrinsic weakness of single-server PAKE protocols against server-compromise
attacks. An attacker who breaks into the server can efficiently recover client’s
password and impersonate the client to the server as well as to other servers
if this password is used across many client accounts which is often the case. A
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number of approaches have been proposed to alleviate this threat. For instance,
verifier-based PAKE [11,22,34], also known as augmented PAKE [9], considers
an asymmetric setting in which the server uses a randomized password hash
to verify a client holding the corresponding password. The crucial weakness of
VPAKE protocols is that they do not protect against offline dictionary attacks
on compromised password hashes, i.e. an attacker can still recover the password,
which can often be done efficiently with current tools like [23,31].

Two-server PAKE (2PAKE) protocols solve this problem through secret shar-
ing techniques. The client password is split into two shares and each server
receives its own share upon registration. In order to authenticate the client
both servers take part in the protocol execution. 2PAKE security typically holds
against an active attacker who can compromise at most one server and thus
learn the corresponding password share. 2PAKE protocols can be symmetric
(e.g. [12,27,29,33]) where both servers compute the same session key and asym-
metric (e.g. [27]) where each server can compute an independent session key with
the client or assist another server in the authentication process [26,35] without
computing the key. A potential drawback of symmetric protocols is that by
corrupting one server the attacker may use learned key material to read com-
munications between the client and the other server. Existing 2PAKE protocols
were analysed using variants of the BPR model and do not offer compositional
security guarantees. While 2PAKE can be seen as a special case of Thresh-
old PAKE (TPAKE), e.g. [30,32], that adopt t-out-of-n secret sharing, exist-
ing TPAKE protocols do not necessarily provide solutions for 2PAKE, e.g. [32]
requires t < n/3. Finally, we note that UC-security was considered for a class of
Two-Server/Threshold Password Authenticated Secret Sharing (2/TPASS) pro-
tocols, e.g. [13,14,24], that address a different problem of sharing a chosen key
across multiple servers and its subsequent reconstruction from the password.

In this paper we propose the first UC-secure (asymmetric) 2PAKE proto-
col where one of the two servers computes an independent session key with the
client. We rely on a common reference string, which is a standard assumption
for UC-secure PAKE protocols. As a consequence of UC modeling our proto-
col offers security for all password distributions, which is notoriously difficult
to achieve in BPR-like models. One challenge in achieving UC security is that
the protocol must remain simulatable against active attackers that play with
a correctly guessed password (unlike in game-based models where simulation
can be aborted). In order to achieve simulatability we introduce a new build-
ing block, called Trapdoor Distributed Smooth Projective Hash Functions (TD-
SPHF), offering distributed SPHF properties from [29] and the SPHF trapdoor
property from [10]. While traditional SPHF were used in the design of single-
server PAKE protocols, the 2PAKE protocol framework from [29], a generalisa-
tion of [27] that was proven secure in the BPR-like model, required an extension
of SPHF to a distributed setting. Such distributed SPHF alone are not sufficient
for achieving the UC security. Our TD-SPHF helps to achieve simulatability
for 2PAKE protocols and could be of independent interest for other UC-secure
constructions.
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2 Preliminaries and Building Blocks

Our 2PAKE protocol is defined over bilinear groups G1 and G2 of prime order q
with an efficiently computable map e : G1 ×G2 �→ GT . The following properties
have to hold: (i) If g1 is a generator of G1 and g2 is a generator of G2, then
e(g1, g2) is a generator of GT . (ii) For generators g1, g2 and scalar x ∈R Zq

it holds that e(gx
1 , g2) = e(g1, gx

2 ) = e(g1, g2)x. We require further that the
Symmetric External Diffie-Hellman assumption (SXDH) ([5,6] amongst others)
holds in those groups. SXDH states that the DDH problem is hard in G1 and
G2. All computations defined on a q-order group in the following are performed
in G1. Let λ denote the security parameter throughout this work.

Commitments. By C = (CSetup, Com) we denote an efficient commitment
scheme and use Pedersen commitments in our constructions where (g, h, q, λ) ←
CSetup(λ) and C ← Com = (x; r) = gxhr with g and h being generators of a
cyclic group G of prime-order q with bit-length in the security parameter λ and
where the discrete logarithm of h with respect to base g is not known. Peder-
sen commitments are additively homomorph, i.e. for all (Ci, di) ← Com(xi; ri),
i ∈ 0, . . . , m we have

∏m
i=0 Ci = Com(

∑m
i=0 xi;

∑m
i=0 ri).

Committed Zero-Knowledge Proofs. We use committed Σ-protocols for
security against malicious verifiers [21,25]. Note that we do not require
extractability (proof of knowledge) here, which allows us to avoid the necessity
of rewinding. A zero-knowledge proof ZKP is executed between a prover and a
verifier, proving that a word x is in a language L, using a witness w proving so.1

Let P1(x,w, r) and P2(x,w, r, c) denote the two prover steps of a Σ-protocol and
H : {0, 1}∗ �→ Zq a collision-resistant hash function. A committed Σ-protocol is
then given by the following four steps:

– The prover computes the first message Co ← P1(x,w, r) and m1 ← Com(H(x,
Co); r1) = gH(x,Co)hr1 , and sends m1 to the verifier.

– The verifier chooses challenge Ch = c ∈R Zq and returns it to the prover.
– The prover computes the second message Rs ← P2(x,w, r, c) and m2 ←

Com(H(Rs); r2) = gH(Rs)hr2 , and sends m2 to the verifier.
– Further, the prover opens the commitments m1 and m2 sending (x, Co, Rs, r1,

r2) to the verifier.
– The verifier accepts iff both commitments are valid and if the verification of

the Σ-protocol (x, Com, Ch, Rs) is successful.

Cramer-Shoup Encryption with Labels. Let C = (�,u, e, v) ←
EncCS

pk (�,m; r) (on label �, message m, and randomness r) with u = (u1, u2) =
(gr

1, g
r
2), e = hrgm

1 and v = (cdξ)r with ξ = Hk(�,u, e) denote a labelled Cramer-
Shoup ciphertext. We assume m ∈ Zq and G is a cyclic group of prime order q

1 Zero-knowledge languages L are independent from the smooth projective hashing
languages introduced in Sect. 2.1.
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with generators g1 and g2 such that gm
1 ∈ G. The CS public key is defined as

pk = (p,G, g1, g2, c, d,Hk) with c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1 and hash function

Hk such that τ = (x1, x2, y1, y2, z) denotes the decryption key. Decryption is
defined as gm

1 = DecCS
dk (C) = e/uz

1 if ux1+y1·ξ′
1 ux2+y2·ξ′

2 = v with ξ′ = Hk(�,u, e).

2.1 Smooth Projective Hashing (SPHF)

First, we recall definitions for classical SPHF tailored to the PAKE use-case
and cyclic groups G of prime-order q. We use languages of ciphertexts with the
password as message and the randomness as witness. An SPHF language L for
a given password pw from dictionary D is given by Lpw. The public parameter
of the language is the common reference string crs containing the public key
pk of the encryption scheme. By τ we denote the crs trapdoor, the secret key
to pk. Let L be the encryption scheme used to generate words in Lpw. Unless
stated otherwise we assume that L is a labelled CCA-secure encryption scheme,
e.g. labelled Cramer-Shoup scheme.

Definition 1 (Languages of Ciphertexts). Let Lpw ⊆ {(�, C,pw∗)} = C
denote the language of labelled ciphertexts under consideration with ciphertext
(�, C) under pk and password pw∗ ∈ D. A ciphertext C is in language Lpw iff
there exists randomness r such that C ← EncL

pk(�,pw; r).

Smooth projective hashing for languages of ciphertexts where the projection
key does not depend on the ciphertext is defined as follows (see also [10,28]).

Definition 2 (KV-SPHF). Let Lpw denote a language of ciphertexts such that
C ∈ Lpw if there exists randomness r proving so. A smooth projective hash
function for ciphertext language Lpw consists of the following four algorithms:

– KGenH(Lpw) generates a random hashing key kh for language Lpw.
– KGenP(kh, Lpw) derives the projection key kp from hashing key kh.
– Hash(kh, Lpw, C) computes hash value h from hashing key kh and ciphertext

C.
– PHash(kp, Lpw, C, r) computes hash value h from projection key kp, ciphertext

C and randomness r.

A SPHF has to fulfil the following three properties:

– Correctness: If C ∈ L, with r proving so, then Hash(kh, Lpw, C) = PHash(kp,
Lpw, C, r).

– Smoothness: If {(�, C,pw∗)} � C �∈ Lpw, the hash value h is (statistically)
indistinguishable from a random element.

– Pseudorandomness: If C ∈ Lpw, the hash value h is (computationally) indis-
tinguishable from a random element.
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2.2 Trapdoor Smooth Projective Hashing

For efficient one-round UC-secure PAKE a new SPHF flavor, called Trapdoor
SPHF (T-SPHF), was introduced in [10]. T-SPHF adds three additional func-
tions to the classical SPHF definition allowing computation of the hash value
from the projection key, ciphertext and trapdoor τ ′.2

Definition 3 (Trapdoor SPHF). Let Lpw denote a language of ciphertexts
such that C ∈ Lpw if there exists randomness r proving so. A trapdoor smooth
projective hash function for a ciphertext language Lpw consists of the following
seven algorithms:

– KGenH, KGenP, Hash and PHash are as given in Definition 2
– TSetup(crs) generates a second crs′ with trapdoor τ ′ on input of a crs
– VerKp(kp, Lpw) returns 1 iff kp is a valid projection key, 0 otherwise
– THash(kp, Lpw, C, τ ′) computes the hash value h of C using the projection key

kp and trapdoor τ ′

We assume crs′ is, like crs, made available to all parties.

2.3 Distributed Smooth Projective Hashing

Another flavor, called Distributed SPHF (D-SPHF), was introduced in [29] for
use in (non-composable) 2PAKE protocols such as [27] where servers hold pass-
word shares pw1 and pw2 respectively, and the client holds pw = pw1 + pw2.
Due to the nature of the words considered in D-SPHF they produce two different
hash values. One can think of the two hash values as h0 for C0 (from the client)
and hx for C1, C2 (from the two servers). The hash value h0 can be either com-
puted with knowledge of the client’s hash key kh0 or with the server’s witnesses
r1, r2 that C1, C2 are in Lpwi

, i ∈ {1, 2} respectively. The hash value hx can be
computed with knowledge of the server hash keys kh1, kh2 or with the client’s
witness r0 that C0 is in Lpw. The combined language is denoted by Lp̂w.

Definition 4 (Distributed SPHF). Let Lp̂w denote a language such that C =
(C0, C1, C2) ∈ Lp̂w if there exists a witness r = (r0, r1, r2) proving so, pw =
pw1 + pw2 and there exists a function Dec′ such that Dec′(C1C2) = Dec′(C0).
A distributed smooth projective hash function for language Lp̂w consists of the
following six algorithms:

– KGenH(Lp̂w) generates a hashing key khi for i ∈ {0, 1, 2} and language Lp̂w.
– KGenP(khi, Lp̂w) derives projection key kpi

from hashing key khi for i ∈
{0, 1, 2}.

– Hashx(kh0, Lp̂w, C1, C2) computes hash value hx from hashing key kh0 and two
server ciphertexts C1 and C2.

– PHashx(kp0, Lp̂w, C1, C2, r1, r2) computes hash value hx from projection key
kp0, two ciphertexts C1 and C2, and witnesses r1 and r2.

2 Note that τ ′ is a different trapdoor than the CRS trapdoor τ .
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– Hash0(kh1, kh2, Lp̂w, C0) computes hash value h0 from hashing keys kh1 and
kh2 and ciphertext C0.

– PHash0(kp1, kp2, Lp̂w, C0, r0) computes hash value h0 from projection keys kp1
and kp2, the ciphertext C0, and witness r0.

A distributed SPHF protocol between three participants C,S1, S2 computing
hx and h0 is described by three interactive protocols Setup, PHashD

x and HashD
0 .

Let Π denote D-SPHF as described above.

– Setup(pw,pw1,pw2, C, S1, S2) initialises a new instance for each participant
with (pw, C, S1, S2) for C, (pw1, S1, C, S2) for S1 and (pw2, S2, C, S1) for
S2. Eventually, all participants compute and broadcast projection keys kpi
and encryptions Ci ← EncL

pk(�i,pwi; ri) of their password (share) pwi using
Π.KGenH, Π.KGenP and the associated encryption scheme L. Participants store
incoming kpi

, Ci for later use. After receiving (kp1, C1, kp2, C2), the client
computes h0 ← Π.PHash0(kp1, kp2, Lp̂w, C0, r0) and hx ← Π.Hashx(kh0, Lp̂w,
C1, C2).

– PHashD
x is executed between S1 and S2. Each server Si performs PHashD

x on
input (kp0,pwi, C1, C2, ri) such that S1 eventually holds hx while S2 learns
nothing about hx.

– HashD
0 is executed between S1 and S2. Each server Si performs HashD

0 on
input (pwi, khi, C0, C1, C2) such that S1 eventually holds h0 while S2 learns
nothing about h0.

2.4 Ideal Functionalities

For our 2PAKE realisation we rely on some commonly used ideal functionalities
within the UC framework. These are: Fcrs for the common reference string from
[17], FCA for the CA from [16] to establish verified public keys for the servers,
Finit from [7] to establish unique query identifiers between the parties in a
protocol. We refer for their descriptions to the original sources.

3 Trapdoor Distributed Smooth Projective Hashing

T-SPHF enabled constructions of one-round UC-secure PAKE [10] because of
simulatability even in presence of attackers who guess correct passwords. In order
to use the trapdoor property for simulatability in 2PAKE protocols T-SPHF
must first be extended to the distributed setting of D-SPHF (cf. Sect. 2.3). We
denote this new flavor by TD-SPHF and describe it specifically for usage in our
2PAKE, i.e. using languages based on Cramer-Shoup ciphertexts. A more general
description of TD-SPHF accounting for more servers and/or other languages can
be obtained similarly to the general description of D-SPHF in [29].

Definition 5 (TD-SPHF). Let Lp̂w denote a language such that C =
(C0, C1, C2) ∈ Lp̂w if there exists a witness r = (r0, r1, r2) proving so, pw =
pw1 + pw2 and there exists a function Dec′ such that Dec′(C1C2) = Dec′(C0). A
trapdoor distributed smooth projective hash function for language Lp̂w consists
of the following ten algorithms:
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– (crs′, τ ′) R← TSetup(crs) generates crs′ with trapdoor τ ′ from crs
– KGenH, KGenP, Hashx, PHashx, Hash0, PHash0 behave as for D-SPHF
– b ← VerKp(kp, Lp̂w) returns b = 1 iff kp is a valid projection key and b = 0

otherwise
– hx ← THashx(kp0, Lp̂w, C1, C2, τ

′) computes hash value hx of ciphertexts C1

and C2 using projection key kp0 and trapdoor τ ′

– h0 ← THash0(kp1, kp2, Lp̂w, C0, τ
′) computes hash value h0 of C0 using projec-

tion keys kp1 and kp2, and trapdoor τ ′

Security of TD-SPHF can be derived from D-SPHF security and the exten-
sions made on SPHF for T-SPHF. However, we do not consider security of
TD-SPHF on its own but rather incorporate it in the security proof of the
2PAKE protocol in the following section. This is due to the fact that description
of TD-SPHF is done only for this specific application such that a separate secu-
rity definition is more distracting than giving any benefit. However, we define
correctness and soundness of TD-SPHF since they differ from that of D-SPHF.
In particular, correctness of TD-SPHF extends correctness of D-SPHF by the
statement that for every valid ciphertext triple (C0, C1, C2), generated by L, and
honestly generated keys (kh0, kh1, kh2) and (kp0, kp1, kp2), it holds not only that

Hash0(kh1, kh2, Lp̂w, C0) = PHash0(kp1, kp2, Lpw,pw1,pw2
, C0, r0), and

Hashx(kh0, Lp̂w, C1, C2) = PHashx(kp0, Lpw,pw1,pw2
, C1, C2, r1, r2)

but also that VerKp(kpi
, Lp̂w) = 1 for i ∈ {0, 1, 2} and

Hash0(kh1, kh2, Lp̂w, C0) = THash0(kp1, kp2, Lpw,pw1,pw2
, C0, τ

′) and
Hashx(kh0, Lp̂w, C1, C2) = THashx(kp0, Lpw,pw1,pw2

, C1, C2, τ
′).

To capture soundness of TD-SPHFs we define (t, ε)-soundness, complementing
the previous correctness extension, as follows.

Definition 6 (TD-SPHF(t, ε)-soundness). Given crs, crs′ and τ , no adver-
sary running in time at most t can produce a projection key kp, a password pw
with shares pw1 and pw2, a word (C0, C1, C2), and valid witness (r0, r1, r2), such
that (kp0, kp1, kp2) are valid, i.e. VerKp(kpi

, Lp̂w) = 1 for i ∈ {0, 1, 2}, but

THashx(kp0, Lp̂w, C1, C2, τ
′) �= PHashx(kp0, Lp̂w, C1, C2, r1, r2) or

THash0(kp1, kp2, Lp̂w, C0, τ
′) �= PHash0(kp1, kp2, Lp̂w, C0, r0)

with probability at least ε(λ). The perfect soundness states that the property holds
for any t and any ε(λ) > 0.

3.1 Cramer-Shoup TD-SPHF

In the following we present TD-SPHF for labelled Cramer-Shoup ciphertexts
by extending the corresponding D-SPHF from [29] with the trapdoor property
from [10] in the setting of bilinear groups. Let C = (�, u1, u2, e, v) denote a
Cramer-Shoup ciphertext as defined in Sect. 2.
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– TSetup(crs) draws a random τ ′ ∈R Zq and computes crs′ = ζ = gτ ′
2

– KGenH(Lp̂w) returns khi = (η1,i, η2,i, θi, μi, νi) ∈R Z
1×5
p for i ∈ {0, 1, 2}

– KGenP(khi, Lp̂w) generates

kpi
= (kp1,i

= g
η1,i

1,1 gθi
1,2h

μicνi , kp2,i
= g

η2,i

1,1 dνi , kp3,i
)

with kp3,i
= (χ1,1,i, χ1,2,i, χ2,i, χ3,i, χ4,i) and

χ1,1,i = ζη1,i , χ1,2,i = ζη2,i , χ2,i = ζθi , χ3,i = ζμi , χ4,i = ζνi for i ∈ {0, 1, 2}

– Hashx(kh0, Lp̂w, C1, C2) computes

h′
x = (u1,1 · u1,2)η1,0+(ξ1+ξ2)η2,0(u2,1 · u2,2)θ0((e1 · e2)/gpw1,1)

μ0(v1 · v2)ν0

and returns hx = e(h′
x, g2)

– PHashx(kp0, Lp̂w, C1, C2, r1, r2) computes h′
x = kpr1+r2

1,0
kp

ξ1r1+ξ2r2
2,0 and outputs

hx = e(h′
x, g2)

– Hash0(kh1, kh2, Lp̂w, C0) computes

h′
0 = u

η1,1+η1,2+ξ0(η2,1+η2,2)
1,0 uθ1+θ2

2,0 (e0/gpw1,1)
μ1+μ2vν1+ν2

0

and outputs h0 = e(h′
0, g2)

– PHash0(kp1, kp2, Lp̂w, C0, r0) computes

h′
0 = (kp1,1

kp1,2
)r0(kp2,1

kp2,2
)r0ξ0

and outputs h0 = e(h′
0, g2)

– VerKp(kpi
, Lp̂w) verifies that

e(kp1,i
, crs′) ?= e(g1,1, χ1,1,i) · e(g1,2, χ2,i) · e(h, χ3,i) · e(c, χ4,i)

and
e(kp2,i

, crs′) ?= e(g1,1, χ1,2,i) · e(d, χ4,i) for i ∈ {0, 1, 2}
– THash0(kp1, kp2, Lp̂w, C0, τ

′) computes

h0 =
[
e(u1,0, χ1,1,1χ1,1,2(χ1,2,1χ1,2,2)ξ0) · e(u2,0, χ2,1χ2,2)

·e(e0/gpw1,1, χ3,1χ3,2) · e(v0, χ4,1χ4,2)
]1/τ ′

– THashx(kp0, Lp̂w, C1, C2, τ
′) computes

hx =
[
e(u1,1u1,2, χ1,1,0χ

ξ1+ξ2
1,2,0 ) · e(u2,1u2,2, χ2,0) · e((e1e2)/gpw1,1, χ3,0)

·e(v1v2, χ4,0)
]1/τ ′
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Distributed computation of PHashx and Hash0 is done as in D-SPHF with
additional proofs for correctness and adding the pairing computation at the
end to lift the hash value into GT . We formalise execution of the Cramer-
Shoup TD-SPHF in the following paragraph. Necessary zero-knowledge proofs
are described in the subsequent two paragraphs and only referenced in the
description of the TD-SPHF. We describe the Σ protocol here, which we can
use after transforming it to a committed Σ protocol (cf. Sect. 2). Note that we
merge crs and crs′ here for readability. Protocol participants are denoted C, S1

and S2 if their role is specified, or P , Q and R otherwise. Let further 0 denote
the client’s index and 1, 2 the indices of servers S1, S2, respectively. The session
ID is given by sid = C||S1||S2 and the unique query identifier qid is agreed
upon start using Finit.

All TD-SPHF participants have crs = (q, g1,1, g1,2, h, c, d,G1, g2, ζ,G2,GT , e,
Hk) as common input where τ = (x1, x2, y1, y2, z) is the crs trapdoor, i.e. the
according Cramer-Shoup secret key, and τ ′ the trapdoor, i.e. discrete logarithm
to base g2, of crs′ = ζ. Each server holds an ElGamal key pair (pk1, dk1) and
(pk2, dk2) respectively such that pk1 is registered with the CA for S1 and pk2
for S2 and thus available to all parties (using FCA). An, otherwise unspecified,
protocol participant P is initiated with (NS, sid, qid, P, x). We further define
pw0 = pw.

CS TD-SPHF Computation

(a) Generate TD-SPHF keys khi ∈R Z
5
q and kpi

= (kp1,i
= g

η1,i

1,1 gθi
1,2h

μicνi ,

kp2,i
= g

η2,i

1,1 dνi , χ1,1,i = ζη1,i , χ1,2,i = ζη2,i , χ2,i = ζθi , χ3,i = ζμi , χ4,i = ζνi).
Encrypt pwi to C = (�i, u1,i, u2,i, ei, vi) ← (�, gri

1,1, g
ri
1,2, h

rrg
pwi
1,1 , (cdξi)ri)

with ξi = Hk(�i, u1,i, u2,i, ei) for �i = sid||qid||kpi
and ri ∈R Zq. If P = S1,

set h0 = hx = null. Output (sid, qid, 0, P, Ci, kpi
) to Q and R.

(b) When P , waiting for the initial messages, is receiving a message (sid, qid, 0,
Q,C1, kp1) and (sid, qid, 0, R,C2, kp2) it proceeds as follows. P proceeds
only if the projection keys kp1 and kp2 are correct, i.e. VerKp(kp1, Lp̂w) = 1
and VerKp(kp2, Lp̂w) = 1. If the verification fails, P outputs (sid, qid,⊥,⊥)
and aborts the protocol.

(i) If P = C, compute
hx = e((u1,1 · u1,2)η1,0+(ξ1+ξ2)η2,0(u2,1 · u2,2)θ0

((e1 · e2)/gpw1,1)
μ0(v1 · v2)ν0 , g2) and

h0 = e
(
(kp1,1

kp1,2
)r0(kp2,1

kp2,2
)r0ξ0 , g2

)
, and outputs (sid, qid, h0, hx).

(ii) If P = S2, compute hx,2 = (kp1,0
· kpξ2

2,0)
r2 and Chx,2 = g

H(hx,2,Co1)
1,1 hrc1

with rc1 ∈R Zq and send (sid, qid, PHashx, 0, S2, Chx,2) to S1.
(iii) If P = S1, compute m0 = EncEG

pk1
(g−μ1

1,1 ; r) and c0 = EncEG
pk1

(gpw1
1,1 ; r′) with

r, r′ ∈R Zq, and send (sid, qid, Hash0, 0, S1,m0, c0) to S2.
(c) On input (sid, qid, PHashx, 0, S2, Chx,2) S1 in the correct state draws chal-

lenge c ∈R Zq and returns (sid, qid, PHashx, 1, S1, c) to S2.
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(d) On input (sid, qid, PHashx, 1, S1, c) S2 in the correct state computes
Cshx,2

= g
H(Rs1)
1,1 hrc2 with rc2 ∈R Zq and sends (sid, qid, PHashx, 2, S2,

Cshx,2
) to S1. Subsequently, it sends (sid, qid, PHashx, 3, S2, hx,2, Co1,

Rs1, rc1, rc2) to S1.
(e) On input (sid, qid, PHashx, 2, S2, Cshx,2

) S1 in the correct state stores it and
waits for the final PHashx message.

(f) On input (sid, qid, PHashx, 3, S2, hx,2, Co1, Rs1, rc1, rc2) S1 in the correct
state parses Co1 as (t1, t2) and Rs2 as shx,2 and verifies correctness of com-

mitments and the ZKP and computes hx = e
(
hx,2 · (kp0,1

· kpξ1
0,2)

r1 , g2

)
if

the verifications are successful, hx �= ⊥ and h0 �= ⊥, or sets h0 = ⊥ and
hx = ⊥ otherwise.

(g) On input (sid, qid, Hash0, 0, S1,m0, c0) S2 in the correct state retrieves pk1
from FCA and computes CHash0,1 = g

H(m1,m2,Co2)
1,1 hrc3 with rc3 ∈R Zq, m1 ←

m
pw2
0 × c−μ2

0 × EncEG
pk1

(g−μ2·pw2
1,1 · u

η1,2+ξ0η2,2
1,0 · uθ2

2,0 · eμ2
0 · vν2

0 ; r′′), and m2 ←
EncEG

pk1
(g−μ2

1,1 ; r′′′) with r′′, r′′′ ∈ Zq, and sends (sid, qid, Hash0,1, S2, CHash0,1)
back to S1.

(h) On input (sid, qid, Hash0,1, S2, CHash0,1) S1 in the correct state draws chal-
lenge c ∈R Zq and returns (sid, qid, Hash0,2, S1, c) to S2.

(i) On input (sid, qid, Hash0,2, S1, c) S2 in the correct state computes CRs2 =
g

H(Rs2)
1,1 hrc4 with rc4 ∈R Zq and sends (sid, qid, Hash0,3, S2, CRs2) to S1.

Subsequently, it sends (sid, qid, Hash0,4, S2,m1,m2, Co2, Rs2, rc3, rc4) to S1.
(j) On input (sid, qid, Hash0,4, S2,m1,m2, Co2, Rs2, rc3, rc4) S1 in the correct

state parses Co2 as (tm1, tm2, te2, tv2, tkp12, tkp22) and Rs2 as (spw2
, sμ2, sη12,

sη22, sθ2, sν2, sr2), verifies correctness of commitments and ZKP, and com-

putes h0 = e
(
g

−μ1·pw1
1,1 · DecEG

dk1
(m1) · u

η1,1+ξ0η2,1
1,0 · uθ1

2,0 · eμ1
0 · vν1

0 , g2

)
if the

verifications are successful, hx �= ⊥ and h0 �= ⊥, or sets h0 = ⊥ and hx = ⊥.
(k) Eventually S1 outputs (sid, qid, h0, hx) if h0 �= null and hx �= null.

ZK Proof for PHashx Correctness In order to ensure correct computation of
hx on S1 server S2 has to prove correctness of his computations. To this end
S2 sends, in addition to the PHashx message hx,2 the following zero-knowledge
proof.

ZKP
{
(r2) : hx,2 = (kp1,0

kp
ξ2
2,0

)r2 ∧ v2 = (cdξ2)r2
}

(1)

where r2 is the randomness used to create C2, ξ2 and v2 are part of C2, kp1,0
, kp2,0

are part of C’s projection key, and c, d are from the crs. The construction of
the according zero-knowledge proof is straight-forward. The prover computes
commitments

thx2 = (kp1,0
kp

ξ2
2,0

)khx2 ; tv2 = (cdξ2)khx2

with fresh randomness khx2 ∈R Zq, and response sr2 = khx2 − cr2 for verifier
provided challenge c. This allows the verifier to check

thx2
?= hc

x,2(kp1,0
kp

ξ2
2,0

)shx2 ; tv2
?= vc

2(cd
ξ2)shx2 .
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It is easy to see that this zero-knowledge proof is correct, sound and (honest-
verifier) simulatable. We refer to the messages as Co1 = (thx2, tv2), Rs1 = sr2,
and Ch1 = c.

ZK Proof for Hash0 Correctness Let m1 and m2 denote the messages
encrypted in m1 and m2 respectively and m0,1 and c0,1 the second part (e)
of the ElGamal ciphertext m0, c1 respectively. In order to ensure correct com-
putation of h0 on S1 server S2 has to prove correctness of his computations. To
this end S2 sends, additionally to the Hash0 messages m1 and m2 the following
zero-knowledge proof

ZKP
{
(x, η1,2, η2,2, θ2, μ2, ν2, r2) : m1 = m

pw2
0,1 c−μ2

0,1 g−μ2x
1,1 u

η1,2+ξ0η2,2
1,0 uθ2

2,0e
μ2
0 vν2

0

∧ m2 = g−μ2
1,1 ∧ e2 = hr2g

pw2
1,1 ∧ v2 = (cdξ2)r2

∧ kp1,2
= g

η1,2
1,1 gθ2

1,2h
μ2cν2 ∧ kp2,2

= g
η2,2
1,1 dν2

}
,

(2)
where r2 is the randomness used to create C2, ξ2 and v2 are part of C2, ξ0 is part
of C0, (μ2, η1,2, η2,2, θ2, ν2) is S2’s hashing key, pw2 S2’s password share, and c, d
are from the crs. The construction of the according Σ proof is straight-forward.
The prover computes commitments

tm1 = m
pw2
0,1 c

kμ2
0,1 mkx

2 u
kη12+ξ0kη22
1,0 ukθ2

2,0 e
−kμ2
0 vkν2

0 ; tm2 = g
kμ2
1,1 ; te2 = hkr2g

pw2
1,1 ;

tv2 = (cdξ2)kr2 ; tkp12 = g
kη12
1,1 gkθ2

1,2 hkμ2ckν2 ; tkp22 = g
kη22
1,1 dkν2

for kpw2
, kμ2, kη12, kη22, kθ2, kν2 ∈R Zq

and responses

spw2 = kpw2 − cpw2; sμ2 = kμ2 + cμ2; sη12 = kη12 − cη1,2; sη22 = kη22 − cη2,2;

sθ2 = kθ2 − cθ2; sν2 = kν2 − cν2; sr2 = kr2 − cr2

for verifier provided challenge c. This allows the verifier to check

tm1
?
= mc

1m
spw2
0,1 c

sμ2
0,1 m

spw2
2 u

sη12+ξ0sη22
1,0 u

sθ2
2,0 e

sμ2
0 vsν2

0 ; tm2
?
= mc

2g
sμ2
1,1 ; te2

?
= ec2h

sr2g
spw2
1,1 ;

tv2
?
= vc2(cd

ξ2)sr2 ; tkp12
?
= kp

c
1,2g

sη12
1,1 g

sθ2
1,2 hsμ2csν2 ; tkp22

?
= kp

c
2,2g

sη22
1,1 dsν2 .

While this is mainly a standard zero-knowledge proof tm1 uses m2 instead of
g1,1 as base for the third factor and kpw2

as exponent (spw2
in the verifica-

tion). This is necessary due to the fact that the exponent −μ2pw2 of the third
factor in m1 is a product of two values that have to be proven correct. The
ZK proof uses the auxiliary message m2 to prove that logg1,1

(m2) = −μ2 such
that it is sufficient to prove logm2

(mpw2
2 ) = pw2. We refer to the messages

as Co2 = (tm1, tm2, te2, tv2, tkp12, tkp22), Rs2 = (spw2
, sμ2, sη12, sη22, sθ2, sν2, sr2),

and Ch2 = c.
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4 Universally Composable Two-Server PAKE

With TD-SPHF it is straight forward to build a 2PAKE protocol. We follow the
general framework described in [29] to build 2PAKE protocols from distributed
smooth projective hash functions. However, instead of aiming for key generation,
where the client establishes a key with each of the two servers, we focus on a
protocol that establishes a single key with one server, w.l.o.g. the first server. By
running the protocol twice, keys can be exchanged between the client and the
second sever. Note that UC security allows concurrent execution of the protocol
such that round complexity is not increased by establishing two keys.

4.1 The Protocol

We obtain our 2PAKE protocol using the general 2PAKE framework from [29]
yet using our TD-SPHF instead of original D-SPHF. Client C and both servers
S1 and S2 execute a TD-SPHF protocol from Sect. 3 which provides C and S1

with two hash values h0 and hx each. The session key is then computed by both
as a product sk = h0 · hx.

4.2 Ideal Functionality for 2PAKE

Our ideal functionality for 2PAKE with implicit client authentication, F2PAKE,
is given in Fig. 1. Observe that implicit client authentication is sufficient for
building UC-secure channels [19]. The ideal adversary can take control of any
server from the outset of the protocol and learn the corresponding password
share. The actual password remains hidden unless the adversary corrupts both
servers. The use of static corruptions is motivated in the following. First, as
explained in [18], PAKE security against static corruptions in the UC model
implies security against adaptive corruptions in the BPR model. Second, existing
single-server PAKE protocols that are UC-secure against adaptive corruptions,
e.g. [1–3], rely on more complex SPHF constructions that are not translatable
to the distributed setting of D-SPHF.

2PAKE Functionality. Our F2PAKE is very similar to single-server PAKE func-
tionality but assumes two servers from which one generates a session key. The
main difference is in the modelling of participants. We specify two initialisa-
tion interfaces KEX Init, one for the client and one for the servers. A client
is initialised with a password pw while a server gets a password share αb. The
TestPwd interface allows the ideal world adversary to test client passwords. A
tested session is marked interrupted if the guess is wrong, i.e. client and server
in this session receive randomly chosen, independent session keys, or marked as
compromised if the password guess is correct, i.e. the attacker is now allowed to
set the session key. The attacker can only test client passwords but not password
shares of the servers. Without knowledge of the password or any password share,
a share is a uniformly at random chosen element and therefore not efficiently
guessable. If the adversary corrupted server S2, retrieving the second password
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Functionality F2PAKE

The functionality F2PAKE is parameterised by a security parameter λ. It
interacts with an adversary, a client C and two servers S1 and S2 via the
following interfaces. Without loss of generality the key is exchanged between
C and S1.

KEX InitC : Upon input (KEXinit, sid, qid, pw) from client C, check that
sid is (C, S1, S2) and that qid is unique (entries (KEX, sid, qid, S1, α1)
or (KEX, sid, qid, S2, α2) may exist) and send (KEX, sid, qid, C) to SIM.
If this is a valid request, create a fresh record (KEX, sid, qid, C, pw).

KEX InitS: Upon input (KEXinit, sid, qid, αb) from server Sb, b ∈
{1, 2}, check that sid is (C, S1, S2) and that qid is unique (entries
(KEX, sid, qid, C, pw) or (KEX, sid, qid, S3−b, α3−b) may exist) and send
(KEX, sid, qid, Sb) to SIM. If this is a valid request, create a fresh record
(KEX, sid, qid, Sb, αb).

TestPwd: Upon input (TP, sid, qid, pw ) from SIM check that a
fresh record (KEX, sid, qid, C, pw) exists. If this is the case, mark
(KEX, sid, qid, S1, α1) as compromised and reply with “correct guess” if
pw = pw , and mark it as interrupted and reply with “wrong guess”
if pw = pw .

Failed: Upon input (FA, sid, qid) from SIM check that records
(KEX, sid, qid, C, pw) and (KEX, sid, qid, S1, α1) exist that are not
marked completed. If this is the case, mark both as failed.

NewKey: Upon input (NK, sid, qid, P, sk ) from SIM with P ∈ {C, S1},
check that a respective (KEX, sid, qid, C, pw) or (KEX, sid, qid, S, α1)
record exists, sid = (C, S1, S2), |sk | = λ, then:
– If the session is compromised, or either C or S1 and S2 are cor-

rupted, then output (NK, sid, qid, sk ) to P ; else
– if the session is fresh and a key sk was sent to P with sid =

(P, P , S2) or sid = (P , P, S2) while (KEX, sid, qid, P , ·) was fresh,
then output (NK, sid, qid, sk) to P .

– In any other case, pick a new random key sk of length λ, and send
(NK, sid, qid, sk) to P .

In any case, mark qid as completed for P .

Fig. 1. Ideal functionality F2PAKE

share α1 from S1 is equivalent to guessing the password. Complementing the
TestPwd interface is a Failed interface that allows the adversary to let sessions
fail. This allows the attacker to prevent protocol participants from computing
any session, i.e. failed parties do not compute a session key. Eventually the
NewKey interface generates session keys for client C and server S1. NewKey
calls for S2 are ignored. If client C or server S1 and S2 are corrupted, or the
attacker guessed the correct password, the adversary chooses the session key. If
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a session key was chosen for the partnered party and the session was fresh at
that time, i.e. not compromised or interrupted, the same session key is used
again. In any other case a new random session key is drawn.

Instead of using a single session identifier sid we use sid and qid. The session
identifier sid is composed of the three participants (C,S1, S2) (note that we use
the client C also as “username” that identifies its account on the servers) and
therefore human memorable and unique. To handle multiple, concurrent 2PAKE
executions of one sid, we use a query identifier qid that is unique within sid
and can be established with Finit. In the multi-session extension F̂2PAKE the
sid becomes ssid and sid is a globally unique identifier for the used universe,
i.e. server public keys (CA) and crs.

4.3 Security

The following theorem formalises the security of the proposed 2PAKE protocol.
Note that we do not rely on any security of the TD-SPHF. Instead we reduce
the security of our 2PAKE protocol directly to the underlying problem (SXDH).
Thereby, we give an indirect security proof of the proposed TD-SPHF.

Theorem 1. The 2PAKE protocol from Sect. 4.1 securely realises F̂2PAKE with
static corruptions in the Fcrs-FCA-hybrid model if the DDH assumption holds in
both groups G1 and G2 and if Hk is a universal one-way hash function.

Proof (Sketch). In the following we highlight changes in the sequence of games
from the real-world execution in G1 to the ideal-world execution via F2PAKE in
G17 and describe the ideal-world adversary SIM. Due to space limitations the
analysis of game hops is available in the full version.

G1 : Game 1 is the real-world experiment in which Z interacts with real partic-
ipants that follow, if honest, the protocol description, and the real-world adver-
sary A controlling the corrupted parties.

G2 : In this game all honest participants are replaced by a challenger C that
generates crs together with its trapdoor τ and interacts with A on behalf of
honest parties.

G3 : When C, on behalf of S1, receives first messages (C0, kp0) and (C2, kp2), it
decrypts C0 to pw′ and checks if this is the correct password, i.e. pw′ = pw. If
this is not the case, pw′ �= pw, C chooses a random h′

0 ∈R GT if the subsequent
Hash0 computation with S2 is successful, i.e. all zero-knowledge proofs can be
verified, and aborts S1 otherwise.

G4 : In this game C chooses sk ∈R GT at random if h0 was chosen at random
(as in G0) and computation of sk on S1 is successful.

G5 : Upon receiving an adversarially generated C1 or C2 on behalf of client C,
challenger C chooses hx ∈R GT uniformly at random instead of computing it
with Hashx if C1 or C2 do not encrypt the correct password share pw1 or pw2

respectively.
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G6 : In this game C chooses sk ∈R GT at random if hx was chosen at random
(as in G0) and computation of sk on C is successful, i.e., projection keys kp1 and
kp2 are correct.

G7 : C replaces computation of hash values h0 and hx with a lookup table with
index (kh1, kh2, Lpw,pw2,pw2

, C0) for h0 and (kh0, Lpw,pw2,pw2
, C1, C2) for hx. If no

such value exists, it is computed with the appropriate Hash or PHash function
and stored in the lookup table.

G8 : Instead of computing Hash0 for S1 in case pw′ decrypted from C0 is the
same as pw, C draws a random h0 ∈R GT .

G9 : In this game C chooses sk ∈R GT at random in case h0 was chosen at
random (as in G0) and computation of sk on S1 is successful.

G10 : Upon receiving correct C1 or C2, i.e. encrypting pw1 and pw2 respectively,
on behalf of client C, challenger C chooses hx ∈R GT uniformly at random
instead of computing it with Hashx.

G11 : In this game C chooses sk ∈R GT at random in case h0 was chosen random
(as in G0) and computation of sk on C is successful (projection keys kp1 and kp2
are correct).

G12 : The entire crs including ζ is chosen now by challenger C.

G13 : Upon receiving C1 and C2, encrypting correct password shares, C uses
THash0 to compute h0 on client C instead of PHash0. This is possible because C
now knows trapdoor τ ′.

G14 : Upon receiving C0, encrypting correct password, C uses THashx to com-
pute hx on server S1 instead of PHashx. This is possible because C now knows
trapdoor τ ′.

G15 : Instead of encrypting the correct password pw in C0 on behalf of client C,
C encrypts 0 (which is not a valid password).

G16 : Instead of encrypting the correct password share pwi in Ci on behalf of
server Si with i ∈ [1, 2], C encrypts a random element pw′

i ∈R Zq.

G17 : This is the final game where instead of the challenger C the simulation
is done by the ideal-world adversary (simulator) SIM that further interacts with
the ideal functionality F2PAKE. While this game is structurally different from G0

the interaction with A is indistinguishable from the latter. This combined with
the following description of the simulator concludes the proof.
Simulator. We describe SIM for a single session sid = (C,S1, S2). The security
then follows from the composition theorem [15] covering multiple sessions and
from the joint-state composition theorem [20], covering creation of a joint state
by FCA and Fcrs for all sessions and participants. As before, we assume that 0 is
not a valid password.

First, SIM generates crs = (q, g1,1, g1,2, h, c, d,G1, g2, ζ,G2,GT , e,Hk) with
Cramer-Shoup secret key as trapdoor τ = (x1, x2, y1, y2, z) and second trapdoor
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τ ′ for ζ = gτ ′
2 to answer all Fcrs queries with crs. Further, SIM generates ElGa-

mal key pairs (gz1 , z1) and (gz2 , z2), and responds to Retrieve(Si) queries to FCA

from Si with (Retrieve, Si, (gzi , zi)) for i ∈ {1, 2} and with (Retrieve, Si, g
zi)

to all other request.
When receiving (KEX, sid, qid, P ) with sid = (C,S1, S2) and P ∈ {C,S1, S2}

from F2PAKE, SIM starts simulation of the protocol for party P by computing
Mi = (Ci, kpi

) for i ∈ {0, 1, 2} and encrypting a dummy value (0 for P = C and
a random value α′

i ∈R Zq for P = Si, i ∈ {1, 2}). SIM outputs (Ci, kpi
) to A.

The first round of messages is handled as follows.

(i) When a party receives an adversarially generated but well formed first
message Mi, i ∈ {1, 2} from uncorrupted Si, i.e. VerKp on the projection
key kpi

is 1, SIM queries (FA, sid, qid), which marks the session failed for
the receiving party and thus ensures that the party receives an independent,
random session key (if any) on a NewKey query.

(ii) When a party receives an adversarially generated but well formed first
message M2 from a corrupted S2 while S1 is not corrupted, SIM decrypts
C2 to α′

2. If this value is not correct, α′
2 �= α2 (the party is corrupted such

that SIM knows the correct value), SIM queries (FA, sid, qid) to ensure
independent session keys on NewKey queries.

(iii) When client C receives an adversarially generated but well formed first
message M1 from a corrupted S1 while S2 is not corrupted, SIM decrypts
C1 to α′

1. If this value is not correct, α′
1 �= α1, SIM queries (FA, sid, qid) to

ensure independent session keys on NewKey queries.
(iv) When a party receives adversarially generated but well formed first mes-

sages M1,M2 from corrupted S1, S2, SIM decrypts C1 and C2 to α′
1, α′

2

respectively, and verifies their correctness against α1 and α2. If they are
correct, SIM computes h0 ← THash0(kp1, kp2, Lpw,pw1,pw2

, C0, τ
′), hx ←

Hashx(kp0, Lp̂w, C1, C2), and skC = h0 · hx. Otherwise choose a random
skC ∈ GT .

(v) When an honest S1 or S2 receives an adversarially generated but well
formed first message M0, i.e. VerKp on kp0 is true, SIM extracts pw′ from C0

and sends (TP, sid, qid, C,pw′) to F2PAKE. If F2PAKE replies with “correct
guess”, SIM uses pw′, crs and τ ′ to compute hx ← THashx(kp0, Lp̂w, C1,
C2, τ

′), h0 ← Hash0(kh1, kh2, Lpw,pw1,pw2
, C0), and skS = h0 · hx.

(vi) If verification of any kpi
fails at a recipient, SIM aborts the session for the

receiving participant.

If a party does not abort, SIM proceeds as follows. After C received all cipher-
texts and projection keys and the previously described checks were performed
SIM sends (NK, sid, qid, C, skC) to F2PAKE if skC for this session exists, or
(NK, sid, qid, C,⊥) otherwise. After S1 and S2 received all ciphertexts and pro-
jection keys and the previously described checks were performed, SIM simulates
PHashx and Hash0 computations between S1 and S2 with random elements and
simulated zero-knowledge proofs. If all messages received by S1 are oracle gener-
ated, SIM sends (NK, sid, qid, S1, skS) to F2PAKE if this session is compromised
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and (NK, sid, qid, S1,⊥) if not. If any PHashx or Hash0 message received by S1

can not be verified, SIM does nothing and aborts the session for S1.

5 F2PAKE Discussion

F2PAKE and the BPR 2PAKE Model. While other security models for
2PAKE protocols where proposed [33], the BPR-like security model from [27] is
the most comprehensible and (in its two-party version) established model. To
compare security of a 2PAKE protocol Π in a game-based and UC setting we
have to ensure that it supports session ids (necessary in the UC framework). We
therefore assume that Π already uses UC compliant session ids. Before looking
into the relation between the game-based model for 2PAKE and F2PAKE we
want to point out that Π, securely realising F2PAKE, offers “forward secrecy”,
i.e. even an adversary that knows the correct password is not able to attack an
execution of Π without actively taking part in the execution. With this in mind
it is easy to see that Π, securely realising F2PAKE, is secure in the BPR-like
model from [27]. This is because the attacker is either passive, which is covered
by the previous observation, or is active and is therefore able tests one password.
Those password tests (TestPwd in F2PAKE and Send in the game based model)
give the attacker a success probability of q/|D|, with q the number of active
sessions and |D| the dictionary size, when considering a uniform distribution of
passwords inside the dictionary D.

F2PAKE and FPAKE. While FPAKE and F2PAKE are very similar they contain
some significant difference we want to point out here. First, the key-exchange is
performed between all three participants, but only C and, w.l.o.g., S1 agree on
a common session key. The role is a technical necessity in FPAKE for correct
execution. Since we have explicit roles in F2PAKE this is not necessary here.
Due to the asymmetry in F2PAKE (a client negotiates with two servers) we
assume that the client is always the invoking party. The asymmetric setting in
F2PAKE further restricts TestPwd queries to the client since the servers hold
high entropy password shares. While it is enough for the attacker to corrupt one
party in FPAKE to control the session key, in F2PAKE he has to either corrupt
or compromise the client, or corrupt both servers. As long as only one server
is corrupted, the adversary has no control over the session keys and the parties
receive uniformly at random chosen session keys In F2PAKE session ids are human
memorisable, consisting of all three involved parties (C,S1, S2), and unique query
identifier is used to distinguish between different (possibly concurrent) protocol
runs of one account (sid). This is a rather technical difference to FPAKE that
uses only session identifiers.

Corruptions. The two-server extension of the BPR 2PAKE model used in
[27] does not consider corruptions at all. While parties can be malicious in the
model (static corruption), the attacker is not allowed to query a corrupt ora-
cle to retrieve passwords or internal state of participants. In our model the
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attacker is allowed to corrupt parties before execution. This however implies
security in the model from [27] even if the attacker is allowed to corrupt clients
to retrieve their passwords. This is because the environment can provide the
BPR attacker with the password. However, this does not increase his success
probability. Dynamic corruptions in F2PAKE on the other hand are much more
intricate. While UC-secure two party PAKE protocols with dynamic corrup-
tions exist, their approaches are not translatable to the 2PAKE setting. The
challenge of dynamic corruptions is that the simulation has to be correct even
if the attacker corrupts one party after the protocol execution has started. This
is left open for future work.

6 Conclusion

This paper proposed the first UC-secure 2PAKE and introduced Trapdoor Dis-
tributed Smooth Projective Hashing (TD-SPHF) as its building block. The pro-
posed 2PAKE protocol uses a common reference string and the SXDH assump-
tion on bilinear groups and is efficient thanks to the simulatability of TD-SPHF.
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