
Unique Aggregate Signatures
with Applications to Distributed Verifiable

Random Functions?

Veronika Kuchta and Mark Manulis

Department of Computing, University of Surrey, United Kingdom
v.kuchta@surrey.ac.uk, mark@manulis.eu

Abstract. The computation process of a Distributed Verifiable Random
Function (DVRF) on some input specified by the user involves multiple,
possibly malicious servers, and results in a publicly verifiable pseudoran-
dom output to the user. Previous DVRF constructions assumed trusted
generation of secret keys for the servers and imposed a threshold on the
number of corrupted servers.
In this paper we propose the first generic approach for building DVRFs,
under much weaker setup assumptions, where we only require existence
of a shared random string. More precisely, we first aim at constructions of
Distributed Verifiable Unpredictable Functions (DVUF) that can then be
converted to DVRF using inner products with a random string as spec-
ified by Micali, Rabin, and Vadhan (FOCS’99) for the non-distributed
VUF/VRF case.
Our main contribution are generic DVUF constructions from aggregate
signatures that satisfy the property of uniqueness. We define unique-
ness for two flavors of aggregate signatures (with public and sequen-
tial aggregation) and show that both flavors can be used to obtain
DVUF. By proving uniqueness of existing pairing-based aggregate sig-
nature schemes we immediately obtain several concrete communication-
efficient DVUF/DVRF instantiations.

1 Introduction

Unique Signatures and VRFs The uniqueness property for digital signa-
tures, introduced by Goldwasser and Ostrovsky [19], guarantees that all sig-
natures produced by one signer on the same message remain “similar” in that
there exists an efficient publicly computable function that yields the same unpre-
dictable value on input of any such signature. This property has been explored
for traditional signature schemes [19,24] and more recently in the context of
advanced schemes such as group signatures [14] and ring signatures [15] where
it enabled more efficient anonymity revocation resp. linkability procedures. The

? Following the publication of this work the authors would like to thank Kwangsu
Lee for pointing out that the sequential aggregate signature scheme from [22] is not
unique. This invalidates our Theorem 2. All remaining theorems remain valid.

uniqueness property doesn’t require all signatures to be identical as it is the
case for deterministic schemes. In fact, it is sufficient for an unique signature to
contain some unique component that can be used to link different signatures of
the same signer on the same message.

Goldwasser and Ostrovsky [19] established the equivalence between unique
signatures and non-interactive zero-knowledge proofs (NIZK) for hard-to-predict
languages. The main application of unique signatures, e.g. in [24,12], has been
the construction of Verifiable Random Functions (VRF) [25] — these are pseu-
dorandom functions with a corresponding private/public key pair (sk, pk) that
on some input x output a pair (F (sk, x), π(sk, x)) where F (sk, x) is pseudo-
random and π(sk, x) represents a proof for the correctness of the computation
that can be verified in a public fashion using pk. In order to construct VRFs
from unique signatures one first needs to construct a so-called Verifiable Unpre-
dictable Function (VUF) and then apply the transformation from [25] to convert
VUF into VRF. For the actual construction of VUF out of a unique signature
scheme one simply considers the signer’s secret key as a secret seed and treats
the resulting unique signature (or its unique component) as a VUF output,
whose correctness can be checked publicly using the verification procedure of
the signature scheme and the signer’s public key. As observed in [1], who con-
structed VRFs in the identity-based setting, VRFs turned out to be very useful
for many applications, including resettable zero-knowledge proofs [26], micro-
payment schemes [28], updatable zero-knowledge databases [21], and verifiable
transaction escrow schemes [20].

Distributed VRFs In a distributed VRF (DVRF) setting, considered by
Dodis [11], there are multiple parties (servers), each in possession of its own
secret and public key such that any subset of n servers can participate in the
computation process. The approach taken in [11] to build a DVRF scheme was
to first propose a concrete VRF construction and then turn it into DVRF by
using the (t+ 1, n)-secret sharing technique [30] to equip servers with individual
shares ski of the private VRF key sk. In addition, for each party i an individ-
ual public key pki is derived from ski. In order to compute the DVRF output
(F (sk, x), π(sk, x)) the input x is communicated by the user to each of the n
parties that reply with their intermediate VRF outputs (F (ski, x), π(ski, x)). If
at least t+1 intermediate VRF proofs π(ski, x) are valid (which is checked using
corresponding public keys pki) then the final DVRF output (F (sk, x), π(sk, x))
can be computed by the user through polynomial interpolation. The validity of
the resulting DVRF proof π(sk, x) can be checked publicly using the original pk
of the underlying VRF scheme.

The DVRF construction from [11] is reasonably efficient, yet has a few limi-
tations, as discussed in the following. One consequence of using (t+ 1, n)-secret
sharing is that in order to guarantee pseudorandomness of F (sk, x) at least t+1
parties involved in its computation process must remain honest. The DVRF
scheme from [11] requires a trusted setup procedure for the generation and dis-
tribution of shares ski, which is a strong assumption. The assumption on trusted
setup could possibly be removed by adopting a matching Distributed Key Gener-

2

ation (DKG) protocol, e.g. [16], yet at the cost of reduced efficiency and possibly
further restrictions on the ratio between the threshold value t+ 1 and n.

We observe that the approach taken in [11] to apply threshold cryptography
on top of a non-distributed VRF scheme is so far the only known way to construct
DVRF schemes.

The original motivation for DVRF schemes given in [11] is the practical re-
alization of random oracles, a theoretical construct introduced in [4] that is
frequently used in security proofs of cryptographic schemes. In a nutshell, ran-
dom oracle is a mathematical function that on any new input outputs a random
string from the output domain. Goldreich, Goldwasser and Micali [17] were the
first who showed how to simulate a random oracle for fixed-length input and
output strings by using a PRF. Canetti et al. [10] showed that no fixed public
function can generically replace the random oracle. They demonstrated that a
PRF should not be expected to offer a general solution for realizing random
oracles. Micali, Rabin, and Vadhan [25] suggested that a random oracle can be
realized using VRF schemes. Dodis observed that this would require a significant
amount of trust put into a single party that computes VRF outputs and argued
that it is desirable to distribute this trust across multiple, ideally independent
parties.

Our DVRF Approach: Unique (Sequential) Aggregate Signatures In
this work we propose another approach for building DVRF schemes without
imposing trust assumptions on the generation of secrets keys ski for the in-
volved servers and without requiring any particular threshold on the number
of honest servers. Our main contribution is to build DVRF schemes generically
from different flavors of aggregate signatures [7,23,22] where each signer i has
its own private/public key pair (ski, pki) and a set of n signers contributes to
the computation of an aggregate signature σ̄ on some set of (possibly different)
messages m = {m1, . . . ,mn} where the size of resulting σ̄ is independent of n.
The signature can be verified using the set of public keys pk = {pk1, . . . , pkn}.

Just as in case of a VRF that can be obtained from a VUF we show that
different flavors of aggregate signatures can be used to build a distributed VUF
(DVUF), which can then be converted to a DVRF using the techniques from [25].
In order to construct DVUFs from aggregate signatures the latter require some
sort of uniqueness. Since the property of uniqueness in the context of aggregate
signatures has not been considered so far, we first need to define it. We define
uniqueness for aggregate signatures with public aggregation (cf. [7]) and denote
such schemes by UAS, and for sequential aggregate signatures (cf. [23,22]), de-
noted by USAS. Our definition of uniqueness in both cases roughly means that
for any aggregate signature σ̄ produced on the same set of messages m using
the same set of private keys sk = {sk1, . . . , skn} there exists no other aggregate
signature ¯̄σ such that Verify(pk,m, σ̄) = Verify(pk,m, ¯̄σ) = 1.

At a high level, our DVUF construction from any UAS/USAS scheme pro-
ceeds as follows: the DVUF public key pk consists of all UAS/USAS public keys
pki while each UAS/USAS secret key ski is generated individually by the respec-
tive DVUF server i. The DVUF output (F (sk, x), π(sk, x)) is essentially given

3

by (unq(σ̄), σ̄) where unq(σ̄) determines the unique component of aggregate sig-
nature σ̄, which in turn plays the role of the proof. Note that each server signs
the same message x that is specified by the user as input to DVUF. The actual
computation process and interaction differs for UAS and USAS schemes. Our
most efficient UAS-based DVUF construction requires only one communication
round in which the user sends x to each of the n servers, obtains their individual
signatures and then aggregates them locally to obtain the DVUF output. In the
USAS-based DVUF construction the user needs to contact n servers sequentially
and obtains the resulting DVUF output and the proof upon contacting the last
server in the sequence.

Our UAS/USAS-based approach for constructing DVUF and consequently
DVRF has two advantages over [11]: (1) the uniqueness and unforgeability prop-
erties of UAS/USAS schemes will guarantee that the DVRF output F (sk, x) is
pseudorandom even if the adversary corrupts up to n− 1 servers; (2) since each
server i can generate her own UAS/USAS key pair (ski, pki) independently, our
DVUF construction doesn’t require any trusted setup procedure for the distribu-
tion of ski. When using the inner product-based technique from [25] to convert
out DVUF outputs into DVRF outputs we need to impose existence of a shared
random string [13] as an additional, albeit much weaker setup assumption than
the trustworthy generation of secret keys adopted in [11].

DVUF/DVRF Instantiations We obtain several concrete DVUF/DVRF in-
stantiations from existing (sequential) aggregate signatures schemes by proving
the uniqueness property for the (pairing-based) aggregate signature schemes by
Boneh et al. [7], Lu et al. [22], and Schröder [31]. The scheme from [7] is a very
efficient random oracle-based construction that supports public aggregation of
signatures. The schemes from [22,31] offer sequential aggregation in the stan-
dard model and are based on two popular signature schemes; in particular, [22]
offers aggregation of Waters signatures [32], while [31] shows how to aggregate
Camenisch-Lysyanskaya [9] signatures.

A Note on Multisignatures In our generic DVUF constructions parties com-
pute aggregate signatures on the same input message, specified by the user. This
step can also be realized using multisignatures [5] that represent a special case
of aggregate signatures in that all signers are required to use the same mes-
sage in the execution of the signing protocol. Our generic DVUF constructions
can therefore be analysed from the perspective of unique multisignatures, yet
their instantiations may not necessarily be more communication-efficient than
those presented in our work. This is because all existing aggregate signatures
are non-interactive in that at most one message needs to be exchanged between
the signers, which is not the general case for multisignatures. For instance, the
signing process of multisignature schemes from [27,3,2] requires several rounds
of interaction amongst the participating signers. Those schemes, if unique, can
be possibly used to realize a DVUF but at the cost if the increased communi-
cation overhead, in comparison to non-interactive aggregate signature schemes
used in our constructions. On the other hand, there exist several multisigna-

4

ture schemes where the signing process is non-interactive, e.g. [5,22,6,33]. These
schemes seem to satisfy the uniqueness property and could possibly be used to
obtain communication-efficient DVUF constructions. For instance, Boldyreva’s
scheme [5] that uses Gap Diffie-Hellman groups and is based on BLS signa-
tures [8], when realized using pairings, would offer a similar performance for a
DVUF, in the random oracle model, as the aggregate signature scheme from [7]
that is used in our work. Similarly, the multisignature scheme from [22], which
is based on the signature scheme by Waters [32], could be used to build DVUF
in the standard model. The resulting scheme would offer similar communication
performance to the DVUF construction that we obtain by using their aggregate
signature scheme. One advantage of using these non-interactive multisignatures
in comparison to corresponding aggregate signatures is that by adding further
“proofs of secret key possession” from [29] one could obtain a higher level of
security against rogue key attacks that is notoriously difficult to achieve for the
more general case of aggregate signatures.

2 Preliminaries

All concrete constructions used in this paper are in the setting of bilinear groups,
defined in the following.

Definition 1 (Bilinear Groups). Let G(1λ), λ ∈ N be an algorithm that on
input a security parameter 1λ outputs the description of two cyclic groups G1 =
〈g1〉 and G2 = 〈g2〉 of prime order q with |q| = 1λ, where possibly G1 = G2,
and an efficiently computable e : G1 × G2 → GT with GT being another cyclic
group of order q. The group pair (G1,G2) is called bilinear if e(g1, g2) 6= 1 and
∀u ∈ G1, v ∈ G2, ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab.

3 Unique Aggregate Signatures

In this section we recall definitions of aggregate signatures with public aggrega-
tion and define their uniqueness property. We adopt the syntax and the security
model from [7].

Definition 2 (AS scheme). An aggregate signature scheme AS consists of
the following algorithms:

ParGen(1λ) is a PPT algorithm that takes as input the security parameter 1λ

and outputs public system parameters I.
KeyGen(I) is a PPT algorithm that takes as input I and generates a private/public

key pair (ski, pki) for an user i.
Sign(ski,mi) is a possibly deterministic algorithm that takes as input a secret

key ski and a message mi and outputs a signature σi.
Verify(pki,mi, σi) is a deterministic algorithm that takes as input a candidate

signature σi, a public key pki, and a message mi, and outputs 1 if the sig-
nature is valid and 0 otherwise.

5

Aggregate(pk,m,σ) is an algorithm that takes as input a set of signatures σ =
(σ1, ..., σn), public keys pk = (pk1, . . . , pkn), and messages m = (m1, . . . ,mn),
and outputs an aggregate signature σ̄.

AggVerify(pk,m, σ̄) is a deterministic algorithm that takes as input a candidate
aggregate signature σ̄, a set of messages m and public keys pk, and outputs
1 if the signature is valid, or 0 otherwise.

Definition 3 (Unforgeability of AS). An aggregate signature scheme is un-
forgeable if for any PPT adversary A, running in time at most t and invoking
the signing oracle at most qS times, the probability that the following experiment
outputs 1 remains negligible in the security parameter λ.

Experiment ForgeASA (λ)
I ← ParGen(1λ)
(skc, pkc)← KeyGen(I)
(m∗,pk∗, σ∗)← AOSign(skc,·)(I, pkc)
Let mc be the message those index in m∗ corresponds to the index of pkc in
pk∗.
Output 1 if all of the following holds:
– AggVrfy(σ∗,m∗,pk∗) = 1,
– mc ∈m∗ was never submitted to OSign(skc, ·)

where A is given access to the following aggregate signing oracle:

OSign(skc·): The adversarial input to the oracle contains a message mi under
the public key pkc, the oracle computes the signature σi on mi using skc and
gives the signature to A.

Our definition of uniqueness for aggregate signatures with public aggregation is
given in Definition 4. This definition fits likewise probabilistic and deterministic
schemes due to the use of function unq, even though we are not aware of any
(non-interactive) probabilistic scheme that supports public aggregation.

Definition 4 (Unique AS). An unforgeable AS scheme is said to be unique,
denoted by UAS, if there exists an efficient deterministic function unq which
on input an aggregate signature σ̄ outputs a string of polynomial-size in the
security parameter of the scheme such that for any ordered sequence of mes-
sages m = (m1, . . . ,mn) and public keys pk = (pk1, . . . , pkn) there exist no
two aggregate signatures σ̄ and ¯̄σ for which it holds that Verify(pk,m, σ̄) =
Verify(pk,m, ¯̄σ) = 1, and unq(σ̄) 6= unq(¯̄σ).

3.1 Uniqueness of Boneh-Gentry-Lynn-Shacham AS Scheme

We recall the aggregate signature scheme with public aggregation from [7] where
the hash function H : {0, 1}∗ → G1 is modeled as a random oracle.

ParGen(1λ). On input of the security parameter 1λ this algorithm outputs public
parameters I = (G1,G2, g1, g2, ψ, e,GT , q), with ψ(g2) = g1, where ψ is a
computable isomorphism from G2 to G1.

6

KeyGen(I). For an user i, choose randomly xi
r← Zq and compute vi ← gxi

2 . It
outputs (ski, pki) = (xi, vi).

Sign(mi, ski). For all i, it takes as input ski and a message mi ∈ {0, 1}∗. The
algorithm computes hi ← H(mi), where hi ← G1 and σi ← hxi

i . Output is
σi ∈ G1.

Verify(mi, pki, σi). For all i ∈ [n] the algorithm takes as input mi and σi. It
outputs 1 if e(σi, g2) = e(hi, vi) and 0 otherwise.

Aggregate(pk,m,σ). On the input pk,m,σ the algorithm computes σ̄ ←
n∏
i=1

σi. The aggregate signature is σ̄ ∈ G1.

AggVerify(pk,m, σ̄). This algorithm takes as input an aggregate signature σ̄,a
sequence of messages m = (m1, ...,mn) and a sequence of pubic keys pk =
(v1, . . . , vn) ∈ G2, for all users ui. The algorithm outputs 1 if the messages mi

are all distinct and e(σ̄, g2) =
n∏
i=1

e(hi, vi). Otherwise the algorithm outputs

0.

The above scheme offers unforgeability in the random oracle model, as already
proven in [7]. Interestingly, our Theorem 1 shows that this scheme is unique
without imposing the random oracle assumption on H.

Theorem 1. The Boneh-Gentry-Lynn-Shacham AS scheme is unique according
to Definition 4.

Proof. Assume that there exist two valid aggregate signatures σ̄ and ¯̄σ on an or-
dered sequence of messages m = (m1, ...,mi) such that the equation Verify(pk,
m, σ̄) = Verify(pk,m, ¯̄σ) = 1. We define unq(σ̄) as an identity function. That

is, unq(σ̄) = σ̄ and unq(¯̄σ) = ¯̄σ. We know that σ̄ =
i∏

j=1

h
xj

j . In the following we

prove by induction on i that ¯̄σ = σ̄:

Base step: i = 1. The signature ¯̄σ must satisfy the verification process e(σ, g2) =
e(h, v), i.e. e(¯̄σ, g2) = e(h, gx2) = e(hx, g2). It holds only if ¯̄σ = hx = σ̄.

Induction step: i− 1 7→ i . Let the theorem hold for i − 1. The verification al-
gorithm will accept ¯̄σi if it satisfies the verification equation e(¯̄σi, g2) =
i∏

j=1

e(hj , vj). By the induction hypothesis we have the validity for i − 1 ag-

gregated signatures, i.e. ¯̄σi−1 =
i−1∏
j=1

h
xj

j and ¯̄σi = ¯̄σi−1 · σ̃i. We put this value

7

into the verification equation such that:

e

i−1∏
j=1

h
xj

j

 · σ̃i, g2
 =

i∏
j=1

e(hj , vj) =

i∏
j=1

(hj , g
xj

2)

⇔ e

i−1∏
j=1

h
xj

j , g2

 e(σ̃i, g2) =

i−1∏
j=1

e(hj , g
xj

2)e(hi, g
xi
2)

⇔ e(σ̃i, g2) = e(hi, g
xi
2) = e(hxi

i , g2)⇔ σ̃i = hxi
i

Therefore we have ¯̄σi = ¯̄σi−1 · σ̃i =
i−1∏
j=1

h
xj

j · h
xi
i = σ̄i.

ut

4 Unique Sequential Aggregate Signatures

In the following we recall definitions of sequential aggregate signatures using the
syntax and security model from [23,22] and define their uniqueness.

Definition 5 (SAS scheme). A sequential aggregate signature scheme SAS
consists of the following algorithms:

ParGen(1λ) is a PPT algorithm that takes as input the security parameter 1λ

and outputs public system parameters I.

KeyGen(I) is a PPT algorithm that takes as input I and outputs a private/public
key pair (ski, pki) for an user i.

AggSign(ski,mi, σ̄i−1,mi−1,pki−1) is a PPT algorithm that on input a pri-
vate key ski, a message mi ∈ {0, 1}∗, an aggregate-so-far signature σ̄i−1,
a sequence of messages mi−1 = (m1, . . . ,mi−1) and public keys pki−1 =
(pk1, . . . , pki−1), outputs the aggregate-so-far signature σ̄i for the updated
sequences mi = (m1, . . . ,mi) and pki = (pk1, . . . , pki).

AggVerify(σ̄i,mi,pki) takes as input an aggregate-so-far signature σi, a se-
quence of messages mi and public keys pki and outputs 1 if the signature is
valid, or 0 otherwise.

An SAS scheme is said to be complete, if for any sequence (sk1, pk1), . . . ,
(skn, pkn) with each (ski, pki)← KeyGen(I), (m1, ...,mn) with each mi ∈ {0, 1}∗,
and some non-empty σ̄i−1 for which AggVerify(σ̄i−1,mi−1,pki−1) = 1, for any
σ̄i ← AggSign(ski,mi, σ̄i−1,mi−1,pki−1): AggVerify(σ̄i,mi,pki) = 1.

Definition 6 (Unforgeability of SAS). An SAS scheme is unforgeable if for
any PPT adversary A, running in time at most t and invoking the signing oracle
at most qS times, the probability that the following experiment outputs 1 remains
negligible in the security parameter λ.

8

Experiment ForgeSASA (λ)
I ← ParGen(1λ)
(skc, pkc)← KeyGen(I)
(m∗,pk∗, σ∗)← AOSeqAgg(skc,·)(I, pkc)
Let C denote the list of all registered key pairs (ski, pki) and mc be the
message those index in m∗ corresponds to the index of pkc in pk∗.
Output 1 if all of the following holds:
– for any pair pki, pkj ∈ pk∗ with i 6= j: pki 6= pkj
– AggVerify(σ∗,m∗,pk∗) = 1,
– mc ∈m∗ was never amongst the inputs to OSeqAgg(skc, ·)

where A is given access to the following sequential aggregate signing oracle and
the key registration oracle:

OSeqAgg(skc, ·): The adversarial input to the signing oracle consists of a mes-
sage m, an aggregate-so-far signature σ̄i−1, a sequence of messages mi−1
and public keys pki−1. The oracle computes σ̄i ← AggSign(skc,m, σ̄i−1,
mi−1||m,pki−1||pkc) and returns σ̄i to A.

Our definition of uniqueness for unforgeable SAS schemes is given in Defi-
nition 7. Note that by requiring the existence of an appropriate deterministic
function unq we can cover uniqueness in deterministic and probabilistic SAS
schemes. For example, USAS instantiations that we focus on later are all prob-
abilistic SAS schemes that output signatures consisting of multiple components
from which one component remains unique. We will prove the uniqueness prop-
erty of those schemes by using appropriate unq functions for each scheme.

Definition 7 (Unique SAS). An unforgeable SAS scheme is said to be unique,
denoted by USAS, if there exists an efficient deterministic function unq which on
input the aggregate-so-far signature σi outputs a string of polynomial-size in the
security parameter of the scheme such that for any ordered sequence of messages
mi and public keys pki there exist no two aggregate-so-far signatures σ̄i and ¯̄σi
for which it holds that AggVerify(σ̄i,mi,pki) = 1, AggVerify(¯̄σi,mi,pki) = 1,
and unq(σ̄i) 6= unq(¯̄σi).

Note that the uniqueness property of an SAS scheme as defined above respects
the order of messages in m = (m1, ...,mn). That is, the resulting aggregate
signatures output on permuted sequences of messages in m for the same set of
public keys pk will differ from each other.

4.1 Uniqueness of Lu-Ostrovsky-Sahai-Shacham-Waters SAS
Scheme

The SAS scheme proposed by Lu et al. [22] offers sequential aggregation of
Waters signatures [32]. We breifly recall their scheme and explore its uniqueness
property.

ParGen(1λ). On input the security parameter 1λ output I = (q,G,GT , g, e) for
the bilinear group setting according to Definition 1.

9

KeyGen(I). Pick random α, y
r← Zq and a random vector y = (y1, ..., yk)

r← Zkq .
Compute:

u′ ← gy
′
, u = (u1, ..., uk)← (gy1 , ..., gyk), A← e(g, g)α.

The private key is set to sk = (α, y′,y) ∈ Zk+2
q , while the the public key is

set to pk = (A, u′,u) ∈ GT ×Gk+1. The algorithm outputs (sk, pk).
AggSign(ski,mi, σ̄i−1,mi−1,pki−1). If AggVerify(σ̄i−1,mi−1,pki−1) = 1 pro-

ceed; else output 0. Parse σ̄i−1 as (S
′

1, S
′

2) ∈ G2. For each 1 ≤ i ≤ n and

1 ≤ l ≤ k set mi = (mi,1, ...,mi,k) ∈ {0, 1}k as k-bit message of user i and

pki = (Ai, u
′

i, ui,1, ..., u
k
i) ∈ GT ×Gk+1 as public key of user i. Compute:

w1 ← S
′

1g
α
(
S

′

2

)y′+ k∑
l=1

ylml

, w2 ← S
′

2.

Proceed with the re-randomization step, i.e. pick random r̃ ∈ Zq and output
σ̄i = (S1, S2) where

S1 ← w1 ·

(
u′

k∏
l=1

uml

l

)r̃
·
i∏

j=1

(
u

′

j

k∏
l=1

u
mj,l

j,l

)r̃
and S2 ← w2g

r̃.

(Note that σ̄i = (S1, S2) is an aggregate-so-far signature on an updated
list of messages mi−1||mi and corresponding public keys pki−1||pki. The
re-randomization step results in randomness update to r + r̃.)

AggVerify(σ̄i,mi,pki). The input is a candidate aggregate signature σ̄i on mes-
sages mi under public keys pki. Set σ̄i = (S1, S2) ∈ G. Check the following
equation:

e(S1, g) · e

S2,

i∏
j=1

(
u

′

j

k∏
l=1

u
mj,l

j,l

)−1 =

i∏
j=1

Aj

If the above equation holds output 1, else output 0.

Theorem 2. The Lu-Ostrovsky-Sahai-Shacham-Waters SAS Scheme is unique
according to Definition 7.

Proof. Let unq be a function that outputs the first component of the aggregate
signature σ̄ = (S1, S2), i.e. unq(σ̄) = S1. Assume that there exists another
signature ¯̄σ that passes the verification process for the same set of messages and
public keys as σ̄ and for which unq(¯̄σ) = Ŝ1. In the following we prove that
Ŝ1 = S1 by induction on i:

Base step: i = 1. The verification algorithm will accept the signature ¯̄σ = (Ŝ1, S2)
if it satisfies the following verification equation

e(Ŝ1, g) · e

(
S2, u

′
k∏
l=1

uml

l

)−1
= e(g, g)α

⇔ e(Ŝ1, g) · e

(
g,

(
u

′
k∏
l=1

uml

l

)r)−1
= e(g, g)α.

10

It holds only if Ŝ1 = gα
(
u

′ k∏
l=1

uml

l

)r
, because we have then:

e(Ŝ1, g) · e

(
g,

(
u

′
k∏
l=1

uml

l

)r)−1
= e(g, g)α

⇔ e

(
gα

(
u

′
k∏
l=1

uml

l

)r
, g

)
· e

(
g,

(
u

′
k∏
l=1

uml

l

)r)−1
= e(g, g)α

⇔ e(gα, g)e

((
u

′
k∏
l=1

uml

l

)r
, g

)
e

(
g,

(
u

′
k∏
l=1

uml

l

)r)−1
= e(g, g)α.

Induction step: i− 1 7→ i. Let the theorem hold for i− 1. The verification algo-
rithm will accept unq(¯̄σi) = (Ŝ1)i if it satisfies the verification equation:

e((Ŝ1)i, g) · e

S2,

i∏
j=1

(u
′

j

k∏
l=1

u
mj,l

j,l)

−1 =

i∏
j=1

Aj

⇔ e((Ŝ1)i, g) · e

g, i∏
j=1

(u
′

j

k∏
l=1

u
mj,l

j,l)r

−1 =

i∏
j=1

e(g, g)αj

By induction hypothesis we have (Ŝ1)i−1 =
i−1∏
j=1

gαj

i−1∏
j=1

(u
′

j

k∏
l=1

u
mj,l

j,l)r, such

that (Ŝ1)i = (Ŝ1)i−1 · δ. We obtain the following equation:

e
(

(Ŝ1)i−1 · δ, g
)
· e

S2,

i∏
j=1

(u
′

j

k∏
l=1

u
mj,l

j,l)

−1 =

i∏
j=1

Aj

⇔ e
(

(Ŝ1)i−1 · δ, g
)
· e

g, i−1∏
j=1

(u
′

j

k∏
l=1

u
mj,l

j,l)r ·

(
u

′

i

k∏
l=1

u
mi,l

i,l

)r−1

=

i∏
j=1

e(g, g)αj ⇔
i−1∏
j=1

e(g, g)αje(g, δ)e

(
g,

(
u

′

i

k∏
l=1

u
mi,l

i,l

)r)−1
=

i∏
j=1

e(g, g)αj

The last equation holds if δ = gαi

(
u

′

i

k∏
l=1

u
mi,l

i,l

)r
. This implies the desired

equality

(Ŝ1)i = (Ŝ1)i−1 · δ =

i∏
j=1

gαj

(
u

′

j

k∏
l=1

u
mj,l

j,l

)r
= S1 = unq(σ̄).

ut

11

4.2 Uniqueness of Schröder SAS Scheme

The SAS scheme proposed by Schröder [31] offers sequential aggregation for
Camenisch-Lysyanskaya (CL) signatures [9]. The SAS scheme slightly modifies
the original CL signatures by introducing an additional signature component,
denoted in the following by D. We will essentially rely on this new component
when proving the uniqueness property of the scheme.

ParGen(1λ). Output the public parameters I = (G,GT , g, e) for the bilinear
group setting according to Definition 1.

KeyGen(I). For each signer i choose xi ← Zq and yi ← Zq and sets Xi =
gxi , Yi = gxi for i ∈ [n]. The algorithm returns ski = (xi, yi) and pki =
(Xi, Yi).

AggSign(ski,mi, σ̄i−1,mi−1,pki−1). The algorithm takes as input a secret sign-
ing key ski, a message mi ∈ Zq, an aggregate-so-far σ̄i−1 a sequence of
messages mi−1 = (m1, ...,mi−1) and a sequence of public keys pki−1 =
(pk1, ..., pki−1). The algorithm first checks that |m| = |pk| and that the se-
quential verification AggVerify(σ̄i−1,mi−1,pki−1) = 1. If the verification
holds, than it parses σ̄i−1 = (A′, B′, C ′, D′), where unq(σ̄i−1) = D′ is the
unique component.

A′ = gr, B′ =

i∏
j=1

gryj , C ′ =

i∏
j=1

gr(xj+mjxjyj), D′ =

i∏
j 6=k

gmjxjyk ,

and it computes the signature σ̄i = (A,B,C,D):

A = gr, B = B′ ·A′yi =

i∏
j=1

gryj , C = C ′(A′)xi+mixiyi =

i∏
j=1

gxj+mjxjyj ,

D = D′ ·

i−1∏
j=1

gxjmjyigyjximi

 =

i∏
j 6=k

gxjmjyk

AggVerify(σ̄i,pki,mi): On input of a sequence of public keys pki, sequence of
messages mi and σ̄i = (A,B,C,D). The verification algorithm first checks
if |m| = |pk|. It then validates the structure of the elements A,B,D:

e(A,

i∏
j=1

Yj) = e

g, i∏
j=1

gryj

 and

i∏
j 6=k

e (Xk, Yj)
mk = e(g,D)

and checks that C is also formed correctly:

i∏
j=1

(e (Xj , A) · e (Xj , B)
mj) e(A,D)−1 = e(g, C).

If all equations are valid, then the algorithm outputs 1; otherwise it returns
0.

12

Theorem 3. Schröder SAS Scheme is unique according to Definition 7.

Proof. Let unq be a function that outputs the fourth component of the aggregate
signature σ̄ = (A,B,C,D), i.e. unq(σ̄) = D. Assume that there exists another
aggregate signature ¯̄σ that passes the verification procedure on the same set of
messages and public keys as σ̄ such that unq(¯̄σ) = D̃. We prove by induction on i
that in this case D̃ = D must hold. We use ¯̄σ to check the verification equations.

Base step: i = 2. The verification algorithm will accept ¯̄σ, if D̃ satisfies the ver-
ification equations.

We check first the second equation
2∏
j 6=k

e (Xj , Yk)
mj = e(g, D̃) and compute:

e (X1, Y2)
m1 e (X2, Y1)

m2 = e(g, D̃)

⇔ e (gx1 , gy2)
m1 · e (gx2 , gy1)

m2 = e(g, D̃)

⇔ e(g, g)m1x1y2 · e(g, g)m2x2y1 = e(g, D̃)

⇔ e(g, g)m1x1y2+m2x2y1 = e(g, D̃)

⇔ e(g, gm1x1y2+m2x2y1) = e(g, D̃)

The last equation holds only if D̃ = gm1x1y2+m2x2y1 = D.

Induction step: i− 1 7→ i. Let the theorem hold for i − 1. The verification al-
gorithm will accept unq(¯̄σi) = D̃i if it satisfies the verification equation
i∏

j 6=k
(Xj , Yk)

mj = e(g, D̃i). By the induction hypothesis we have D̃i−1 =

i−1∏
j 6=k

gmjxjyk such that D̃i = D̃i−1 · δ. Considering the following verification

equation we get:

i∏
j 6=k

e (Xj , Yk)
mj = e(g, D̃i) ⇔

i∏
j 6=k

e (gxj , gyk)
mj = e(g, D̃i)

⇔
i−1∏
j 6=k

(g, g)mjxjyk

i−1∏
j=1

e(g, g)mixiyj+mjxjyi = e(g,

i−1∏
j 6=k

gmjxjyk · δ)

=

i−1∏
j 6=k

e(g, g)mjxjyke(g, δ)⇔
i−1∏
j=1

e
(
g, gmixiyj+mjxjyi

)
= e(g, δ)

The last equation holds if δ =
i−1∏
j=1

gmixiyj+mjxjyi . We therefore obtain the

desired equality D̃i = Di = unq(σ̄i).

ut

13

5 Distributed Verifiable Random Functions

Distributed Verifiable Random Functions (DVRF) were introduced by Dodis [11].
The so-far only DVRF construction in [11] was obtained by first constructing a
non-distributed VRF scheme (based on a variant of the well-known Decisional
Diffie-Hellman assumption) and then by making it distributed using threshold
secret sharing techniques; more precisely by issuing secret shares of the VRF
secret key sk to the n servers and then by combining their individual VRF
outputs into the DVRF output, whose validity could be checked publicly using
the original VRF public key pk. This approach, however, imposed undesirable
trust assumptions on the trustworthy generation of secret keys (shares) for the
n servers and resulted in a threshold on the number of corrupted servers.

In contrast, our approach for building DVRF is generic, proceeds under much
weaker setup assumptions, and requires only one server to remain uncorrupted.
As a guideline we adopt the approach by Micali, Rabin, and Vadhan [25] that has
been used in a non-distributed VRF case, namely to first focus on a weaker family
of functions those outputs are unpredictable but not necessarily pseudorandom,
the so-called Verifiable Unpredictable Functions (VUF). We observe that the
generic transformation from [25] for converting VUF outputs into VRF outputs
— by adding a random string r to the VUF public key pk and then computing
VRF outputs as inner products of VUF outputs and r (which takes its roots
in [18]) — works just fine for the case where the VUF output has been previously
obtained in a distributed way. In a distributed VUF setting the required random
string r can be made part of a shared random string (SRS) [13], which we consider
as the only setup assumption in our DVRF schemes. Note that the SRS model
is much weaker than the assumed trustworthy generation of secret keys in [11]
and belongs to standard cryptographic assumptions.

Following the above approach we thus need to define the notion of Distributed
VUF (DVUF). Our Definition 8 essentially tweaks the original definition of VUF
from [25] to the distributed setting.

Definition 8 (Distributed Verifiable Unpredictable Function (DVUF)).

Let F(·)(·) : {0, 1}a(λ) → {0, 1}b(λ) denote a family of functions with associated
algorithms:

Gen(1λ) is a PPT algorithm that takes as input the security parameter 1λ and
outputs a private/public key pair (ski, pki) for a server i ∈ {1, . . . , n}. Let
sk = {sk1, . . . , skn} and pk = {pk1, . . . , pkn}.

Prove(sk,pk, x) is an interactive protocol executed between an user and n servers
with common input x chosen by the user and pk = (pk1, . . . , pkn) such that
at the end of the execution the user obtains a VUF value F (sk, x) = y and
the corresponding proof π.

Verify(pk, x, y, π) is a deterministic algorithm that takes as input pk, x, y and
a candidate proof π, and outputs 1 if π is a valid proof for y = F (sk, x) and
0 otherwise.

F is a family of Distributed Verifiable Unpredictable Functions (DVUF) if it
satisfies:

14

– Uniqueness: The DVUF value y = F (sk,m) with proof of correctness π is
unique if there exists no tuple (pk, x, y1, y2, π) with y1 6= y2 but Verify(pk, x,
y1, π) = Verify(pk, x, y2, π) = 1.

– Provability: For all (y, π)← Prove(sk, x): Verify(pk, x, y, π) = 1.
– Residual Unpredictability: For any PPT algorithm A = (A1,A2) the proba-

bility that A succeeds in the following experiment is negligible in the security
parameter 1λ :
1. (ski, pki)← Gen(1λ) for all i ∈ [n].
2. [n] 3 c← A1(pk)

3. (x∗, y∗, π∗)← AOProve(skc,·)
2 (sk \ {skc}).

4. A succeeds if x∗ ∈ {0, 1}a(λ) , Verify(pk, x∗, y∗, π∗) = 1 and x∗ was not
queried to the OProve(skc, ·) oracle by A,

where
OProve(skc, ·): The adversarial input to the oracle is a DVUF input x ∈
{0, 1}a(λ). The oracle responds on behalf of server c according to the
specification of the Prove protocol.

The following lemma from [25] when applied to the distributed setting shows
how to convert DVUF outputs into DVRF outputs. The resulting transformation
holds in the shared random string model that provides involved parties with the
random string r. Lemma 1 essentially allows us to focus on DVUF constructions
in the remaining part of this work.

Lemma 1 (From DVUF to DVRF [25]). For any DVUF (Gen,Prove,Verify)
with input length a(λ), output length b(λ), and security s(λ), there exists a
DVRF in the shared random string model with the following three algorithms:(
Gen, Prove, Verify

)
with input length a′(λ) ≤ a(λ), output length b′(λ) = 1,

and security s′(λ) = s(λ)1/3/(poly(λ) · 2a′(λ)):

– Gen(1λ, r) where r ← {0, 1}b(λ) is shared random string computes public/private
keys (ski, pki)← Gen(1λ) and outputs (sk,pk) = (sk, (pk, r)).

– Prove(sk, x, r) computes (y, π) ← Prove(sk, x), y = 〈y, r〉 as inner product
of y and r, π := (y, π) and outputs (y, π).

– Verify (pk, x, y, π) outputs 1 if Verify(pk, x, y, π) = 1 and y = 〈y, r〉. Oth-
erwise it outputs 0.

Proof. Since any DVUF/DVRF family F is also a VUF/VRF family the proof
of this lemma is implied by the result from [25, Section 5].

5.1 Generic Construction of DVUF from UAS Schemes

We obtain our first generic DVUF construction from UAS schemes where the
aggregation process is public. The major benefit of this construction is that
it requires only one communication round between the user and the n servers
and is thus as efficient in terms of communication as the approach in [11]. The
algorithms of our UAS-based DVUF construction are detailed in the following
using the UAS syntax from Definition 2:

15

Gen(1λ) computes public parameters I ← ParGen(1λ) of the UAS scheme. Each
server Si, i ∈ [n] computes its private/public UAS key pair (ski, pki) ←
KeyGen(I). Let sk = (sk1, ..., skn) and pk = (pk1, . . . , pkn).

Prove(sk, x) Protocol: This is a protocol between user U and servers Si, i =
1, . . . , n with each server in possession of ski ∈ sk. The common input is x
and pk. Each server Si computes σi ← Sign(ski, x) and sends it to U . For
all i ∈ [n], U checks whether Verify(pki, x, σi) = 1 using the verification
algorithm of the UAS scheme. If so U computes σ̄ ← Aggregate(pk, x,σ)
and outputs (y, π) = (unq(σ̄), σ̄).

Verify(pk, x, y, π): Parse π as σ̄. If AggVerify(pk, x, σ̄) = 1 and y = unq(σ̄)
then output 1, else output 0.

Theorem 4. Let UAS be a unique aggregate signature scheme according to Def-
initions 3 and 4. Then our DVUF construction from UAS fulfills the properties
of Definition 8.

Proof. The uniqueness of UAS scheme implies the uniqueness property of DVUF.
Because individual UAS signatures σi, which pass the UAS verification procedure
Verify from Definition 2 can be aggregated into a signature σ̄, which satisfies the
UAS AggVerify algorithm, we can conclude that for all (y, π) ← Prove(sk, x)
we have Verify(pk,m, y, π) = 1, where y = unq(σ̄), π = σ̄ and x is a value to
be signed. This implies the provability of our DVUF scheme.

In the following we thus focus on the residual unpredictability of our DVUF
construction. Assuming an adversary A which breaks the unpredictability of the
DVUF scheme, i.e. outputs a valid tuple (x∗, y∗, π∗) according to the experiment
in Definition 8, we construct an adversary B that simulates the environment of
A and breaks the unforgeability of the underlying UAS scheme by outputting a
valid tuple (m∗,pk∗, σ∗) according to the experiment in Definition 3.

The UAS forger B is initialized with system parameters I and the challenge
public key pkc. For all i ∈ [n], i 6= c, where c is treated as a random index in [n]
it computes (ski, pki) ← KeyGen(I) using the key generation algorithm of the
UAS scheme and invokes the two-stage DVUF adversary A = (A1,A2). First
it invokes A1(pk) where pk is comprised of all generated pki and pkc whereby
index c for pkc in pk is assigned randomly by B. If the index c output by A1(pk)
doesn’t match that of pkc the simulation aborts. The probability that the index
matches is given by 1/n. Otherwise, B invokes A2(sk′), where sk′ is comprised
of all generated ski (i.e. doesn’t include skc which is unknown to B) and answers
the OProve(skc, ·) oracle queries of A2 using its own oracle OSign(skc, ·). That
is, B performs the computation step of the protocol Prove on behalf of server
Sc by obtaining individual signatures σc on a given DVUF input x from its own
signing oracle. At some point, A2 outputs a tuple (x∗, y∗, π∗) aiming to break
the unpredictability property of the DVUF scheme. This tuple is valid if A2

never queried x∗ to its OProve(skc, ·) oracle and Verify(pk, x∗, y∗, π∗) = 1. B
checks the validity of the tuple and if valid outputs (m∗,pk∗, σ∗) = (x∗,pk, π∗)
where x∗ is a set consisting of n values x∗ as its own forgery.

Let SuccB denote the probability that B outputs a valid forgery for the UAS
scheme and SuccA denote the probability that A = (A1,A2) breaks the DVUF

16

construction. If the index c assigned by B matches the one output by A1 then its
simulation for A is perfect. It is easy to see that in this case the resulting tuple
(x∗,pk, π∗) constitutes a valid forgery for the UAS scheme since B never queried
the message x∗ to its OSign(skc, ·) oracle. Considering that indices match with
probability 1/n we get SuccA ≤ n · SuccB.

ut

5.2 Generic Construction of DVUF from USAS Schemes

Our second generic DVUF construction is based on an USAS scheme where the
aggregation process is sequential. This implies that the user must approach each
server one-by-one until it obtains the resulting DVUF output from the last server
in the sequence. The algorithms of our USAS-based DVUF are detailed in the
following using the USAS syntax from Definition 5:

Gen(1λ) computes public parameters I ← ParGen(1λ) of the USAS scheme. Each
server Si, i ∈ [n] computes its private/public USAS key pair (ski, pki) ←
KeyGen(I). Let sk = (sk1, ..., skn) and pk = (pk1, . . . , pkn).

Prove(sk, x) Protocol: This is a protocol between user U and servers Si, i =
1, . . . , n with each server in possession of ski ∈ sk. The common input is
x and pk. Each server Si computes σ̄i ← AggSign(ski, x, σ̄i−1,pki−1) and
sends it to U . For all i ∈ [n], U checks whether AggVerify(σ̄i, x,pki) = 1
using the verification algorithm of the USAS scheme. If so U gives as input
to server Si+1 an aggregate-so-far σ̄i and value x. Finally it outputs (y, π) =
(unq(σ̄), σ̄).

Verify(pk, x, y, π): Parse π as σ̄. If AggVerify(pk, x, σ̄) = 1 and y = unq(σ̄)
then output 1, else output 0.

Theorem 5. Let USAS be a unique sequential aggregate signature scheme ac-
cording to Definitions 6 and 7. Then our DVUF construction from USAS fulfills
the properties of Definition 8.

Proof. The uniqueness of USAS scheme implies the uniqueness property of DVUF.
Because each aggregate-so-far signature σ̄i−1 from USAS scheme, which pass
the USAS verification procedure AggVerify from Definition 5 can be aggre-
gated into an aggregate signature σ̄i by adding the signature σi on message m
signed by signer i, we can conclude that for all (y, π) ← Prove(sk, x) we have
Verify(pk,m, y, π) = 1, where y = unq(σ̄i), π = σ̄i and x is a value to be
signed. This implies the provability of our DVUF scheme.

Similar to the last construction we thus focus here on the residual unpre-
dictability of our DVUF construction. Assuming an adversary A which breaks
the unpredictability of the DVUF scheme, i.e. outputs a valid tuple (x∗, y∗, π∗)
according to the experiment in Definition 8, we construct an adversary B that
simulates the environment of A and breaks the unforgeability of the underlying
USAS scheme by outputting a valid tuple (m∗,pk∗, σ∗) according to the exper-
iment in Definition 6.

17

The USAS forger B is initialized with system parameters I and the challenge
public key pkc. For all i ∈ [n], i 6= c, where c is treated as a random index in
[n] it computes (ski, pki) ← KeyGen(I) using the key generation algorithm of
the USAS scheme and invokes the two-stage DVUF adversary A = (A1,A2).
Because the first stage adversary A1(pk) with pk being comprised of all gener-
ated pki and given pkc with a randomly assigned index c ∈ [n] runs in analogue
way to the proof of Theorem 4, we skip here its description and proceed with
the invocation of A2(sk′), where sk′ is comprised of all generated ski, i.e. sk′

doesn’t include skc which is unknown to B. B answers the OProve(skc, ·) oracle
queries of A2 on input (x, σ̄c−1) where x is the provided DVUF input and σ̄c−1
is the aggregate-so-far signature that is expected by the server Sc during the
execution of the Prove protocol as follows. Upon receiving such query from A2

it queries its own oracle OAggSign(skc, ·) on input (x, σ̄c−1,xc−1,pkc−1) where
xc−1 is a set of c−1 messages all of which are equal to x and pkc−1 is comprised
of all pki, i = 1, . . . , c − 1. Recall that the entire set of DVUF public keys pk
is considered as common input to the Prove protocol. In response to its query,
B obtains the aggregate-so-far signature σ̄c that it forwards on to A2 which is
inline with the specification of the Prove protocol. At some point, A2 outputs
a tuple (x∗, y∗, π∗) aiming to break the unpredictability property of the DVUF
scheme. This tuple is valid if A2 never queried x∗ to its OProve(skc, ·) oracle
and Verify(pk, x∗, y∗, π∗) = 1. B checks the validity of the tuple and if valid
outputs (m∗,pk∗, σ̄∗) = (x∗,pk, π∗) where x∗ is a set consisting of n values x∗

as its own forgery.

Let SuccB denote the probability that B outputs a valid forgery for the USAS
scheme and SuccA denote the probability that A = (A1,A2) breaks the DVUF
construction. If the index c assigned by B for pkc matches the one output by A1

then its simulation for A is perfect. It is easy to see that in this case the resulting
tuple (x∗,pk, π∗) constitutes a valid forgery for the USAS scheme since B never
queried the message x∗ to its OAggSign(skc, ·) oracle. Considering that indices
match with probability 1/n we get SuccA ≤ n · SuccB. ut

6 Conclusion

We explored the uniqueness property of aggregate signatures and showed that it
gives rise to generic DVUF constructions, whose outputs can be made pseudo-
random in the shared random string model using the techniques from [25]. This
gives us first generic DVRF constructions that do not impose assumptions on
trusted generation of secret keys and those outputs remain pseudorandom even
in presence of up to n− 1 corrupted servers. A number of concrete DVRF con-
structions follows immediately from our proofs of uniqueness for the aggregate
signature schemes from [7,22,31].

18

Acknowledgements

This research was supported by the German Science Foundation (DFG) through
the project PRIMAKE (MA 4957).

References

1. M. Abdalla, D. Catalano, and D. Fiore: Verifiable Random Functions from
Identity-Based Key Encapsulation. In EUROCRYPT ’09, LNCS 5479, pp. 554–
571, Springer, 2009.

2. A. Bagherzandi, J. H. Cheon, and S. Jarecki: Multisignatures Secure under the
Discrete Logarithm Assumption and a Generalized Forking Lemma. In ACM CCS
’08, pp. 449-458, ACM, 2008.

3. M. Bellare and G. Neven: Multi-Signatures in the Plain Public-Key Model and a
General Forking Lemma. In ACM CCS ’06, pp. 390–399, ACM, 2006.

4. M. Bellare and P. Rogaway: Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. In ACM CCS ’93, pp. 62-73, ACM, 1993.

5. A. Boldyreva: Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap Diffie-Hellman-Group Signature Scheme. In PKC 03, LNCS 2567, pp.
31-46, Springer, 2003.

6. A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum: Ordered Multisignatures
and Identity-Based Sequential Aggregate Signatures, with Applications to Secure
Routing. In ACM CCS ’07, pp. 276–285, ACM, 2007.

7. D. Boneh, C. Gentry, B. Lynn, and H. Shacham: Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps. In EUROCRYPT ’03, LNCS 2656, pp.
416-432, Springer, 2003.

8. D. Boneh, B. Lynn, and H. Shacham: Short Signatures from the Weil Pairing. In
Journal of Cryptology 17:297-319, Springer, 2004.

9. J. Camenisch and A. Lysyanskaya: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In CRYPTO ’04, LNCS 3152, pp. 56–72, Springer, 2004.

10. R. Canetti, O. Goldreich, and S. Halevi: The Random Oracle Methodology, Revis-
ited. In ACM STOC ’98, pp. 209-218, 1998.

11. Y. Dodis: Efficient Construction of (Distributed) Verifiable Random Functions. In
PKC ’03, LNCS 2567, pp. 1–17, Springer, 2003.

12. Y. Dodis and A. Yampolskiy: A Verifiable Random Function with Short Proofs
and Keys. In PKC ’05, LNCS 3386, pp. 416–431, Springer, 2005.

13. U. Feige, J. Killian, and M. Naor: A Minimal Model for Secure Computation. In
ACM STOC ’94, pp. 554–563, ACM, 1994.

14. M. Franklin and H. Zhang: Unique Group Signatures. In ESORICS ’12, LNCS
7459, pp. 643–660, Springer, 2012.

15. M. Franklin and H. Zhang: A Framework for Unique Ring Signatures. In IACR
Cryptology ePrint Archive, Report 2012/577, 2012.

16. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin: Secure Distributed Key Gen-
eration for Discrete-Log Based Cryptosystems. In EUROCRYPT ’99, LNCS 1592,
pp. 295–310, Springer, 1999.

17. O. Goldreich, S. Goldwasser and S. Micali.: How to construct random functions.
Journal of ACM, 33(4): pp. 792-807, 1986.

18. O. Goldreich and L. A. Levin: A Hard-Core Predicate for All One-Way Functions.
In ACM STOC ’89, pp. 25–32, ACM, 1989.

19

19. S. Goldwasser and R. Ostrovsky: Invariant Signatures and Non-Interactive Zero-
Knowledge Proofs are Equivalent. In CRYPTO ’92, LNCS 740, pp. 228–244,
Springer, 1992.

20. S. Jarecki and V. Shmatikov: Handcuffing Big Brother: An Abuse-Resilient Trans-
action Escrow Scheme. In EUROCRYPT ’04, LNCS 3027, pp. 590–608, Springer,
2004.

21. M. Liskov: Updatable Zero-Knowledge Databases. In ASIACRYPT ’05, LNCS
3788, pp. 174–198, Springer, 2005.

22. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters: Sequential Aggregate
Signatures and Multisignatures Without Random Oracles. In EUROCRYPT ’06,
LNCS 4004, pp. 465–485, Springer, 2006.

23. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham: Sequential Aggregate Sig-
natures from Trapdoor Permutations. In EUROCRYPT’04, LNCS 3027, pp. 74–90,
Springer, 2004.

24. A. Lysyanskaya: Unique Signatures and Verifiable Random Functions from the
DH-DDH Separation. In CRYPTO ’02, LNCS 2442, pp. 597–612, Springer, 2002.

25. S. Micali, M. Rabin, and S. Vadhan: Verifiable Random Functions. In IEEE FOCS
’99, pp. 120–130, IEEE Computer Society, 1999.

26. S. Micali and L. Reyzin: Soundness in the Public-Key Model. In CRYPTO ’01,
LNCS 2139, pp. 542–565, Springer, 2001.

27. S. Micali, K. Ohta, and L. Reyzin: Accountable-subgroup multisignatures: ex-
tended abstract. In ACM CCS ’01, pp. 245–254, ACM, 2001.

28. S. Micali and R. L. Rivest: Micropayments Revisited. In CT-RSA ’02, LNCS 2271,
pp. 149–163, Springer, 2002.

29. T. Ristenpart and S. Yilek: The Power of Proofs-of-Possession: Securing Multiparty
Signatures against Rogue-Key Attacks. In EUROCRYPT ’07, LNCS 4515, pp. 228–
245, Springer, 2007.

30. A. Shamir: How to Share a Secret. In Communications of the ACM, 22(11):612–
613, ACM, 1979.

31. D. Schröder: How to aggregate CL signatures. In ESORICS ’11, LNCS 6879, pp.
298-314, Springer, 2011.

32. B. Waters: Efficient Identity-Based Encryption without Random Oracles. In EU-
ROCRYPT ’05, LNCS 3494, pp. 114–127, Springer, 2005.

33. Y. Zhou, H. Qian, and X. Li: Non-Interactive CDH-Based Multisignature Scheme
in the Plain Public Key Model with Tighter Security. In ISC 2011, LNCS 7001,
pp. 341-354, Springer, 2011.

20

	Unique Aggregate Signatures with Applications to Distributed Verifiable Random Functions

