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Abstract. This paper formalizes the concept of threshold blind signa-
tures (TBS) that bridges together properties of the two well-known signa-
ture flavors, blind signatures and threshold signatures. Using TBS users
can obtain signatures through interaction with t-out-of-n signers without
disclosing the corresponding message to any of them. Our construction
is the first TBS scheme that achieves security in the standard model
and enjoys the property of being rerandomizable. The security of our
construction holds according to most recent security definitions for blind
signatures by Schröder and Unruh (PKC 2012) that are extended in this
work to the threshold setting.

Rerandomizable TBS schemes enable constructions of distributed
e-voting and e-cash systems. We highlight how TBS can be used to con-
struct the first e-voting scheme that simultaneously achieves privacy,
soundness, public verifiability in the presence of distributed registra-
tion authorities, following the general approach by Koenig, Dubuis, and
Haenni (Electronic Voting 2010), where existence of TBS schemes was
assumed but no construction given. As a second application, we discuss
how TBS can be used to distribute the currency issuer role amongst
multiple parties in a decentralized e-cash system proposed by Miers
et al.(IEEE S&P 2013).

1 Introduction

Blind Signatures. Blind signatures, introduced by Chaum [21], allow users to
obtain a signature on some message through interaction with the signer in a
way that doesn’t expose the message. This property, which is called blindness
is the distinctive property of blind signatures, in addition to the unforgeabil-
ity requirement, which guarantees that no more signatures can be produced in
addition to those output through the interaction with the signer. Blind signa-
tures are considered as an important building block for a variety of applications,
including e-voting [9,10,31,45] and e-cash schemes [21], anonymous credential
systems [15] and oblivious transfer [19]. Security properties and constructions of
blind signatures have been explored in numerous subsequent works: Pointcheval
and Stern [52] defined and proved the security requirements for blind signatures
in the random oracle model. Juels et al. [41] defined a blind signature scheme
which is secure under general complexity assumptions. Recently, Schröder and
Unruh [54] showed that security definitions from [52] have some drawbacks and
came up with an improved definition of honest-user unforgeability. A lot of
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work has been done on the constructions of blind signature schemes, both in
the random oracle model, e.g. [1,4,7,11,53], and in the standard model, e.g.
[3,9,17,32,39,42,48,51].

Threshold Signatures. Threshold signatures, introduced by Desmedt [26] dis-
tribute the ability to sign a message across t-out-of-n signers. This distribution
process is typically carried out using secret sharing techniques and is there-
fore helpful for the distribution of trust in various cryptographic applications.
In addition, threshold signatures can be used to achieve reliability and thus
improve on the availability of services. Security properties and constructions of
threshold signatures have been explored in [33,47,56]. Well-known constructions
of threshold signatures in the random oracle model under the RSA assumptions
have been proposed by Desmedt and Frankel [27] and Shoup [56]. Boldyreva [11]
showed how to construct threshold signatures in the random oracle model in
Gap Diffie-Hellman groups. More recently, Li et al. [46] distributed the signing
process of the well-known Waters signature scheme in the standard model under
the CDH assumption in bilinear groups.

Our Contribution: Threshold Blind Signature Schemes. In this work
we formalize the concept of threshold blind signatures (TBS) and present an
instantiation that enables the user to obtain a signature through interaction with
a distributed set of n signers on some message of user’s choice without revealing
any information about the message. Each signer is in possession of a secret key
share which is used in the signing process. The distribution of secret key shares
in our scheme is performed by a trusted dealer, albeit alternative methods, e.g.
[34], can also be applied. The signature generation process cannot be forged
unless the adversary corrupts t signers. The blindness property ensures that
even if all n potential signers are corrupted no information about the message is
leaked. When defining these properties for TBS we adapt new security definitions
from Schröder and Unruh [54], introduced originally for blind signatures, to the
threshold setting. The requirements modeled for blind signatures in [54] are
considered as being stronger than those given previously by Pointcheval and
Stern [52]. In particular, they prevent an attack by which the adversary queries
the signing oracle twice on the same message and then outputs a forgery on a
different message.

Our TBS scheme is built based on the techniques underlying the blind signa-
ture scheme introduced by Okamoto [51] that deploys bilinear groups. Our TBS
is more than an adaptation of the scheme from [51] to a threshold setting since
we introduce further changes to the original construction to enhance its per-
formance. In particular, by using non-interactive zero-knowledge (NIZK) proof
techniques from [35,37] we can remove several rounds of interaction between
the user and the signers, thus obtaining the same round-optimality as in case
of (non-threshold) blind signatures in [29]. The NIZK proof from [35], which is
based on the DLIN assumptions, gives us concurrent security for the overall TBS
construction in the Common Reference String (CRS) model.

The standard assumptions and stronger definitions of security make our
scheme superior to the existing TBS constructions from [43,57] that were proven
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secure in the random oracle model with respect to the (weaker) definitions
from [52], which in turn makes them vulnerable to attacks against blind sig-
natures identified in [54]. Our TBS construction enjoys the re-randomization
property, which makes it especially attractive for a range of applications such as
distributed e-voting and e-cash. We show how our TBS scheme can be used to
realize e-voting in presence of distributed registration authorities and decentral-
ized e-cash in presence of distributed currency issuers.

Applications of TBS. The use of blind signatures in e-voting schemes goes
back to Chaum [21] and various e-voting schemes utilizing blind signatures have
been introduced since then, e.g. [6,8,9,22,31,50]. The blindness property in most
e-voting constructions is necessary to ensure privacy of the submitted votes,
while the unforgeability property is used for authentication. The corresponding
signature is typically issued by the registration authority, which is supposed to
check the voter is eligible to participate in the election. The use of threshold blind
signatures in this context is a helpful alternative for the case where the regis-
tration authority needs to be distributed across multiple not necessarily fully
trustworthy entities. Such distributed approach for voter registration has been
proposed by Koenig, Dubuis, and Haenni [44] assuming existence of threshold
blind signatures, yet without offering concrete constructions of this primitive.
As proven in [44], existence of a public registration board is necessary in order
to prevent potential abuses. Public verifiability, originally defined in [40], is a
property that guarantees the validity of the election outcome, preventing vot-
ing authorities from biasing the results. We show that our re-randomizable TBS
construction can be used to obtain an e-voting scheme where the registration
authority can be distributed across multiple parties and where the property of
public verifiability holds simultaneously. In our construction we follow the tem-
plate from [44]. Our scheme also achieves public verifiability as it was required
in [44] because the voters send their votes together with signatures to a public
board such that each voter can complain if he does not find his vote on the board
or if he is generally suspicious about the content on the board. We provide an
publicly verifiable e-voting scheme, which guarantees extended security in the
signing process because of the threshold setting. Since the power of one signing
authority is distributed amongst a number of signers, the signature on a vote
will be accepted if and only if t out of n signers provide their signatures on the
blinded vote to public board.

Our TBS scheme can be used to construct distributed e-cash. The concept
of e-cash was introduced by Chaum [21] and later refined in [13,14,23,30,41,52].
A threshold approach was used by Camenisch et al. [18] in the design of endorsed
e-cash schemes to provide fairness for the user. By utilizing threshold setting, the
user creates n endorsements for one coin, of which any t can be used to reconstruct
the coin. The e-cash scheme by Zhou [59] uses threshold cryptography to enable
traceability of the issued e-coins. The secret sharing of the key and probabilistic
encryption algorithm enable threshold management of private key and the scheme
avoids the misuse of identity tracing and currency tracing in fair e-cash scheme.
Miers et al. [49] recently described the common problem of many e-cash protocols
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that fundamentally rely on the issuer of e-coins being trusted and mentioned the
distribution of his role amongst multiple issuers as a possible solution. We describe
how our TBS scheme can offer such a standard-model solution for distributed e-
cash schemes.

2 Building Blocks and Hardness Assumptions

In this section we recall several hardness assumptions and building blocks that
will be used in our work.

Definition 1 (Bilinear Groups). Let G(1λ), λ ∈ N be an algorithm that on
input a security parameter 1λ outputs the description of two cyclic groups G1 =
〈g1〉 and G2 = 〈g2〉 of prime order q with |q| = 1λ, where possibly G1 = G2,
and an efficiently computable e : G1 × G2 → GT with GT being another cyclic
group of order q. The group pair (G1,G2) is called bilinear if e(g1, g2) �= 1 and
∀u ∈ G1, v ∈ G2, ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab.

Definition 2 (DLin-Assumption). Let G be a cyclic group of order q. The
DLin assumption states that given a tuple

(
g, gx, gy, gxa, gyb, gc

)
for random

a, b, x, y, c ∈ Z
∗
q , it is hard to decide whether c = a + b. When (g, u = gx, v = gy)

is fixed, a tuple
(
ua, vb, ga+b

)
is called a linear tuple, whereas a tuple

(
ua, vb, gc

)

for a random and independent c is called a random tuple. Adversaries advantage
in solving the assumption is negligible.

Definition 3 (CDH-Assumption). Let G,GT be two groups of prime order
q. Let e : G × G → GT be a bilinear map and let 〈g〉 = G be the generator of
G. Let ACDH be an adversary taking as input the security parameter λ. Suppose
that a, b ← Z

∗
q are randomly chosen. ACDH is to solve the following problem:

Given g, ga, gb compute the gab. Let ε be the advantage of algorithm A in solving
the CDH assumption if

∣
∣Pr[A(g, ga, gb) = gab]

∣
∣ ≥ ε(λ).

Non-Interactive Zero-Knowledge Proof [36]. A non-interactive proof sys-
tem (G,K,P,V) for a relation R with setup consists of four PPT algorithms: a
setup algorithm G, a common reference string (CRS) generation algorithm K,
a prover P and a verifier V. The setup algorithm outputs public parameters I
and a commitment key ck. The CRS generation algorithm takes I as input and
outputs a CRS ρ. The prover P takes as input (I, ρ, x, ω), where x is the state-
ment and ω is the witness, and outputs a proof π. The verifier V takes as input
(I, ρ, x, π) and outputs 1 if the proof is acceptable and 0 otherwise. (G,K,P,V)
is non-interactive proof system for R if it has the following properties:

Completeness. A non-interactive proof is complete if an honest prover can
convince an honest verifier whenever the statement belongs to the language
and the prover holds a witness testifying to this fact. For all adversaries A we
have: Pr[(I, ck) ← G(1λ); ρ ← K(I, ck); (x, ω) ← A(I, ρ);π ← P(I, ρ, x, ω) :
V(I, ρ, x, π) = 1 if (I, x, ω) ∈ R] = 1.
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Soundness. A non-interactive proof is sound if it is impossible to prove a false
statement. We say (G,K,P,V) is perfectly sound if for all adversaries A we
have: Pr[(I, ck) ← G(1λ); ρ ← K(I, ck); (x, π) ← A(I, ρ);π ← P(I, ρ, x, ω) :
V(I, ρ, x, π) = 0 if x /∈ L] = 1.

Knowledge Extraction. We say that (G,K,P,V) is a proof of knowledge for
R if there exists a knowledge extractor E = (E1, E2) with the following prop-
erties: For all PPT adversaries A we have Pr[(I, ck) ← G(1λ); ρ ← K(I, ck) :
A(I, ρ) = 1] = Pr[I ← G(1λ); (ρ, ξ) ← E1(I) : A(I, ρ) = 1]. For all adver-
saries A holds Pr[(I, ck) ← G(1λ); (ρ, ξ) ← E1(I, ck); (x, π) ← A(I, ρ);ω ←
E2(ρ, ξ, x, π) : V(I, ρ, x, π) = 0 or (x, ω) ∈ R] = 1.

Zero-Knowledge. We say that (G,K,P,V) is a NIZK proof if there exists
a PPT simulator (S1,S2) such that for all PPT adversaries A we have
Pr[(I, ck) ← G(1λ); ρ ← K(I, ck) : A(I, ρ) = 1] ≈ Pr[I ← G(1λ); (ρ, τ) ←
S1(I) : A(I, ρ) = 1], and for all adversaries A: Pr[(I, ck) ← G(1λ); (ρ, τ) ←
S1(I, ck); (x, ω) ← A(I, ρ, τ);π ← P(I, ρ, x, ω) : A(π) = 1] = Pr[(I, ck) ←
G(1λ); (ρ, τ) ← S2(I, ck); (x, ω) ← A(I, ρ, τ);π ← P(I, ρ, x, ω) : A(π) = 1],
where A outputs (I, x, ω) ∈ R.

3 Threshold Blind Signatures

A threshold blind signature scheme gives the user the ability to get a signature on
a message without revealing its content and it distributes the secret key among
a certain number of signers. We observe a t−out-of-n threshold blind signature
scheme. It means that it is not possible to construct a valid blind signature on a
message by contacting less than t-out-of-n servers. The threshold blind signature
scheme is applicable to many constructions of cryptographic schemes because of
its role in the decentralization the power of the signer.

Definition 4 (Threshold Blind Signature). A t-out-of-n threshold blind sig-
nature scheme TBS in a Common Reference String model consists of the follow-
ing four algorithms:

TBParGen(1λ): A PPT algorithm takes as input the security parameter 1λ and
outputs public parameters I (possibly containing a common reference string
crsTBS).

KGen(I): On input public parameters I this algorithm outputs a secret share ski

for each signer Si, i ∈ {1, . . . , n} and a public key pk.
TBSign(·): This is a protocol between a user U and the signers Si, i ∈ {1, . . . , n}.

The input of U is pk and a message m. The input of each server Si is the
secret share ski. The protocol results in a signature σ output by U .

TBVerify(pk,m, σ): A deterministic algorithm which on input a public key pk,
message m, a signature σ outputs 1 if the signature is valid and 0 otherwise.

TBS Unforgeability. We recall the unforgeability definition for blind signa-
tures by Schröder and Unruh [54] and adopt it to the threshold setting. This
definition requires that (m∗

i , σ
∗
i ) �= (mj , σj) for all i, j and (m∗

i , σ
∗
i ) �= (m∗

j , σ
∗
j )
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for i, j with i �= j, which in comparison to the earlier definition by Pointcheval
and Stern [52] allows to tell which message is being signed in a given interaction.
It is assumed that the adversary randomly chooses up to (t−1) out of n servers.
When an adversary corrupts a server, it is given the entire computation history
of that server, and it gets control of the server for the running time of the system.
An adversary against unforgeability of TBS has the target to generate qS + 1
valid message/signature pairs after it has interacted at most qS times with the
honest signer.

Definition 5 (Unforgeability). A threshold blind signature scheme TBS =
(TBParGen, KGen, TBSign, TBVerify) is unforgeable if for all PPT adversaries
A the probability that the following experiment UnforgeTBS

A (λ) evaluates to 1 is
negligible in the security parameter λ.

1. I ← TBParGen(1λ)
2. (ski, pk) ← KGen(I) for all i ∈ {1, . . . , n}
3. {i1, . . . , in−t+1} ← A(pk)
4.

(
σ∗
1 ,m

∗
1, . . . ,

(
σ∗

qS+1,m
∗
qS+1

)) ← AOTBSign(·)(sk1, . . . , skt−1).
5. If TBVerify(pk,m∗

i , σ
∗
i ) = 1 for all i ∈ [1, qS + 1] and (m∗

i , σ
∗
i ) �= (m∗

j , σ
∗
j )

for all j ∈ [1, qS+1], j �= i then return 1, otherwise return 0.

OTBSign(·) is an oracle that executes the TBSign(ski,m) protocol on behalf of all
uncorrupted servers i1, . . . , in−t+1. The total number of invoked TBSign protocol
sessions is denoted by qS.

TBS Blindness. The TBS blindness property prevents signers from linking
generated signatures to corresponding sessions of the signing protocol. Therefore,
it should be impossible for a malicious signer A to decide on the order in which
two messages, m0 and m1, were signed in two protocol sessions with an honest
user U .

Definition 6 (Blindness). A threshold blind signature scheme TBS =
(TBParGen, KGen, TBSign, TBVerify) is called blind if for any PPT adversary A
the probability that the following experiment TBlindTBSA (λ) evaluates to 1 exceeds
1/2 by at most a negligible amount in the security parameter λ.

1. I ← TBParGen(1λ)
2. (m0,m1, pk, stfind) ← A(I, find)
3. Choose b

r← {0, 1}
4. Execute σb ← TBSign(pk,mb) and σ1−b ← TBSign(pk,m1−b) sessions on

behalf of user U . If σb = ⊥, or σ1−b = ⊥ then (σb, σ1−b) ← (⊥,⊥).
5. b∗ ← A(guess, σ0, σ1).
6. If b = b∗, then return 1, otherwise return 0.

A Note on Key Generation. There exist several approaches for the distri-
bution of keys amongst multiple signers. The approach by Shamir [55] applies
secret sharing and distributes secret key shares to corresponding signers through
a trusted dealer. The protocol by Feldman [28] minimizes this trust assumption
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on the dealer by requiring the latter to broadcasts information that can then be
used by the signers to individually check the validity of their shares and detect
incorrect shares at reconstruction time. The key generation protocol by Gennaro
et al. [34] proceeds in a pure distributed fashion, where each signer defines its
own share of the secret key and participates in a protocol with all remaining sign-
ers to setup the key. During the protocol parties can determine malicious signers
those contributions will be dropped. The distributed key generation protocol by
Abe and Fehr [2] for discrete logarithm-based keys achieves adaptive security in
the non-erasure model and avoids the use of interactive zero knowledge proofs.

4 TBS Construction in the Standard Model

4.1 Our TBS Scheme

In this section we present our TBS scheme based on the techniques underlying
the Okamoto’s blind signature scheme [51] and the NIZK proof from [36]. We
assume existence of a trusted dealer for the distribution of secret key shares.

Parameter Generation: The algorithm TBParGen(1λ) outputs the common
reference string CRS = (G,GT , q, g, e, ck), where ck = (u

′
k, uk,j), j = {1, . . . , n},

and k = {1, 2, 3} is the commitment key. The perfect binding key consists of

the following values u1,j =
(
u

′
1

)ξ1,j

, u2,j =
(
u

′
2

)ξ2,j

, u3,j =
(
u

′
3

)ξ1,j+ξ2,j+ζ

;

ξ1,j , ξ2,j , ζ
r← Z

∗
q and u

′
1 = gρ, u

′
2 = gτ , u

′
3 = g. The corresponding extraction

key is given by xk = (ck, ρ, τ, ζ). During the generation process of perfectly
hiding key, the algorithm outputs the following trapdoor key tkj = (ck, ξ1,j , ξ2,j),
j = {1, . . . , �}.

Key Generation: The algorithm KGen(I) picks x
r← Zq, computes g1 = gx, It

then picks a random polynomial f
r← Zq[Z] of degree t − 1, with t ≤ n being

a threshold and f(0) = x. Let f(z) =
∑t−1

i=1 aizi. The algorithm computes xi =
f(i) for each server i ∈ {1, . . . , n}. Let vk = (vk1, . . . , vkn) = (gx1 , . . . , gxn).
The outputs consists of the public key pk = (g1, g2,vk) and a separate secret
share ski = gxi

2 for each Si, i ∈ {1, . . . , n}.

Signature generation: The TBSign protocol on a �-bit message m =
(μ1, . . . , μ�) proceeds in two stages:

Stage 1: For all i = {1, . . . , n}, user U chooses a random ri
r← Z

∗
q and com-

putes Xi ←
(
u

′
1

∏�
j=1 u

μj

1,j

)ri

. U then prepares a NIZK proof for the well-

formedness of Xi. This proof consists of two parts π
(1)
i and π

(2)
i . It first part

π
(1)
i proves that all μj are bits using the NIZK proof from [37]. The user ran-

domly selects αk,j
r← Z

∗
q for k = 1, 2, 3 and computes Ak,j =

(
u

′
k

)αk,j

u
μj

k,j

for j = {1, . . . , �}, k = {1, 2, 3}. U proves to each server Si knowledge of αj

such that Ak,j =
(
u

′
k

)αk,j

for μj = 0 or Ak,j =
(
u

′
k

)αk,j

uk,j for μj = 1
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and j = {1, . . . , �}, k = {1, 2, 3}. For each Si the corresponding NIZK proof
π
(1)
i = (π̄1, . . . , π̄�) consists of � components π̄j , j = {1, . . . , �}. Each of

these proofs π̄j = (π11, π12, π13, π21, π22, π23) is computed as follows using a
randomly chosen tj

r← Z
∗
q :

π11 =
(
u
2μj−1
1,j

(
u

′
1

)α1,j
)α1,j

π12 = u
(2μj−1)α2,j

2,j

(
u

′
2

)α1,jα2,j−tj

π13 = u
(2μj−1)α1,j

3,j

(
u

′
3

)(α1,j+α2,j)α1,j+tj

π21 = u
(2μj−1)α2,j

1,j

(
u

′
1

)α1,jα2,j+tj

π22 =
(
u
2μj−1
2,j

(
u

′
2

)α2,j
)α2,j

π23 = u
(2μj−1)α2,j

3,j

(
u

′
3

)(α1,j+α2,j)α2,j−tj

U sends the proofs πi and the commitments {Ak,j}k={1,2,3},j={1,...,�} to the
corresponding server Si that checks the following verification equations:

e(u
′
1, π11) = e(A1,j , A1,ju

−1
1,j),

e(u
′
2, π22) = e(A2,j , A2,ju

−1
2,j),

e(u
′
3, π33) = e(A3,j , A3,ju

−1
3,j),

e(u
′
1, π12)e(u

′
2, π21) = e(A1,j , A2,ju

−1
2,j)e(A2,j , A1,ju

−1
1,j),

e(u
′
1, π13)e(u

′
3, π31) = e(A1,j , A3,ju

−1
3,j)e(A3,j , A1,ju

−1
1,j),

e(u
′
3, π23)e(u

′
3, π32) = e(A2,j , A3,ju

−1
3,j)e(A3,j , A2,ju

−1
2,j),

for each j = {1, . . . , �} and π33 = π1tπ2t, t = {1, 2, 3}. The server accepts
π
(1)
i if all verification equations hold.

In the second part π
(2)
i user U proves to each server Si the knowledge of

{ri, βk,i, δi,j}k∈[3],j∈[�] using the NIZK techniques from [35] and values Ak,j ,
αk,j k ∈ {1, 2, 3}; j ∈ {1, . . . , �} that were used to compute π

(1)
i by proving

that Xi =
(∏�

j=1 A1,j

)ri

(u
′
1)

β1,i and Xi = (u
′
1)

ri
∏�

j=1 u
δi,j

1,j , where β1,i =

ri − ri

∑�
j=1 α1,j and δi,j = riμj , j ∈ [�], i ∈ [n]. This proof involves building

commitments Bk,i =
(∏�

j=1 Ak,j

)ri

(u
′
k)βk,i and B̂k,i = (u

′
k)ri

∏�
j=1 u

δi,j

k,j ,

k = {1, 2, 3}, i = {1, . . . , n}, j = {1, . . . , �}. Note that B1,i = B̂1,i = Xi. This
effectively binds both parts of the proof to Xi. U splits Bk,i and B̂k,i into

� commitments such that Bk,i,j = Ari

k,j

(
u

′
k

)βk,i

and B̂k,i,j =
(
u

δi,j

k,j (u
′
k)ri

)
.
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The user makes then a NIZK proof for the Pedersen commitment for each
of these components. We refer to Sect. 4.5 [35] for further details on the
construction of π

(2)
i proof that is used in this second part. Each π

(2)
i consists

of 6(� − 1) + 2 components. Each server Si, i = {1, . . . , n} verifies π
(2)
i and

proceeds if the proof is valid.
Stage 2: If Si accepts the NIZK proof in Stage 1, it randomly chooses di

r←
Z

∗
q and uses its secret key share ski = gxi

2 to compute Yi1 ← skiX
di
i and

Yi2 ← gdi . Finally, Si sends its signature share σi = (Yi1, Yi2) to U . For
each received σi = (σi1, σi2), U checks the equation e(Yi1, g) = e(g2, vki) ·
e(Xi, Yi2) using the corresponding verification key vki ∈ vk and if successful
chooses a random si

r← Z
∗
q , and computes

σi1 ← Yi1

⎛

⎝u′
�∏

j=1

u
μj

j

⎞

⎠

si

and σi2 ← Y ri
i2 gsi .

Assume that U collected t shares σi from corresponding servers Si, i =
1, . . . , t. U first computes the Lagrange coefficients λ1, . . . , λt ∈ Zq such that
x = f(0) =

∑t
i=1 λif(i) and then σ1 =

∏t
i=1(σi1)λi and σ2 =

∏t
i=1(σi2)λi .

Finally, U outputs σ = (σ1, σ2) as the resulting signature. (Note that σ has
the same form as in the Okamoto’s blind signature scheme from [51]).

Verification: The algorithm TBVerify(pk,m, σ) first parses pk as (g1, g2, u′,
(u1, . . . , u�)), m as (μ1, . . . , μ�), and σ as (σ1, σ2) and outputs 1 if and only if
e(σ1, g) = e(g2, g1) · e

(
u′ ∏�

j=1 u
μj

j , σ2

)
.

4.2 Security Analysis

The unforgeability of our TBS scheme is proven in Theorem 1 through a direct
reduction to the CDH assumption. Note that the blind signature scheme by
Okamoto [51] those techniques we partially apply in TBS was proven to be
unforgeable using a reduction to the original Waters signature scheme [58] that
in turn holds under the CDH assumption.

Theorem 1 (Unforgeability). Our TBS scheme is unforgeable in the com-
mon reference string model assuming the hardness of the CDH assumption from
Definition 3 and the soundness property of the NIZK proof from [36].

Proof To prove the above theorem we construct a simulator C which is given the
CDH challenge (g, ga, gb) from Definition 3 and is internally using the unforge-
ability adversary A to compute gab. By ε we denote the success probability of A
in forging the threshold blind signature. The interaction of C with A proceeds
according to the following description.

Setup: To generate the public parameters the challenger C sets l = 4qS and
chooses a random vector of length �: a = (a1, . . . , a�), where each is chosen
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uniformly and random in the interval between 0 and l − 1 and � denotes the
number of bits of a message m. Then it chooses a random b′ r← Zq, and the
vector b = (b1, . . . , b�)

r← Zq. Next the challenger C sets the following public
parameters u′ = gq−tl+a′

1 gb′
and uj = g

aj

1 gbj , where t is the threshold number of
the scheme. The public parameters (g, g1, g2, u

′,u) are sent to the adversary A.
We assume for our scheme that the adversary corrupts t−1 servers Si1 , . . . , Sit−1 .
Let Ŝ be the set of indexes ik of corrupted servers.
The challenger C generates secret shares ski of the private key sk for the cor-
rupted servers in the following way: It picks t−1 random integers x1, . . . , xt−1 ∈
Zq. Let f ∈ Zq[Z] be the t − 1 polynomial, which satisfies f(0) = xi for
i = 1, . . . , t − 1. The challenger C gives the secret key shares ski = gxi

2 to
the adversary A.
The challenger C also generates the verification keys vki, which are useful to
prove the correctness of secret shares. It sets vki = gf(i), such that the veri-
fication keys generate a vector

(
vk1, . . . , vkn) = (gf(1), . . . , gf(n)

)
for the above

defined polynomial f . It is easy for the challenger C to construct the verification
keys for the corrupted servers from the set Ŝ, because f(i) equals to xi, which
are known to the challenger C. Let S̃ denote the set of uncorrupted servers
(Sit

, . . . , Sin
). C has to compute the Lagrange coefficients λ0,i, . . . , λt−1,i ∈ Zq

such that f(i) = λ0,if(0) +
∑t−1

k=1 λk,if(k), where {i1, . . . , it−1} are the indexes
from the set Ŝ of corrupted servers and {it, . . . , in} are the indexes of uncor-
rupted servers. The Lagrange coefficients are then computed as follows:

λk,i =
∏

k′∈S̃\{i}

(k − k′)
(i − k′)

,

where k ∈ Ŝ is the index of a corrupted server and k′ is the index of an uncor-
rupted server. It is easy to determine these Lagrange coefficients because they
are independent from f . As a next step, C sets for i ∈ S̃ and g1 = gx:

vki = g
λ0,i

1 vk
λ1,i

1 · · · vk
λt−1,i

t−1 = g
λ0,i

1 gf(1)λ1,i · · · gf(t−1)λt−1,i

= g
λ0,i

1 g
∑t−1

k=1 f(k)λk,i = gf(i).

Once C has computed all the verification keys vki, it outputs them to A.

Signature Share Query: Once the adversary A has the verification keys
it provides up to qS signature share generation queries to the TBSign ora-
cle according to the experiment in Definition 5. The oracle queries are
processed by C that has to output a signature share σi = (Yi1, Yi2) on input
(Xi, Ak,j , Bk,i, B̂k,i, π

(1)
i , π

(2)
i ), for i = {1, . . . , n}, j = {1, . . . , �}, k = {1, 2, 3}.

The proofs π
(1)
i and π

(2)
i ensure that Xi =

(
u

′
1

∏�
j=1 u

μj

1,j

)ri

due to their sound-
ness property as proven in [35,37]. We note that the perfect binding property of
the commitment scheme guarantees the soundness of the NIZK proof (π(1)

i , π
(2)
i ).

Since our commitment scheme in Sect. 4.1 contains perfect binding keys it pro-
vides the existence of an extraction key which allows extraction of the values ri
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and μ1, . . . , μ�. For more details on the proof we refer to [35,37]. The challenger
C extracts ri, μ1, . . . , μ� and prepares a signature on these values using the CDH
challenge. C first defines two functions for m = (μ1, . . . , μ�):

F (m) = (q − tl) + a′ +
�∑

i=1

aiμi and G(m) = b′ +
�∑

i=1

biμi.

Additionally we define the following binary function:

K(m) =
{

0, if a′ +
∑�

j=1 ajμj ≡ 0 mod l

1, otherwise.

Upon the computation of u′ ∏�
j=1 u

μj

j = gq−tl+a′
1 gb′ ∏�

j=1 g
ajμj

1 gbjμj and using
F (m) and G(m) the challenger has to return signature shares σi = (Yi1, Yi2).
These are computed by C using the Lagrange coefficients λ0,i, λ1,i, . . . , λt−1,i ∈
Zq such that f(i) = λ0,if(0) +

∑t−1
k=1 λk,if(k) using the technique from Boneh

and Boyen [12]. C then picks r′
i ∈ Zq, and outputs the following signature tuple

σi = (Yi,1, Yi,2), where Yi,1 = gb(λ0,if(0)+
∑t−1

k=1 λk,if(k))gaF (m)r′
igG(m)r′

i and Yi,2 =
gr′

i , where r′
i = ri − bλ0,i

F (m) . Note that f(0) = −G(m)
F (m) . The signature σi satisfies

the verification equation e(Yi1, g) = e(g2, vki)e(u′ ∏�
j=1 u

μj

j , Yi2) since

e(g2, vki)e(u′
�∏

j=1

u
μj

j , Yi,2)

= e
(
gb, gλ0,if(0)+

∑t−1
k=1 λk,if(k)

)
e
(
gaF (m)gG(m), gr′

i

)

= e
(
g, gb(λ0,if(0)+

∑t−1
k=1 λk,if(k))

)
e
(
gaF (m)r′

igG(m)r′
i , g

)

= e

(
gb(λ0,if(0)+

∑t−1
k=1 λk,if(k))gaF (m)

(
ri− bλ0,i

F (m)

)

g
G(m)

(
ri− bλ0,i

F (m)

)

, g

)

= e(Yi,1, g).

In order to complete the simulation without aborting, it is required that all
signature queries on m have K(m) �= l. In this case, if F (m) �= 0 then C is able
to simulate the signature on the requested m; otherwise, C will not be able to
generate such signature and the simulation aborts.

Extraction: The execution of this step corresponds to the fourth step from the
experiment in Definition 5, where A sets σ∗

i = (σ∗
i1, σ

∗
i2) for i ∈ {1, qS} as a valid

signature share for a message m∗ = (μ∗
1, . . . , μ

∗
� ), which was not queried before.

As next, we define a function Q(m∗, q, A′), where A′ = (a′, a1, . . . , a�) are the
simulated values, and q = (q1, . . . , qS) as

Q(m∗, q, A′) =
{

0, if ∀s
j=1qj : Kqj

(mj) = 1, and a′ +
∑�

j=1 ajμ
∗
j ≡ 0 mod l

1, otherwise.
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The function evaluates to 0 if all signature queries will not cause an abort for a
given choice of values A′ and the function a′ +

∑�
j=1 ajμ

∗
j mod l which equals

F (m∗) mod l vanishes for the values m∗ = (μ∗
1, . . . , μ

∗
� ). That means if F (m∗) =

0 then C can extract gab by computing

gab =

(
σi1

σ
G(m)di

i2 (gb)
∑t−1

k=1 λk,if(k)

)− 1
diλ0,i

.

Therefore we can consider the probability over the simulation values (μ∗
1, . . . , μ

∗
� )

as If F (m∗) is not 0, then we have Q(m∗, q, A′) = 1 and the extraction aborts
with probability Pr[Q(m∗, q, A′) = 1]. C repeats the above showed steps qS

times. If all qS rounds are completed, A outputs at least qS + 1 valid signa-
tures with different messages, where at least one valid message-signature pair is
different from the qS valid messages-signatures given from C algorithm.

Analysis: The probability of success of an adversary A can be compared with
the probability that C aborts in the simulation, which happens either if F (mi) =
0 for a signature query on mi or if F (m∗) �= 0. The probability for F (m∗) �= 0
can be bounded using following lemma.

Lemma 1 ([38]). Let X,Y1, . . . , Yq ⊆ [l] such that holds |X| , |Yi| ≥ d and
|(X \ Yi) ∪ (Yi \ X)| ≥ d for some d ≥ 1 and all i. Then, we have

Pr [a(X) = 0 ∧ ∀i ∈ [q] : a(Yi) �= 0] ≥
(

1 − C · q ·
√

�

d · √
w

)

· D√
d · w

for a(X) =
∑

i∈X xi and for fixed constants C,D that do not depend on values
�, w, d, q,X and the Yi

To apply this lemma to our analysis we set X := m∗ and Yi = mi for i ∈
[1, . . . , qS ], a(X) = F (m∗) and a(Yi) = Kqj

(mj). � denotes the bit-length of the
message and w equals in our scheme to the length of the vector a, such that
w = �. It also holds that | (X \ Yi)∪ (Yi \ X) | ≥. We consider that abort denotes
the event that the simulation fails. This happens either because F (mi) = 0 for
a signature query on mi, or because F (m∗) �= 0. The lemma above provides an
upper bound of 1−Θ(1/q). We conclude that Pr [a(X) = 0 ∧ ∀i ∈ [q] : a(Yi) �= 0]
corresponds to Pr[abort]. The proof in [38] for Lemma 1 showed that the upper
bound can be estimated by D

√
χ

4C
1

qS
, where χ = d/�. Since χ is a constant, then

the probability P [abort] has a lower bound of Θ(1/q). That means that the
lower bound of the probability Pr[abort] is ε(1/q). This completes the proof of
unforgeability of our TBS scheme. ��
Theorem 2 (Blindness). Our TBS scheme is blind in the common reference
string model assuming the hardness of the DLin assumption from Definition 2,
the perfect hiding property and the zero-knowledge property of the NIZK proof
from [35,37].

Proof. The full proof of blindness is given in AppendixB.
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5 Applications

Having introduced a new TBS construction, we highlight now its application to
distributed e-voting and to distributed e-cash systems.

Distributed Verifiable E-voting. We recall first the general concept of an e-
voting scheme and highlight functionalities of its algorithms based on [20]: a voter
V is a party that is authorized by a voting authority to submit votes. The tallying
authority collects individual votes and tally the results of the election to obtain
the outcome. A public board which can be considered as a broadcast channel
makes its content public to all parties and each party can add information to
the board but not remove or modify any of the published contents. This board
is typically used for the purpose of universal verifiability [25] of the e-voting
process.

Koenig et al. [44] presented a generic template for e-voting protocols with
distributed voting authorities assuming existence of threshold blind signatures,
yet without offering concrete constructions of the latter schemes. Their generic e-
voting protocol was shown to satisfy the security properties from [45]. By using
our rerandomizable threshold blind signature scheme we therefore enable the
actual construction of such distributed e-voting scheme.

The resulting scheme proceeds as follows. Each voting authority Ai, i =
1, . . . , n is in possession of the secret share ski from our TBS construction,
and the corresponding public key pk is assumed to be published on the public
board. Each voter encrypts its vote using the public key of the tallying authority
and executes the TBSign protocol with each of n voting authorities to obtain a
threshold blind signature σ on the encrypted vote if at least t out of n authorities
provide their shares. It combines all signature share to a common threshold blind
signature σ. This signature and the encrypted vote are sent to public board. The
tallying authority decrypts each vote and publishes its content on the board
together with the corresponding proof of decryption. The votes can then be
counted and verified publicly.

In general, an e-voting scheme is required to provide the following properties
that we recall informally here. More formal definitions can be found in [8,31,
45] The first important property is privacy, which means that individual votes
remain hidden. The soundness property prevents dishonest voters from biasing
the voting process. Finally, the public verifiability property ensures that anyone
can check that the votes has been counted to prevent potential falsifications of
counting process.

We briefly discuss why our construction offers privacy, soundness and public
verifiability. Privacy follows from the fact, that the e-voting scheme is based on
our TBS scheme. This guarantees in case that all authorities collude against a
voter, the voter’s privacy remains preserved due to the blindness property of the
TBS scheme. Soundness is satisfied because of the TBS unforgeability. Public
verifiability is satisfied because the decrypted votes, corresponding ciphertext as
well as proofs for correct decryption of votes are published on the public board.
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Distributed E-cash. We recall the basic functionality of an e-cash scheme [23].
The parties involved are the banks, users and merchants. Any user can withdraw
an e-coin from her account at the bank and then spend it at some merchant.
The merchant can then deposit the received coin on its account in the bank. In a
distributed e-cash the role of the bank is split amongst n currency issuers, who
are involved in the process of coin generation. This distributed approach helps
to mitigate the threat of dishonest banks as suggested by Miers et al. [49].

Our TBS scheme can be used as a building block for a distributed e-cash
scheme as discussed in the following. Upon withdrawal the user requests a coin
by choosing a random unique coin identifier r and by executing the TBSign
protocol over a secure channel with n issuers, each in possession of a secret
key share ski. After obtaining at least t valid signature shares on r the user
can compute the blind signature σ which resembles the coin. The coin spending
protocol is performed over a secure channel through which the user sends its
coin (σ, r) to the merchant, who in turn can check the validity of the coin by
executing the TBVerify algorithm. If the coin is valid, the merchant establishes
a secure connection with the bank aiming to deposit it on its account. In order
to avoid double-spending the bank must check that no coins with identifier r
were previously spent using the coin database that is maintained by the bank. If
the coin passes this check then the bank deposits it on the merchant’s account.

A (distributed) e-cash scheme is supposed to fulfill the following three com-
mon properties [16,18]. The anonymity property means that even if t−1 dishon-
est issuers conspire with malicious merchants, the coin withdrawal and spending
phases performed by the user should remain unlinkable. The balance property
prevents coalitions of malicious users and merchants from depositing more coins
than were originally withdrawn. The (ex)culpability property implies that any
dishonest user who is willing to spend one coin twice is caught and that no
coalition of at most t − 1 malicious issuers with merchants is able to accuse an
honest user of double-spending.

We discuss briefly the security of the above approach. The anonymity prop-
erty follows from the blindness of TBS signatures, which guarantees that spend-
ing of a coin (r, σ) cannot be linked to the corresponding withdrawal phase. The
balance property follows from unforgeability of TBS signatures and the require-
ment on the bank to check that coin identifiers r do not repeat. If r does not
repeat and more coins were deposited than issued then at least of those coins
would resemble a TBS forgery. The (ex)culpability property does not rely on
the security of the TBS scheme and follows from the authentication property of
secure channels between the user and the issuers upon withdrawal and between
the user and the merchant upon spending. More precisely, from the authentica-
tion requirement on such channels. In order to accuse an honest user of double
spending malicious issuers and merchants would need to come up with a tran-
script of the spending protocol authenticated by the user that shows the attempt
to spend the same coin (r, σ) twice. Similarly, in order to catch a dishonest user
who double-spends a coin honest issuers and merchants would be able to present
two transcripts of the spending protocol authenticated by this user.
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6 Conclusion

We proposed the first standard-model construction of (re-randomizable) thresh-
old blind signatures (TBS), where signatures can be obtained in a blind way
through interaction with n signers of which t are required to provide their sig-
nature shares. The stronger security notions for TBS schemes formalized in our
work extend the definitions from [54] to the threshold setting. We further showed
how our TBS construction can be used to realize a distributed e-voting protocol
following the template from [44] that guarantees privacy, soundness and public
verifiability in presence of distributed voting authorities. As a second applica-
tion we discussed construction of a distributed e-cash scheme, which achieves
the desirable properties of anonymity, balance, and (ex)culpability, and where
n issuers are involved in the generation of coins, a measure suggested in [49] to
address the trust problem in non-distributed e-cash scenarios.

A Blind Signature Scheme by Okamoto [51]

Our construction is influenced by the techniques underlying the following blind
signature scheme from [51].

BParGen(1λ): Generate the public bilinear group parameters I = (G,GT , q, g, e).
KGen(I): Pick x

r← Z
∗
q and generators g2, u

′, u1, . . . , un
r← G and set g1 ← gx.

Output pk = (g, g1, g2, u
′, u1, . . . , un) and sk = gx

2 .
BSign(·): Let m ∈ {0, 1}n be a message and μi the i-th bit of m. User U selects

r
r← Z

∗
p and computes X ←

(
u′ n∏

i=1

uμi

i

)r

and sends X to the signer S. U

additionally provides to S that it knows (r, μ1, . . . , μn) with μi ∈ {0, 1} for
X using the following witness indistinguishable Σ protocol:
U selects δ1, . . . , δn

r← Z
∗
p, computes Mi = uμi

i (u′)δi , (i = 1, . . . , n) and
sends (M1, . . . ,Mn) to S.

U proves to S that U knows δi such that Mi = (u′)δi for μi = 0 or Mi =
ui(u′)δi for μi = 1, where i ∈ [1, n]. This proof can be realized by a Σ
protocol which was described in [5].

U proves to S that U knows (t, β, γ1, . . . , γn) such that X =
(

n∏

i=1

Mi

)t

·

(u′)β , and X = (u′)t
n∏

i=1

uγi

i , where β ← t−t(
n∑

i=1

δi) mod p and γi ← tμi.

If S accepts in the above protocol then it selects d
r← Z

∗
p, computes Y1 ←

gx
2Xd, Y2 ← gd, and sends (Y1, Y2) to U . U eventually selects s

r← Z
∗
p and

computes a blind signature σ = (σ1, σ2), where

σ1 ← Y1

(

u′
n∏

i=1

uμi

i

)s

and σ2 ← Y r
2 gs.
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–BVerify(pk,m, σ): Parse pk as (g, g1, g2, u
′, u1, . . . , un) and σ as (σ1, σ2). If

e(σ1, g) = e(g1, g2)e
(

σ2, u
′ n∏

i=1

uμi

i

)−1

output 1; otherwise output 0.

The unforgeability and blindness of the scheme were proven in [51] based on the
unforgeability of the Waters scheme [58] and the security of “OR” proofs [24].

B Proof of Theorem 2 (Blindness)

Proof. We assume that the proposed signature scheme is not blind. That means
the existence of a dishonest signer S∗, which can guess b correctly with a non-
negligible advantage 1/2 + ε. We construct an algorithm C which can break
the security of the DLIN assumption as follows. Given the public parameters
pp = (G,GT , q, e, g), the DLIN problem instance (ga, gb, gc) = (u

′
1, u

′
2, u

′
3) the

challenger C computes (u1,j , u2,j , u3,j) =
((

u
′
1

)ξ1,j

,
(
u

′
2

)ξ2,j

,
(
u

′
3

)ξ3,j
)

, with

ξ1,j , ξ2,j , ξ3,j ∈ Z
∗
q , and ξ3,j = ξ1,j +ξ2,j , j ∈ {1, . . . , �}. C gives (pp, pk, u

′
1, u

′
2, u

′
3,

u1,j , u2,j , u3,j) to S∗ as CRS. S∗ gives C a public key pk = (g1, g2,vk) and two
messages m0,m1 ∈ Z

∗
q . The challenger C checks if pk ∈ G and m0,m1 ∈ Z

∗
q . If

it holds C picks a random bit b ∈ {0, 1}. C chooses ri ∈ Z
∗
q and computes Xi,0 =

(u
′
1

∏�
j=1 u

μj,0
1,j )ri and Xi,1 = (u

′
1

∏�
j=1 u

μj,1
1,j )ri for mb = (μ1,b, . . . , μ�,b), b ∈

{0, 1}. C executes the both NIZK protocols from Sect. 4.1 to prove S∗ that C
knows (ri, μ1,b, . . . , μ�,b) for both messages mb = {m0,m1}. From the proofs in

[35,37] follows that for u3,j =
(
u

′
3

)ξ1,j+ξ2,j

the commitments are perfect hid-
ing and the two parameter initializations are indistinguishable under the DLIN
assumption. Therefore the commitments on the messages mb and m1−b leak no
information about the message. The perfect hiding property of commitments
allows to simulate NIZK proofs (π(1)

i,0 , π
(2)
i,0 ) and (π(1)

i,1 , π
(2)
i,1 ), that remain indis-

tinguishable from real proofs as shown in Sect. 4.4, [35]. C outputs Xi,bXi,1−b

and the simulated NIZK proofs (π(1)
i,b , π

(2)
i,b ) and (π(1)

i,1−b, π
(2)
i,1−b), where π

(1)
i,b is the

first part of NIZK proof, which is built to the commitment Xi,b and π
(2)
i,b is the

corresponding second part of NIZK proof to the commitment Xi,b. Analogously
are defined the proofs (π(1)

i,1−b, π
(2)
i,1−b). After completing the NIZK protocol the

challenger C acts as a honest user and proceeds in the same manner as the real
one. C sends his outputs to the dishonest signer S∗. The challenger C executes
the signing process first on behalf of Ub on input (pk,Xi,b, π

(1)
i,b , π

(2)
i,b ) and then

on behalf of U1−b on input pk,Xi,1−b, π
(1)
i,1−b, π

(2)
i,1−b). Since the commitments

and the proofs do not leak any information about the message, the output σi,b

of the signing protocol on behalf of Ub is indistinguishable from the output
σi,1−b of the protocol on behalf of U1−b. If S∗ rejects to sign one of the inputs
(Xi,b, π

(2)
i,b ) or (Xi,1−b, π

(2)
i,1−b), then for the corresponding output holds σb = ⊥

or σ1−b = ⊥. This means that the both resulting signatures are set to ⊥, and S∗,
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does not gain any advantage if he would try to hinder the game execution. Oth-
erwise, after finishing the signing phase of the blind signature for Ub and U1−b,
C checks the validity of the obtained signatures for U0, U1 by computing the
follows e(Yi,b,1, g) = e(g2, vki)e(Xi,b, Yi,b,2). If both of the signatures σi,b, σi,1−b

are valid, C gives them to S∗. If only one of them is valid, C outputs ⊥. C obtains
then the output b′ of S∗. If b = b′, C outputs β ← 0, otherwise it outputs β ← 1.

Analysis: Observe that if b = b′ then (u1,j , u2,j , u3,j) for j = {1, . . . , �} are DLIN

tuples with (u1,j , u2,j , u3,j) =
((

u
′
1

)ξ1,j

,
(
u

′
2

)ξ2,j

,
(
u

′
3

)ξ3,j
)

, with ξ3,j = ξ1,j +

ξ2,j and (u
′
1, u

′
2, u

′
3) = (ga, gb, bc). In this case the challenger outputs bDLIN = 1

and σb, σ1−b are perfectly simulated. Therefore Pr[bDLIN = 1|b = b′] = 1/2
Whether the challenger C outputs ⊥ or two valid signatures σ0, σ1 depends only
the adversary’s reply, i.e. whether its reply σi satisfies the verification process or
not. Therefore it is completely independent from b, since the distribution of X0

and X1 are indistinguishable from each other. Hence Pr[bDLIN = 0|b �= b′] =
1/2 + ε. Eventually it follows that the success probability in DLIN problem is
1/2(1/2) + 1/2(1/2 + ε) = 1/2 + ε/2, which contradicts the DLIN assumption,
for negligible ε. ��
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