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Abstract. In this paper we introduce Threshold Public Key Encryption
with Keyword Search (TPEKS), a variant of PEKS where the search pro-
cedure for encrypted keywords is distributed across multiple servers in a
threshold manner. TPEKS schemes offer stronger privacy protection for
keywords in comparison to traditional PEKS schemes. In particularly,
they prevent keyword guessing attacks by malicious servers. This protec-
tion is not achievable in a single-server PEKS setting.

We show how TPEKS can be built generically from any anony-
mous Identity-Based Threshold Decryption (IBTD), assuming the lat-
ter is indistinguishable, anonymous and robust. In order to instantiate
our TPEKS construction we describe an efficient IBTD variant of the
Boneh-Franklin IBE scheme. We provide an appropriate security model
for such IBTD schemes and give an efficient construction in the random
oracle model.

TPEKS constructions are particularly useful in distributed cloud
storage systems where none of the servers alone is sufficiently trusted
to perform the search procedure and where there is a need to split this
functionality across multiple servers to enhance security and reliability.

1 Introduction

Cloud computing provides convenient, on-demand network access to shared ser-
vices and applications over the Internet. The main advantages of cloud comput-
ing are the virtually unlimited data storage capabilities, universal data access,
and savings on hardware and software expenses. Despite the many technical and
economical advantages, availability and data privacy are amongst those issues
that prevent potential users from trusting the cloud services. The reason of these
concerns is that upon outsourcing their data to the cloud, users lose control over
their data.

While for better availability it is advisable to distribute copies of data across
multiple cloud servers, for data privacy and its protection from unauthorized
access the use of complete encryption prior to outsourcing is indispensable. If
the data is encrypted and the user wishes to access certain files at a later stage,
the cloud needs to perform the search and retrieve the corresponding ciphertexts.
In order to facilitate the search process each outsourced file is typically associated
with a set of keywords. Since adding plaintext keywords [11] to each file prior to
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outsourcing would leak information about the file contents to the cloud services,
a better solution is to encrypt the associated keywords and provide cloud services
with the ability to search for encrypted keywords. This permission comes in form
of trapdoors allowing cloud services to test whether an encrypted file contains
keywords for which the trapdoors were derived by the user. Such searchable
encryption techniques are particularly helpful to protect outsourcing of sensitive
files, e.g., those containing medical and health records [6,20,21].

A range of encryption schemes supporting keyword search have been pro-
posed, based on symmetric encryption (e.g., [12,14,16,27]) and public-key
encryption (e.g., [7,9,17,18]) techniques. While some schemes can cope only with
single keywords (e.g., [26,29]), which is too restrictive in practice, more advanced
schemes (e.g., [11,22,25,28]) can process multiple keywords. The majority of
searchable encryption schemes issue trapdoors for keywords and any party in
possession of those trapdoors can perform the search procedure on its own. In
a cloud-based storage setting this imposes a single point of trust with regard
to the search functionality. When it comes to the use of multiple cloud services
for better availability, a distributed search approach would therefore help to
reduce this trust requirement. Encryption schemes supporting distributed key-
word search procedures in a cloud environment exist so far only in the symmetric
setting, namely in [30], those constructions however were not formally modeled
and analyzed.

OurThreshold Public Key EncryptionwithKeyword Search (TPEKS).
We model security and propose first constructions of Threshold Public Key
Encryption with Keyword Search (TPEKS), where the ability to search over
encrypted keywords requires participation of at least t parties, each equipped with
its own trapdoor share. Main benefits of TPEKS over traditional PEKS construc-
tions include the distribution of trust across multiple servers involved in a search
procedure and more importantly stronger privacy protection of keywords against
keyword guessing attacks [10,24], based on which information about keywords can
be revealed from associated trapdoors; notably, all single-server-based PEKS con-
structions are inherently vulnerable to keyword guessing attacks.

Our security model for TPEKS is motivated by the security goals and known
attacks on single-server-based PEKS constructions (e.g. [1,3,4,10,13,19]). The
concept of PEKS was introduced by Boneh et al. [7], along with the formalization
of two security goals: indistinguishability and consistency. While indistinguisha-
bility aims at privacy of encrypted keywords, consistency aims to prevent false
positives, where a PEKS ciphertext created for one keyword can successfully
be tested with a trapdoor produced for another keyword. Initially, PEKS con-
structions were able to search for individual keywords, whereas later schemes
were designed to handle conjunctive queries on encrypted keywords [17,18,23]
and thus process keyword sets within a single search operation. The major-
ity of PEKS schemes offer security against chosen-plaintext attacks [1,7,10,13]
and only few constructions remain secure against chosen-ciphertext attacks, e.g.
[15]. The vulnerability of PEKS constructions, e.g. [7], against (offline) keyword
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guessing attacks was discovered by Byun et al. [10]. In short, a keyword guess-
ing attack can be mounted by creating a PEKS ciphertext for some candidate
keyword and then testing this ciphertext with the given trapdoor. Obviously,
this attack works if keywords have low entropy, which is what typically happens
in practice. As shown by Jeong et al. [19], keyword guessing attacks are inher-
ent to all single-server based PEKS constructions with consistency, a necessary
security property of PEKS. Through secret sharing of the trapdoor information
across multiple servers, TPEKS significantly reduces the risk of keyword guessing
attacks, which are modeled as part of the indistinguishability property.

In the design of our TPEKS construction we extend the ideas underlying
the transformation by Abdalla et al. [1] for building indistinguishable and com-
putationally consistent (single-server) PEKS from anonymous Identity-Based
Encryption (IBE). Although our transformation also treats identities as key-
words, it assumes a different building block, namely anonymous Identity-Based
Threshold Decryption (IBTD), which extends IBE by the distributed decryp-
tion process for which a threshold number t-out-of-n servers contribute with
their own decryption shares. We show that while IBTD anonymity is essen-
tial for the indistinguishability (with resistance to keyword guessing attacks)
of the constructed TPEKS scheme, IBTD indistinguishability informs compu-
tational consistency property of the TPEKS scheme. Aiming to instantiate our
TPEKS construction, we propose an anonymous IBTD scheme, as a modification
of the well-known anonymous IBE scheme by Boneh and Franklin (BF) [8]. This
modification is performed by distributing the decryption process of the original
BF-scheme.

2 Anonymous Identity-Based Threshold Decryption

We start with the definitions of Identity-Based Threshold Decryption (IBTD)
along with its security properties: indistinguishability, anonymity and robust-
ness. Our IBTD model extends the model from [5], where this primitive along
with the indistinguishability property was introduced, by additional anonymity
requirement, which also requires some small modifications to the assumed syntax
of the IBTD decryption process in comparison to [5].

2.1 IBTD Syntax and Security Goals

We formalize the IBTD syntax in Definition 1. In contrast to [5], we treat
the validity checking process for decryption shares implicitly as part of the
decryption algorithm Dec, whereas in [5] this property was outsourced into a
separate verification algorithm, aiming at public verifiability of individual
decryption shares. In our case, where we additionally require the IBTD scheme
to be anonymous such syntax change is necessary, as discussed in Remark 1.

Definition 1 (Identity-Based Threshold Decryption (IBTD)). An IBTD
scheme consists of the following algorithms (Setup, KeyDer, Enc, ShareDec, Dec):
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Setup(n, t, 1k) : On input the number of decryption servers n, a threshold para-
meter t, (1 ≤ t ≤ n) and a security parameter 1k, it outputs a master public key
mpk and a master secret key msk.

KeyDer(mpk,msk, id, t, n) : On input a master public key mpk, master secret key
msk, identity id, and threshold parameters t, n, it computes the secret key skid

for identity id and outputs the private tuple (i, skid,i) for server Si 1 ≤ i ≤ n.

Enc(mpk, id,m) : On input mpk, id,m it outputs a ciphertext C.

ShareDec(mpk, (i, skid,i), C) : On input a master public key mpk, secret shares
(i, skidi

) for servers 1 ≤ i ≤ n and ciphertext C. It outputs decryption shares δi

for 1 ≤ i ≤ n.

Dec(mpk, {δi}i∈Ω , C) : On input a master public key mpk, a set of decryption
shares {δi}i∈Ω, where |Ω| ≥ t and a ciphertext C. It outputs m (which can also
be ⊥ to indicate a failure).

The following Definition 2 formalizes IBTD indistinguishability against
chosen-ciphertext attacks (IBTD-IND-CCA) and bears similarities with the cor-
responding definition for IBE [8]; namely, our experiment takes into account the
threshold nature of the decryption algorithm allowing the adversary to reveal
up to t − 1 secret key shares.

Definition 2 (IBTD Indistinguishability). Let Aind be a PPT adversary
against the IBTD-IND-CCA security of the IBTD scheme, associated with the
following experiment ExpIBTD-IND-CCA−b

Aind
(1λ):

1. (mpk,msk) r← Setup(1λ, t, n)
2. Let List be a list comprising (id, Sid), where Sid := {(1, skid,1), . . . , (n, skid,n)}

and (i, skid,i) are the outputs of KeyDer(mpk,msk, id, t, n) algorithm.
Note: at the beginning of the experiment the list is empty.

3. (id∗,m0,m1, state)
r← A

OKeyDer(·),ODec(·)
ind (find,mpk)

4. if (id∗, Sid∗) /∈ List, run (skid∗ , (1, skid∗,1), . . . , (n, skid∗,n)) r← KeyDer
(mpk,msk, id∗, t, n), set Sid∗ := {(1, skid∗,1), . . . , (n, skid∗,n)}, add (id∗, Sid∗)
to List

5. pick b ∈ {0, 1}, compute C∗ r← Enc(mpk, id∗,mb)
6. b′ r← AOKeyDer(·),ODec(·)

ind (guess, C∗,mpk)

The experiment outputs 1 if all of the following holds:

– b′ = b
– A issued at most t − 1 queries OKeyDer(id∗, i)
– Aind did not query ODec(id∗, C∗)

where the two oracles are defined as follows:

OKeyDer(id, i): On input (id, i) check whether (id, Sid) ∈ List. If so, parse Sid

as {(1, skid,1), . . . , (n, skid,n)} and output (i, skidi
). If (id, Sid) /∈ List run S

r←
KeyDer(mpk,msk, id, t, n). Add (id, Sid) to List, output (i, skid,i).
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ODec(id, C): On input (id, C) check whether (id, Sid) ∈ List. If so, parse Sid as
{(1, skid,1), . . . , (n, skid,n)}, run δi

r← ShareDec(mpk, (i, skid,i), C) for i ∈ [n].
Take at least t-out-of-n decryption shares δi, run Dec({δi}i∈Ω , C), where |Ω| ≥ t

and output m or 0. If (id, Sid) /∈ List, compute Sid
r← KeyDer(mpk,msk, id, t, n)

add (id, Sid) to the List. Compute δi
r← ShareDec(mpk, (i, skid,i), C), where

i ∈ [n]. Take at least t-out-of-n decryption shares δi, run Dec({δi}i∈Ω , C), output
m or 0.

Aind’s success is given as

AdvIBTD-IND-CCA−b
Aind

(1λ) =
∣
∣
∣Pr

[

ExpIBTD-IND-CCA−1
Aind

(1λ) = 1
]

−Pr
[

ExpIBTD-IND-CCA−0
Aind

(1λ) = 1
]∣
∣
∣ .

The scheme is IBTD-IND-CCA secure if AdvIBTD-IND-CCA−b
Aind

is negligible.

In Definition 3 we model anonymity as a new property for IBTD schemes. Our
definition bears some similarity with the anonymity property for IBE schemes
as defined, e.g. in [1], except that we consider chosen-ciphertext attacks through
the inclusion of the decryption oracle and account for the threshold setting by
allowing the anonymity adversary to reveal up to t − 1 secret key shares. This
latter ability is particularly important for achieving protection against keyword
guessing attacks for our transformation from IBTD to TPEKS.

Definition 3 (IBTD Anonymity). Let Aano be a probabilistic polynomial-
time adversary against the IBTD-ANO-CCA security of the IBTD scheme, asso-
ciated with the following experiment ExpIBTD-ANO-CCA−b

Aano
(1λ)

1. (mpk,msk) r← Setup(1λ, t, n)
2. Let List be a list storing (id, Sid), where Sid := {(1, skid,1), . . . , (n, skid,n)}

and (i, skid,i) are the outputs of KeyDer(mpk,msk, id, t, n) algorithm.
Note: at the beginning of the experiment the list is empty.

3. (id0, id1,m∗, state) r← A
OKeyDer(·),ODec(·)
ano (find,mpk)

4. if (id0, Sid0) /∈ List: (skid0 , (1, skid0,1), . . . , (n, skid0,n)) r← KeyDer(mpk,msk,
id0, t, n), set Sid0 := {(1, skid0,1), . . . , (n, skid0,n)}, add (id0, Sid0) to List

5. if (id1, Sid1) /∈ List: (skid1 , (1, skid1,1), . . . , (n, skid1,n)) r← KeyDer(mpk,msk,
id1, t, n), set Sid1 := {(1, skid1,1), . . . , (n, skid1,n)}, add (id1, Sid1) to List

6. b ∈ {0, 1}; C∗ r← Enc(mpk, idb,m
∗)

7. b′ r← AOKeyDer(·),ODec(·)
ano (guess, C∗,mpk).

The experiment outputs 1 if all of the following holds

– b′ = b
– Aano issued at most t − 1 queries OKeyDer(id0, i) and at most t − 1 queries

OKeyDer(id1, i)
– Aano did not query ODec(id0, C∗) or ODec(id1, C∗)

where the two oracles are defined as follows:



Public Key Encryption with Distributed Keyword Search 67

OKeyDer(id, i) : On input (id, i) check whether (id, Sid) ∈ List. If so, parse
Sid as {(1, skid,1), . . . , (n, skid,n)} and output (i, skidi

). If (id, Sid) /∈ List run
Sid

r← KeyDer(mpk,msk, id, t, n). Add (id, Sid) to List, output (i, skid,i).

ODec(id, C): On input (id, C) check whether (id, Sid ∈ List. If so, parse Sid as
{(1, skid,1), . . . , (n, skid,n)}, compute δi

r← ShareDec(mpk, (i, skid,i), C) for i ∈
[n]. Take at least t-out-of-n decryption shares δi, run Dec({δi}i∈Ω , C), where |Ω| ≥
t and output m or 0. If (id, Sid) /∈ List, compute Sid

r← KeyDer(mpk,msk, id, t, n)
add (id, Sid) to the List. Compute δi

r← ShareDec(mpk, (i, skid,i), C), where
i ∈ [n]. Take at least t-out-of-n decryption shares δi, run Dec({δi}i∈Ω , C),
output m or 0.

The advantage of Aano is defined as

AdvIBTD-ANO-CCA−b
Aano

(1λ) =
∣
∣
∣Pr

[

ExpIBTD-ANO-CCA−1
Aano

(1λ) = 1
]

−Pr
[

ExpIBTD-ANO-CCA−0
Aano

(1λ) = 1
]∣
∣
∣ .

The scheme is IBTD-ANO-CCA secure if AdvIBTD-ANO-CCA
Aano

is negligible.

Remark 1. Without the aforementioned change to the IBTD syntax of the
decryption process, in comparison to [5], we would not be able to allow adver-
sarial access to up to t − 1 decryption shares for the challenge ciphertext in the
above anonymity experiment. The ability to publicly verify individual decryp-
tion shares using the challenge ciphertext and a candidate identity (as in [5])
would rule out any meaningful definition of anonymity; in particular, a single
decryption share for the challenge ciphertext would suffice to break its anonymity
property. In fact, it can be easily verified that the IBTD construction in [5] is
not anonymous according to our definition.

Robustness of IBTD. In the following definition we formalize IBTD robust-
ness, meaning that the decryption algorithm will output ⊥ with overwhelming
probability if an IBTD ciphertext computed for some id is decrypted using skid′

for id′ �= id. Our definition of strong robustness extends the one for IBE schemes
in [2] to the threshold decryption setting.

Definition 4 (IBTD-SROB-CCA). Let Arob be a probabilistic polynomial-time
adversary against the IBTD-SROB-CCA security of the IBTD scheme, associ-
ated with the following experiment ExpIBTD-SROB-CCA

Arob
(1λ):

1. (mpk,msk) r← Setup(1λ, t, n), b r← {0, 1}, List := ∅, I = ∅
2. Let List be a list storing (id, Sidb

, Ib), with Sidb
:= {(1, skidb,1), . . . ,

(n, skidb,n)} and b
r← {0, 1}, where (i, skidb,i) ← KeyDer(mpk,msk, idb, t, n)

3. (id∗
0, id

∗
1, C

∗, state) r← A
OKeyDer(·),ODec(·)
rob (find,mpk)

4. (i) If id0 = id1 then return 0.
(ii) If (id0, Sid0 , I0) /∈ List or (id1, Sid1 , I1) /∈ List, return 0.
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(iii) If |I0| ≥ t or |I1| ≥ t, then return 0. Else compute decryption shares
δ0,i

r← ShareDec(mpk, (i, skid0,i), C), m0
r← Dec(mpk, {δ0,i}i∈Ω , C) and

δ1,i
r← ShareDec(mpk, (i, skid1,i), C), m1

r← Dec(mpk, {δ1,i}i∈Ω , C). If m0 �=
⊥ and m1 �= ⊥ return 1.

OKeyDer(id, i): On input (id, i) check whether (id, Sid) /∈ List. If so, compute
S

r← KeyDer(mpk,msk, id, t, n), where Sid := {(1, skid,1), . . . , (n, skid,n)} and
I ⊂ [1, n], add (id, Sid, I) to List. Then add i to I and return (i, skid,i).

ODec(id, C): On input (id, C) check whether (id, Sid) /∈ List. If so, compute
Sid

r← KeyDer(mpk,msk, id, t, n) add (id, Sid, I) to List. Finally compute δi
r←

ShareDec(mpk, (i, skid,i), C), i ∈ [n], m ← Dec(mpk, {δi}i∈Ω , C), where |Ω| ≥ t.
Output m.

We have: AdvIBTD-SROB-CCA
Arob

(1λ) =
∣
∣
∣Pr

[

ExpIBTD-SROB-CCA
Arob

(1λ) = 1
]∣
∣
∣ .

2.2 An Anonymous IBTD Scheme Based on Boneh-Franklin IBE

We propose a concrete IBTD construction, based on Boneh-Franklin IBE [8]
where we apply secret sharing to individual private keys and to the decryp-
tion procedure. In particular, upon receiving at least t decryption shares, the
decryption algorithm outputs either the message m or 0 (to indicate a failure).
In contrast to the so-far only IBTD scheme in [5], which also builds on the
Boneh-Franklin IBE, our construction is anonymous. Abdalla et al. [2] proved
that Boneh-Franklin IBE is robust in the random oracle model.

Definition 5 (Anonymous IBTD Scheme). Setup(n, t, 1k): On input a secu-
rity parameter 1k, it specifies G,GT of order q ≥ 2k, chooses a generator g ∈ G,
specifies a bilinear map e : G × G → GT , random oracles H1,H2,H3,H4 s.t.
H1 : {0, 1}∗ → G; H2 : GT → {0, 1}�; H3 : {0, 1}� × {0, 1}� → Z

∗
q ; H4 :

{0, 1}� → {0, 1}�. The message space is M = {0, 1}�. The ciphertext space is
C = G

∗ × {0, 1}�. It picks x
r← Z

∗
q and computes Y = gx. It returns mpk =

(G,GT , q, g, e,H1,H2,H3,H4, Y ) and msk = x.

KeyDer(mpk,msk, id, t, n): On input an identity id, computes Qid = H1(id) ∈ G
∗

where 1 ≤ t ≤ n < q and using msk = x it computes skid = Qx
id = H1(id)x. It

picks a1, . . . , at−1
r← G, computes a polynomial f(u) = f(0) +

∑t−1
i=1 aiu

i, where
f(u) ∈ Zq(u), u ∈ N∪{0}, s.t. f(0) = x. It outputs n master key shares (i, skid,i),
where skid,i = Q

f(i)
id for i ∈ {1, . . . , n}. To derive the private key let λ1, . . . , λt ∈ Zq

be the Lagrange coefficients, s.t. x =
∑t−1

i=0 λif(i).

Enc(mpk, id,m): On input the public key mpk, a plaintext m ∈ {0, 1}� and an
identity id ∈ {0, 1}∗ computes Qid = H1(id) ∈ G

∗, chooses σ
r← {0, 1}�, sets

r = H3(σ,m). It computes U = gr, V = σ ⊕ H2(κid),W = m ⊕ H4(σ), where
κid = e(Qid, Y )r and returns C = 〈U, V,W 〉.
ShareDec(mpk, (i, skid,i), C): On input a ciphertext C = 〈U, V,W 〉 and a secret
key share (i, skid,i), the algorithm returns δi = e(skid,i, U) = e(Qf(i)

id , U).
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Dec(mpk, {δi}i∈Ω , C): Given a set of decryption shares {δi}i∈Ω, |Ω| ≥ t and a
ciphertext C = 〈U, V,W 〉, it computes Lagrange coefficients λi =

∏t
j∈Ω,j �=i

−j
i−j

and reconstructs κid :=
∏t

i=1 δλi
i . It computes σ = V ⊕ H2(e(κid)), m = W ⊕

H4(σ), and r = H3(σ,m). Then, if U = gr it outputs m; otherwise it outputs 0.
(Note that the equality check U = gr is essential for detecting inconsistent cipher-
texts and by this preventing chosen ciphertext attacks.)

Correctness. The proposed IBTD scheme is correct since κid computed by the
decryption algorithm is the same as was used by the encryption algorithm,
i.e. κid =

∏t
i=1 e(skid,i, U)λi =

∏t
i=1 e(skλi

id,i, g
r) = e

(
∏t

i=1 Q
f(i)λi

id , g
)r

=

e
(

Q
∑t−1

i=0 f(i)λi

id , gr
)

= e(Qx
id, g

r) = e(Qid, Y )r.

2.3 Security Analysis

The overall security of our IBTD scheme relies on the well-known Decisional
Bilinear Diffie-Hellman (DBDH) assumption and the random oracle model.

Definition 6 (DBDH Assumption). The Decisional Bilinear Diffie-
Hellman (DBDH) assumption in the bilinear map setting (q,G,GT , e, g),
where e : G × G → GT and g is the generator of G states that for
any PPT distinguisher A the following advantage is negligible: AdvDBDH

A =
∣
∣Pr

[A(g, ga, gb, gc, e(g, g)abc) = 1
] −Pr

[A(g, ga, gb, gc, e(g, g)z) = 1
]∣
∣, where

the probability is taken over the random choices of a, b, c, z ∈ Zq and the random
bits of A.

Theorem 1 (IBTD-IND-CCA). Our IBTD scheme from Definition 5 is IBTD-
IND-CCA secure under the DBDH assumption in the random oracle model.

Proof. For the proof of this theorem we refer to Appendix A.

Theorem 2 (IBTD-ANO-CCA). Our IBTD scheme from Definition 5 is
IBTD- ANO-CCA secure under the DBDH assumption in the random oracle
model.

Proof. Since the proof of anonymity is similar to the proof of indistinguishability
we only give a sketch. The simulator sets Qidβ

=
(

gb
)νβ , for a random β ∈ {0, 1}

and Y = gc. It responds to the key derivation and decryption queries like in the
indistinguishability proof. Upon finishing phase 1, Aano outputs a message m and
two identities id0, id1 it wants to be challenged on. The challenge ciphertext is
computed as follows. Aano sets Qidβ

= (gb)νβ and Y = gc such that e(Qidβ
, Y ) =

e(gb, gc) and κid = Z, where Z is the value from BDH instance. It chooses s ∈
{0, 1}� uniformly at random. ABDH gives C∗ = (ga, s ⊕ H2(Z),m ⊕ H4(s)), β ∈
{0, 1} to Aano. U is chosen uniformly at random by the encryption algorithm.
V depends on the randomly chosen s ∈ {0, 1}� and H2(Z). Since Z is randomly
chosen, it does not depend on idβ . Also W is independent of idβ and therefore
the ciphertext has the same distribution for both β ∈ {0, 1} and Aano will have
0 advantage to distinguish between id0 and id1.
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Theorem 3 (IBTD-SROB-CCA). Our IBTD scheme from Definition 5 is
unconditionally IBTD-SROB-CCA secure in the random oracle model.

Proof. (Sketch) We show that IBTD-SROB-CCA property holds in the random
oracle model. Assume Arob be a IBTD-SROB-CCA adversary that is given the
master key x. He can receive at most t − 1 secret shares from OKeyDer. We
note, that H1 is a map to G

∗, where all the outputs of this map are elements
of order q. That means that the probability of finding two different identities
id1 �= id2 such that H1(id1) = H1(id2) is negligible. Since Y = gx ∈ G

∗ we
have that κid1 and κid2 are not equal and of order q. Since H3 maps into Z

∗
q ,

then κr
id1

and κr
id2

are different. Assuming H2 as a random oracle, means that
H2(κr

id1
) �= H2(κr

id2
). Decryption under different identities yields therefore two

different values σ1 �= σ2. In order for the ciphertext to be valid for both id’s it
should hold that r = H3(σ1,m1) = H3(σ2,m2), which happens with negligible
probability. It follows that our IBTD scheme is IBTD-SROB-CCA secure.

3 Threshold Public Key Encryption with Keyword
Search

We start by defining the TPEKS syntax and its security goals. Towards the end
of this section we propose a general transformation for building a secure TPEKS
from anonymous and robust IBTD.

3.1 TPEKS Definitions and Security Model

Our model for TPEKS assumes a sender who encrypts keywords and at least t
out of n servers, each equipped with its own trapdoor share, who participate in
the search procedure. The latter represents the main difference to single-server
based PEKS construction. We stress that the parameters t and n need not be
fixed during the setup phase but can be chosen upon the generation of the
trapdoors, which allows for greater flexibility.

Definition 7 (TPEKS). A TPEKS scheme consists of the following five algo-
rithms (Setup, PEKS, Trpd, ShareTrpd, Test):

Setup(1k): On input 1k, it generates a private/public key pair (sk, pk).

PEKS(pk,w): On input pk and a keyword w, it outputs a PEKS ciphertext Φ.

ShareTrpd(pk, sk, w, t, n): On input (pk, sk) and a keyword w, it generates a list
of trapdoor shares Tw := {(1, Tw,1), . . . , (n, Tw,n)}.
ShareTest(pk, (i, Tw,i), Φ): On input pk, a trapdoor share Tw,i, and a PEKS
ciphertext Φ, it outputs a test share τi.

Test(pk, {τi}i∈Ω , Φ): On input pk, a set of test shares {τi}i∈Ω, |Ω| ≥ t and a
PEKS ciphertext Φ(w′), it outputs 1 if Φ encrypts w; otherwise it outputs 0.
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In Definition 8 we define TPEKS indistinguishability against chosen-ciphertext
attacks, denoted by TPEKS-IND-CCA, aiming to protect privacy of the
encrypted keywords in presence of an attacker who may learn up to t−1 trapdoor
shares. Apart from the access to the trapdoor share oracle our scheme allows
the adversary to issue up to t − 1 queries to the test oracle.

Definition 8 (TPEKS Indistinguishability). Let Bind be a PPT adversary
against the TPEKS-IND-CCA security of the TPEKS scheme, associated with
the following experiment ExpTPEKS-IND-CCA−b

Bind
(1λ):

1. (pk, sk) r← Setup(1λ, t, n).
2. Let List be a list storing a keyword w and a set Tw = {(1, Tw,1), . . . ,

(n, Tw,n)}, where (i, Tw,i) are the outputs of ShareTrpd(pk, sk, w, t, n)
algorithm.
At the beginning of the experiment the list is empty.

3. (w0, w1, state)
r← BOShareTrpd(·),OTest(·)

ind (find, pk)
4. If (w0, T0) /∈ List, run T0 := {(1, Tw0,1), . . . , (n, Tw0,n)} r← ShareTrpd

(pk, sk, w0, t, n), add (w0, T0) to List
5. If (w1, T1) /∈ List, run T1 := {(1, Tw1,1), . . . , (n, Tw1,n)} r← ShareTrpd

(pk, sk, w1, t, n), add (w1, T1) to List
6. b

r← {0, 1}; Φ
r← PEKS(pk,wb)

7. b′ r← BOShareTrpd(·),OTest(·)
ind (guess, Φ, state)

The experiment outputs 1 if all of the following holds:
– b′ = b
– Bind asked at most t − 1 queries to OShareTrpd(w0, i) and at most t − 1

queries to OShareTrpd(w1, i)
– Bind didn’t query OTest (w0, Φ) or OTest (w1, Φ)

where the two oracles are defined as follows:

OShareTrpd(w, i): On input (w, i) check whether (w, Tw) ∈ List. If so, parse Tw

as {(1, Tw,1), . . . , (n, Tw,n)} and output (i, Tw,i). If (w, Tw) /∈ List, run Tw
r←

ShareTrpd(pk, sk, w, t, n). Add (w, Tw) to List, output (i, Tw,i).

OTest (w,Φ): On input (w,Φ) check whether (w, Tw) ∈ List. If so, parse Tw

as {(1, Tw,i), . . . , (n, Tw,n)}, compute τi
r← ShareTest(pk, (i, Tw,i), Φ). Take at

least t-out-of-n test shares τi, run Test(pk, {τi}i∈Ω , Φ), where |Ω| ≥ t, output 1
or 0. If (w, Tw) /∈ List, compute Tw

r← ShareTrpd(pk, sk, w, t, n), add (w, T ) to
the List. Compute τi

r← ShareTest(pk, (i, Tw,i), Φ), where i ∈ [n]. Take at least
t-out-of-n test shares τi, run Test (pk, {τi}i∈Ω , Φ), output 1 or 0.

The advantage of Bind is defined as

AdvTPEKS-IND-CCA−b
Bind

(1k) =
∣
∣
∣Pr

[

ExpTPEKS-IND-CCA−1
Bind

(1λ) = 1
]

−Pr
[

ExpTPEKS-IND-CCA−0
Bind

(1λ) = 1
]∣
∣
∣ .

The scheme is TPEKS-IND-CCA secure if AdvTPEKS-IND-CCA
Bind

is negligible.
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In Definition 9 we model computational consistency of TPEKS schemes, by
extending the corresponding property for PEKS schemes from [1, Sect. 3]. Our
definition allows the adversary to test polynomially-many keyword-ciphertext
pairs, thus modeling chosen-ciphertext attacks, and accounts for the threshold
setting by allowing the adversary to learn up to t−1 trapdoor shares for keywords
that will be used to mount a successful attack.

Definition 9 (TPEKS Consistency). Let Bc be a PPT adversary against
the TPEKS-CONS security of the TPEKS scheme, associated with the following
experiment ExpTPEKS-CONS

Bc
(1λ):

1. (pk, sk) r← Setup(1λ, t, n)
Let List be list storing a keyword w and a set Tw = {(1, Tw,1), . . . , (n, Tw,n)},
where (i, Tw,i) are the outputs of ShareTrpd(pk, sk, w, t, n) algorithm.
At the beginning of the experiment the list is empty.

2. (w,w′) r← BOShareTrpd(·),OTest(·)
c (pk)

3. Φ
r← PEKS(pk,w)

4. If (w′, (i, Tw′,i)) /∈ List run Tw′ := {(1, Tw′,1) , . . . , (n, Tw′,n)} r← ShareTrpd
(pk, sk, w′, t, n) and add (w′, T ′) to List
The experiment outputs 1 if all of the following holds:
– w �= w′

– Bc asked at most t − 1 queries to OShareTrpd (w′, i) and at most t − 1
queries to OShareTrpd (w, i).

where the two oracles are defined as follows:

OShareTrpd(w, i): On input (w, i) check whether (w, Tw) ∈ List. If so, parse
T as {(1, Tw,1), . . . , (n, Tw,n)} and output (i, Tw,i). If (w, Tw) /∈ List, run T

r←
ShareTrpd(pk, sk, w, t, n). Add (w, Tw) to List, output (i, Tw,i).

OTest (w,Φ): On input (w,Φ) check whether (w, Tw) ∈ List. If so, parse Tw

as {(1, Tw,i), . . . , (n, Tw,n)}, compute τi
r← ShareTest(pk, (i, Tw,i), Φ). Take at

least t-out-of-n test shares τi, run Test(pk, {τi}i∈Ω , Φ), where |Ω| ≥ t, output 1
or 0. If (w, Tw) /∈ List, compute Tw

r← ShareTrpd(pk, sk, w, t, n), add (w, Tw)
to the List. Compute τi

r← ShareTest(pk, (i, Tw,i), Φ), where i ∈ [n]. Take at
least t-out-of-n test shares τi, run Test (pk, {τi}i∈Ω , Φ), output 1 or 0.

The advantage of Bc is defined as

AdvTPEKS-CONS
Bc

(

1k
)

= Pr
[

ExpTPEKS-CONS
Bc

(

1λ
)

= 1
]

.

The scheme is TPEKS-CONS secure if AdvTPEKS-CONS
Bc

is negligible.

Note: It is obvious that the correctness property of our TPEKS is satisfied.
Correctness ensures that the test algorithm always outputs the correct answer.
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3.2 A General TPEKS Construction from an Anonymous and
Robust IBTD Scheme

The design rationale of our TPEKS construction from IBTD follows the trans-
formation from [1] for single-server PEKS from any anonymous and robust IBE,
where the PEKS private/public key pair (sk, pk) corresponds to the IBE master
private/public key pair (msk,mpk) and a PEKS ciphertext Φ = (C,R) for some
keyword w is computed by encrypting some random message R using keyword
w as an identity. The search procedure for Φ decrypts C using the trapdoor Tw

and compares the decrypted message with R.
Our IBTD-to-TPEKS transformation, detailed in Definition 10, treats

TPEKS keywords as IBTD identities and performs distributed search on TPEKS
ciphertexts using the IBTD threshold decryption procedure. While we describe
only general IBTD-to-TPEKS transform, we remark that a concrete TPEKS
instantiation can be easily obtained using our concrete IBTD construction from
Definition 5.

Definition 10 (IBTD-to-TPEKS Transform).

Setup(1k): On input a security parameter 1k, it runs the parameter generation
algorithm of the IBTD scheme (msk,mpk) r← Setup(n, t, 1k) and outputs sk =
msk and pk = mpk.

PEKS(pk,w): On input a public key pk and a keyword w, it runs the encryption
algorithm of the IBTD scheme C

r← Enc(pk,w,R), where R
r← {0, 1}k is picked

randomly. It returns the TPEKS ciphertext Φ = (C,R).

ShareTrpd(pk, sk, w, t, n): On input (pk, sk, w, t, n), it runs the key derivation
procedure (Tw, {i, Tw,i}) r← KeyDer(pk, sk, w, t, n) of the IBTD scheme where sk
is the master key msk and keyword w is used as id. The trapdoor Tw associated to
w corresponds to skid generated by the IBTD. It outputs {(1, Tw,1), . . . , (n, Twn

)}
which correspond to {(i, skid,i), . . . , (n, skid,n)} of the IBTD scheme.

ShareTest(pk, (i, Tw,i), Φ): On input pk, a trapdoor share (i, Tw,i), and a TPEKS
ciphertext Φ = (C,R), it outputs τi

r← ShareDec(pk, (i, Tw,i), Φ) using the dis-
tributed decryption algorithm of the IBTD scheme.

Test(pk, {τw,i}i∈Ω , (C,R)): On input of at least t test shares {τw,i}i∈Ω, |Ω| ≥ t

and (C,R) is a TPEKS ciphertext, it computes R′ r← Dec(pk, {δi}i∈Ω , C) and
outputs 1 if R′ = R, and 0 otherwise.

3.3 Security Analysis

With regard to security, in Theorem 4, we establish similar implications for
TPEKS indistinguishability as in [1], namely we rely on the anonymity and
robustness of the IBTD scheme. In Theorem 5 we show that for TPEKS con-
sistency the underlying IBTD scheme must not only be indistinguishable but
also robust. This contrasts to [1,2] where IBE robustness was not required for
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PEKS consistency and is mainly due to the fact that our definition of consis-
tency allows adaptive queries to the distributed test procedure, which was not
an issue in [1,2].

Theorem 4 (TPEKS-IND-CCA). If IBTD scheme is IBTD-ANO-CCA secure
then the obtained TPEKS scheme in Definition 10 is TPEKS-IND-CCA secure

Proof. We use a TPEKS-IND-CCA adversary Bind against the TPEKS scheme
to construct a simulator S that breaks the assumed IBTD-ANO-CCA and IBTD-
SROB-CCA properties of the IBTD scheme. That is, S acts as Aano attacking
the IBTD-ANO-CCA security and as Arob against IBTD-SROB-CCA. The sim-
ulation of the view of Bind happens in several games. The initial game is the
Game0 which describes the real attack. First the challenger runs the Setup of
the TPEKS scheme on input a security parameter λ, threshold parameter t and
number of servers n. The challenger gives Bind the public key pk. If Bind submits
a pair of keywords w0, w1, the challenger computes a target ciphertext Φ∗. Bind

issues trapdoor share and test queries on the PEKS ciphertext Φ. The first game
(Game1) differs from the previous one by simulation of trapdoor share queries.
If these shares are involved in computing the PEKS ciphertext, the simulator
modifies the challenge ciphertext. The rest of Game 0 remains unmodified. The
simulation is distributed in two subcases. In Case 1 holds C �= C∗, w∗ �= wb,
which invokes Aano to simulate the queries on identities id �= idb. In Case 2
holds C = C∗, w∗ = wb for b ∈ {0, 1} where Arob is invoked for the simulation
of queries on id∗. In Case 1, Aano aborts the game if Bind issues more than t− 1
queries on w∗ �= wb. In Case 2, where holds C = C∗, Arob aborts the game if
Bind issues more than t−1 queries on w∗ = wb = w1−b. The second game differs
from Game 1 by simulation of test queries. In Case 1, Aano aborts the game if
Bind issues queries on wb. In Case 2, where holds C = C∗, Arob aborts the game
if Bind issues queries on w∗ = wb = w1−b. Each of the simulation steps looks as
follows:

Setup: S is given as input mpk of IBTD. It sets TPEKS public key pk equal to
mpk. We assume that a set of t−1 servers have been corrupted. When Bind issues
trapdoor share and decryption queries on input (w, i) and (w,Φ) respectively,
where w �= wb, and Φ = (C,R), Φ∗ = (C∗, R∗), S distinguishes between two
cases - Case 1: C �= C∗, w �= wb where Aano is invoked and Case 2: C = C∗,
w = wb for b ∈ {0, 1} where Arob is invoked.

Queries to OShareTrpd: Let (w, i) be a trapdoor share query issued by Bind. S
sets w ← id and queries its oracle OKeyDer(w, i). The oracle outputs (i, skw,i),
which S sets equal to (i, Tw,i) and returns it to Bind. In Case 1, the simu-
lator represented by Aano aborts if Bind issued more than t − 1 queries to
OShareTrpd(w0, i) and to OShareTrpd(w1, i). In Case 2, simulator represented
by Arob aborts if w0 = w1 or (w0, T0, I0) /∈ List, or (w1, T1, I1) /∈ List, or
|I0| ≥ t, |I1| ≥ t, where Tb = {(1, Twb,1), . . . , (n, Twb,n)}, Ib ⊂ [1, n], b ∈ {0, 1}.

Queries to OTest: Bind issues test queries on (w,Φ). S sets w ← id, Φ = (C,R)
and queries its oracle ODec(w,C). The oracle outputs m. S sets R ← m and
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returns R to Bind. In Case 1, S aborts simulation if Bind queried OTest(w0, Φ
∗)

or OTest(w1, Φ
∗), where Φ∗ = (C∗, R∗). In Case 2, S aborts if w0 = w1 or

(w0, T0, I0) /∈ List, or (w1, T1, I1) /∈ List, or |I0| ≥ t, |I1| ≥ t, where Tb =
{(1, Twb,1), . . . , (n, Twb,n)} and Ib ⊂ [1, n], for b ∈ {0, 1}.

Challenge: Bind outputs two identities w0, w1 and R∗ r← {0, 1}�. S responds
with IBTD ciphertext Φ∗ = (C∗, R∗), where C∗ ← Enc(pk,wb, R

∗), for b ∈ {0, 1}
and R∗ r← {0, 1}. S returns its ciphertext C∗ ← Enc(mpk,wb, R

∗).

Analysis: In Case 1: Simulator S is represented by Aano. Let qts, qt be the
number of issued trapdoor share queries on different id′s. We assume that Bind

corrupts t − 1-out-of-n servers with index i1, . . . , it−1. The probability that S
corrupts a server j with j ∈ {i1, . . . , it−1} is 1/

(
n

t−1

)

. Let E denote the event
that Bind wins the indistinguishability experiment from Definition 8. Let E1
denote the event that Bind wins Game 1. It holds 1

2AdvTPEKS-IND-CCA
Bind

(1λ) =
Pr[E] − 1/2 ≥ 1/

(
n

t−1

)
1

qts
(Pr[E1] − 1/2). Let E2 denote the event that Bind

wins Game 2, then holds: Pr[E1] − 1/2 ≥ 1
qt

(Pr[E2] − 1/2)

⇔ 1
2AdvTPEKS-IND-CCA

Bind
(1λ) = Pr[E] − 1/2 ≥ 1/

(
n

t−1

)
1

qts
1
qt

(Pr[E2] − 1/2) In
Case 2: Simulator S is represented by Arob. Let q′

ts, q
′
t be the number of issued

trapdoor share queries on different id′s. We assume that Bind corrupts t − 1-
out-of-n servers with index i1, . . . , it−1. The probability that S corrupts a server
j with j ∈ {i1, . . . , it−1} is 1/

(
n

t−1

)

. Let E denote the event that Bind wins

the indistinguishability experiment from Definition 8. Let Ẽ1 denote the event
that Bind wins Game 1. It holds 1

2AdvTPEKS-IND-CCA
Bind

(1λ) = Pr[E] − 1/2 ≥
1/

(
n

t−1

)
1

qts
(Pr[Ẽ1]−1/2). Let Ẽ2 denote the event that Bind wins Game 2, then

holds: Pr[E1] − 1/2 ≥ 1
qt

(Pr[Ẽ2] − 1/2)

⇔ 1
2AdvTPEKS-IND-CCA

Bind
(1λ) = Pr[E] − 1/2 ≥ 1/

(
n

t−1

)
1

qts

1
qt

(Pr[Ẽ2] − 1/2) The
total advantage of Bind is given by

1
2
AdvTPEKS-IND-CCA

Bind
(1λ) = Pr[E|Case1] + Pr[E|Case2] = 2Pr[E] − 1

≥ 1/

(
n

t − 1

)
1

qts

1
qt

(Pr[E2] − 1/2) + 1/

(
n

t − 1

)
1

qts

1
qt

(Pr[Ẽ2] − 1/2)

= 1/

(
n

t − 1

)
1

qts

1
qt

(Pr[E2] + Pr[Ẽ2] − 1)

Theorem 5 (TPEKS Consistency). If IBTD scheme is IBTD-IND-CCA
secure then the obtained TPEKS scheme in Definition 10 is TPEKS-CONS
secure.

Proof. For the proof of this theorem we refer to Appendix B.

3.4 Application to Cloud Setting

In the introduction we mentioned the applicability of TPEKS to distributed
cloud storage, as a solution to mitigate the single point of trust with regard to
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the search procedure and the insecurity of single-server PEKS schemes against
keyword guessing attacks. Together with its properties, TPEKS seems to be par-
ticularly attractive for this application, as detailed in the following two scenarios.

In the first use case we assume an user who wishes to upload his data files on
the cloud servers to have access to these file at a later point in time. Assume an
user who uploads to n cloud servers m encrypted data files with m PEKS cipher-
texts where each of them is encrypted on l different keywords w1, . . . , wl, i.e.
PEKS ciphertext for the j-th file is given by {Φ(pk, j, wi1 , . . . , wid

)}id∈[l],j∈[m].
When the user wants to download files which contain a keyword wi, he com-
putes trapdoor shares for each server on that keyword, i.e. he sends trapdoors
Twi,1, . . . , Twi,n on wi to the n servers, where i ∈ {1, . . . , l} denotes the index one
of the l keywords. Each cloud server computes test shares taking as input the
different PEKS ciphertext for each data file and the trapdoor for the k-th server
τk,j ← ShareTest(Φ(pk, j, wi1 , . . . , wid

), Twi,k), where j denotes the index of
PEKS ciphtertext for file j and i1, . . . , id ∈ [l] is a set of l keywords. Each server
outputs m test shares {τk,j}j∈[m], such that the user obtains in total m×n differ-
ent test shares. For the ease of analysis we observe 2 cloud servers and therefore
2m different test shares. Since the user does not know which test shares belong
to which files, he has to run m2 test algorithms, namely Test(τ1,j , τ2,j′ , pk)
where j, j′ ∈ [m]. This scenario has a total complexity of O(m2). This scenario
guarantees privacy of the user, because the trapdoors do not reveal anything
about the keywords and the servers do not learn anything about the keywords
since they take the ciphertexts keywords and the trapdoors without getting any
information about the content of the inputs.

To reduce the complexity the user could use random indices for each uploaded
PEKS ciphertexts on keywords. That means that he would need to upload
(rχ, {Φ(pk, j, wi1 , . . . , wid

)}id∈[l],j∈[m]) to each server, where rχ denotes a ran-
dom index for the ciphertext Φ(·) on a set of keywords wi1 , . . . , wid

, with
i1, . . . , id ∈ [l]. The user has to remember (rχ, wi1 , . . . , wid

) for later use. Finally
if he wants to download data files with keyword wi, i ∈ [l] he computes n trap-
door shares for all n servers and sends them together with the index rχ to the
server. Each server compares whether the received randomness belongs to one
of the stored PEKS ciphertexts. If so each server computes trapdoor shares
(rχ, τk,j) ← ShareTest((rχ, Φ(pk, j, wi1 , . . . , wid

), Twi,k) and sends them to the
user. Upon receiving the test shares together with the randomness, the user can
recognize which test shares to which file and can be used to run test algorithm.
If the output of the algorithm is 1, the user sends the randomness to one of the
servers to get access for the download of a file. The complexity in this scenario
can be reduced to the linear size O(m). This example still guarantees privacy of
the user because a randomness is prepared for a set of keywords, such that the
files are unlinkable to the keywords.

As a second use case we consider a sender who sends a set of m encrypted
messages with PEKS ciphertexts Φ(pk, j, w1, . . . , wl) on l different keywords to
the n servers, where j ∈ [m], for a recipient who owns the public key pk.
The receipient computes trapdoor shares for each server on a set of required
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keywords and sends them to the servers. Each of the servers computes m differ-
ent test shares and return them to the user. The user needs to find the sets of
the test shares for the same encrypted messages. To do so he needs to try mn

combinations which gives us the complexity of this scenario, O(mn). To reduce
the complexity the user could compute l × n trapdoor shares for the l shares
and send them together with a randomness {rχ}χ∈[l] of each keyword to the
servers. Each of the servers runs m test share algorithms and returns m × l test
shares together with randomness such that the user can combine the test shares
with the corresponding randomness. The complexity of this scenario is reduced
to O(l × m). The privacy of user regarding the keywords remains guaranteed,
because no one can learn the queried keywords.

A Proof of Theorem 1

Proof. Let Aind be an adversary that defeats the IBTD-IND-CCA security
of the IBTD scheme, and ABDH let be an adversary for the BDH prob-
lem. ABDH are given BDH parameters (G,GT , e, q) and a random instance
(g, ga, gb, gc, e(g, g)abc) of the BDH problem for these parameters. That means
g

r← G
∗ and a, b, c

r← Z
∗
q are random. Let Z = e(g, g)z ∈ GT , where Aind’s

aim is to decide whether z = abc, or z is a randomly chosen value from Z
∗
q .

The definition of CCA security allows the adversary to obtain the secret share
associated with any identity idi, where i ∈ [q1, . . . , qm] of her choice and Aind

is challenged on a public key id∗ of her choice. Aind issues queries q1, . . . , qm,
where qi, for i ∈ [m] is one the key derivation or decryption queries. ABDH uses
Aind to find d as follows:
Setup: The simulator ABDH generates IBTD master public key mpk =
(G,GT , q, g, e,H1,H2,H3,H4, Y ) by setting Y = gc and Qid = gb. H1, . . . , H4

are random oracles controlled by ABDH . The queries to the oracles are described
as follows. ABDH gives mpk to Aind. Aind issues qH1 , qks queries on an id to H1

oracle, the key derivation oracle and a query on id∗ to the both oracles in the
challenge stage, respectively.
H1 Oracle Queries: Let H1 List be a list used for storing the results of queries
to the H1 oracle, (id,Qid). Whenever H1 is queried at id ∈ {0, 1}�, ABDH does
the following: If (id,Qid) ∈ H1List, it returns Qid to Aind. For id �= id∗, ABDH

sets Qid = H1(id) =
(

gb
)γ for a random γ

r← Zq, where gb is given from the
BDH instance. If id = id∗, ABDH computes Qid = gγ , where γ

r← Zq, adds it to
the H1List and returns Qid to Aind.
H2 Oracle Queries: Let H2 List be a list consisting of all pairs (κid,H2(κid)).
When Aind queries on input κid = e(Qid, Y )r, ABDH checks whether the queried
value is in the H2List, if so it returns H2(κid). Otherwise it chooses a random
H ′

2 ∈ {0, 1}� and gives H2(κid) = H ′
2 to Aind.

H3 Oracle Queries: Let H3 List consisting of elements (σ,m,H3(σ,m)), where
σ ∈r {0, 1}l. When Aind issues queries on input (σ,m) it invokes ABDH that
checks whether (σ,m) ∈ H3List. If so it returns the corresponding H3(σ,m).
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Otherwise ABDH chooses a random H ′
3 ∈ Z

∗
q and sets H ′

3 = H3(σ,m) that it
gives to Aind

H4 Oracle Queries: Let H4 List consist of all pairs (σ,H4(σ)). When Aind

issues a query on (σ, ·), ABDH checks, whether σ ∈ H4List. If so, it returns the
corresponding H4(σ), otherwise it chooses H ′

4 ∈ {0, 1}� and sets H ′
4 = H4(σ)

and gives H ′
4 to Aind.

Phase 1: Aind issues up to qm queries to the key derivation and decryption
oracles.
Queries to OKeyDer(id, i): For id �= id∗: When A submits a key derivation
query on input (id, i), ABDH checks whether (id, S) ∈ List. If so, ABDH returns
the corresponding secret share skid,i for index i to Aind. If (id, S) /∈ List, ABDH

simulates the key shares as follows: For the t − 1 corrupted servers with indices
i1, . . . , it−1, ABDH chooses t − 1 random values χi, such that Q

f(i)
id = χi. If

id = id∗, ABDH picks a random χi ∈ G and returns it to Aind. If Aind issues
more than t − 1 queries on id∗, ABDH aborts the simulation. If id �= id∗, ABDH

chooses γ
r← Z

∗
q , adds Qid = (gb)γ to the H1List and outputs to Aind

Queries to ODec(id, C): If id = id∗, ABDH aborts the simulaton. For id �= id∗,
Aind issues a decryption query on input (id, C) to its decryption oracle, where
C �= C∗. ABDH simulates the decryption oracle without knowing the decryption
shares. It does the following:

1. ABDH checks whether (id,H1(id)) ∈ H1list. If so, it fixes the corresponding
Qid = H1(id).

2. It computes κid = e(Qid, Y )r, using the fixed Qid from H1List and Y = gc.
3. To determine the corresponding r, the simulator searches the H3List. Choos-

ing each triple (σ,m, r), the simulator compares, whether gr = U , where U
is given from the received ciphertext. After fixing the matching r, ABDH

receives (σ,m).
4. Using the fixed r and σ from the previous step the simulator computes κid =

e(Qid, Y )r and searches the H2List for the corresponding value H2(kid). It
checks, whether V = σ ⊕ H2(κid).

5. Taking σ,m from step 3. the simulator searches H4List for the corresponding
H4(σ) entry. Upon finding the matching value it checks whether W = m ⊕
H4(σ). If one of the computations in the above 5 steps fails, the simulator
aborts the game. Otherwise if all 5 steps finished successful, ABDH returns
m to Aind.

Challenge Ciphertext: At some point Aind outputs two messages m0,m1 and
an identity id on which it wishes to be challenged. ABDH simulates the ciphertext
as follows. He replaces U by ga from its BDH instance. It sets Qid = gb and
Y = gc such that e(Qid, Y ) = e(gb, gc) and κid = Z, where Z is the value
from BDH instance. It chooses s ∈ {0, 1}� uniformly at random. ABDH gives
C∗ = (ga, s ⊕ H2(Z),mβ ⊕ H4(s)), β ∈ {0, 1} as challenge to A.
Phase 2: Aind issues additional queries as in Phase 1, to which ABDH responds
as before
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Guess: Eventually Aind outputs β′ as its guess for β. Algorithm ABDH outputs
β′ as its guess for β

Analysis: Let qH1 , qks, qd be the number of issued H1 oracle queries, key share
queries, decryption queries on an identity id, respectively and Aind issues one
query on challenge id to the three oracles. The probability that ABDH guesses the
correct challenge id is δ1 := 1

qH1+qks+1 . It aborts the simulation with probability
δ if id = id∗, which has already been queried either to H1 oracle or to ODec.
We assume that Aind corrupts t−1-out-of-n servers with index i1, . . . , it−1. The
probability that ABDH matches a server j with j ∈ {i1, . . . , it−1} is δ2 := 1

( n
t−1)

.

If Aind issues more than t − 1 secret share queries on the same identity id,
ABDH aborts the simulation. The simulator aborts the decryption simulation
in the non challenge phase with negligible probability δ3, where δ3 ∈ [0, 1]. The
probability that it does not abort in the first phase is 1−(δ1+δ3). The simulator
aborts in the challenge phase if Aind issues more than t − 1 queries to ODec
and OKeyDer on the challenge identity id∗. It also stops the simulation if Z =
e(g, g)abc, where δ4 is the probability, that the equation holds. The probability
for abortion during the key derivation or decryption queries on id∗ is δ2 + δ2δ3.
The probability that it does not abort in the challenge step is 1−(δ2+δ2δ3+δ4).
Therefore the probability that ABDH does not abort during the simulation is
(1 − (δ1 + δ3)) (1 − (δ2 + δ2δ3 + δ4)) = 1 − δ̃, where δ̃ is negligible. Advantage of
Aind is given by

AdvABDH
≥ AdvIBTD-IND-CCA

Aind
= 1 − δ̃

It follows that AdvABDH
> 1 − δ̃ is non-negligible which is a contradiction to

the assumption. Therefore we follow, that the advantage of Aind is negligible.

B Proof of Theorem 5

Proof. We use a TPEKS-CONS adversary Bc to construct a simulator S that
breaks the IBTD-IND-CCA and IBTD-SROB-CCA properties of IBTD. That is,
S acts as Aind against IBTD-IND-CCA and as Arob against IBTD-SROB-CCA.
The initial game is the Game 0 which describes the real attack. First the chal-
lenger runs the Setup of the TPEKS scheme on input a security parameter λ,
threshold parameter t and number of servers n. The challenger gives Bc the
public key pk. If Bc submits a pair of keywords w,w′, the challenger computes
a target ciphertext Φ∗. Bc issues trapdoor share and test queries on the PEKS
ciphertext Φ. The first game (Game 1) differs from the previous one by simu-
lation of trapdoor share queries. If these shares are involved in computing the
PEKS ciphertext, the simulator modifies the challenge ciphertext. The rest of
Game 0 remains unmodified. The simulation is distributed in two subcases. In
Case 1 holds C �= C∗, w∗ �= w′, which invokes Aind to simulate the queries on
identities id∗ �= id′. In Case 2 holds C = C∗, w∗ = w′, where Arob is invoked
for the simulation of queries on id∗. In Case 1, Aind aborts the game if Bc issues
more than t − 1 queries on w∗ or w∗ = w′. In Case 2, where holds C = C∗, Arob
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aborts the game if Bc issues more than t − 1 queries on w∗ = w′. The second
game differs from Game 1 by simulation of test queries. In Case 1, Aind aborts
the game if Bc issues queries on w∗. In Case 2, where holds C = C∗, Arob aborts
the game if Bc issues queries on w∗ = w′. Each of the simulation steps looks as
follows:
Setup: S is given as input mpk of IBTD. It sets TPEKS public key pk equal to
mpk. We assume that a set of t−1 servers have been corrupted. When Bc issues
trapdoor share and decryption queries on input (w, i) and (w,Φ) respectively,
where w �= w′, and Φ = (C,R), Φ∗ = (C∗, R∗), S distinguishes between two cases
- Case 1: C �= C∗, w �= w′ where Aind is invoked and Case 2: C = C∗, w = w′,
where Arob is invoked.
Queries to OShareTrpd: Let (w, i) be a trapdoor share query issued by Bc. S
sets w ← id and queries its oracle OKeyDer(w, i). The oracle outputs (i, skw,i),
which S sets equal to (i, Tw,i) and returns it to Bc. In Case 1, the simulator repre-
sented by Aind aborts if Bc issued more than t−1 queries to OShareTrpd(w0, i)
and to OShareTrpd(w1, i). In Case 2, simulator represented by Arob aborts if
w = w′ or (w, T, I) /∈ List, or (w′, T ′, I ′) /∈ List, or |I| ≥ t, |I ′| ≥ t, where
T = {(1, Tw′,1), . . . , (n, Tw′,n)}, I, I ′ ⊂ [1, n].
Queries to OTest: Bind issues test queries on (w,Φ). S sets w ← id, Φ = (C,R)
and queries its oracle ODec(w,C). The oracle outputs m. S sets R ← m and
returns R to Bc. In Case 1, S aborts simulation if Bc queried OTest(w,Φ∗)
or OTest(w′, Φ∗), where Φ∗ = (C∗, R∗). In Case 2, S aborts if w = w′ or
(w′, T ′, I ′) /∈ List, or (w, T, I) /∈ List, or |I| ≥ t, |I ′| ≥ t, where T =
{(1, Tw,1), . . . , (n, Tw,n)} and I, I ′ ⊂ [1, n].

Challenge: Bc outputs a challenge identity w∗ and R0, R1
r← {0, 1}�. S responds

with IBTD ciphertext Φ∗ = (C∗, Rb), where C∗ ← Enc(pk,w∗, Rb), for b ∈ {0, 1}
and R∗ r← {0, 1}. S returns its ciphertext C∗ ← Enc(mpk,w∗, Rb).
Analysis: In Case 1: Simulator S is represented by Ainc. Let qts, qt be the
number of issued trapdoor share queries on different id′s. We assume that Bc

corrupts t − 1-out-of-n servers with index i1, . . . , it−1. The probability that S
corrupts a server j with j ∈ {i1, . . . , it−1} is 1/

(
n

t−1

)

. Let E denote the event that
Bc wins the indistinguishability experiment from Definition 8. Let E1 denote the
event that Bc wins Game 1. It holds 1

2AdvTPEKS-CONS
Bc

(1λ) = Pr[E] − 1/2 ≥
1/

(
n

t−1

)
1

qts
(Pr[E1] − 1/2). Let E2 denote the event that Bc wins Game 2, then

holds:

Pr[E1] − 1/2 ≥ 1
qt

(Pr[E2] − 1/2)

⇔ 1
2
AdvTPEKS-CONS

Bc
(1λ) = Pr[E] − 1/2 ≥ 1/

(
n

t − 1

)
1

qts

1
qt

(Pr[E2] − 1/2).

In Case 2: Simulator S is represented by Arob. Let q′
ts, q

′
t be the number of

issued trapdoor share queries on different id′s. We assume that Bc corrupts
t − 1-out-of-n servers with index i1, . . . , it−1. The probability that S corrupts
a server j with j ∈ {i1, . . . , it−1} is 1/

(
n

t−1

)

. Let E denote the event that Bc
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wins the indistinguishability experiment from Definition 8. Let Ẽ1 denote the
event that Bc wins Game 1. It holds 1

2AdvTPEKS-CONS
Bc

(1λ) = Pr[E] − 1/2 ≥
1/

(
n

t−1

)
1

qts
(Pr[Ẽ1] − 1/2). Let Ẽ2 denote the event that Bc wins Game 2, then

holds:

Pr[E1] − 1/2 ≥ 1
qt

(Pr[Ẽ2] − 1/2)

⇔ 1
2
AdvTPEKS-CONS

Bc
(1λ) = Pr[E] − 1/2 ≥ 1/

(
n

t − 1

)
1

qts

1
qt

(Pr[Ẽ2] − 1/2)

The total advantage of Bc is given by

1
2
AdvTPEKS-CONS

Bc
(1λ) = Pr[E|Case 1] + Pr[E|Case 2] = 2Pr[E] − 1

≥ 1/

(
n

t − 1

)
1

qts

1
qt

(Pr[E2] − 1/2) + 1/

(
n

t − 1

)
1

qts

1
qt

(Pr[Ẽ2] − 1/2)

= 1/

(
n

t − 1

)
1

qts

1
qt

(Pr[E2] + Pr[Ẽ2] − 1).
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