
Tree-based Group Key Agreement Framework for Mobile Ad-Hoc Networks∗

Lijun Liao† and Mark Manulis
Horst-Görtz Institute, Ruhr-University of Bochum

IC 4/158, D-44801 Bochum, Germany
{lijun.liao,mark.manulis}@rub.de

Abstract

Design of protocols for mobile ad-hoc networks
(MANETs) is generally tricky compared to wired networks,
because on the one hand the increased communication con-
straints given by the limited bandwidth and frequent
network failures, and on the other hand the additional com-
putation and memory constraints due to performance limi-
tations of mobile devices must be considered. We focus on
the problem of the establishment of the shared key in mo-
bile ad-hoc groups. This task can be achieved by means
of a contributory group key agreement (CGKA) proto-
col that allows group members to compute the group key
based on their individual contributions providing verifi-
able trust relationship between participants. As shown in
this paper there exists currently no CGKA protocol for mo-
bile ad-hoc networks that provides an optimal trade-off be-
tween communication and computation efficiency. Based
on the comparison results of most suitable CGKA pro-
tocols we propose a new framework for the group key
agreement in mobile ad-hoc networks. Theoretical anal-
ysis and experimental results show that our framework
achieves optimal communication and computation effi-
ciency compared to other protocols.

1. Introduction

Security of various group-oriented applications in mobile
ad-hoc networks requires the establishment of a shared se-
cret key (i.e., group key) known to all participants. Essential
for the trust relationship between mobile participants is the

∗ This is a full version of the paper which appears in Proceedings of the
20th IEEE International Conference on Advanced Information Net-
working and Applications (AINA 2006), 2nd International Workshop
on Security in Networks and Distributed Systems (SNDS 2006), April
18-20, Vienna, Austria. c© IEEE Computer Society 2006

† Both authors were supported by the European Commission through
IST-2002-507932 ECRYPT.

absence of any trusted central authority (e.g., a group man-
ager or a key server) that is actively involved in the com-
putation of the group key. Hence, the group key manage-
ment should proceed on the contributory basis allowing ev-
ery participant to take part in the interactive computation
of the group key. A class of so-called contributory group
key agreement (CGKA) protocols has beed defined for this
kind of trust relationship. According to [10] CGKA pro-
tocols that can be applied in mobile ad-hoc groups must
provide verifiable trust relationship, i.e., although partici-
pants are trusted not to reveal secrets that can be used to
compute the group key to other parties, they still should be
able to verify the computation steps of the CGKA proto-
col. Another characteristic of mobile ad-hoc groups is the
unpredictability of the occuring network failures and dy-
namic behaviour of mobile participants. Hence, the proto-
col for the group key management must be able to handle
dynamic changes to the group formation without compro-
mising the stated security requirements. In mobile ad-hoc
groups communication constraints due to the limited band-
width and frequent network failures, as well as computa-
tion and memory constraints due to the limited performance
capabilities of participating mobile devices are challenging
tasks that make the design of CGKA protocols more com-
plicated. According to [10] currently known CGKA proto-
cols for mobile ad-hoc groups provide either communica-
tion efficiency at the expense of the computation and mem-
ory costs, or computation and memory efficiency requiring
a higher communication overhead. Note that not all exist-
ing CGKA protocols achieve the same security level with
respect to the verifiable trust relationship. Actually, there is
no CGKA protocol that achieves an optimal trade-off be-
tween communication, computation and memory costs, and
provides stated security requirements. In this paper we pro-
pose a framework for the contributory group key agreement
in mobile ad-hoc networks, called TFAN1. This framework
consists of a protocol that combines properties of two (ac-
cording to [10] most applicable) CGKA protocols for mo-
bile ad-hoc networks: the communication efficiency of the

1 TFAN - Tree-based group key agreement Framework for mobile Ad-
hoc Networks.

lijun.liao, mark.manulis
@rub.de

µSTR protocol, and the computation and memory efficiency
of the µTGDH protocol.

2. Related Work

Several group key management protocols have been pro-
posed for mobile ad-hoc group communication. The pro-
tocol of Asokan et. al. in [1] is a password authentica-
tion based key agreement protocol for small ad-hoc groups
those members are on the same location (i.e., in one room).
It is assumed that all members share a secret password.
Obviously, the password-based authentication is a signifi-
cant drawback for mobile ad-hoc groups built ”on the fly”
where no such pre-shared password is available. The pro-
tocol does not handle dynamic events and is less-efficient if
the group size is not a power of two. The protocol of Besson
et. al. [4] provides efficient mutual authentication and group
key agreement for low-power mobile devices, and supports
dynamic changes. However, it requires a wireless infras-
tructure with some powerful trusted server (base station)
that performes heavy computations. According to the trust
model in mobile ad-hoc groups, no such trusted author-
ity is allowed. In [10] a number of CGKA protocols (i.e.,
Burmester-Desmedt (BD) [2], CLIQUES [15], STR [6] and
TGDH [7]) that were originally designed for local- and
wide-area wired networks has been analysed and optimized
from the perspective of static and dynamic mobile ad-hoc
groups, considering either the homogeneous or the hetero-
geneous distribution of the devices with respect to their per-
formance limitations, and introduced verifiable trust rela-
tionship between participants. The resulting modified ver-
sions of these protocols (i.e., µBD, µCLIQUES, µSTR,
and µTGDH) utilize elliptic curve cryptography (ECC) and
eliminate redundancies of the original protocols to reduce
the costs. One of the results of this work regarding dy-
namic mobile ad-hoc groups is that µSTR protocol is the
most communication efficient protocol that should be ap-
plied in ad-hoc networks where communication constraints
prevail over computation and memory constraints, whereas
µTGDH protocol due to its better computation and memory
efficiency should be used in the opposite case. Both pro-
tocols µSTR and µTGDH provide verifiable trust relation-
ship, i.e., achieve a higher security level compared to µBD
and µCLIQUES. Therefore, to achieve an optimal trade-off
between communication, computation and memory costs at
a higher security level we consider µSTR and µTGDH pro-
tocols as part of our framework.

3. Our Results

With respect to the results obtained in [10] we design
a framework for the contributory group key agreement
in mobile ad-hoc groups (TFAN) that achieves optimal

trade-off between communication, computation and mem-
ory costs. The framework combines the communication ef-
ficient µSTR protocol and the computation and memory ef-
ficient µTGDH protocol. This combination is possible be-
cause of the similarities in the computation process of the
group key in both protocols, which relies on the tree-based
extension of the well-known elliptic curve Diffie-Hellman
key exchange protocol (ECDH). Additionally to the theo-
retical security and complexity analysis the optimum of the
trade-off between communication, computation and mem-
ory costs for TFAN is substantiated by the experimental re-
sults obtained from the implementation and simulation of
the framework.

4. Mobile Ad-Hoc Group Communication

Constraints of Mobile Devices Mobile devices have lim-
ited performance capabilities due to the lower processor
power (CPU clocks) and memory capacity, and are active
for a limited period of time due to the battery dependent en-
ergy supply. Hence, one of the main goals for the design
of CGKA protocols for MANETs is to optimize the com-
putation, communication and memory costs of the proto-
col to increase the availability of the device. We remark that
performance of mobile devices in CGKA protocols can be
measured according to [11] by a specially designed bench-
marking function, which considers the hardware parameters
of the devices and performs protocol specific network and
cryptographic operations.

Constraints in MANETs Due to the mobility of nodes on-
going communication session in MANETs suffers from fre-
quent path breaks causing network failures to occur. Net-
work failures may cause connection loss for one node (leave
event) or a subset of nodes (partition event). Hence, CGKA
protocols for MANETs must provide mechanisms to re-
pair occured network failures, i.e., join protocol to repair
leave events, and merge protocol to repair partition events.
Limited bandwidth in MANETs additionally imposes a
constraint on CGKA protocols in maintaining the group.
Hence, CGKA protocols should be designed to achieve a
minimal control overhead to maintain the group formation.

5. Contributory Group Key Agreement

Group Communication System CGKA protocols make
use of an underlying group communication system (GCS)
that must provide the following properties: (i) public broad-
cast channel, and (ii) reliability, i.e., all messages must
reach their destination after being sent, and the order of sent
messages must be preserved. Note that reliability in ad-hoc
networks can be achieved using reliable multicast protocols
for MANETs, like RDG [9]. Note that since communica-
tion channel is public CGKA protocols must consider the

existence of a passive adversary that is able to intercept all
protocol messages.

Message Authentication In order to prevent imperson-
ation attacks or man-in-the-middle attacks communication
channels in CGKA protocols must be authentic. The authen-
tication of messages can be achieved, for example, over dig-
ital signatures with certified public keys. We assume that ev-
ery participant Mi has a certificate for its public key pkeyi

and uses the secret key skeyi to sign own messages. Note
that conventional PKI techniques with a trusted certifica-
tion authority may not be available in a MANETs because
of node mobility and missing infrastructure. The manage-
ment of the public key certificates in MANETs is a cur-
rent research topic, e.g., [3]. For our framework we assume
that an appropriate management mechanism for public key
certificates is available, and every participant sends authen-
tic messages. Since authentication procedure is independent
from the actual CGKA protocol we omit its explicit indica-
tion in the description of our protocols.

Verifiable Trust Relationship In mobile ad-hoc groups
there is no trusted central authority that is actively involved
in the computation of the group key, i.e., all participants
have equal rights during the computation process. This is
emphasized by the definition of the verifiable trust relation-
ship (VRT) for CGKA protocols in MANETs in [10]. VRT
assumes that: (i) group members are trusted not to reveal
the group key or secret values that may lead to its compu-
tation to any other party, and (ii) group members must be
able to verify the computation steps of the CGKA proto-
col.

Setup and Dynamic Events In order to build an ad-hoc
group and to agree on the shared group key participants
have to perform an interactive setup protocol. With respect
to VTR every participant provides own contribution and
should be able to verify the protocol steps towards the com-
putation of the group key. After the group is initialized
the protocol must respond to occuring dynamic events. Dy-
namic events may occur due to the network failures as de-
scribed in Section 4, or may be triggered by the applica-
tion, e.g., the application requires to join or exclude group
members, or to split the group into independent subgroups
(partition), or to combine independent groups into one com-
mon group (merge). We remark that CGKA protocols do not
need to distinguish between events caused by network fail-
ures and events triggered by the application, and can treat
both event types equally. Hence, CGKA protocol must con-
tain subprotocols for join, leave, merge and partition. Ad-
ditionally, it is preferred that group members are able to
change their contribution and cause the update of the group
key. For this purpose a so-called refresh protocol can be de-
signed as part of the suite.

Security Requirements CGKA protocols must fulfill the
following security requirements from [7]: computational
group key secrecy (it must be computationally infeasible for
a passive adversary to discover any secret group key), de-
cisional group key secrecy (it must be computationally in-
feasible for a passive adversary to distinguish any bits of
the secret group key from random bits), forward secrecy
(any passive adversary being in possession of a subset of
old group keys must not be able to discover any subsequent
group key), backward secrecy (any passive adversary being
in possession of a subset of subsequent group keys must not
be able to discover any preceding group key), and key in-
dependence (any passive adversary being in possession of
any subset of group keys must not be able to discover any
other group key). Note that all these requirements consider
only a passive adversary that might be able to intercept mes-
sages since the communication channel is public. Note also
that forward secrecy provides security for subtractive events
(leave and partition), since it prevents former group mem-
bers from the computation of the updated group key. Simi-
larly, backward secrecy provides security for additive events
(join and merge), e.g., it prevents new members from dis-
covering the previously used group keys.

6. Elliptic Curve Cryptography

There are no other techniques to agree on a shared key
over a public channel than to use the public-key cryptog-
raphy. However, public-key cryptography is costly to be
applied in MANETs because of the limited device perfor-
mance. Elliptic curve cryptography (ECC) is considered
to be most applicable for mobile devices, because of the
smaller key sizes (≈ 160 bits) and more efficient computa-
tion compared to other public-key systems. In [10] ECC has
been used in the CGKA protocols µSTR and µTGDH in or-
der to reduce the communication, computation and mem-
ory costs of the original protocols STR and TGDH, respec-
tively. Operations of ECC are performed in groups of points
of elliptic curves defined over finite fields. In the following
we give a brief overview of ECC and elliptic curve Diffie-
Hellman key exchange protocol (ECDH).

Let E be an elliptic curve over a finite field Fq, such
that Fq is either prime (q is a prime numer) or binary
(q = 2m, m ∈ N) field. E(Fq) denotes a commuta-
tive group of points in E. Considering G ∈ E(Fq) as a
point with high prime order t that devides q − 1, there ex-
ists a subgroup of points of E(Fq) generated by G, i.e.,
<G>= {O,G, 2G, . . . , (t − 1)G}, where O is the point
of infinity. The operation Q = rP , where r ∈ [1, t − 1]
and P ∈< G > is called a scalar-point multiplication and
its result Q is a point in <G>. Note that due to the hard-
ness of the Discrete Logarithm problem on elliptic curves
(ECDL) it is computationally hard to compute r given P

and Q [12]. The protocols µSTR, µTGDH and our frame-
work require to map a point Q ∈< G > to an integer in
the range [1, q − 1]. The most natural way is to map Q
to its x-coordinate, denoted (Q)x. The following function
map : E(Fq) → N ([14]) can be used for this purpose: if
q = p and p is prime then map(Q) = (Q)x, else if q = 2m,
m ∈ N, and (Q)x = (am−1 . . . a1a0) with ai ∈ {0, 1} then
map(Q) =

∑m−1
i=0 2iai.

ECDH Assume two participants M1 and M2 wish to agree
on a shared secret key using ECDH ([14]) and the group
<G> is generated as described above. Every participant Mi

generates its secret session random ki∈R [1, t−1] and com-
putes its blinded version Ki = kiG (point in <G>). M1 and
M2 exchange their blinded session randoms in an authen-
tic manner, and compute the shared secret key K = k1K2

and K = k2K1 respectively. If the shared secret key has to
be an integer then participants may apply the mapping func-
tion map() on K.

Security of ECDH relies on the computational and de-
cisional Diffie-Hellman assumptions in elliptic curves, de-
noted ECCDH and ECDDH, respectively. ECCDH means
that given G, aG, bG∈<G>, it is hard to compute (ab)G.
According to [12] ECCDH is hard for all types of elliptic
curves. ECDDH means that given G, aG, bG, cG∈<G>,
it is hard to decide whether cG = (ab)G. According to [5]
ECDDH assumption could only be proven for special types
of elliptic curves, i.e., non-supersingular and non-trace-2 el-
liptic curves. Therefore, only these special curves should be
chosen for the implementation of ECDH.

7. Building Blocks

In this section we describe first the general key structure
of µSTR and µTGDH procotols whose composition consti-
tutes our framework TFAN. Then we give a brief overview
of these protocols.

Binary Key Tree Structure Both µSTR and µTGDH pro-
tocols utilize the binary tree structure discribed in Figure 1.
The height of the tree, denoted h, is defined as the maxi-

〈0, 0〉

〈1, 0〉 〈1, 1〉

〈2, 0〉 〈2, 1〉

〈3, 0〉 〈3, 1〉 〈3, 6〉 〈3, 7〉

〈2, 2〉 〈2, 3〉

M1 M2

M3 M6

M4 M5

Figure 1. Binary tree

mal distance between a leaf node and the root node 〈0, 0〉,

defined h. There are two kinds of nodes: intermediate and
leaf nodes. The leaf node is associated with a member (de-
vice) and has no children. An intermediate node 〈l, v〉 has
two children: the left child 〈l + 1, 2v〉 and the right child
〈l+1, 2v +1〉. In the following we describe the structure of
the group key in ECC. Each node 〈l, v〉 is associated with a
secret key k〈l,v〉 and a public key bk〈l,v〉 = k〈l,v〉G. Secret
keys of leaf nodes are chosen and kept secret by associated
members. Every k〈l,v〉, 0 ≤ v ≤ 2l − 1, 0 ≤ l ≤ h is com-
puted with ECDH key exchange from Section 6 using secret
and public keys of both children nodes 〈l + 1, 2v〉 and 〈l +
1, 2v + 1〉, either as k〈l,v〉 = map(k〈l+1,2v〉bk〈l+1,2v+1〉)
or k〈l,v〉 = map(k〈l+1,2v+1〉bk〈l+1,2v〉), where map() is
a point-to-integer mapping function from Section 6. Obvi-
ously, the group key k〈0,0〉 (secret key at the root) can be
computed by any member Mi, associated with a leaf node
〈li, vi〉, if it knows all public keys in its co-path, which con-
sists of all sibling nodes in the member’s path, which in
turn consists of all nodes between 〈li, vi〉 and 〈0, 0〉. There-
fore, every member must save only the public keys in its
co-path, its own secret key and the tree structure. However,
in order to save members’ computation costs in the proto-
cols that handle dynamic events all secret keys in the path
must also be stored. A member associated with a leaf node
〈li, vi〉 stores li+1 secret keys k〈li−δ,bv/2δc〉 for 0 ≤ δ ≤ li,
own public key bk〈li,vi〉, and li public keys in its co-path.

µSTR The µSTR protocol suite uses the tree structure in
Figure 1 with the following constraints: For each l > 0 there
are only two nodes 〈l, 0〉 and 〈l, 1〉. Considering a group of
n > 1 members, the nodes 〈l, 1〉 with 1 ≤ l ≤ n − 1 and
〈n − 1, 0〉 are leaf nodes, which are associated with mem-
bers (devices). Figure 2 describes the setup protocol. In or-

1. Each member Mi, where 〈li, vi〉 ∈ {〈j, 1〉|0 < j ≤
n − 1} ∪ {〈n − 1, 0〉}, selects random k〈li,vi〉, computes
and broadcasts bk〈li,vi〉 .

2. The members 〈n − 1, 0〉 and 〈n − 1, 1〉 compute
(k〈n−2,0〉, . . . , k〈0,0〉). The member 〈n−1, 0〉 computes and
broadcasts (bk〈n−2,0〉, . . . , bk〈1,0〉).

3. Each member Mi computes missing (k〈li−1,0〉, . . . , k〈0,0〉).

Figure 2. µSTR Setup

der to handle dynamic events µSTR defines a special role,
called a sponsor. The role is temporary and is assigned to
different members depending on the current tree structure
and the kind of the dynamic event. We stress that a spon-
sor does not become a trusted central authority since ac-
cording to VTR its messages can be verified by other mem-
bers. Figure 3 describes the merge protocol for m trees, de-
noted Ti, i ∈ [1,m]. The number of members in Ti is de-

noted by ni, w.l.o.g. n1 ≥ n2 · · · ≥ nm is assumed. The
idea of the protocol is to subsequently append a tree Ti on
top of the tree Ti−1 for all 2 ≤ i ≤ m. Since every mem-

1. The sponsor Msi , i ∈ [1, m] broadcasts all public keys and
the tree structure of Ti.

2. Each member updates the tree by merging all trees and re-
moves all secret and public keys in the sponsor’s path. The
sponsor Ms changes it own secret key, computes all secret
and public keys. The newly computed public keys are then
broadcasted.

3. Each member Mi computes missing (k〈li−1,0〉, . . . , k〈0,0〉).

Figure 3. µSTR Merge

ber knows only the public keys in its co-path, only the mem-
bers 〈ni − 1, 0〉 and 〈ni − 1, 1〉 know all public keys in Ti.
One of them acts as the sponsor Msi

in the first round. The
sponsor Ms is, however, a member assigned to the node
with the lowest value for l in T1. The join protocol for one
member can be easily derived from the merge protocol. Af-
ter the joining member broadcasts its public key the tree
structure is modified by existing members, and the sponsor
broadcasts it together with required public keys so that all
members including the new member can compute the up-
dated group key. Figure 4 describes the partition protocol of
µSTR. The sponsor Ms is a member associated in the ini-
tial tree with the leaf node located directly below the leaf
node of the leaving member with highest value for l. If no
such node exists then Ms is a member associated with the
leftmost node in the updated tree. The leave protocol for a

1. Each member updates the tree by removing the leaving mem-
bers and removes all secret and public keys in the sponsor’s
path. The sponsor Ms associated with node 〈ls, vs〉 changes
its own secret key k〈ls,vs〉, computes all secret keys k〈i,0〉
for 0 ≤ i < ls, and public keys bk〈ls,vs〉 and bk〈i,0〉 for
1 ≤ i < ls, and broadcasts the updated public keys.

2. Each member Mi computes missing (k〈li−1,0〉, . . . , k〈0,0〉).

Figure 4. µSTR Partition

single member is easily derived from the partition protocol.
The refresh protocol is similar to the leave protocol

where refresher acts as the sponsor Ms with the only ex-
ception that the tree structure remains unchanged.

µTGDH The µTGDH protocol suite uses also the tree
structure in Figure 1. However, unlike in µSTR the tree
is kept balanced, i.e., paths of members assigned to the
leaf nodes contain ideally the same number of nodes. Fig-

ure 5 describes the setup protocol of µTGDH. The spon-

1. Mi selects random k〈li,vi〉, computes and broadcasts
bk〈li,vi〉, sets l = li − 1 and v = bvi/2c.

2. Mi updates the tree structure, computes secret key k〈l,v〉,
and public key bk〈l,v〉. The sponsor of the (sub)tree rooted at
node 〈l, v〉 broadcasts bk〈l,v〉.

3. Members repeat steps 2 and 3 with l = l− 1 and v = bv/2c
until every member computes the group key k〈0,0〉.

Figure 5. µTGDH Setup

sor of the (sub)tree is always the rightmost member. Simi-
larly to µSTR, the sponsor’s role in µTGDH protocols that
handle dynamic events is temporary and assigned to differ-
ent members depending on the current tree structure. Fig-
ure 6 describes the merge protocol for m trees, denoted
Ti, i ∈ [1,m]. The height of Ti is denoted by hTi

, w.l.o.g.
hT1 ≥ hT2 ≥ . . . ≥ hTm is assumed. The idea is to subse-
quently merge the two highest trees to a new tree which is
then merged to the next tree until all trees Ti, i ∈ [1,m] are
merged. Two trees have to be merged in a way that keeps
the resulting tree mostly balanced. For a detailed process
of merging two trees we refer to [7]. Similarly to µSTR the

1. The sponsor Msi of the tree Ti, i ∈ [1, m], updates its secret
key, computes all secret and public keys (including bk〈0,0〉)
in its path, and broadcasts the updated public keys together
with the tree structure.

2. Every member Mi merges the trees, removes the public keys
in the path of the rightmost sponsor, and in paths of par-
ent nodes of all other sponsors up to the root. The rightmost
sponsor changes its secret key and computes the correspond-
ing public key.

3. Every member Mi computes secret keys in its path until
it blocks. Additionally, every sponsor broadcasts the public
keys it has computed. Members repeat this step until every
member computes the updated group key.

Figure 6. µTGDH Merge

join protocol for one member can be easily derived from the
merge protocol. In this case only the new member broad-
casts its public key in the first round, and the updated pub-
lic keys together with the updated tree structure are broad-
casted by the sole sponsor in the second round.

Figure 7 describes the partition protocol. For a detailed
description of how the partitioned members are removed
from the tree and the sponsors are chosen we refer to [7].
Similarly to µSTR the leave protocol for a single member

1. Every member Mi updates the tree structure by removing
the partitioned members’ nodes and removes all secret and
public keys in the sponsors’ paths. The rightmost sponsor
changes its secret key.

2. Every sponsor computes the secret and public keys in its path
until it blocks and broadcasts the updated public keys.

3. Every member Mi computes secret keys in its path until it
blocks. Members repeat steps 2 and 3 until all members are
able to compute the group key.

Figure 7. µTGDH Partition

can be derived from the partition. In this case there is only
one sponsor chosen as a member assigned to the rightmost
leaf node in the subtree rooted at the sibling node of leav-
ing member’s node. The refresh protocol is similiar to the
leave protocol with the only difference that the tree struc-
ture remains unchanged.

8. Tree-based Group Key Agreement Frame-
work for Mobile Ad-Hoc Networks

In this section we present TFAN, a Tree-based group key
agreement Framework for mobile Ad-hoc Networks.

Idea Although the costs in µSTR and µTGDH protocols
are significantly reduced compared to the original STR
and TGDH protocols, the computation costs of µSTR are
still higher than those of µTGDH, and the communication
costs of µTGDH are in general higher than those of µSTR.
Hence, the idea is to combine both protocols into one frame-
work to achieve the optimal trade-off between computation
and communication efficiency.

Tree TFAN uses the binary tree structure described in Fig-
ure 1 with some strict specifications. An example of a TFAN
tree is shown in Figure 8. The nodes CNi, 0 ≤ i ≤ h − 1,
are called cover-nodes, the path from CNh−1 to CN0 is
called the cover-path. Each cover-node CNi has two child
nodes: the left child node is the cover-node CNi+1, and the
right child node is a root node of a subtree. These root nodes
are called sub-roots, whereas the subtrees are called cs-trees
(short for Cover-Sub-Trees) and are denoted by CTi. The
only exception is that the left child node of CNh−1 is also
a cs-tree CTh. The structure of the cs-trees depends on two
parameters: the maximal allowed height (q) and the art (art)
of cs-trees. The parameter art determines the cs-tree’s art:
S for a µSTR tree or T for a µTGDH tree. The cover-node
CNi is associated with the secret key kCNi

and the pub-
lic key bkCNi

. The secret and public keys associated with a
node 〈l, v〉 in a cs-tree CTi are denoted by ki

〈l,v〉 and bki
〈l,v〉,

respectively.

CN0

〈0, 0〉

〈1, 1〉〈1, 0〉

CN1

〈0, 0〉

〈1, 1〉〈1, 0〉

〈2, 1〉〈2, 0〉 〈2, 2〉 〈2, 3〉

M2M1 M3 M4

M5 M6

CT1

〈0, 0〉

〈1, 1〉〈1, 0〉

〈2, 1〉〈2, 0〉 〈2, 2〉 〈2, 3〉

M8M7 M9 M10

h = 2

Figure 8. TFAN tree (q = 2, art = T)

Setup Given q and art, assume that n members wish to
form a group. Every member broadcasts its public key with
some other information required by the protocol. Members
are then sorted according to some common criteria (e.g.,
sorted order of their public keys), w.l.o.g M1, . . ., Mn, and
assigned to the leaf nodes of a TFAN tree. The idea behind
the assignment of members to the leaf nodes is to divide the
sorted list into dn

b e blocks with a block length b = q + 1 if
art = S, and b = 2q if art = T . Each block except for the
last contains b members, and the last block the remaining
members. The height of the TFAN tree is then h =

⌈
n
b

⌉
−1.

Figure 9 describes the setup protocol. Figure 10 gives an ex-
ample of a TFAN tree with art = T 2 and q = 2. Every

1. Every member Mi, i ∈ {1, · · · , n} broadcasts its public key.

2. Members assigned to the same cs-tree CTj execute the setup
protocol of µSTR if art = S, or of µTGDH if art = T , and
compute the public key bkj

〈0,0〉. The sponsor of CTj broad-

casts bkj
〈0,0〉.

3. Members assigned to CTh and CTh−1 compute the secret
keys in the cover-path. The rightmost member in CTh com-
putes and broadcasts the public keys in the cover-path.

4. Members assigned to CTj , j < h − 1 compute the secret
keys kCNj , . . . , kCN0 .

Figure 9. TFAN Setup

member broadcasts its setup request and the public key. As-
sume that there are 14 members, e.g., M1, M2, · · · , M14.
Since any cs-tree may contain at most 4 members, the fol-
lowing assignment to the cs-trees is applied: CT3 consists
of M1,M2,M3, and M4, CT2 of M5,M6,M7, and M8,
CT1 of M9,M10,M11, and M12, and CT0 of M13 and M14.
Members assigned to the same cs-tree execute the µTGDH

2 Due to space limitations we provide examples for TFAN trees with
art = T . Note that examples with art = S are similar.

CN1 〈0, 0〉

CN2

〈0, 0〉

〈1, 1〉〈1, 0〉

〈2, 0〉

M2M1

〈0, 0〉

〈1, 1〉〈1, 0〉

〈0, 0〉

〈1, 1〉〈1, 0〉

CN0

〈2, 1〉 〈2, 0〉

M6M5

〈2, 1〉〈2, 3〉〈2, 2〉

M4M3

〈2, 3〉〈2, 2〉

M8M7

〈2, 0〉 〈2, 1〉

M10M9

〈2, 3〉〈2, 2〉

M12M11

〈2, 1〉〈2, 0〉
M14M13

Figure 10. TFAN Setup (q = 2, art = T)

setup protocol. The sponsor of the third round is M4. Since
all members in CT3 and CT2 know all public keys of nodes
in their co-paths, they compute secret keys of nodes in their
paths. The sponsor M4 additionally computes and broad-
casts bkCN2 and bkCN1 . Upon receiving this message, the
members in CT1 compute kCN1 and kCN0 , and the mem-
bers in CT0 compute kCN0 . The group key is kCN0 .

Join Assume there is a group of n members {M1, · · · ,
Mn}, and a new member Mn+1 wishes to join. Mn+1

broadcasts a join request with its public key. The new mem-
ber is inserted into the shallowest not fully filled cs-tree.
The join event is then processed according to the join pro-
tocol of µSTR if art = S or of µTGDH if art = T with
the extension that the sponsor computes all secret and pub-
lic keys in its path. If all cs-trees are fully filled then a new
cs-tree with the new member as its unique member and a
new cover-node are created. The new cover-node becomes
the new root of the TFAN tree with the old root as its left
child and the sub-root of the new cs-tree as its right child.
Figure 11 describes the detailed process of the join pro-
tocol. Consider an example with µTGDH cs-trees in Fig-

1. The new member Mn+1 broadcasts its public key.

2. Every member Mi, 1 ≤ i ≤ n, updates the tree structure
by inserting Mn+1 and removes all secret and public keys
in the path of the sponsor Ms. The sponsor Ms changes its
secret key, computes the secret and public keys in its path,
and broadcasts the updated public keys together with the tree
structure.

3. Every member Mi, 1 ≤ i ≤ n + 1 updates the tree structure
and computes the changed secret keys in its path including
the group key kCN0 .

Figure 11. TFAN Join

ure 12. Since CT1 is the first not fully filled cs-tree, the
new member M11 joins in CT1. According to the µTGDH
join protocol, M5 is the sponsor. It changes its key pair

CN0

CN1

〈0, 0〉

〈1, 0〉

〈2, 0〉
M1

〈0, 0〉

〈2, 1〉
M2

〈1, 1〉

〈2, 2〉
M3

〈2, 3〉
M4

〈0, 0〉

〈1, 0〉
M5

〈1, 1〉
M6

〈1, 0〉

〈2, 0〉
M7

〈2, 1〉
M8

〈1, 1〉

〈2, 2〉
M9

〈2, 3〉
M10

CN0

CN1

〈0, 0〉

〈1, 0〉

〈2, 0〉
M1

〈0, 0〉

〈2, 1〉
M2

〈1, 1〉

〈2, 2〉
M3

〈2, 3〉
M4

〈1, 0〉

〈2, 0〉

M6

〈2, 1〉
M11

〈1, 0〉

〈2, 0〉
M7

〈2, 1〉
M8

〈1, 1〉

〈2, 2〉
M9

〈2, 3〉
M10

M11

+

〈0, 0〉

〈1, 1〉

M5

Sponsor New member

Figure 12. A TFAN Join (q = 2, art = T)

(k1
〈2,0〉, bk

1
〈2,0〉) and computes the key pairs (k1

〈1,0〉, bk
1
〈1,0〉),

(k1
〈0,0〉, bk

1
〈0,0〉), (kCN1 , bkCN1), and the group key kCN0 .

M5 then broadcasts the public keys bk1
〈2,0〉, bk1

〈1,0〉, bk1
〈0,0〉,

and bkCN1 so that other members are also able to update the
tree and compute the group key.

Leave Assume there is a group of n members, and Ml in
the cs-tree CTj leaves the group. If Ml is the only member
in CTj then the shallowest rightmost leaf node of CTj+1

if j < h, or of CTh−1 if j = h is chosen as the sponsor
Ms. Figure 13 describes the leave protocol. An example of

1. Every remaining member Mi updates the tree by removing
the leaving member’s node and its parent node, and removes
all secret and public keys of nodes in the sponsor’s Ms path.
Additionally, Ms changes its secret key, computes the secret
and public keys in its path, and broadcasts the updated public
keys.

2. Every remaining member Mi computes the changed secret
keys in its path.

Figure 13. TFAN Leave

a TFAN leave event is shown in Figure 14. M8 in the cs-tree
CT1 is the leaving member. According to the µTGDH leave
protocol members remove the leaf node of M8 and its par-
ent node 〈1, 1〉 from the tree, and M7 is chosen as the spon-
sor. M7 updates its secret key k1

〈1,1〉 and computes the secret
keys k1

〈0,0〉, kCN1 , and kCN0 , and the public keys bk1
〈1,1〉,

bk1
〈0,0〉, and bkCN1 . It broadcasts then bk1

〈1,1〉, bk1
〈0,0〉 and

bkCN1 so that other members are also able to compute the
group key.

Merge Assume m trees, denoted Ti, i ∈ [1,m] have to be
merged. Figure 15 describes the merge protocol. W.l.o.g.
the trees are sorted from the highest to the lowest, i.e.,
hT1 ≥ hT2 ≥ . . . ≥ hTm

. If two trees are of the same

CN0

CN1

〈0, 0〉

〈1, 0〉

〈2, 0〉
M1

〈0, 0〉

〈2, 1〉
M2

〈1, 1〉

〈2, 2〉
M3

〈2, 3〉
M4

〈1, 0〉

〈2, 0〉

M9

〈2, 1〉

M10

〈1, 0〉

〈2, 0〉
M5

〈2, 1〉
M6

〈1, 1〉

〈2, 2〉
M7

〈2, 3〉
M8

〈0, 0〉

〈1, 1〉

M11

Sponsor

CN0

CN1

〈0, 0〉

〈1, 0〉

〈2, 0〉
M1

〈0, 0〉

〈2, 1〉
M2

〈1, 1〉

〈2, 2〉
M3

〈2, 3〉
M4

〈1, 0〉

〈2, 0〉

M9

〈2, 1〉

M10

〈1, 0〉

〈2, 0〉
M5

〈2, 1〉
M6

〈1, 1〉

M7

〈0, 0〉

〈1, 1〉

M11

Figure 14. A TFAN Leave (q = 2, art = T)

height, some other criteria must be applied, e.g., a lexico-
graphical order of the public keys of the respective spon-
sors. Considering the structure of a TFAN tree of height
h only members assigned to the cs-trees CTh and CTh−1

know public keys of all sub-roots. Hence, the sponsor Msi

for the tree Ti is chosen as a member assigned to the right-
most leaf node in the cs-tree CTh of the Ti. Note that a
TFAN tree can be considered as a µSTR tree where whole
cs-trees are used instead of sole leaf nodes. The idea behind
the merge protocol of TFAN is to use the merge protocol of
µSTR keeping the structure of the cs-trees in every merg-
ing tree Ti unchanged. The shallowest rightmost leaf node
in T1 becomes the sponsor Ms for the second round. The se-
cret and public keys in the path of Ms are removed from the
tree. Additionally, Ms updates its secret key and computes
all secret and public keys in its path. The newly computed
public keys are then broadcasted so that every other member
is able to compute the secret keys in the own path. An ex-

1. Every sponsor Msi , i ∈ [1, m] broadcasts the tree structure
and public keys of all sub-roots of the tree Ti.

2. Every member updates the tree by merging all trees and re-
moves all secret and public keys in the path of the sponsor
Ms. Ms changes its secret key, computes all secret and pul-
bic keys in its path, and broadcasts the updated public keys.

Figure 15. TFAN Merge

ample of the merge protocol with µTGDH cs-trees is given
in Figure 16. Two groups T1 of height 3 and T2 of height 2
are merged. T2 is appended on top of T1. A new cover-node
CN1 is created with the root of T1 as the left child and the
root of CT1 in T2 as the right child. The sponsor M8 up-
dates own secret key, computes all secret keys k2

〈0,0〉, kCN2 ,
kCN1 , and kCN0 , and pubic keys bk2

〈1,1〉, bk2
〈0,0〉, bkCN2 ,

and bkCN1 , and broadcasts the newly computed public keys
allowing other members to compute the group key.

Partition Consider a group of n members, and p of them
are partitioned from the group. Group members that are
chosen to compute and broadcast public keys within their
cs-trees are called cs-sponsors. The group member that is

CN0

CN1

〈0, 0〉

〈1, 0〉

M3

〈2, 0〉

M2M1

〈2, 1〉

〈1, 1〉

〈0, 0〉

〈1, 0〉

M8

〈2, 0〉

M7M6

〈2, 1〉

〈1, 1〉〈0, 0〉

〈1, 0〉

M4

M5

〈1, 1〉

CN0

〈0, 0〉

〈1, 0〉

M11

〈2, 0〉

M10M9

〈2, 1〉

〈1, 1〉

〈0, 0〉

〈1, 0〉

M12 M13

〈1, 1〉

+

CN1

CN3 〈0, 0〉

〈1, 0〉

M8

〈2, 0〉

M7M6

〈2, 1〉

〈1, 1〉

CN0

〈0, 0〉

〈1, 0〉

M11

〈2, 0〉

M10M9

〈2, 1〉

〈1, 1〉

〈0, 0〉

〈1, 0〉

M12 M13

〈1, 1〉

CN2

T2

T1

〈0, 0〉

〈1, 0〉

M3

〈2, 0〉

M2M1

〈2, 1〉

〈1, 1〉

〈0, 0〉

〈1, 0〉

M4

M5

〈1, 1〉

Ms2

Ms1

Ms

Figure 16. A TFAN Merge (q = 2, art = T)

chosen to compute and broadcast the public keys of the
cover-nodes is called the sponsor. If all members in one cs-
tree are partitioned then this cs-tree is removed from the
TFAN tree so that no cs-sponsors are required. Otherwise
the partition of members within each cs-tree is processed us-
ing the partition protocol3 of µSTR (if art = S) or µTGDH
(if art = T). The sponsor is chosen as described in the fol-
lowing. If all members of the deepest modified cs-tree leave
the group then the sponsor is the rightmost member in the
cs-tree directly below the removed cs-tree, or if no such
cs-tree exists then in the greatest numbered remaining cs-
tree above. In other case, if there are remaining members
in the deepest modified cs-tree, the rightmost cs-sponsor in
this cs-tree is chosen as the sponsor. Figure 17 describes
the partition protocol. An example with µTGDH cs-trees is
given in Figure 18. Since all members in CT1 (i.e., M8, and
M9) leave the group, this cs-tree and its parent node CN1

are removed from the TFAN tree. According to the parti-
tion or leave protocol in µTGDH, M5, M10 and M13 are
the cs-sponsors for the partition of M6, M11 and M12, re-
spectively. M5 is also the sponsor. It updates its secret key,
computes secret and public keys of all nodes in its path, and
broadcasts bk1

〈1,0〉, bk
1
〈0,0〉, and bkCN1 . M10 and M13 broad-

cast their public keys. M13 computes then k0
〈0,0〉, kCN0 ,

computes and broadcasts bk0
〈0,0〉, allowing other members

to compute the group key kCN0 .

Refresh Assume there is a group of n members assigned
to a TFAN tree of height h. The member Mr, called the
refresher, wishes to update its secret key. For this purpose
the refresher changes own secret and public keys, com-

3 If there is only one member in the cs-tree that is partitioned then mem-
bers of this cs-tree use the corresponding leave protocol instead.

1. Every remaining member updates the tree by removing the
partitioned members and their parent nodes. The sponsor
changes its secret and public key. Members in the remain-
ing modified cs-trees perform the leave or partition protocol
of µSTR (if art = S) or µTGDH (if art = T) with the fol-
lowing differences: The public keys of all cs-sponsors except
for the sponsor are not removed. The non-sponsor cs-sponsor
does not change its secret key. Additionally, the rightmost cs-
sponsor in each cs-tree computes and broadcasts the public
key of the corresponding sub-root.

2. The sponsor Ms computes the missing secret and public keys
of the cover-nodes in its path, and broadcasts their public
keys.

3. Every remaining member computes the missing secret keys
of nodes in its path.

Figure 17. TFAN Partition

CN0

CN2

〈0, 0〉

〈1, 0〉

〈2, 0〉
M1

〈0, 0〉

〈2, 1〉
M2

〈1, 1〉

〈2, 2〉
M3

〈2, 3〉
M4

〈1, 0〉

〈2, 0〉
M5

〈2, 1〉
M6

〈1, 0〉

〈2, 0〉

M10

〈2, 1〉

M11

〈1, 1〉

〈2, 2〉

M12

〈2, 3〉

M13

〈0, 0〉

〈1, 1〉
M7

CN1

〈0, 0〉

〈1, 0〉

M8

〈1, 1〉

M9

CN0

CN1

〈0, 0〉

〈1, 0〉

〈2, 0〉
M1

〈2, 1〉
M2

〈1, 1〉

〈2, 2〉
M3

〈2, 3〉
M4

〈1, 0〉

M5

〈0, 0〉

〈1, 0〉

M10

〈1, 1〉
M13

〈0, 0〉

〈1, 1〉

M7

Cs-sponsorsSponsor

Figure 18. A TFAN Partition (q = 2, art = T)

putes changed secret and public keys of nodes in its path,
and broadcasts the updated public keys. Upon receiving this
message every other member removes known secret keys of
nodes in Mr’s path, updates the corresponding public keys
in the own co-path, and recomputes the removed secret keys
including the new group key.

9. Security Analysis

Our framework combines µSTR and µTGDH protocols
using strictly defined cover-path as part of the binary key
tree (TFAN tree). However, this structural modification of
the key tree leaves the actual computation process of the
group key unchanged, i.e., it still relies on the tree-based
ECDH key exchange method applied in µSTR and µTGDH.
Therefore, the security analysis of µSTR and µTGDH from
[10] is also valid for our framework. For completeness we
briefly discuss how TFAN fulfills the security requirements

of Section 5. The computational group key secrecy of TFAN
relies on the hardness of the ECCDH problem. The deci-
sional group key secrecy of TFAN relies on the hardness
of the ECDDH problem. Thus, a passive adversary A al-
though being able to intercept TFAN messages sent over a
public channel and obtain public keys can neither compute
nor distinguish the group key. Therefore, A can discover the
group key only if learns at least one secret key. Due to the
hardness of the ECDL problem the adversary is not able to
reveal these values from their public counterparts. For back-
ward secrecy we show that any A being a joining member
is not able to obtain any of the previous used group keys.
Assume, A becomes a new member of the group and is lo-
cated in the Cover-Sub-Tree CTa of the TFAN tree at node
〈la, va〉 for some la ∈ {0, . . . , q}. As a new member A is
able to compute all secret keys in its path up to the root of
the TFAN tree, i.e., ka

〈l,v〉 for all l < la and v = b va

2la−l c, and
kCNi for all i ≤ a. The sponsor of the additive event is ei-
ther located at node 〈la, va − 1〉 if CTa was not fully filled
or is the shallowest rightmost node in the Cover-Sub-Tree
CTa+1. It changes own secret key and causes the change of
all secret keys in its path up-to the root of the TFAN tree.
Hence, in both cases A can only compute the changed se-
cret keys, and is therefore not able to compute the previ-
ously used group key. Thus, backward secrecy is provided.
Analogously, for forward secrecy we have to show that any
A being a leaving member in the Cover-Sub-Tree CTa at
node 〈la, va〉 for some la ∈ {0, . . . , q} is not able to ob-
tain any subsequently used group key. A knows all secret
keys ka

〈l,v〉 for all l < la and v = b va

2la−l c, and kCNi for
all i ≤ a that are valid during its group membership. If A
was not the only member in CTa then the sponsor is lo-
cated at node 〈la − 1, b va

2 c〉 of the updated TFAN tree, oth-
erwise it is the shallowest rightmost member in CTa+1. In
any case, since the sponsor changes own secret keys and
causes the change of all secret keys in its path up to the
root all secret keys that A knows get changed, and there-
fore A is not able to compute the updated group key. Thus,
forward secrecy is provided. As combination of backward
and forward secrecy we follow that TFAN provides key in-
dependence. Updated group keys are independent due to a
random change of sponsor’s contribution. Since both proto-
cols, µSTR and µTGDH, fulfill the verifiable trust require-
ment our framework fulfills it too. Indeed, whenever a spon-
sor Ms located in the cs-tree CTs at node 〈ls, vs〉 broad-
casts a message containing the updated public keys, there is
at least one other member that is able to verify the correct-
ness of the sponsor’s message. In case of TFAN (art = S)
the verification can be done by all members in CTs located
at nodes 〈l, v〉 for all l > ls. In case of TFAN (art = T)
it can be done by a member located at the sponsor’s sibling
node. Additionally in both cases the changed public keys
of cover-nodes CNi for all i ≤ s can be verified by mem-

bers in every cs-tree CTj with j > i.

10. Complexity Analysis

In this section we analyze the memory, communica-
tion, and computation costs of µSTR, µTGDH, and TFAN.
The number of current group members, merging mem-
bers, merging groups, and leaving members are denoted by:
n, m, k, and p, respectively. Additionally, the height of the
current and updated tree are denoted by h and ĥ, respec-
tively. The sponsor is denoted by 〈ls, vs〉 (or 〈lsi

, vsi
〉 if

several sponsors exist). The sum of the heights of all non-
highest trees in the merge protocol is denoted by α. We fo-
cus on the number of stored secret and public keys, the num-
ber of rounds, the total number of broadcast messages, the
cumulative broadcast message size 4, and the serial num-
ber of multiplications 5. We consider here random µTGDH
trees and half fully filled TFAN trees, i.e., the number of
members in each cs-tree is d q+1

2 e for art = S and 2q−1

for art = T 6. The serial number of multiplications can be
further reduced if the sponsor computes the group key af-
ter it broadcasts the updated public keys. This optimization
is considered in our analysis.

Memory costs Table 1 summarizes the memory costs of
the protocols. Considering TFAN, it is clear that TFAN

Suite Type of costs Secret Keys Public keys
average n+3

2 2n − 2

µSTR 〈l, 1〉 l + 1 l + 1
average n+3

2
n+1

2

µTGDH 〈l, v〉 l + 1 l + 1
average dlog2 ne + 1 dlog2 ne + 1

TFAN 〈l, 1〉 in CTi i + l + 3 i + l + 3

(art=S) average
q+d n

q+1 e+5

2

q+d n
q+1 e+5

2

TFAN 〈l, v〉 in CTi i + l + 2 i + l + 2
(art=T) average 2q+d n

2q e+3

2

2q+d n
2q e+3

2

Table 1. Memory costs

(art = T) consumes less storage space than TFAN (art =
S). If we increase q, the member needs to store more keys
and public keys in the cs-tree, however the number of keys

4 The sum of all broadcast message size of all members.
5 For serial costs operations that are performed by members in parallel

are counted as one operation. In this case the highest costs are consid-
ered. The total costs are represented by the sum of all members costs
in a given round (or protocol).

6 Hence the height is chosen as follows: h ≈ dlog2 ne+1 for µTGDH,
h = n

d q+1
2 e

for TFAN (art = S), and h = d n
2q−1 e for TFAN

(art = T).

and public keys outside the cs-tree is decreased. It is obvi-
ous that the required memory space for TFAN (art = S) is
lower than for µSTR, and of TFAN (art = T) is higher
than for µTGDH. Hence as a whole, all protocol suites
can be sorted from the least to the highest according to
their memory consumption as follows: µTGDH < TFAN
(art = T) < TFAN (art = S) < µSTR.

Communication and Computation Costs Setup Ta-
ble 2 summarizes the computation and communication
costs. µSTR and TFAN (art = S) are the most commu-
nication efficient protocol suites. Only 2 or 3 rounds are
needed to form a new group from all individual group mem-
bers. TFAN (art = T) is less efficient, i.e., q + 2 rounds
are required. µTGDH is most inefficient with the num-
ber of rounds scaling logarithmically in the number of
group members. According to the number of rounds the pro-
tocols can be sorted as follows: µSTR < TFAN (art = S)
< TFAN (art = T) < µTGDH. We consider now the num-
ber of messages and the total message size. With re-
spect to the number of broadcast messages all proto-
cols can be sorted from the least to the highest as fol-
lows: µSTR < TFAN (art = S) < TFAN (art = T) <
µTGDH. Considering the total message size, we get the fol-
lowing relation: µTGDH < TFAN (art = T) < µSTR
< TFAN (art = S). With respect to the number of se-
rial multiplications µTGDH is the most computation effi-
cient scaling logarithmically in the number of members,
whereas µSTR requires a linear number of serial mul-
tiplications relative to the group size. The computation
costs of TFAN in both cases depend on the cs-tree
height q. In general TFAN (art = T) is more effi-
cient than TFAN (art = S), which is in turn more efficient
than µSTR. Hence all protocol suites can be sorted with re-
spect to the number of required serial multiplications as fol-
lows: µTGDH < TFAN (art = T) < TFAN (art = S)
< µSTR. Considering the communication and computa-
tion costs TFAN (art = T) is most suitable to handle the
setup event.

Join All protocol suites require 2 rounds and 2 messages.
The total message size of STR is constant, only 3 public
keys. In µTGDH it scales logarithmically in the number of
group members. Since the shallowest cs-tree is usually not
fully filled, the new member is joined in this cs-tree. In this
case, the message size of TFAN (art = S) is 4, and of
TFAN (art = T) is q + 1. Hence according to the required
communication costs, the protocol suites can be sorted as
follows: µSTR < TFAN (art = S) < TFAN (art = T)
< µTGDH. Under the assumption that the first cs-tree in
TFAN is not fully filled, µTGDH is most expensive in terms
of computation, its number of serial multiplications scales
logarithmically in the number of group members. The num-
ber of serial multiplications in TFAN (art = T) is 3q + 1,
and in TFAN (art = T) is 7. To the contrary, µSTR re-

P
ro

to
co

l
P

ro
to

co
l

R
ou

nd
s

B
ca

st
s

B
ca

st
si

ze
Se

ri
al

m
ul

s
Su

it
e

µ
ST

R

Se
tu

p
2

n
+

1
2n

−
2

3n
−

4
Jo

in
2

2
3

4
L
ea

ve
1

1
n 2

3
n 2
−

2
m

er
ge

2
m

+
1

2n
+

k
+

1
3k

+
1

P
ar

ti
ti

on
1

1
n
−

p
2

+
1

3
(n
−

p
)

2
+

1
R

ef
re

sh
1

1
n 2

+
1

3
n 2

+
1

µ
T

G
D

H

Se
tu

p
h

n
+

h
2
−

h
h

2
−

h
+

n
2h

−
1

Jo
in

2
2

h
+

1
3h

−
2

L
ea

ve
1

1
h

3h
−

2
M

er
ge

dl
og

2
m
e+

1
2m

h
+

α
+

m
ĥ

3(
h

+
ĥ
)
−

4
P
ar

ti
ti

on
m

in
(d

lo
g 2

p
e+

1,
ĥ
)

2m
in

(2
p
,d

n 2
e)

(ĥ
+

1)
·m

in
(2

p
,d

n 2
e)

3ĥ
−

2
R

ef
re

sh
1

1
h

3h
−

2
Se

tu
p

3
n

+
h

+
2

n
+

qh
+

q
+

h
−

1
2q

+
h
-1

+
m

a
x
(q

,2
h
-2

)
Jo

in
2

2
4

7
T

FA
N

L
ea

ve
1

1
q
+

h
2

3
(q

+
h
)

2
+

4
(a

rt
=

S
)

M
er

ge
2

m
+

1
h

+
2α

+
m

+
2

3α
+

4
P
ar

ti
ti

on
2

ĥ
+

1
-

6q
R

ef
re

sh
1

1
q
+

h
2

+
3

3
(q

+
h

2
+

4
Se

tu
p

q
+

2
n

+
1

+
(q

2
−

q
+

1)
(h

+
1)

n
+

h
−

1
+

(q
2

+
q

+
1)

(h
+

1)
2q

+
3h

−
3

Jo
in

2
2

q
+

1
3q

+
1

T
FA

N
L
ea

ve
1

1
q

+
h 2

+
2

3q
+

3
h 2

+
4

(a
rt

=
T

)
M

er
ge

2
m

+
1

h
+

2α
+

m
+

q
3q

+
α

+
1

P
ar

ti
ti

on
q 2

+
1

p
q 2

+
1

-
6q

R
ef

re
sh

1
1

q
+

h 2
+

2
3q

+
3
h 2

+
4

Table 2. Computation and communication
costs

quires only 4 multiplications. Hence according to the re-
quired computation costs all protocol suites can be sorted
as follows: µSTR < TFAN (art = S) < TFAN (art = T)
< µTGDH. Considering the communication and computa-
tion costs µSTR is most suitable to handle the join event.

Leave, Refresh All protocols require 1 round and 1 broad-
cast message. µTGDH has the least cumulative message
size, whereas µSTR the highest. TFAN (art = S) con-
sumes more bandwidth than TFAN (art = T). In gen-
eral the cumulative message size required by TFAN is be-
tween the sizes required by µSTR and µTGDH. According
to the required computation costs, all protocol suites can be
sorted as follows: µTGDH < TFAN (art = T) < TFAN
(art = S) < µSTR. With respect to the cumulative mes-
sage size and serial multiplications all protocol suites can

be sorted as follows: µTGDH < TFAN (art = T) < TFAN
(art = S) < µSTR. Obviously, µTGDH is most suitable to
handle leave and refresh events.

Merge First we analyse the communication costs. Note that
the number of rounds in µTGDH scales logarithmically in
the number of merging groups, whereas all other protocols
are more efficient keeping this number constant. Accord-
ing to the number of rounds all protocol suites can be sorted
as follows: µSTR = TFAN (art = T) = TFAN (art = S)
< µTGDH. Furthermore, µTGDH requires double as much
broadcast messages as in other protocol suites. Since the
cumulative broadcast message size depends on the param-
eters art and q, it is difficult to give the exact relation be-
tween TFAN and other protocols. Considering the average
cumulative message size all protocols can be sorted accord-
ing to the message size as follows: TFAN (art = T) ≈
TFAN (art = S) < µSTR and µTGDH, where the rela-
tion between µSTR and µTGDH depends on the number
of merging groups and the tree structures. With respect to
the computation costs all protocols can be sorted as fol-
lows: µTGDH < TFAN (art = T) < TFAN (art = S)
< µSTR. Hence, TFAN (art = T) is most suitable to han-
dle the merge event.

Partition The µSTR and TFAN (art = S) protocol suites
are most communication efficient, i.e., they require only one
or two rounds. The partition is the most expensive operation
in µTGDH, requiring a number of rounds bounded by the
minimum of either the updated tree’s height or log2 p + 1.
The number of rounds in TFAN (art = T) is bounded by
q
2 +1. According to the number of rounds all protocol suites
can be sorted as follows: µSTR < TFAN (art = S) <
TFAN (art = T) < µTGDH. With respect to the compu-
tation costs µTGDH requires a logarithmic number of mul-
tiplications, while µSTR scales linearly in the group size.
TFAN is comparatively efficient, and less serial multiplica-
tions are needed if art = T . According to the computation
costs the protocols can sorted as follows: µTGDH < TFAN
(art = T) < TFAN (art = S) < µSTR. Considering the
communication and computation costs TFAN is most suit-
able to handle the partition event.

Discussion According to the analysis in [10] the µSTR
protocol is most suitable in networks where high network
delays dominate. However, its computation costs are most
expensive. While µTGDH is most suitable in networks
with clients having limited computation and storage space,
and with low network delays. However, the clients in mo-
bile ad hoc networks, in general, have limited processor
power, storage capability, and energy supply. Additionally,
the network delays dominate in such networks too. Consid-
ering the above described comparisons between the proto-
col suites in terms of computation and communication costs
we remark that TFAN protocol suite is located in the mid-

dle of comparison relations for each kind of the subproto-
col (i.e., setup, join, leave, merge, partition) whereas µSTR
is mostly efficient in terms of the communication costs, and
µTGDH is mostly efficient in terms of computation costs.
Therefore, we follow that TFAN has the optimal trade-off
between both kinds of costs.

11. Experimental Results

To compare the performance of µSTR, µTGDH, and
TFAN protocol suites in practice we have implemented and
simulated all six subprotocols for each suite. In this section
we compare the measured computation and communication
costs. The protocol suites are implemented with J2ME CDC
[16], and simulated with the virtual machine CDC HotSpot
Implementation [16] on the laptop with Centrino 1.7 GHz
processor and 480 MB memory. We simulate the communi-
cation process and measure the total computation delay be-
ginning with the time the event occurs and ending with the
time the group key is computed.

Test method We use the EC curve P-192 defined in [13],
whose security level corresponds to |p| = 2720 bits in Z∗

p

according to [8]. The open source BouncyCastle API [17]
for J2ME is used to implement the tree-based elliptic curve
Diffie-Hellman key exchange method. We remark that cryp-
tographic operations in the BouncyCastle API are not opti-
mized, i.e., the computation delay we have measured can
be significantly reduced if optimized implementation of the
underlying cryptographic operations is used. Note that the
measurements still allow to make a fair comparison of the
considered protocol suites. In order to achieve a fair com-
parison of the plain protocol costs we do not measure the
costs for message authentication. Finally, we have used ran-
domly generated µTGDH trees and half fully filled TFAN
trees in the simulation.

We use the following scenarios to measure the compu-
tation delay and the communication costs. For setup, join,
leave and refresh, the number of current group members is
n = 4k, 1 ≤ k ≤ 16. In case of partition the group size
before the event is n = 16 and 64. In case of merge the
group size after the event is n = 16 and 64. In the fol-
lowing we denote TFAN with art and m by TFAN(art,
m), e.g., TFAN(T , 2) and TFAN(S, 3), and consider here
only the measurements of the computation delay and cumu-
lative message size, since the number of rounds and mes-
sages is already given in Table 2. We have simulated TFAN
with different combinations of art and q, and found out
that for groups of 24 up to 64 members TFAN (T, 3) and
TFAN(S, 7) perform at best. The smaller is the value for q,
the tighter is the approximation of the costs of TFAN by
those of µSTR, whereas the greater is the value for q, the
tighter is the approximation of the costs of TFAN by those
of µSTR if art = S, and of µTGDH if art = T . In Fig-

ures 19 to 26 the y axis in the left graph denotes the compu-
tation delay in seconds, and in the right graph denotes the
cumulative message size in kilobytes (KB).

Setup The costs are measured for the time period between
the reception of all setup requests and the computation of
the group key by all members. Figure 19 compares the com-

0

5

10

15

20

25

30

35

40

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Group Size

C
om

p.
 T

im
e

(s
ec

)

TFAN(T,3)
TFAN(S,7)
µSTR
µTGDH

0

5

10

15

20

25

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Group Size

M
es

sa
ge

 S
iz

e
(K

B
)

Figure 19. Cost Comparison for Setup

putation delay and the total message size for the setup pro-
tocols of the suites. The x axis shows the group size. Note
that the experimental results are similar to the estimated the-
oretical results from Section 10. Considering the computa-
tion delay µTGDH is most efficient, µSTR is least efficient,
and TFAN costs are in the middle. We remark that if the pa-
rameter art is kept constant then the lower q is the higher
computation delay occurs.

Join The costs are measured for the time period between
the reception of the new member’s request and the compu-
tation of the group key by all members (including the joined
member). Figure 20 compares the computation delay and

1

2

3

4

5

6

7

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Group Size

C
om

p.
 T

im
e

(s
ec

)

TFAN(T,3)
TFAN(S,7)
µSTR
µTGDH

1

2

3

4

5

6

7

8

9

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Group Size

M
es

sa
ge

 S
iz

e
(K

B
)

Figure 20. Cost Comparison for Join

the total message size for the join protocols of the suites.
The x axis shows the group size before the event. Note that
the experimental results are similar to the estimated theoret-
ical results from Section 10. However, in all protocol suites
the message size scales linearly in the group size. This is
because in every join protocol the sponsor broadcasts the
whole tree structure.

Leave The costs are measured for the time period between
the reception of the leave notification from the underlying

group communication system and the computation of the
changed group key by all members. The leaving members
are chosen from the group for each simulation step at ran-
dom and the average costs are computed. Figure 21 com-

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Group Size

C
om

p.
 T

im
e

(s
ec

)

TFAN(T,3)
TFAN(S,7)
µSTR
µTGDH

0,2

0,7

1,2

1,7

2,2

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Group Size

M
es

sa
ge

 S
iz

e
(K

B
)

Figure 21. Cost Comparison for Leave

pares the computation delay and the total message size for
the leave protocols of the suites. The x axis denotes the
number of group members before the event. Note that the
experimental results are similar to the estimated theoretical
results from Section 10.

Merge We have measured the costs within the time period
the group key is computed by all group members after all

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Group Size

C
om

p.
 T

im
e

(s
ec

)

TFAN(T,3)
TFAN(S,7)
µSTR
µTGDH

3

3,5

4

4,5

5

5,5

6

6,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Group Size

M
es

sa
ge

 S
iz

e
(K

B
)

Figure 22. Cost Comparison for Merge (16)

members have been notified about the event. The number of

5

10

15

20

25

30

35

40

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Group Size

C
om

p.
 T

im
e

(s
ec

)

TFAN(T,3)
TFAN(S,7)
µSTR
µTGDH

10

11

12

13

14

15

16

17

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Group Size

M
es

sa
ge

 S
iz

e
(K

B
)

Figure 23. Cost Comparison for Merge (64)

resulting group members is 16 and 64. We assume the max-
imum number of merging groups is 5. Note that in practice

merging of two groups is the most frequent case. Figures 22
and 23 compare the computation delay and the total mes-
sage size for the merge protocols of the suites in case where
the resulting group size is 16 and 64 members, respectively.
In all graphs the x axis denotes the group size before the
events. Note that the experimental results are similar to the
estimated theoretical results from Section 10.

Partition We have measured the costs from the time point
the partition event has occured to the time point when the
new group key is computed by all members. The partitioned

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Group Size

C
om

p.
 T

im
e

(s
ec

)

TFAN(T,3)
TFAN(S,7)
µSTR
µTGDH

0

0,5

1

1,5

2

2,5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Group Size

M
es

sa
ge

 S
iz

e
(K

B
)

Figure 24. Cost Comparison for Partition (16)

members are chosen randomly from the group. Figures 24
and 25 compare the computation delay and the total mes-
sage size for the partition protocols of the suites in case
where the group size before partition is 16 and 64 mem-
bers, respectively. In all graphs the x axis denotes the group
size before the event. Note that the experimental results are

0

5

10

15

20

25

30

35

40

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Group Size

C
om

p.
 T

im
e

(s
ec

)

TFAN(T,3)
TFAN(S,7)
µSTR
µTGDH

0

1

2

3

4

5

6

7

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Group Size

M
es

sa
ge

 S
iz

e
(K

B
)

Figure 25. Cost Comparison for Partition (64)

similar to the estimated theoretical results from Section 10.
That is the protocol suites can be sorted as follows µSTR <
TFAN(art = S) < TFAN(art = T) < µTGDH.

Refresh We have measured the costs from the time point
the refresher begins to update its secret key to the time point
the new group key is computed by all group members. The
refresher is chosen from the group at random and the av-
erage costs of all members are computed for each simula-
tion run. Figure 26 compares the computation delay and the
total message size for the refresh protocols of the suites.
The x axis denotes the group size. Note that the experi-

mental results are similar to the estimated theoretical results
from Section 10 except for the difference that the costs of
TFAN(T, 3) and TFAN(S, 7) are almost identical. This is
because the average distance from the refresher’s leaf node

0

5

10

15

20

25

30

35

40

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Group Size

C
om

p.
 T

im
e

(s
ec

)

TFAN(T,3)
TFAN(S,7)
µSTR
µTGDH

0

0,5

1

1,5

2

2,5

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Group Size

M
es

sa
ge

 S
iz

e
(K

B
)

Figure 26. Cost Comparison for Refresh

to the root node of the cs-tree in both protocols are almost
identical.

Discussion The above experiment results validate our the-
oretical analysis, i.e., TFAN provides an optimal trade-off
between communication and computation costs compared
to µSTR and µTGDH protocol suites. Considering our sim-
ulation7 we suggest to use TFAN with the following param-
eters for the specified group size n, i.e., the group size be-
fore join, leave, and partition, but after merge: if n < 24
then TFAN(T, 2) and TFAN(S, 7) perform at best, whereas
if 24 ≤ n ≤ 1008 then TFAN(T, 3) and again TFAN(S, 7)
are most suitable.

12. Conclusion

In this paper we have proposed TFAN, a secure frame-
work for the group key agreement in mobile ad-hoc net-
works which provides an optimal trade-off between compu-
tation, communication and memory costs as substantiated
by the theoretical analysis and the experimental results ob-
tained from the simulation. TFAN combines the communi-
cation efficiency of the µSTR protocol and the computation
efficiency of the µTGDH protocol.

References

[1] N. Asokan and P. Ginzboorg. Key-agreement in ad-hoc
networks. Computer Communications, 23(17):1627–1637,
2000.

7 We have additionally tested TFAN with the following parameters for
(art, q): (T, 2), (S, 3), (T, 4), (S, 15), (T, 5), (S, 31), (T, 6), and
(S, 63).

8 In our analysis presented in this paper for convenience the maximal
group size is chosen as 64. However, the performance of the imple-
mented protocols remains acceptable for groups of up to 100 mem-
bers.

[2] M. Burmester and Y. Desmedt. A secure and efficient con-
ference key distribution system. In Advances in Cryptology
(EUROCRYPT ’94),Lecture Notes in Computer Science, vol-
ume 950, pages 275–286. Springer-Verlag Berlin, May 1994.

[3] S. Capkun, L. Buttyn, and J.-P. Hubaux. Self-organized
public-key management for mobile ad hoc networks. IEEE
Transactions on Mobile Computing, 2(1):52–64, 2003.

[4] A. E. Emmanuel Bresson, Olivier Chevassut and
D. Pointcheval. Mutual authentication and group key
agreement for low-power mobile devices. In Proceed-
ings of the 5th IFIP-TC6 International Conference on Mo-
bile and Wireless Communications Networks (october 27 -
29, 2003, Singapore), pages 59–62. World Scientific Pub-
lishing, 2003.

[5] A. Joux and K. Nguyen. Separating decision diffie-hellman
from diffie-hellman in cryptographic groups. Cryptol-
ogy ePrint Archive, Report 2001/003, 2001. http://
eprint.iacr.org/.

[6] Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient
group key agreement. In Information Systems Security, Proc.
of the 17th International Information Security Conference,
IFIP SEC’01, 2001.

[7] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key
agreement. ACM Transactions on Information and System
Security, 7(1):60–96, 2004.

[8] A. K. Lenstra and E. R. Verheul. Selecting cryptographic
key sizes. Journal of Cryptology: the journal of the Interna-
tional Association for Cryptologic Research, 14(4):255–293,
2001.

[9] J. Luo, P. T. Eugster, and J.-P. Hubaux. Route driven gos-
sip: Probabilistic reliable multicast in ad hoc networks. In
INFOCOM, 2003.

[10] M. Manulis. Contributory Group Key Agreement Protocols,
Revisited for Mobile Ad-hoc Groups. In Proceedings of 2nd
IEEE International Conference on Mobile Ad-hoc and Sen-
sor Systems (MASS 2005), International Workshop on Wire-
less and Sensor Networks Security (WSNS 2005) (to appear).
IEEE Computer Society, 2005.

[11] M. Manulis. Key agreement for heterogeneous mobile ad-
hoc groups. In Proceedings of 11th International Conference
on Parallel and Distributed Systems (ICPADS 2005) Volume
2 International Workshop on Security in Networks and Dis-
tributed Systems (SNDS 2005), pages 290–294. IEEE Com-
puter Society, 2005.

[12] U. M. Maurer and S. Wolf. The Diffie-Hellman protocol. De-
signs, Codes and Cryptography, 19:147–171, 2000.

[13] N. I. of Standards and Technology. Fips pubs 186-2: Digital
signature standard (dss). Jan 2000.

[14] Standards for Efficient Cryptography Group (SEC). Sec
1: Elliptic curve cryptography, http://www.sec.org,
September 2000.

[15] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in
dynamic peer groups. IEEE Transactions on Parallel and
Distributed Systems, 11(8), 2000.

[16] SUN Microsystem. Connected Device Configuration (CDC)
of J2ME; JSR 36, JSR 218. http://java.sun.com/
products/cdc/index.jsp.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.sec.org
http://java.sun.com/products/cdc/index.jsp
http://java.sun.com/products/cdc/index.jsp

[17] The Legion of the Bouncy Castle. Bouncy Castle Crypto
APIs. http://www.bouncycastle.org/.

http://www.bouncycastle.org/

	Introduction
	Related Work
	Our Results
	Mobile Ad-Hoc Group Communication
	Contributory Group Key Agreement
	Elliptic Curve Cryptography
	Building Blocks
	Tree-based Group Key Agreement Framework for Mobile Ad-Hoc Networks
	Security Analysis
	Complexity Analysis
	Experimental Results
	Conclusion
	References

