
Privacy-Preserving Group Discovery

with Linear Complexity

Mark Manulis1, Benny Pinkas2,�, and Bertram Poettering1

1 Cryptographic Protocols Group, TU Darmstadt & CASED, Germany
mark@manulis.eu, bertram.poettering@cased.de

2 Department of Computer Science, University of Haifa, Israel
benny@pinkas.net

Abstract. Affiliation-Hiding Authenticated Key Exchange (AH-AKE)
protocols enable two distrusting users, being in possession of membership
credentials for some group, to establish a secure session key without
leaking any information about this group to non-members. In practice,
users might be members of several groups, and such protocols must be
able to generate session keys between users who have one or more groups
in common. Finding efficient solutions for this group discovery problem
has been considered an open research problem, inherent to the practical
deployment of these protocols.

We show how to solve the privacy-preserving group discovery prob-
lem with linear computational and communication complexity, namely
O(n) complexity where n is the number of groups per user. Our generic
solution is based on a new primitive — Index-Hiding Message Encoding
(IHME), for which we provide definitions and an unconditionally secure
construction. Additionally, we update the syntax and the security model
of AH-AKE protocols to allow multiple input groups per participant and
session. Furthermore, we design a concrete multi-group AH-AKE proto-
col by applying IHME to a state-of-the-art single-group scheme.

1 Introduction

Privacy-Preserving Key Establishment. Affiliation-Hiding Authenticated Key
Exchange (AH-AKE) protocols [12, 13] combine the privacy-preserving authen-
tication properties of Secret Handshakes (SH) [2, 6, 21, 20, 19, 1, 14, 16] with se-
cure establishment of session keys. The typical setting of AH-AKE assumes that
participants are registered members of some groups, whereby each group is ad-
ministrated by a separate Group Authority (GA). Each GA is responsible for
the admission of users to its group and for the issue of corresponding mem-
bership credentials. Most protocols also support revocation of users, which is
also performed by the GA. The actual privacy of authentication stems from
the requirement to hide the affiliations (i.e. groups) of users participating in a
handshake protocol from outsiders, and also from each other, as long as their
� Research partially supported by EU project CACE and by the ERC project

SFEROT.

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 420–437, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Privacy-Preserving Group Discovery with Linear Complexity 421

groups do not satisfy some predefined matching relationship, such as equality or
dynamic matching [1].

Linkability vs. Unlinkability. AH-AKE and SH protocols come in two flavors:
Linkable protocols such as [2, 6, 12, 13] are realized using pseudonyms and al-
low users to recognize each other across multiple sessions. In many applications
linkability is essential, e.g. in social networks it is necessary for distinguishing
amongst different members of the community. Linkable protocols enjoy very ef-
ficient forms of revocation where pseudonyms are simply added to revocation
lists authenticated by the GAs. In contrast, unlinkable AH-AKE and SH proto-
cols such as [21, 14, 1, 16] preclude the ability to link communication sessions of
the same user. To handle revocation these protocols usually deploy less efficient
group management schemes. In addition, the practical usage of unlinkable AH-
AKE protocols for many envisioned group-oriented applications seems further
away than that of protocols that support linkability.

Group Discovery Problem. The affiliation-hiding property provided by AH-AKE
protocols is meaningful only if multiple groups are present in the system. Since
users may belong to several groups at the same time, the inherent problem in
practice is not to decide whether two given users are members of the same single
group, but rather whether there is a non-empty intersection between the two
sets of groups to which the users belong. Current AH-AKE and SH protocols
ignore the latter problem by design, i.e. the handshake execution is performed
typically with respect to only a single input group per participant and session.
Little attention has been paid so far to possible solutions for the more general
problem, termed as the group discovery problem in [13, p. 356]. A protocol that
solves the group discovery problem would take as input a (sub)set of groups
per participant and session, output the intersection of these sets, and, in the
case that this intersection is not empty, provide a session key to the users for
their subsequent communication. One of the main challenges here is to prevent
the event that participants inadvertently reveal non-matching groups from their
input sets to each other or to outsiders. A trivial solution for group discovery is
to execute a single-group protocol for all possible combinations of membership
groups, and whenever some session is successful its input group is added to the
intersection set. Clearly, this solution is highly inefficient (see also discussion in
Section 2). Another challenge would be the computation of the session key in a
way that ensures that leakage of this key does not reveal any information about
groups in the intersection set. Motivated by the importance of group discovery
for the practical use of AH-AKE protocols we highlight in this paper the main
challenges and explore various solutions.

1.1 Related Work

The concept of linkable Secret Handshakes [2,6] evolved into linkable Affiliation-
Hiding Key Exchange [13]. These protocols commonly consider user pseudonyms
as part of their group membership credentials. These pseudonyms are sent in the

422 M. Manulis, B. Pinkas, and B. Poettering

clear and allow for linking the sessions of the same user. Membership credentials
in [2] are further bound to secret elements of a bilinear group, in [6] they are
derived from private/public key pairs of a CA-oblivious PKI-enabled encryption
that is realized via Schnorr signatures, and in [20, 13] they are given by full
domain hash RSA signatures on the pseudonyms. All linkable protocols can be
tweaked to support unlinkability through the use of one-time credentials (and
pseudonyms). Due to the impracticality of this approach several unlinkable Se-
cret Handshakes [1,14,19,16] based on reusable credentials have been proposed.
However, these schemes suffer from a rather complicated group management,
e.g. [1] does not support revocation, [14] requires synchronization of revocation
epochs amongst members, [19] is a heavy-weight framework scheme that involves
the use of group signatures and broadcast encryption techniques, while the state-
of-the-art scheme in [16] uses group signatures with verifier-local revocation for
group management and private conditional oblivious transfer for the handshake
session in the pairing-based setting. In Section 2 we discuss in more detail why
known flavors of Private Set Intersection (PSI) protocols do not give solutions
to the group discovery problem.

1.2 Contribution and Organization

To this end, our goal is to explore implicit and efficient solutions for the group
discovery problem in AH-AKE protocols (and consequently also in pure Secret
Handshake schemes where the computation of secure session keys is not amongst
the necessary requirements). We start in Section 2 by commenting on the rela-
tionship of this problem to different flavors of Private Set Intersection protocols.
We show that group discovery has a more complicated setting compared to
the latter (although this may not appear so at first sight). We then continue
by describing potential solutions with varying efficiency and security based on
probabilistic hashing.

In Section 3 we introduce Index-Hiding Message Encoding (IHME) — our new
technique that allows for efficient group discovery in AH-AKE protocols with
linear communication and computation complexity. We give a perfectly secure
construction of IHME using polynomial interpolation and relate the performance
of IHME-based group discovery to the mentioned hashing-based approaches.

In Section 4 we then introduce a group-discovering linkable AH-AKE protocol
by applying IHME to the state-of-the-art linkable AH-AKE protocol from [13],
which admits only one input group per user and session. The index-hiding prop-
erty is hereby essential to preserve the affiliation-hiding property in the multi-
group setting.

In Section 5 we formalize the security of linkable AH-AKE protocols by adopt-
ing a model from [13] to the setting that admits group discovery. In particular,
in the definition of affiliation hiding we resolve the challenge of relating the out-
come of the protocol containing the intersection of input group (sub)sets to the
knowledge of the adversary that may have valid membership credentials for some
of these groups. Following the model we finally give the security analysis of our
scheme in Section 6.

Privacy-Preserving Group Discovery with Linear Complexity 423

2 The Group Discovery Problem and Potential Solutions

In this section we focus on various solutions for the group discovery problem
in AH-AKE protocols. One of these solutions is trivial but inefficient, whereas
some other solutions, while being more sophisticated, may be less secure.

In order to illustrate different approaches we briefly introduce the setting for
the group discovery problem in AH-AKE protocols. Consider N different groups
G1, . . . , GN managed by distinct group authorities. We assume that user U1 is
a registered member of n1 groups, i.e. U1 holds a set of n1 different membership
credentials {(Gi, cred

1
i)}i. Similarly, U2 is a registered member of n2 groups hold-

ing own set of n2 credentials {(Gj , cred
2
j)}j . To simplify the exposition, let us

further assume that n1 = n2 and use the notation n = n1 = n2. At a high level,
the goal of the group discovery problem in AH-AKE protocols is to execute a
handshake session between U1 and U2 such that at the end of the session (a) the
users identify the subset of groups for which both have respective membership
credentials (without disclosing information about any other credentials they pos-
sess), and (b) if this subset of groups is non-empty, then the two users agree on
a secret key. Current AH-AKE (and SH) protocols admit only one input group
per handshake participant and session, basically allowing for privacy-preserving
matching of some input groups Gi and Gj used by U1 and U2, respectively. In our
description we will utilize this ability of U1 and U2 to execute such single-group
AH-AKE protocols using any of their membership credentials.

2.1 Relationship to (Authorized) Private Set Intersection

We investigate first whether the group discovery problem can be solved in a more
general way using Private Set Intersection (PSI) protocols such as [9, 17, 10, 15,
8, 11]. In a typical PSI setting users execute the protocol using sets of elements
as inputs. Each user has its own input set and the main goal of a PSI protocol
is to allow users to learn the intersection of their input sets without disclosing
any information about further elements. One might attempt to design a group
discovery protocol by simply letting group credentials be random nonces from a
large domain (but identical for all members of the group) and use a PSI protocol
to check if the two users have nonces of the same group. With this solution,
however, a number of problems arise: (a) providing the same credential to all
group members precludes member revocation since users can trivially create
and admit new members to their groups without the GA noticing it, simply by
revealing their nonces to other users, (b) the proposed technique leads to an AH-
AKE protocol which is not affiliation-hiding in the sense defined in Section 5 as
shown in our full version, and (c) although PSI protocols with linear computation
overhead are known [8, 11], our group discovery protocol presented in Section 4
can be implemented more efficiently as it relies on simpler building blocks.

A related class of protocols [7, 8], called Authorized PSI (APSI), strength-
ens the requirements of PSI protocols in that the computed intersection of the
users’ inputs must contain authorized elements only, i.e. elements that have been
previously certified by some trusted authority. A technique for computing the

424 M. Manulis, B. Pinkas, and B. Poettering

intersection of certified sets has been introduced in [4]. One may think that au-
thorization of elements in APSI corresponds to the registration process of users
to groups in AH-AKE protocols. However, the APSI setting assumes that the
same authority certifies all elements in the input sets. In contrast, the AH-AKE
setting explicitly requires existence of multiple independent group authorities
providing users with membership certificates. In addition, problem (a) in the
PSI setting (support for revocation) also applies here. Since neither PSI nor
APSI protocols help to solve the group discovery problem directly, we discuss in
the following several alternatives before coming to our most efficient solution.

2.2 Possible Solutions

Näıve Approach. The trivial solution is for U1 and U2 to use a single-group
AH-AKE protocol for any possible combination of their membership groups. This
requires n2 different AH-AKE sessions, which might be too high in practice.

Reducing the Overhead by Using Hashing. A possible improvement that
decreases the overhead involves the usage of hashing. We describe here only the
basic ideas of this solution, since the focus of this paper is on a more efficient
solution based on a new encoding technique, which we introduce in Section 3.

In the hashing-based approach, the parties use a random hash function h,
which is either chosen in advance or jointly defined by the two parties. The hash
function maps arbitrary values to an output in the range [1, B], B ∈ �, namely
into one of B bins. Each party then assigns its membership credentials in group
Gi into bin h(i). Now, when U1 and U2 meet, they need not run the AH-AKE
protocol between each of the n2 combinations of their potential input groups.
Instead, the protocol must only be run between the membership credentials that
were mapped by both parties to the same bin. Indeed, for every group Gi for
which both U1 and U2 have membership credentials, both parties map these
credentials to the same bin h(i) and will, therefore, run the AH-AKE protocol
with these credentials.

The basic idea described above succeeds in finding every match between mem-
bership credentials of the two parties. However, in order to protect privacy, a
protocol which is based on this approach must hide from each party how many
credentials were mapped by the other party to each of the bins (otherwise some
data is leaked; for example, if the first bin of U1 is empty then U2 learns that
U1 in not a member of any group Gi for which h(i) = 1). Hiding the number of
items in every bin can be done (following [9]) by finding a bound M such that
the following property holds with high probability: when n items are mapped by
a random hash function to B bins, then no more than M items are mapped to
any single bin. Given this bound M , each party first maps its credentials to the
B bins, and then adds to each bin that has less than M credentials, additional
“dummy” values, which are indistinguishable from real credentials, so that the
total number of items in the bin is M . The protocol now requires to run M2

handshakes of the single-group AH-AKE protocols for every bin, resulting in

Privacy-Preserving Group Discovery with Linear Complexity 425

the total of BM2 sessions. In order to set the right parameters, we can use the
following well known fact [18, Theorem 1]:

Fact 1. If n items are mapped at random to B = n/ log n bins, then the proba-
bility that there is a bin with more than M = O(log n) items is o(1).

The communication overhead of the protocol is obviously O(BM2). Also, the
computation requires each party to run the single-group handshake BM2 times.
Plugging in the parameters B = n/ logn and M = O(log n), we get that the
communication and computation overheads are both O(n log n). (An even more
efficient variant of this technique, based on balanced allocation hashing, is ex-
plored in the full version of this paper. Its communication and computation
complexity is O(n log log n). That variant leaks however some additional infor-
mation about group affiliations.)

3 Index-Hiding Message Encoding

The main tool we will use in our protocol is a new primitive called Index-Hiding
Message Encoding (IHME). By this term we understand a technique that pools
a set of input messages m1, . . . , mn ∈ M (where M is a message space) into
a single data structure S. Any message can be recovered from S individually
by addressing it via its index which is arbitrarily chosen from an index set
I and specified at encoding-time. If it is impossible for an adversary to reveal
information about the deployed indices by inspecting S then the scheme is called
index-hiding. This notion is now formalized by first presenting the syntax of the
related concept of index-based message encoding and its correctness definition,
and then by giving a game-based definition of the index-hiding property.

Definition 1 (Index-Based Message Encoding). An index-based message
encoding scheme (iEncode, iDecode) over an index space I and a message space
M consists of two efficient algorithms:

iEncode(P) On input consisting of a tuple of index-message pairs P = {(i1, m1),
. . . , (in, mn)} ⊆ I×M with distinct indices i1, . . . , in, this algorithm outputs
an encoding S.

iDecode(S, i) On input of an encoding S and an index i ∈ I this algorithm
outputs a message m ∈ M.

An index-based message encoding scheme is correct if iDecode(iEncode(P), ij) =
mj for all j ∈ {1, . . . , n} and all tuples P = {(i1, m1), . . . , (in, mn)} ⊆ I ×M
with distinct indices ij.

An index-based message encoding scheme is called index-hiding if it hides the in-
dices in which the messages are encoded. That is, it ensures that an attacker, who
sees an encoding S and might even know some of the indices and corresponding
messages, cannot identify any other indices in which messages are encoded.

Given this property, which is formalized below, an index-hiding message en-
coding can be used for solving group discovery in AH-AKE in the following way:

426 M. Manulis, B. Pinkas, and B. Poettering

The first party, U1, IHME-encodes its first messages mj of each of the AH-AKE
protocols in the groups it belongs to, using fixed indices ij assigned to these
groups. The resulting encoding S is sent to the second party, U2, which can
retrieve and answer the messages encoded in the indices corresponding to U2’s
credentials. However, messages corresponding to other groups cannot be recog-
nized by U2, since it does not have the credentials required to participate in the
AH-AKE protocols of the corresponding groups, and therefore it is in the same
situation as someone participating in a one-on-one AH-AKE protocol without
being a member of the relevant group. U2 therefore cannot identify neither these
messages nor the deployed indices.

We note that our construction of IHME, presented below, has the attractive
property that encodings S are of the same size (in bits) as the sets of embedded
messages. Given this property one can pass n messages associated with n specific
indices in an encoding S which is only as large as the original set of messages,
and with the following two properties: (a) for each index known to the receiving
party, decoding is possible in a single attempt (since the receiving party knows
where to look for the message), and (b) the indices of messages which the other
party is not authorized to decode are kept hidden.

Definition 2 (Index-Hiding Message Encoding (IHME)). Let IHME =
(iEncode, iDecode) denote a correct index-based message encoding scheme over
index space I and message space M. Let b ∈ {0, 1} be a randomly chosen bit
and let A = (A1,A2) be a PPT adversary that participates in the following game.

Gameihide,b
A,IHME(κ) :

– (I0, I1, M
′, St) ← A1(1κ) such that I0, I1 ⊆ I with |I0| = |I1| = n, and

M ′ = (m′
1, . . . , m

′
|I0∩I1|) with each m′

j ∈ M; (the adversary chooses two
subsets of n indices each, as well as a message m′

j for each index ij in
the intersection of the sets);

– denote the indices in Ib\I1−b as {i1, . . . , ir} and define m1, . . . , mr
$←M,

(additional r = n − |I0 ∩ I1| messages are chosen uniformly at random
in the message space),
let S ← iEncode({(ij, m′

j) | ij ∈ I0 ∩ I1} ∪ {(ij, mj) | ij ∈ Ib \ I1−b}),
(the messages are encoded for the indices in Ib);

– b′ ← A2(St,S) (the adversary is given S and attempts to find b);
– if b′ = b then return 1 else return 0.

The advantage of A is defined as

Advihide
A,IHME(κ) :=

∣
∣
∣Pr[Gameihide,0

A,IHME(κ) = 1]− Pr[Gameihide,1
A,IHME(κ) = 1]

∣
∣
∣ .

By Advihide
IHME(κ) we denote the maximum advantage over all PPT adversaries A.

We say that IHME provides index-hiding if this advantage is negligible in κ.
Moreover, if Advihide

IHME(κ) = 0 for all κ, the IHME-scheme is called perfect.

The definition above enables the adversary to choose the sets of indices, and the
messages corresponding to the intersection of the sets. The other messages are

Privacy-Preserving Group Discovery with Linear Complexity 427

chosen at random. The adversary is given one of the two sets and its goal is
to identify which set it is. The definition requires that the adversary’s success
probability be negligible.

An Implementation of Perfect IHME. One way to efficiently implement
IHME is by using polynomial interpolation in a finite field �. The index and
message spaces are then specified as I = M = �. Algorithms iEncode and
iDecode are specified as follows:

iEncode(P) On input of P = {(i1, m1), . . . , (in, mn)} ⊆ I ×M = �
2, the en-

coding is defined as the list S = (an−1, . . . , a0) of coefficients of the (unique)
polynomial f =

∑n−1
k=0 akxk ∈ �[x] which satisfies ∀(ij , mj) ∈ P : f(ij) =

mj . This polynomial can easily be determined by Lagrange interpolation.

iDecode(S, i) On input of S = (an−1, . . . , a0) and index i ∈ I this algorithm
outputs the evaluation m = f(i) =

∑n−1
k=0 akik of f at position i.

The correctness of the proposed IHME scheme is obvious. Its index-hiding ability
is assured by the following theorem, proven in the full version of this paper based
on the fact that the distributions of the encodings of I0 and I1 are identical.

Theorem 1 (Index-Hiding Property of our IHME Construction). The
proposed IHME scheme provides perfect index-hiding.

In our solution for the group discovery problem in AH-AKE protocols, the index
set I is identified with the set of all possible groups. U1 follows, for each of the n
groups that it is affiliated with, the computation rules of a single-group AH-AKE
handshake. The computed first messages from all these handshake instances are
then encoded into a single structure using the IHME approach by considering
the identifiers of the n groups (e.g. hashes of the public parameters) as indices
for the corresponding messages. The encoding is sent over to U2 which extracts
the handshake messages for only the groups it is affiliated with. Note that for all
matching groups Gi (i.e. groups in which both U1 and U2 are members) the first
messages of handshake instances are correctly transferred from U1 to U2. The
IHME technique is then applied independently to all subsequently exchanged
handshake messages. Observe that for the secure deployment of IHME (as per
Definition 2) it is essential that messages exchanged between users in the given
single-group AH-AKE handshake are polynomially indistinguishable from ran-
dom in M = �. This property is satisfied by some protocols, in particular by
the linkable AH-AKE protocol from [13] that is underlying our construction with
implicit group discovery, as presented in Section 4.

On General Performance of IHME. The IHME technique suggested above
has the nice property of zero message expansion: in iEncode(), the length of
the input messages is equal to the length of the output IHME encoding S. The
communication complexity of our protocol is therefore O(n). Since users perform
computations of a single-group handshake only for groups in which they are

428 M. Manulis, B. Pinkas, and B. Poettering

members, they need to participate in only n group handshakes. Thus, in contrast
to possible solutions from Section 2.2 our IHME technique with perfect index-
hiding can solve the group discovery problem with linear communication and
computation complexity1 as summarized in Table 1.

Table 1. Solutions for the group discovery problem with n input groups per participant

Technique Computation Communication Remarks
(AH-AKE invocations)

Näıve approach O(n2) O(n2)
Hashing into bins O(n log n) O(n log n)

Balanced allocation hashing O(n log log n) O(n log log n) not privacy preserving
Our perfect IHME O(n) O(n)

We notice that the general technique for solving group discovery in AH-AKE
schemes based on our IHME construction clearly outperforms all other solutions
suggested above.

4 Affiliation-Hiding Key Exchange with Group Discovery

In this section we illustrate how the IHME technique can be used to construct a
concrete AH-AKE protocol with implicit solution to the group discovery prob-
lem. Our protocol is based on the state-of-the-art linkable AH-AKE (LAH-AKE)
scheme from [13], which allows to privately check the match of a single group
per user and handshake session only. This protocol has the nice property that its
messages remain indistinguishable from random strings to anyone who is not a
group member. Therefore, we can directly apply IHME to compress the complex-
ity of group discovery without assuming any further building blocks. However,
in order to address the group discovery problem implicitly we have to update
the syntax of LAH-AKE protocols.

4.1 Syntax of LAH-AKE with Implicit Group Discovery

A LAH-AKE scheme, which admits multiple group credentials as input per user
and session, denoted MLAH-AKE, consists of four algorithms:

CreateGroup(1κ). This probabilistic algorithm sets up a new group G and is
executed by the corresponding group authority (GA). On input of security
parameter 1κ it generates a public/private group key pair (G.pk, G.sk), ini-
tializes the group’s pseudonym revocation list G.prl to ∅ and outputs public
group parameters G.par = (G.pk, G.prl), and private key G.sk. It is assumed
that public key G.pk may serve as a non-ambiguous identifier for group G.

1 The overhead of interpolating the polynomial in the IHME method is O(n2) mul-
tiplications. However, the overhead of these operations is negligible compared with
the overhead of computing exponentiations in the AH-AKE handshake protocols.

Privacy-Preserving Group Discovery with Linear Complexity 429

AddUser(U, G). This is a protocol that is executed between a prospective group
member U and the group authority of G. User U presents a pseudonym id
and is issued a private membership credential credG.pk for id in group G. It
is legitimate for users to register the same pseudonym id in different groups.
The communication channel between U and G is assumed to be authentic.

Handshake(Ui, Uj). This is the key exchange protocol (handshake), executed
between two users Ui and Uj . The input for Ui is (idi,Gi, ri) where idi is
his pseudonym, Gi is a set of triples of the form (G.pk, credG.pk, G.prl), and
ri ∈ {init, resp}. All values credG.pk in Gi are credentials previously registered
in the respective group G.pk by using the AddUser algorithm on pseudonym
idi. By G.prl we denote the respective pseudonym revocation list. For user
Uj the protocol’s input (idj ,Gj , rj) is defined analogously.
Users keep track of the state of created Handshake(id,G, r) protocol sessions
π through session variables that are initialized as follows: π.state← running,
π.id ← id, π.G ← G and (π.key, π.partner, π.groups) ← (⊥,⊥, ∅). At some
point the protocol will complete and π.state is then updated to either rejected
or accepted. In the latter case π.key is set to the established session key (of
length κ), the handshake partner’s pseudonym is assigned to π.partner, and
π.groups holds a non-empty set of group identifiers.

Revoke(G, id). This algorithm is executed by the group authority of G and results
in the update of G’s pseudonym revocation list: G.prl← G.prl ∪ {id}.

Definition 3 (Correctness of MLAH-AKE). Assume that users Ui and Uj

participate in a Handshake protocol with inputs (idi,Gi, ri) and (idj ,Gj , rj), re-
spectively, and let πi and πj denote the corresponding sessions. By G∩ we denote
the set of groups that appear in both Gi and Gj with the restriction that nei-
ther idi nor idj are contained in the respective groups’ revocation lists. The
MLAH-AKE scheme is called correct if (1) πi and πj complete in the same
state, which is accepted iff (G∩
= ∅ ∧ ri
= rj), and (2) if both sessions ac-
cept then (πi.key, πi.partner, πi.id) = (πj .key, πj .id, πj .partner) and πi.groups =
πj .groups = G∩.

4.2 Number-Theoretic Assumptions and Building Blocks

Assumptions. The security of our protocol builds on the hardness of the fol-
lowing RSA problem, which is a standard RSA assumption for safe moduli, also
used in the design of AH-AKE and SH protocols from [20,12, 13].

Definition 4 (RSA Assumption on Safe Moduli). Let RSA-G(κ′) be a prob-
abilistic algorithm that outputs pairs (n, e) where (a) n = pq for random κ′-bit
primes p
= q, (b) p = 2p′ + 1, q = 2q′ + 1 for primes p′, q′, and (c) e ∈ �ϕ(n) is
coprime to ϕ(n). The RSA-success probability of a PPT solver A is defined as

Succrsa
A (κ′) = Pr

[

(n, e)← RSA-G(κ′); z
$← �

∗
n; m← A(n, e, z) with me = z

]

.

The RSA assumption on safe moduli states that the maximum RSA-success prob-
ability Succrsa(κ′) (defined over all PPT solvers A) is negligible in κ′.

430 M. Manulis, B. Pinkas, and B. Poettering

Perfect IHME. Let κ, κ′ be security parameters (where κ′ is polynomially
dependent on κ) and p be the smallest prime number satisfying p > 22κ′+κ. A
central building block of our MLAH-AKE protocol is the perfect IHME scheme
presented in Section 3, defined over finite field � = GF (p). (As alternative, finite
field GF (22κ′+κ) could be used. However, in this paper we use GF (p) to simplify
notations.)

Hash Functions. The protocol makes use of three different hash functions
(modeled as random oracles):

H : {0, 1}∗ → [0, p− 1] H ′ : {0, 1}∗ → {0, 1}κ H∗ : {0, 1}∗ → [0, p− 1]

For convenience, for each n ∈ � of length 2κ′ we define

Hn : {0, 1}∗ → �n; x → H∗(n‖x)mod n.

4.3 The Protocol Specification

CreateGroup(1κ) Algorithm. Group authorities setup new group parameter sets
as follows: in a first step, two κ′-bit primes p, q ∈ � with p = 2p′ + 1 and
q = 2q′ + 1 for prime numbers p′ and q′ are picked. For n = pq an exponent
e ∈ �ϕ(n) which is coprime to ϕ(n) = (p − 1)(q − 1) = 4p′q′ is chosen, and
d = e−1 (mod ϕ(n)) is computed.

As �∗
n
∼= �

∗
p×�∗

q the largest element order in �∗
n is lcm(ϕ(p), ϕ(q)) = 2p′q′ =

ϕ(n)/2, and hence �∗
n is not cyclic. Let the CreateGroup algorithm pick an ele-

ment g ∈ �∗
n with ord(g) ≥ p′q′ and gp′q′
= ±1. It follows that ord(g) = 2p′q′

and that −1
∈ 〈g〉, and we may infer �∗
n
∼= 〈−1〉 × 〈g〉. As about a half of the

elements in �∗
n have the desired two properties [13], g can easily be found by

random sampling and testing.
The algorithm sets G.pk ← (n, g, e), G.prl ← ∅ and G.sk ← d, and outputs

G.par = (G.pk, G.prl) and G.sk as public and private key, respectively.

AddUser(U, G) Protocol. To admit a new member to a group the corresponding
GA issues as credential credG.pk the full domain hash RSA signature [3] on
the pseudonym id specified by the user, i.e. credG.pk = Hn(id)G.sk mod n. The
communication between U and G is assumed to be authentic and confidential.

Handshake((idi,Gi, init), (idj ,Gj , resp)) Protocol. The handshake protocol is exe-
cuted between two users Ui and Uj holding corresponding pseudonyms idi and
idj as well as membership lists Gi and Gj , respectively. Each user’s membership
list contains triples (G.pk, credG.pk, G.prl) for all affiliations of that user. The
handshake protocol is detailed in Figure 1.

The lines where the numbering is formatted in bold face coincide with those
from [13]; in particular this includes the calculation of the θ = (−1)bgtcred + kn
values (lines 4–8), the partial keys r = (θeHn(id)−1)2t and the confirmation
messages c (lines 19–20). Lines 17 and 22 effectively implement user revocation.

Privacy-Preserving Group Discovery with Linear Complexity 431

Innovative in this protocol is the parallel transmission of multiple θ and c values
encoded as IHME-structures S and S′, respectively. Note the usage of RSA
moduli n as group specific indices. The lists T and R are not transmitted, but
hold the inner state of the protocol.

Note that protocol correctness demands that the string X in the third code
block (lines 26–32) is mounted in the same order for both Ui and Uj. This
can be achieved by letting the corresponding for-loop iterate in the order of
ascending ni.

Revoke(G, id) Algorithm. The revocation of pseudonyms is handled by the partic-
ular group authority of G by including the pseudonym id into the corresponding
pseudonym revocation list G.prl. We assume that this list is distributed authen-
tically to all members of the group.

4.4 Protocol Correctness, Efficiency Analysis, and Optimizations

In the following we show why the protocol is correct and discuss its concrete
efficiency, including possible optimizations. The actual security analysis of the
protocol is postponed to Section 6 after the specification of the security model
with regard to the group discovery problem.

Correctness. Let (n, g, e) = G.pk denote a group to which Ui and Uj are both
registered, i.e. Ui owns a credential credG.pk = Hn(idi)d mod n for pseudonym
idi, while Uj possesses credential Hn(idj)d mod n for idj. Then, by construction,
the value iDecode(Si, n) has the form θi = (−1)bigtiHn(idi)d mod n. The value
rj computed by Uj for group G.pk is

rj = (θi
eHn(idi)−1)2tj = (((−1)bigtiHn(idi)d)eHn(idi)−1)2tj = g2etitj (mod n).

Symmetrically, for group G.pk user Ui computes the same value ri = g2etitj from
iDecode(Sj , n) and idj . The protocol’s correctness is now verifiable by inspection.
The case that Hn(id)−1 is not defined occurs only with negligible probability.

Efficiency Analysis. The computational costs of the Handshake protocol mainly
consist of the exponentiations by ti (resp. tj), which are executed twice per group.
Precisely, the computational effort a user Ui starting a Handshake(idi,Gi, init)
protocol session has to stem can be estimated by 2|Gi| exponentiations with
modulus size 2κ′, where |Gi| denotes the number of groups Ui is member in.
That is, the computational overhead scales linearly with the number of affili-
ations. Also the size of IHME-encodings S,S′ grows linearly with the number
of affiliations. More precisely, the total communication complexity of the hand-
shake amounts to 2(2κ′ + κ)(|Gi| + |Gj |) bits (without considering pseudonyms
that can be short).

432 M. Manulis, B. Pinkas, and B. Poettering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Ui on inputs (idi,Gi, init)
Pi ← ∅, Ti ← ∅
for all (G.pk, credG.pk, G.prl) ∈ Gi:

let (ni, gi, ei) = G.pk
(bi, ti) ←R Z2 ×Zni/2

θ′

i ← (−1)bi(gi)
ticredG.pk mod ni

ki ←R [0, �p/ni� − 1]
θi ← θ′

i + kini

Pi ← Pi ∪ {(ni, θi)}
Ti ← Ti ∪ {(G.pk, ti, G.prl)}

Si ← iEncode(Pi)

sidi ← mi ‖mj

P ′

i ← ∅, Ri ← ∅
for all (G.pk, ti, G.prl) ∈ Ti:

let (ni, gi, ei) = G.pk
if idj 	∈ G.prl:

θj ← iDecode(Sj , ni)
ri ← (θj

eiHni
(idj)

−1)2ti mod ni

ci ← H(G.pk‖ri ‖sidi ‖ init)
Ri ← Ri ∪ {(G.pk, ri)}

else: ci ←R [0, p − 1]
P ′

i ← P ′

i ∪ {(ni, ci)}
S ′

i ← iEncode(P ′

i)

Xi ← "", groupsi ← ∅
for all (G.pk, ri) ∈ Ri:

let (ni, gi, ei) = G.pk
cj ← iDecode(S ′

j , ni)
if cj = H(G.pk‖ri ‖sidi ‖ resp):

groupsi ← groupsi ∪ {G.pk}
Xi ← Xi ‖G.pk‖ri

if groupsi 	= ∅ then
keyi ← H ′(Xi ‖sidi)
partneri ← idj

terminate with “accept”
else

(keyi, partneri) ← (⊥,⊥)
terminate with “reject”

mi = (idi,Si)−−−−−−−−−−−−−−−→
mj = (idj ,Sj)←−−−−−−−−−−−−−−−

S ′

i−−−−−−−−−→
S ′

j←−−−−−−−−−

Uj on inputs (idj ,Gj , resp)
Pj ← ∅, Tj ← ∅
for all (G.pk, credG.pk, G.prl) ∈ Gj :

let (nj , gj , ej) = G.pk
(bj , tj) ←R Z2 ×Znj/2

θ′

j ← (−1)bj (gj)
tj credG.pk mod nj

kj ←R [0, �p/nj� − 1]
θj ← θ′

j + kjnj

Pj ← Pj ∪ {(nj , θj)}
Tj ← Tj ∪ {(G.pk, tj , G.prl)}

Sj ← iEncode(Pj)

sidj ← mi ‖mj

P ′

j ← ∅, Rj ← ∅
for all (G.pk, tj , G.prl) ∈ Tj:

let (nj , gj , ej) = G.pk
if idi 	∈ G.prl:

θi ← iDecode(Si, nj)
rj ← (θi

ej Hnj
(idi)

−1)2tj mod nj

cj ← H(G.pk‖rj ‖sidj ‖ resp)
Rj ← Rj ∪ {(G.pk, rj)}

else: cj ←R [0, p − 1]
P ′

j ← P ′

j ∪ {(nj , cj)}
S ′

j = iEncode(P ′

j)

Xj ← "", groupsj ← ∅
for all (G.pk, rj) ∈ Rj :

let (nj , gj , ej) = G.pk
ci ← iDecode(S ′

i, nj)
if ci = H(G.pk‖rj ‖sidj ‖ init):

groupsj ← groupsj ∪ {G.pk}
Xj ← Xj ‖G.pk‖rj

if groupsj 	= ∅ then
keyj ← H ′(Xj ‖sidj)
partnerj ← idi

terminate with “accept”
else

(keyj , partnerj) ← (⊥,⊥)
terminate with “reject”

Fig. 1. Specification of Handshake((idi,Gi, init), (idj ,Gj , resp))

Further Optimizations. The following optimization idea would render the
Handshake protocol slightly more efficient. It is based on the observation that
in the Handshake protocol both the θ values and the confirmation tags c are
transferred by IHME using the same finite field � = GF (p). The protocol would
stay secure if the confirmation tags c would be shortened from 2κ′ + κ bits to
just κ bits. To implement this, the confirmation tags c have to be computed
by an auxiliary hash function whose range is �′, where �′ is a finite field of
order ≈ 2κ, and the IHME scheme for transferring S′ would have to be defined
over �′ instead of �. The deployment of this idea would save 2κ′(|Gi| + |Gj |)
communication bits, resulting in the total complexity of (2κ′ + 2κ)(|Gi|+ |Gj |).

Privacy-Preserving Group Discovery with Linear Complexity 433

5 Security Model for LAH-AKE with Group Discovery

In this section we introduce the security model for LAH-AKE protocols while
taking into account various challenges implied by the group discovery problem
and the updated syntax of such protocols, by modifying the current state-of-the-
art model from [13].

5.1 Adversary Model

After describing the basic set of adversarial queries we define two security prop-
erties: Linkable Affiliation-Hiding security and Authenticated Key Exchange se-
curity (with forward secrecy). Both requirements are defined with regard to
multiple input groups per user and session. The following definition is helpful to
keep track on executed handshake sessions:

Definition 5 (Session IDs and Partnered Session). For a Handshake ses-
sion π with π.state = accepted the session id π.sid is a value that uniquely
identifies π in the set of all protocol sessions started by π.id. Two sessions π, π′

are called partnered if π.state = π′.state = accepted and (π.sid, π.id, π.partner) =
(π′.sid, π′.partner, π′.id).

The adversary A is modeled as a PPT machine that interacts with protocol
participants and can mount attacks via the following set of queries.

Handshake(id,G, r). This query lets the holder of pseudonym id start a new ses-
sion π of the Handshake protocol. It receives as input a set G of public group
keys G.pk and a role identifier r ∈ {init, resp} that determines whether the
session will act as protocol initiator or responder. Session variable π.revealed
is initialized to false. If there is a group G.pk listed in G for which id has no
private credential credG.pk then this query is ignored. Optionally, this query
returns a first protocol message M .

Send(π, M). Message M is delivered to session π. After processing M the even-
tual output is given to A. This query is ignored if π is not waiting for input.

Reveal(π). If π.state = running then this query is ignored. Otherwise the flag
π.revealed is set to true and (π.state, π.key, π.groups) is returned.

Corrupt(id, G). Membership credential credG.pk of pseudonym id in group G is
passed to the adversary. Note that this query models the possibility of se-
lective corruptions.

Revoke(G, id). This query lets the GA of G include id in its revocation list G.prl.

5.2 Linkable Affiliation-Hiding Security

We start with the property of Linkable Affiliation-Hiding (LAH). At a high
level the goal here is to protect the disclosure of non-matching affiliations of
handshake participants. We model LAH-security using the indistinguishability
approach (similar to that used for encryption schemes). The goal of the adversary

434 M. Manulis, B. Pinkas, and B. Poettering

is to decide which of the two sets of affiliations G∗0 or G∗1 some challenge session
π∗ is using. The adversary can also invoke any number of handshake sessions,
and ask Reveal and Corrupt queries at will. This intuition is formalized as follows.

Definition 6 (LAH-Security). Let MLAH-AKE = {CreateGroup, AddUser,
Handshake, Revoke}, b be a randomly chosen bit, and Q = {Handshake, Send,
Reveal, Corrupt, Revoke} denote the set of queries the adversary A has access to.
We consider the following game between a challenger and the adversary A:

Gamelah,b
A,MLAH-AKE(κ, n, m) :

– the challenger creates users U1, . . . , Un and pseudonyms ID = {id1, . . . , idn};
– the challenger creates m groups G = {G1, . . . , Gm} and registers user Ui with

pseudonym idi in group Gj for all (i, j) ∈ [1, n]× [1, m];
– AQ interacts with all participants using the queries in Q; at some point AQ

outputs a tuple (id∗,G∗0 ,G∗1 , r∗) where id∗ ∈ ID, G∗0 ,G∗1 ⊆ G with |G∗0 | = |G∗1 |,
and r∗ ∈ {init, resp}. The set D∗ = (G∗0 \G∗1)∪(G∗1 \G∗0) = (G∗0 ∪G∗1)\(G∗0 ∩G∗1)
is called the distinguishing set;

– the challenger invokes a Handshake(id∗,G∗b , r∗) session π∗ (and provides all
needed credentials);

– AQ continues interacting via queries (including on session π∗) until it ter-
minates and outputs bit b′;

– the output of the game is 1 if all of the following hold; else the output is 0:
(a) b = b′,
(b) if π∗ accepted and there is a Handshake session π′ with D∗ ∩ π′.G
=
∅ which was in state running while π∗ was in state running, then no
Reveal(π∗) query was asked,

(c) no Reveal(π′) query was asked for any Handshake session π′ with D∗ ∩
π′.G
= ∅ and π′.partner = id∗ that was in state running while π∗ was in
state running,

(d) no Corrupt(id, G) query with (id, G) ∈ ID × D∗ was asked before π∗ left
running state.

We define Advlah
A,MLAH-AKE(κ, n, m) :=

∣
∣
∣Pr[Gamelah,0

A,MLAH-AKE(κ, n, m) = 1]− Pr[Gamelah,1
A,MLAH-AKE(κ, n, m) = 1]

∣
∣
∣

and denote with Advlah
MLAH-AKE(κ, n, m) the maximum advantage over all PPT

adversaries A. We say that MLAH-AKE is LAH-secure if this advantage is neg-
ligible in κ (for all n, m polynomially dependent on κ).

Conditions (b)–(d) exclude some trivial attacks on affiliation hiding. Condi-
tion (b) thwarts the attack where A starts a Handshake(id′,G′, r′) session π′ with
G′ ∩ D∗
= ∅, relays all messages between π∗ and π′ and finally asks Reveal(π∗).
By protocol correctness π∗.groups would contain elements from D∗ and it would
be trivial to correctly decide about b. Condition (c) handles the same attack, but
from the point of view of π′. Condition (d) prevents A to corrupt a pseudonym
in a group from D∗, to impersonate that user and to decide about bit b from the
output of its protocol run.

Privacy-Preserving Group Discovery with Linear Complexity 435

5.3 Authenticated Key Exchange Security

Authenticated Key Exchange (AKE) security of MLAH-AKE schemes is modeled
similarly to [13] where the goal of the adversary A is to distinguish the session
key computed by some test session π∗ from a random value. A may invoke
any number of handshake sessions, corrupt pseudonyms, and reveal established
sessions keys at will as long as it does not obtain the session key computed by
π∗ in some trivial way. For the formal definition of AKE-security we introduce
two further queries Reveal′ and Test (the latter with secret parameter b ∈ {0, 1})
and the new session variable π.tested, which is initially set to false.

Reveal′(π). This query is like the original Reveal query except that it is ignored
if π.tested = true or π′.tested = true for any session π′ partnered with π.

Test(π). If π is fresh (see Definition 7) then π.tested is set to true and a key K is

returned, where K = π.key if b = 1 and K
$← {0, 1}κ otherwise. In addition,

π.groups is returned. This query may be asked at most once.

Definition 7 (Session Freshness). A session π invoked in response to a
Handshake(id,G, r) query is called fresh if all of the following hold:

(a) π.state = accepted and π.revealed = false.
(b) π′.revealed = false for any session π′ that is partnered with π.
(c) there exists a group G ∈ π.groups such that neither Corrupt(π.id, G) nor

Corrupt(π.partner, G) has been asked before π.state was set to accepted.

Conditions (a)–(c) imply the usual constraints of key secrecy models that include
forward secrecy [5]. Condition (c) demands that a single group G for which π.id
and π.partner remain uncorrupted until protocol acceptance suffices for the tested
session to be considered fresh.

Definition 8 (AKE-Security with Forward Secrecy). Let MLAH-AKE =
{CreateGroup, AddUser, Handshake, Revoke}, b be a randomly chosen bit, and Q =
{Handshake, Send, Corrupt, Revoke, Reveal′, Test} denote the set of queries the ad-
versary A has access to. We consider the following game between a challenger
and the adversary A:

Gameake,b
A,MLAH-AKE(κ, n, m) :

– the challenger creates users U1, . . . , Un and pseudonyms id1, . . . , idn;
– the challenger creates m groups G1, . . . , Gm and registers Ui with pseudonym

idi in group Gj for all (i, j) ∈ [1, n]× [1, m];
– AQ interacts with all participants using the queries in Q;
– at some point AQ asks Test(π∗) to a fresh session π∗;
– AQ continues interacting via queries until it terminates and outputs bit b′,

which is the output of the game.

We define Advake
A,MLAH-AKE(κ, n, m) :=

∣
∣
∣2 Pr[Gameake,b

A,MLAH-AKE(κ, n, m) = b]− 1
∣
∣
∣

and denote with Advake
MLAH-AKE(κ, n, m) the maximum advantage over all PPT

adversaries A. We say that MLAH-AKE is AKE-secure if this advantage is neg-
ligible in κ (for all n, m polynomially dependent on κ).

436 M. Manulis, B. Pinkas, and B. Poettering

6 Security Analysis of Our Protocol

Following the extended definitions from the previous sections we prove that our
MLAH-AKE protocol from Section 4 satisfies the desired goals. The respective
proofs are provided in the full version of this paper.

Theorem 2 (Linkable Affiliation-Hiding Security). The MLAH-AKE pro-
tocol from Section 4 is LAH-secure under the RSA assumption on safe moduli
in the random oracle model.

Theorem 3 (Authenticated Key Exchange Security). The MLAH-AKE
protocol from Section 4 is AKE-secure under the RSA assumption on safe moduli
in the random oracle model.

The dependence on the RSA assumption and the random oracle model stems
from the underlying LAH-AKE protocol [13] (which is proven secure under these
assumptions). Note that our IHME approach can be deployed independently of
any number-theoretical or non-standard assumption.

7 Conclusion

We discussed several solutions to the open problem of efficient group discovery in
AH-AKE protocols. We stress that without efficient group discovery, existing AH-
AKE schemes (that provide support for only one input group per user and proto-
col session) would remain of very limited use. Throughout the paper we described
how to perform group discovery more efficiently than by the näıve combinatorial
approach, for which the computational and communication complexity is O(n2)
(where n is the number of input groups per participant). Our most efficient solu-
tion came from the use of a new primitive, called Index-Hiding Message-Encoding
(IHME). In addition to the definition of IHME and its index-hiding property we
gave a construction for which the property holds unconditionally. We then demon-
strated how IHME can be applied to the state-of-the-art linkable AH-AKE proto-
col from [13] in order to discover groups in linear complexity O(n). Our construc-
tion is supported by appropriate definitions of security and proofs.

References

1. Ateniese, G., Kirsch, J., Blanton, M.: Secret Handshakes with Dynamic and Fuzzy
Matching. In: Network and Distributed System Security Symposium (NDSS 2007).
The Internet Society (2007)

2. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.-C.:
Secret Handshakes from Pairing-Based Key Agreements. In: IEEE Symposium on
Security and Privacy 2003, pp. 180–196. IEEE CS, Los Alamitos (2003)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: 1st ACM Conference on Computer and Communications
Security (CCS 1993), pp. 62–73. ACM, New York (1993)

4. Camenisch, J., Zaverucha, G.M.: Private Intersection of Certified Sets. In: Din-
gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer,
Heidelberg (2009)

Privacy-Preserving Group Discovery with Linear Complexity 437

5. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

6. Castelluccia, C., Jarecki, S., Tsudik, G.: Secret Handshakes from CA-Oblivious
Encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307.
Springer, Heidelberg (2004)

7. Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-Preserving Policy-Based
Information Transfer. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,
vol. 5672, pp. 164–184. Springer, Heidelberg (2009)

8. Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear
Computational and Bandwidth Complexity. Cryptology ePrint Archive, Report
2009/491. To appear in Financial Cryptography and Data Security. LNCS, vol.
6052. Springer, Heidelberg (2010)

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

10. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching
with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

11. Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adver-
saries. Cryptology ePrint Archive, Report 2009/594. In: Nguyen, P.Q., Pointcheval,
D. (Eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)

12. Jarecki, S., Kim, J., Tsudik, G.: Group Secret Handshakes or Affiliation-Hiding
Authenticated Group Key Agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS,
vol. 4377, pp. 287–308. Springer, Heidelberg (2006)

13. Jarecki, S., Kim, J., Tsudik, G.: Beyond Secret Handshakes: Affiliation-Hiding Au-
thenticated Key Exchange. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 352–369. Springer, Heidelberg (2008)

14. Jarecki, S., Liu, X.: Unlinkable Secret Handshakes and Key-Private Group Key
Management Schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 270–287. Springer, Heidelberg (2007)

15. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications
to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

16. Jarecki, S., Liu, X.: Private Mutual Authentication and Conditional Oblivious
Transfer. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS,
vol. 5677, pp. 90–107. Springer, Heidelberg (2009)

17. Kissner, L., Song, D.X.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

18. Raab, M., Steger, A.: Balls Into Bins — A Simple and Tight Analysis. In: Rolim,
J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998)

19. Tsudik, G., Xu, S.: A Flexible Framework for Secret Handshakes. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 295–315. Springer, Heidelberg
(2006)

20. Vergnaud, D.: RSA-Based Secret Handshakes. In: Ytrehus, Ø. (ed.) WCC 2005.
LNCS, vol. 3969, pp. 252–274. Springer, Heidelberg (2006)

21. Xu, S., Yung, M.: k-Anonymous Secret Handshakes with Reusable Credentials. In:
11th ACM Conference on Computer and Communications Security (CCS 2004),
pp. 158–167. ACM, New York (2004)

	Privacy-Preserving Group Discovery with Linear Complexity
	Introduction
	Related Work
	Contribution and Organization

	The Group Discovery Problem and Potential Solutions
	Relationship to (Authorized) Private Set Intersection
	Possible Solutions

	Index-Hiding Message Encoding
	Affiliation-Hiding Key Exchange with Group Discovery
	Syntax of LAH-AKE with Implicit Group Discovery
	Number-Theoretic Assumptions and Building Blocks
	The Protocol Specification
	Protocol Correctness, Efficiency Analysis, and Optimizations

	Security Model for LAH-AKE with Group Discovery
	Adversary Model
	Linkable Affiliation-Hiding Security
	Authenticated Key Exchange Security

	Security Analysis of Our Protocol
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

