
Taming Big Brother Ambitions:

More Privacy for Secret Handshakes

Mark Manulis1, Bertram Poettering1, and Gene Tsudik2

1 Cryptographic Protocols Group, TU Darmstadt & CASED, Germany
mark@manulis.eu, bertram.poettering@cased.de
2 Computer Science Department, UC Irvine, USA

gts@ics.uci.edu

Abstract. In Secret Handshakes (SH) and Affiliation-Hiding Authenti-
cated Key Exchange (AH-AKE) schemes, users become group members
by registering with Group Authorities (GAs) and obtaining membership
credentials. Group members then use their membership credentials to
privately authenticate each other and communicate securely. The dis-
tinguishing privacy property of SH and AH-AKE is that parties learn
each other’s groups affiliations and compute common session keys only if
their groups match. Current SH and AH-AKE schemes consider GAs to
be fully trusted, especially, with regard to (i) security of the registration
phase (no phantom members), (ii) secrecy of established session keys, and
(iii) privacy. The impact of possible “big brother” ambitions of malicious
GAs has not been investigated so far. In this paper, we discuss implica-
tions on group members’ privacy and security of their communication in
the presence of possible GA corruptions. We demonstrate problems aris-
ing from relaxed GA trust assumptions and propose an efficient — yet
provably secure — AH-AKE protocol with enhanced privacy properties.

1 Introduction

Affiliation-Hiding Key Exchange. In the public-key setting, traditional
Authenticated Key Exchange (AKE) protocols offer secure key establishment
while usually revealing the identities and certificates of participants. Affiliation-
Hiding AKE (AH-AKE) schemes [11,12] that combine Secret Handshakes (SH)
[3,8,21,20,19,2,13,14] with secure key establishment offer stronger privacy guar-
antees. In both SH and AH-AKE, users are members of groups administrated
by Group Authorities (GAs). Prior to participation, users register with the GA
to obtain their membership credentials. The goal of SH and AH-AKE is to
ensure private matching (e.g. exact, or dynamic matching [2]) between the af-
filiations (groups) of participants. Privacy stems from the requirement to hide
these affiliations from outsiders or members of non-matching groups. AH-AKE
protocols provide stronger privacy than Secret Handshakes, since they guaran-
tee the affiliation-hiding property, even if established session keys are disclosed.
Additionally, AH-AKE protocols provide traditional AKE-security goals [7] for
the established keys. SH and AH-AKE schemes come in two flavors: linkable and

M.J. Atallah and N. Hopper (Eds.): PETS 2010, LNCS 6205, pp. 149–165, 2010.

150 M. Manulis, B. Poettering, and G. Tsudik

unlinkable. Linkable protocols [3,8,11,12], which are useful if participants wish to
be recognized across different sessions, employ re-usable pseudonyms that mem-
bers obtain during the registration process with the GA. In contrast, unlinkable
protocols [21,13,2,14] aim at preventing any correlation among multiple sessions
of the same participant.

The GA Role. We assume that each GA manages one group. It is respon-
sible for the registration of new members and for any subsequent membership
revocation [3,8,21,12,14]. While in linkable AH-AKE members can be efficiently
revoked by black-listing their pseudonyms on public revocation lists, unlinkable
AH-AKE supports revocation either by restricting the number of unlinkable
sessions of users, e.g. [21], or by regularly updating unrevoked membership cre-
dentials, e.g. [13].

Current protocols assume that GAs are fully trusted. This becomes clear by
inspecting the underlying security models [13,12,14] where GA corruptions are
not among the adversary’s options. We first discuss what exactly the GA is
trusted with, and whether this trust is justifiable and/or offers space for mean-
ingful relaxations.

Security of Registration/Revocation. Among GA duties is the registration and
revocation of group members. Clearly, if the GA misbehaves and introduces
phantom members, then security of session keys computed by honest partici-
pants in sessions with phantom members can no longer represent a meaningful
requirement. Therefore, GA must be trusted with regard to security of the reg-
istration (and revocation) in that it does not enroll phantom (or revoke honest)
members. This is similar to the usual trust placed into the Certification Author-
ity (CA) in public-key based AKE schemes.

However, we believe that possible GA misbehavior during registration of new
(honest) members must be taken into account. Note that the registration process
is the only step where GA interacts directly with users. Therefore, information
obtained or issued by the GA during registration may be later misused to the
detriment of members’ privacy.

Security of Session Keys. An AH-AKE instance between two honest members
should result in a secure session key. For obvious reasons, it is desirable for this
key to be kept secret from the GA. This requirement subsumes forward secrecy
of session keys with respect to any future GA corruptions. Although this issue
has not been formally addressed so far, we note that some recent results [11,12]
seem to satisfy this extended form of forward secrecy. Whereas, in many other
protocols, e.g. [3,8,2], private secrets of the GA can be used to immediately
recover session keys.

Privacy of Group Members. The central privacy requirement of AH-AKE pro-
tocols is to hide the group membership (affiliation) of participants from out-
siders. However, it is also meaningful to extend this requirement towards the GA.

Taming Big Brother Ambitions: More Privacy for Secret Handshakes 151

As long as GA is trusted with the security of the registration, it makes sense for
transcripts of sessions among honest members not to reveal their affiliations to
the GA. This requirement is of particular importance for linkable schemes where
participants communicate via pseudonyms. Current linkable schemes, such as
[3,8,20,12], do not provide this stronger privacy notion, since the GA learns (or
even specifies) the pseudonyms of its members during the registration process.

Finally, there is an even more significant threat to privacy of group members,
that stems from the fact that, during the registration process, GA learns users’
real identities. In particular, we believe that handshake sessions involving honest
members should not reveal any information about their real identities to the
GA (even though the GA knows the real identities of all group members). In
other words, users should remain untraceable throughout their communication
sessions.

Untraceability is a new privacy requirement that does not appear in current
AH-AKE security models; in fact, all current linkable protocols that we are
aware of do not provide it. We observe that untraceability is an individual goal
of members, while affiliation-hiding is a goal shared by all members of the same
group. Therefore, untraceability is desirable even if the GA deliberately engages
in sessions with genuine group members.

The above discussion shows that unconditional trust in GA by group members,
as imposed by current AH-AKE security models, can be problematic and needs
to be re-examined. In particular, mitigation of potential GA misbehavior (aimed
to undermine privacy of group members and security of their communication) is
an important goal which motivates our present work.

Contributions and Organization. Our work makes two contributions. First,
in Section 2, we present three intuitive security goals for AH-AKE schemes (key
secrecy, affiliation-hiding and user untraceability) that explicitly consider GA
misbehavior. These goals can be viewed as strengthening those of the recent
model of [12] where GA corruptions are not considered. We summarize two cur-
rent protocols [12,8] and discuss why they are not strong enough to achieve these
new goals. Based on this observation, as our second contribution, in Section 3
we propose a new AH-AKE scheme that operates in the Discrete Logarithm
(DL) setting. Although some central design ideas are similar, the new proto-
col is fairly different from the one proposed by Castellucia, et al. [8]. In short,
one novel factor is the decoupling of the registration phase, where pseudonyms
are generated, from later protocol sessions by adopting blinding techniques for
Schnorr signatures [18,17]. We show that an anonymized registration process is
in fact necessary to preserve affiliation-hiding and untraceability against GAs.
We also show that the latter can be achieved unconditionally. Efficiency and key
security of our technique stem from a key establishment process where session
keys are derived similarly to the Unified Model [4], thus achieving forward se-
crecy (not provided by [8]). Then, in Section 4, we prove security and privacy
of our protocol in the random oracle model (ROM) using the computational
variant of the Oracle Diffie-Hellman assumption from [1].

152 M. Manulis, B. Poettering, and G. Tsudik

Related Work. Linkable Secret Handshake (LSH) schemes [3,8,20] provide
group members with credentials composed of a pseudonym and additional se-
crets. These schemes have been designed with authentication in mind, and,
although some of them offer session key establishment, no formal security treat-
ment of the latter has been provided. Aforementioned schemes provide efficient
revocation using certificate/pseudonym revocation lists. An extension of LSH
to Linkable AH-AKE (LAH-AKE) schemes has been formally modeled and ana-
lyzed in [12]. The scheme in [12] works in the safe RSA setting and offers forward
secrecy as well as revocation, under the trusted GA assumption.

In unlinkable Secret Handshakes [2,13,19,14] credentials are reused while still
precluding the correlation of multiple sessions involving the same participant.
The challenging part is the process of revocation of protocol participants, which
is completely disregarded in [2], handled via synchronization of revocation epochs
in [13], and addressed in [19] with group signatures and broadcast encryption.
Jarecki and Liu [14] recently constructed a scheme that supports more efficient
revocation and unlinkable reusable credentials using group signature-related
techniques. We remark that unlinkability generally can be obtained from linkable
protocols by using one-time pseudonyms; however, this is clearly impractical.

There are also a couple of Linkable Group Secret Handshake schemes [10,11]
that extend the security model from two-party to multi-party authentication
and key establishment scenarios. The approach in [10] uses credentials that em-
ploy Schnorr signatures issued by the GA (this is, in some sense, related to [8]),
whereas, the scheme in [11] applies similar ideas to the RSA setting. Both ap-
proaches achieve session group key establishment based on a variant of the well-
known Burmester-Desmedt [5] technique.

The first result on privacy protection against misbehaving GAs is due to
Kawai, et al. [15]. It deviates from the traditional setting by splitting the GA role
among the issue authority (responsible for registration and certificate issuance)
and the tracing authority (responsible for tracing users based on their handshake
transcripts). Since we treat the GA as a single instance, the setting of our work
is more consistent with earlier results.

2 Malicious GAs: Impact and Challenges

After describing LAH-AKE syntax, we illustrate challenges stemming from ma-
licious GAs using, as our running example, a concrete LAH-AKE scheme from
[12]. We also highlight techniques necessary to protect against malicious GAs
that are later used in our own construction.

2.1 SH and AH-AKE

The main syntactical difference between AH-AKE and SH schemes is the session
key computation during protocol execution. Although many SH schemes provide
participants with a session key, doing so is not mandatory for the purpose of pure
authentication. An LAH-AKE scheme includes four components:

Taming Big Brother Ambitions: More Privacy for Secret Handshakes 153

CreateGroup(1κ) a probabilistic algorithm that sets up a new group G. It is
executed by the corresponding GA. On input of the security parameter 1κ, it
generates a public/private group key-pair (G.pk, G.sk), initializes the group’s
pseudonym revocation list G.prl to ∅ and outputs public group parameters
G.par = (G.pk, G.prl) along with the private key G.sk.

AddUser(U, G) a protocol executed between a prospective group member U and
the GA of G. The algorithm on U ’s side is denoted AddUserU(U, G.par),
and on GA’s side by AddUserG(U, G.sk). Let π be a session of AddUserU or
AddUserG. The state of π is represented with a variable π.state and can take
running or accepted values. Initially π.state = running. Once AddUserU session
π reaches π.state = accepted its variable π.result contains a pair (id, id.cred)
where id is a pseudonym and id.cred is a membership credential enabling U
to authenticate as id in group G in future Handshake sessions. A user can
have several registered pseudonyms in the same group.

Handshake(params1, params2) a protocol (handshake) executed between two
users, U1 and U2, on inputs paramsi = ((idi, idi.cred), Gi.par, ri), i ∈ {1, 2},
with Gi.par = (Gi.pk, Gi.prl), r1 = init and r2 = resp. Each Ui executes
its own part Handshake′(parami). Note that idi is the pseudonym previously
registered to group Gi using the AddUser algorithm. The protocol verifies
that both users are members of the same group (i.e. G1 = G2) and possess
valid membership credentials. If so, the protocol accepts with an established
shared session key. Otherwise, it rejects. Users keep track of the state of
created Handshake protocols π through session variables that are initialized
as follows: π.state ← running, π.key ← ⊥, π.id ← id (where id is the own
pseudonym) and π.partner← ⊥. At some point, the protocol completes and
π.state is updated to either rejected or accepted. In the latter case, π.key is
set to the established session key (of length κ) and the pseudonym of the
handshake partner is assigned to π.partner. State accepted cannot be reached
if the protocol partner is revoked (π.partner ∈ G.prl).

Revoke(G.sk, G.prl, id) a revocation algorithm executed by the GA of G. It out-
puts the updated pseudonym revocation list G.prl← G.prl ∪ {id}.

Definition 1 (Correctness). Suppose that two users, U1 and U2, register as
members of groups G1 and G2, and obtain their credentials (id1, id1.cred) and
(id2, id2.cred), respectively, via corresponding AddUser executions. Further sup-
pose that U1 and U2 participate in a Handshake protocol and let π1 and π2 de-
note their corresponding sessions. The LAH-AKE scheme is called correct if
(a) π1 and π2 complete in the same state: accepted iff G1 = G2 and id1 �∈
G2.prl and id2 �∈ G1.prl and r1 �= r2, and (b) if both sessions accept, then
(π1.key, π1.partner, π1.id) = (π2.key, π2.id, π2.partner).

2.2 Impact of GA Corruptions

LAH-AKE with Honest GAs. One state-of-the-art LAH-AKE scheme is due
to Jarecki, et al. [12]. It is very efficient and offers a number of valuable security

154 M. Manulis, B. Poettering, and G. Tsudik

properties. In particular, it satisfies the following standard requirements, which
we state here informally.

Authenticated Key Exchange (AKE) Security with Forward Secrecy. It should
be infeasible for an active PPT adversary to distinguish the session key
computed in some test session from a random key with a probability non-
negligibly exceeding 1

2 . AKE-security has been modeled in [12] following the
general approach for key exchange protocols (e.g. [7]) via an indistinguisha-
bility game, that precludes all “trivial” attacks via which the adversary could
obtain the key computed in the test session. The (sub)requirement of forward
secrecy is typically modeled by allowing user corruptions, while preventing
active participation of the adversary in the test session.

Linkable Affiliation-Hiding (LAH). It should be infeasible for an active PPT
adversary to decide the group membership of an uncorrupted user from
its handshake sessions or from knowledge of computed session keys. This
requirement has been modeled in [12] via the simulation approach where the
simulator executes handshake sessions without knowing the affiliation (and
secret membership credentials) of participants.

We now briefly overview the LAH-AKE scheme from [12]. During setup, the
GA creates public group parameters (n, g, e), where n is a safe RSA modulus
of length 2κ′′, i.e., an RSA modulus n = pq where p, q are safe κ′′ bit primes,
and e ∈ �ϕ(n) is an RSA exponent satisfying gcd(e, ϕ(n)) = 1. Element g ∈ �∗

n

is chosen such that �∗
n = 〈−1〉 × 〈g〉 (and hence ord(g) ≈ n/2). In addition,

for each group, a specific hash function Hn : {0, 1}∗ → �
∗
n is specified. When

a user registers with the group, the pseudonym id it obtains is just a random
string in {0, 1}κ. The corresponding credential id.cred = σid issued by the GA
is the RSA signature on the full-domain hash of id: σid = Hn(id)d mod n (where
d = e−1 mod ϕ(n)). The handshake protocol is sketched in Figure 1. Note that
H1 is a hash function {0, 1}∗ → {0, 1}κ, and pad is a probabilistic function
that maps its first argument θ′ to a random element θ within a certain interval
such that θ ≡ θ′ (mod n). This padding function is necessary to hide the RSA
modulus sent in protocol messages. Correctness follows from rA = g2exAxB = rB

which holds iff both participants employ valid credentials and consistent group
parameters (n, g, e).

This protocol satisfies AKE- and LAH-security in the appropriate formal
model, assuming random oracles and the hardness of the RSA problem with
safe moduli. In our context, it is more important that the [12] model does not
allow the adversary to corrupt relevant GAs. Our goal is to illustrate the impact
of corrupted GAs on protocol sessions of honest users. We stress that our dis-
cussion does not mean that the original scheme is insecure. In our description,
we distinguish between GAs malicious from the beginning (which is important
if one considers that group parameters might be generated in some rogue way)
and GAs that generate group parameters honestly but misbehave later.

Impact of GA corruptions on AKE-Security. Suppose that the GA is ma-
licious during setup. In particular, it might choose RSA modulus n or generator g

Taming Big Brother Ambitions: More Privacy for Secret Handshakes 155

User A

Input: (nA, gA, eA), idA, σidA
, init

(bA, xA) $
← {0, 1} ×ZnA

θ′
A
← (−1)bA(gA)xAσidA

mod nA

θA ← pad(θ′
A
, nA)

User B

Input: (nB, gB, eB), idB, σidB
, resp

(bB, xB) $
← {0, 1} ×ZnB

θ′
B
← (−1)bB (gB)xBσidB

mod nB

θB ← pad(θ′
B

, nB)

−
m1 = (θA, idA)
−−−−−−−−−−−−→

←−
m2 = (θB , idB)
−−−−−−−−−−−−

sidA ← m1 ‖m2

rA ←
(
(θB)eAHnA

(idB)−1
)2xA

vA ← H1(rA ‖sidA ‖ init)

sidB ← m1 ‖m2

rB ←
(
(θA)eB HnB

(idA)−1
)2xB

vB ← H1(rB ‖sidB ‖ resp)

−
vA

−−−−−−−−−−−→

←−
vB

−−−−−−−−−−−
accept with K = H1(rA ‖sidA) if

vB = H1(rA ‖sidA ‖ resp); else reject.
accept with K = H1(rB ‖sidB) if

vA = H1(rB ‖sidB ‖ init); else reject.

Fig. 1. RSA-based Handshake protocol from [12]

in a way that later facilitates computing session keys exchanged between honest
members. For instance, if g is chosen to have small order (this is trivially feasible
if n has more than two factors, or, if the factors are not safe primes), then the
CDH-analog of computing rA from θ′A and θ′B becomes tractable. Therefore, in
general, public verifiability of group parameters is desirable for the registration
of new members. In the RSA-based setting of [12], this is achievable using slight
modifications of the zero-knowledge proofs from [6], as presented in [16]. How-
ever, this makes the registration process less efficient and, since our construction
uses a DL-based setting, we refrain from investigating this idea further. As men-
tioned in Section 1, a malicious GA can always create phantom members and
compute session keys exchanged between them and honest members. This is un-
avoidable since GA is typically trusted not to introduce new users to the system
(similar to the CA in the classical PKI-setting). However, GA may be interested
in learning the communication contents between two honest members and, in
this sense, the protocol should ensure security of session keys in the presence of
a passive GA that can corrupt group members. This requirement also implies
forward secrecy with respect to GA corruptions. We observe that [12] provides
this protection since the session key is derived from the ephemeral secret g2exAxB

(assuming that public group parameters have been generated correctly). Nev-
ertheless, forward secrecy against GA corruptions is an important security goal
and should be considered in the design of AH-AKE schemes. For example, the
SH scheme of [8], which we modify to obtain our solution, is not forward secure
if the GA is malicious.

Impact of GA Corruptions on LAH-Security. It seems impossible for af-
filiation of honest members to remain secret if these members are involved in
handshake sessions with phantom members created by the malicious GA. In fact,
this is similar to the case where the adversary corrupts a member and communi-
cates with other users on behalf of that member. This case is typically excluded

156 M. Manulis, B. Poettering, and G. Tsudik

from the definition of LAH-security. On the other hand, it is still desirable for
sessions between two honest users not to reveal their affiliations to the GA, i.e.,
no information about the affiliation of a handshake participant should be deriv-
able from a session transcript. Considering the registration process in [12], we
observe that, since the GA learns the pseudonym id of each new member U ,
it can always decide whether some honest handshake participant is a member
of its group by simply observing the communication and the transmission of
pseudonyms in the clear. A possible remedy is to prevent the GA from learning
pseudonyms of group members upon their registration. This can be achieved
by blinding the registration process. One natural approach (in the context of
[12]) it to combine blind RSA signatures coupled with a full-domain hash [9,17].
However, the adversary could then register any pseudonym with any group. In
particular, the adversary would be able to obtain membership credentials for
some pseudonym id that is already in use by an honest group member, with-
out explicitly corrupting any parties. This, in turn, would allow the adversary
to mount (active) attacks on LAH-security and AKE-security of honest group
members (since the adversary would be able to impersonate honest users without
corrupting them or the GA). We stress that, in [12], this problem would arise
not because of the blind registration process, but due to the specific construction
of pseudonyms. In fact, our approach includes a blind registration process where
no such problems occur, due to certain differences in pseudonym generation.

Impact of GA Corruptions on Traceability. As noted in Section 1, con-
sideration of malicious GAs motivates a new privacy requirement — member
untraceability, which we define informally as follows:

Member Untraceability: It is infeasible for an active PPT adversary to learn
the real identity U of an honest group member from handshake sessions
involving that member. Note that untraceability is an individual privacy
goal motivated by the fact that the GA learns members’ real identities during
their registration processes.

In [12], untraceability is not provided for the same reason that handshake tran-
scripts reveal the participants’ affiliation to the GA: the link between a member’s
real identity U and its pseudonym id is known by the GA from the registration
process. We believe that this is avoidable by adopting a blinded registration pro-
cess. However, it requires us to further examine group membership revocation.
In LAH-AKE schemes, revocation is attained by adding members’ pseudonyms
to the revocation list maintained by the GA. In schemes like [12] where the GA
knows the link between U and id anyway, there is no difference between revoking
members and revoking their pseudonyms. The consequence of untraceability is
that revoking a specific member U is no longer possible (since neither the GA nor
a protocol participant can link U to id). However, it is still possible for the GA to
revoke pseudonyms. Since members participate in handshakes using pseudonyms
and revocation can be seen as a tool to prevent misbehavior of participants, it
is still sufficient for the GA to revoke “misbehaving” pseudonyms, effectively
preventing further participation of the member who “owns” them. This works

Taming Big Brother Ambitions: More Privacy for Secret Handshakes 157

only if the scheme ensures uniqueness of pseudonyms. However, if the scheme
of [12] is amended with blind signatures in the registration process, uniqueness
of pseudonyms can no longer be guaranteed. Although some workaround might
be possible [16] (commensurate with lower efficiency), we do not investigate
this direction, since our approach (which builds upon [8]) does not have such
problems.

2.3 Challenges and Design Rationale

Based on our discussion above, we identify some issues and sketch potential
solutions. The first issue is how to avoid possible attacks resulting from rogue
generation of group parameters by the GA. Since, in the RSA setting (e.g.,
[12]), a suitable solution would have to involve inefficient zero-knowledge proofs,
it seems that moving to the DL-based setting would be more advantageous. The
second issue is how to blind the registration process, while ensuring unique-
ness of pseudonyms. An intuitive solution based on blind signatures works only
if the registration process prevents the prospective member from choosing its
pseudonyms freely. For reasons alluded to above, the scheme in [12] does not
yield a straightforward solution to these issues. On the other hand, we observe
that the SH scheme in [8] is amenable to modifications that do not introduce sig-
nificant overhead. Below, we briefly describe this scheme and the design rationale
for our modifications, introduced in the subsequent section.

Let G = 〈g〉 denote a cyclic group of prime order q. Let H : {0, 1}∗ → �q

and H1 : {0, 1}∗ → {0, 1}κ denote hash functions. Upon group initialization, the
GA picks a private key x ∈ �q \ {0} and publishes its public key yG = gx. To
issue a credential for pseudonym id the GA computes a Schnorr signature (ω, t)
on id, i.e. (ω, t) = (gr, r + xH(ω ‖ id)) for some r ∈R �q \ {0}, and hands it
out to the corresponding user. Note that gt = ω(yG)H(ω‖id). In [8], element ω is
considered as a public value associated with id from which gt can be computed
as described above, while t acts as a trapdoor for this value and is only known
to the owner of id. The handshake protocol shown in Figure 2 treats (gt, t) as
public/private key pair for ElGamal encryption. In essence, it is the protocol
proposed in [8], expanded from a four-move to a six-move protocol, for the sake
of better readability.

Since its goal is Secret Handshakes, this scheme has not been analyzed with
regard to session key security. We note that this scheme does not provide forward
secrecy, since the session key is derived from encrypted nonces, which can be de-
crypted later upon corruption of participants. Similar to [12], it does not provide
affiliation-hiding and member untraceability in the face of GA corruptions.

Section 3 describes our LAH-AKE protocol which incorporates two impor-
tant modifications to [8] that address aforementioned challenges stemming from
GA corruptions. First, we introduce a blinded registration process using blind
Schnorr signatures [18,17]. One nice property of blind Schnorr signatures is that
both the signer and the verifier (i.e., the GA and the new member) contribute
to the values (ω, t) of the resulting signature (see Figure 3). It follows that ω
can serve as the unique identifier of a group member. Therefore, we consider as

158 M. Manulis, B. Poettering, and G. Tsudik

User A

Input: (idA, ωA), tA
nA

$
← {0, 1}κ

User B

Input: (idB, ωB), tB
nB

$
← {0, 1}κ

−
idA, ωA, nA

−−−−−−−−−−−→

←−
idB , ωB, nB

−−−−−−−−−−−
yB = ωB (yGA

)H(ωB‖idB)

rA

$
← G, xA

$
← Zq

(CA,1, CA,2) ← (gxA , rA yB
xA)

yA = ωA (yGB
)H(ωA‖idA)

rB

$
← G, xB

$
← Zq

(CB,1, CB,2) ← (gxB , rB yA
xB)

−
(CA,1, CA,2)
−−−−−−−−−−−→

←−
(CB,1, CB,2)
−−−−−−−−−−−

rB ← CB,2/(CB,1)
tA

vA = H1(rA ‖rB ‖nB)
rA ← CA,2/(CA,1)

tB

vB = H1(rA ‖rB ‖nA)

−
vA

−−−−−−−−−−−→

←−
vB

−−−−−−−−−−−
accept with K = H1(rA ‖rB) if

vB = H1(rA ‖rB ‖nA); else reject.
accept with K = H1(rA ‖rB) if

vA = H1(rA ‖rB ‖nB); else reject.

Fig. 2. DL-based Handshake protocol from [8]

user pseudonyms only the ω part of the signature, excluding all other identi-
fiers. In other words: member pseudonyms together with secret user credentials
form Schnorr signatures on the empty string. Our second tweak concerns the
way session keys are computed. In our protocol they are derived from ephemeral
Diffie-Hellman keys and only their authentication is performed using group cre-
dentials. The construction is similar to the Unified Model [4] and ensures forward
secrecy with regard to later corruptions of both the GA and group members.

3 Untraceable LAH-AKE Protocol with Untrusted GAs

Our untraceable LAH-AKE scheme is inspired by the Secret Handshake proto-
col from [8] in which membership credentials are defined via Schnorr signatures.
In order to meet stronger security and privacy requirements we make several
substantial changes to the registration and key exchange procedures (for differ-
ences and design rationale see Section 2). We proceed with the description of
algorithms and protocols.

Algorithm Setup(1κ). This algorithm selects and publishes global parameters
that are common to all users and group authorities. This is done by selecting
security parameter κ′ (polynomially dependent on κ), and by specifying a prime
order cyclic group (G, g, q)← GGen(1κ′

) and two hash functions H∗ : {0, 1}∗ →
�q and H : {0, 1}∗ → {0, 1}3κ.

Algorithm CreateGroup(). The group authority GA picks a random secret key

G.sk
$← �q \ {0} and calculates the public key as G.pk = gG.sk. The algorithm

initializes the group’s revocation list G.prl to ∅ and outputs G.par = (G.pk, G.prl)
as public group parameters, and G.sk as private group key.

Taming Big Brother Ambitions: More Privacy for Secret Handshakes 159

Protocol AddUser(U, G). This protocol admits an user U to group G. The
protocol as specified in Figure 3 is basically the blind variant of the Schnorr
signature scheme [18,17] where the empty message is signed by the group au-
thority’s secret key G.sk. The communication between U and G is assumed to
be authentic. Due to the blinding factors α and β the resulting signature (r′, s′)
remains unknown to both eavesdroppers and the group authority. The output of
this algorithm is the pair (id, id.cred) = (r′, s′) ∈ G ×�q where id will be used as
U ’s pseudonym in group G and id.cred as his secret credential. Note from inspec-
tion of the protocol that from r′ = gk+α+βG.sk and s′ = k+(H∗(r′)+β)G.sk+α
it follows that

id(G.pk)H∗(id) = r′(G.pk)H∗(r′) = gs′
= gid.cred.

Note that neither U nor GA have exclusive control over the resulting values for
id and id.cred.

User U Authority of G

k
$
← Zq

r ← gk

←−
r

−−−−−−−−−−−

α, β
$
← Zq

r′ ← rgα(G.pk)β

e′ ← H∗(r′)
e ← e′ + β

−
e

−−−−−−−−−−−→
s ← k + eG.sk

←−
s

−−−−−−−−−−−
s′ ← s + α

(id, id.cred) ← (r′, s′)

Fig. 3. Specification of our AddUser(U, G) protocol

Protocol Handshake((idA, idA.cred, GA.par, init), (idB, idB.cred, GB.par, resp)).
The handshake protocol is executed between two users A and B, holding pseudo-
nyms idA and idB, private credentials idA.cred and idB.cred and public group
parameters GA.par = (GA.pk, GA.prl) and GB .par = (GB .pk, GB .prl), respec-
tively. The protocol is specified in Figure 4. Observe that the equality LA =
gidA.cred·idB .cred = LB is implied by property id(G.pk)H∗(id) = gid.cred, which is
inherent for the correctness of the protocol.

Algorithm Revoke(G.sk, G.prl, id). The revocation of a pseudonym id from the
group is handled by the particular group authority by including id in the cor-
responding pseudonym revocation list G.prl. It is assumed that this list is dis-
tributed authentically.

160 M. Manulis, B. Poettering, and G. Tsudik

User A

Input: idA, idA.cred, GA.par

tA
$
← Zq \ {0}
θA ← gtA

User B

Input: idB, idB.cred, GB.par

tB
$
← Zq \ {0}
θB ← gtB

−
m1 = (idA, θA)
−−−−−−−−−−−−→

←−
m2 = (idB, θB)
−−−−−−−−−−−−

sidA ← m1 ‖m2

LA ← (idB(GA.pk)H
∗(idB))idA.cred

(KA, μA, μ′

B
) ← H(LA ‖θB

tA ‖sidA)

sidB ← m1 ‖m2

LB ← (idA(GB .pk)H
∗(idA))idB .cred

(KB, μ′

A
, μB) ← H(LB ‖θA

tB ‖sidB)

−
μA

−−−−−−−−−−−→

←−
μB

−−−−−−−−−−−
If μB = μ′

B
and idB �∈ GA.prl then

(key, partner, state) ← (KA, idB, accepted)
else (key, partner, state) ← (⊥,⊥, rejected)

If μA = μ′

A
and idA �∈ GB .prl then

(key, partner, state) ← (KB, idA, accepted)
else (key, partner, state) ← (⊥,⊥, rejected)

Fig. 4. Specification of our Handshake(UA, UB) protocol

4 Security Analysis and Performance Comparison

Security Analysis of our Protocol. In order to prove security of our protocol,
we need an extension of the classical CDH assumption where we provide CDH-
adversary A with two exponentiation oracles H ′

a and H ′
b (that will be realized

with a hash function H ′ and modeled as random oracles). The stronger decisional
version of this assumption was named Oracle Diffie-Hellman Assumption in [1],
for which it has been shown that, in the random oracle model, such hash oracles
do not provide additional advantage for distinguishing the challenge. Therefore,
it seems reasonable to assume that these oracles are not helpful for breaking the
CDH challenge either.

Definition 2 (Oracle CDH (OCDH) Assumption). Let GGen(1κ′
) denote

an algorithm that outputs the specification of a group (G, ·) = 〈g〉 of prime order
q ≥ 2κ′

, let H ′ : G → {0, 1}κ denote a public hash function where κ is polynomial
in κ′. We define Succocdh

GGen,H′(κ′) =

max
A

Pr
[
(G, g, q)← GGen(1κ′

); a, b
$← �q; h← AH′

a,H′
b

G (ga, gb) with h = gab
]

where H ′
a : x �→ H ′(xa) and H ′

b : x �→ H ′(xb) are oracles available to A. The
OCDH assumption states that there exist GGen and H ′ such that Succocdh

GGen,H′(κ′)
is negligible in κ′.

Presuming the hardness of the OCDH problem, our construction presented in
Section 3 satisfies the AKE-/LAH security and Untraceability goals introduced in
Section 2 and formalized in the full version of this paper. The proof of Theorem 3
(with estimated attack probability) is given in Appendix A.3. For proofs of
Theorems 1 and 2 we again refer to the full version.

Theorem 1 (AKE-Security). Our LAH-AKE scheme is AKE-secure in the
random oracle model under the OCDH assumption.

Taming Big Brother Ambitions: More Privacy for Secret Handshakes 161

Theorem 2 (LAH-Security). Our LAH-AKE scheme is LAH-secure in the
random oracle model under the OCDH assumption.

Theorem 3 (Untraceability). Our LAH-AKE scheme is unconditionally un-
traceable.

Efficiency of our Protocol. Our protocol offers strong security and privacy
for users and remains very efficient at the same time. Some computations can
be even further optimized. The registration protocol is performed only once per
user and takes three exponentiations in G. The handshake protocol requires two
exponentiations for the computation of the Diffie-Hellman value gtAtB plus two
additional exponentiations for the computation of the shared long-term authen-
tication key LA = gidA.cred·idB .cred = LB. The latter two exponentiations can
be omitted in future sessions with the same partner by caching long-term keys.
Furthermore, if user pseudonyms are publicly listed then long-term keys can be
pre-computed.

Comparison with [8] and [12]. Table 1 compares security, privacy, and effi-
ciency of the three protocols treated in this paper. We see that in respect to key
security forward secrecy (FS) is provided only by [12] and our protocol, presum-
ing honest behavior of the GA — denoted by hGA — for the former (otherwise,
small group order attacks would be possible, see Section 2.2). In contrast, our
protocol offers AKE security with forward secrecy even in the presence of cor-
rupted GAs — denoted by cGA. As the user registration process in [8] and [12]
is not blinded both protocols cannot provide LAH security if GAs are corrupted
(as malicious GAs could record AddUser transcripts and later recognize affiliated
pseudonyms). The same holds for user untraceability. The converse is correct for
our protocol, which offers both properties even in the presence of corrupted GAs.
As pointed out in Section 2.2, through the deployment of the blinding process
revocation can be only performed based on pseudonyms.

The security advantage of our protocol is gained very efficiently: our protocol
has best message and computational complexity (using optimal arrangement of
messages and not counting cacheable computations). In practice security param-
eters κ = 80, κ′′ = 1024 and κ′ = 1024 (standard group setting) or κ′ = 2κ = 160
(ECC group setting) would be chosen. In the latter case our protocol has the

Table 1. Security and Performance Comparison with [8] and [12]

Protocol Security & Privacy Revocation of Complexity

AKE1 FS2 LAH3 UT4 Transf. bits5 # passes6 # exps7

CJT [8] hGA ✗ hGA ✗ users,pseudonyms 2(3κ′ + 3κ) 4 3 short
JKT [12] hGA ✓ hGA ✗ users,pseudonyms 2(κ′′ + 3κ) 3 2 long
Ours cGA ✓ cGA ✓ pseudonyms 2(2κ′ + κ) 3 2 short
1AKE-Security; 2Forward Secrecy; 3LAH-Security; 4Untraceability; 5Total number of
transferred bits per handshake; 6Number of message passes per protocol run; 7Number
of exponentiations (with short (≈ 2κ bit) or long (≈ κ′′ bit) exponents)

162 M. Manulis, B. Poettering, and G. Tsudik

smallest bandwidth complexity of all named protocols (of about 10κ = 800 bits
per full handshake).

5 Conclusion

SH and AH-AKE schemes provide useful privacy-preserving authentication mech-
anisms coupled with the establishment of secure session keys. These schemes are
becoming more important due to the increasing popularity of multi-user collab-
orative and group-based applications. Existing approaches and security models
assume unconditional trust in Group Authorities. In this paper, we demonstrated
that such trust assumptions might become problematic. We illustrated that these
assumptions can be relaxed in a meaningful way resulting in more secure and
private (yet efficient and practical) AH-AKE schemes. Our work opens a new
research direction: Consideration of untrusted Group Authorities in unlinkable
[2,13,14] and multi-party AH-AKE schemes [10,11].

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

2. Ateniese, G., Kirsch, J., Blanton, M.: Secret Handshakes with Dynamic and Fuzzy
Matching. In: Network and Distributed System Security Symposium (NDSS 2007).
The Internet Society (2007)

3. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.-C.:
Secret Handshakes from Pairing-Based Key Agreements. In: IEEE Symposium on
Security and Privacy 2003, pp. 180–196. IEEE CS, Los Alamitos (2003)

4. Blake-Wilson, S., Johnson, D., Menezes, A.: Key Agreement Protocols and their
Security Analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

5. Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution
System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

6. Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number is the Prod-
uct of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 107–122. Springer, Heidelberg (1999)

7. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and their Use for
Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

8. Castelluccia, C., Jarecki, S., Tsudik, G.: Secret Handshakes from CA-Oblivious
Encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307.
Springer, Heidelberg (2004)

9. Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO 1982, pp.
199–203. Plenum Press, New York (1983)

10. Jarecki, S., Kim, J., Tsudik, G.: Authentication for Paranoids: Multi-Party Secret
Handshakes. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989,
pp. 325–339. Springer, Heidelberg (2006)

Taming Big Brother Ambitions: More Privacy for Secret Handshakes 163

11. Jarecki, S., Kim, J., Tsudik, G.: Group Secret Handshakes or Affiliation-Hiding
Authenticated Group Key Agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS,
vol. 4377, pp. 287–308. Springer, Heidelberg (2006)

12. Jarecki, S., Kim, J., Tsudik, G.: Beyond Secret Handshakes: Affiliation-Hiding Au-
thenticated Key Exchange. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 352–369. Springer, Heidelberg (2008)

13. Jarecki, S., Liu, X.: Unlinkable Secret Handshakes and Key-Private Group Key
Management Schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 270–287. Springer, Heidelberg (2007)

14. Jarecki, S., Liu, X.: Private Mutual Authentication and Conditional Oblivious
Transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 90–107. Springer,
Heidelberg (2009)

15. Kawai, Y., Yoneyama, K., Ohta, K.: Secret Handshake: Strong Anonymity Defini-
tion and Construction. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS,
vol. 5451, pp. 219–229. Springer, Heidelberg (2009)

16. Manulis, M., Poettering, B., Tsudik, G.: Affiliation-Hiding Key Exchange with
Untrusted Group Authorities. In: Zhou, J. (ed.) ACNS 2010. LNCS, vol. 6123, pp.
402–419. Springer, Heidelberg (2010)

17. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

18. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1989)

19. Tsudik, G., Xu, S.: A Flexible Framework for Secret Handshakes. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 295–315. Springer, Heidelberg
(2006)

20. Vergnaud, D.: RSA-Based Secret Handshakes. In: Ytrehus, Ø. (ed.) WCC 2005.
LNCS, vol. 3969, pp. 252–274. Springer, Heidelberg (2006)

21. Xu, S., Yung, M.: k-Anonymous Secret Handshakes with Reusable Credentials. In:
11th ACM Conference on Computer and Communications Security (CCS 2004),
pp. 158–167. ACM, New York (2004)

A Model and Proof for Untraceability

In the appendix of the full version of this paper formal security models and
proofs for AKE-security, LAH-security and Untraceability are given. While, in
respect to the two former models, we extend the work of [12], the property of
untraceability is newly introduced here. Due to space limitations, in this version,
we restrict the focus on model and proof of the latter.

A.1 Adversary Model

The adversary A is modeled as a PPT machine that interacts with parties via
the set of the following basic queries. Unless explicitly noted, we assume that A
always has access to up-to-date exhaustive (system-wide) lists of groups GLi and
pseudonyms IDLi (these lists do not disclose the mapping between pseudonyms
and groups).

CreateGroup() This query sets up a new group G and publishes its public pa-
rameters G.par. The group is added to GLi.

164 M. Manulis, B. Poettering, and G. Tsudik

AddUserU(U, G.par) This query models the actions of U initiating the AddUser
protocol with given target group G. A new protocol session π is started.
Optionally, a first protocol message M is output. G is also added to GLi
if it is a new group; this allows A to create its own groups with arbitrary
(possibly malicious) public parameters.

AddUserG(G, U) This query differs from AddUserU in that it models GA’s actions
on the AddUser protocol. We require that G has been already established
through the CreateGroup query.

Handshake(id, G.par, r) This query lets pseudonym id start a new session π of the
Handshake protocol. It receives as input the public parameters of the group
G wherein the handshake shall take place (given that id has credentials for
that group) and a role identifier r ∈ {init, resp} that determines whether
the session will act as protocol initiator or responder. Optionally, this query
returns a first protocol message M .

Send(π, M) Message M is delivered to session π. After processing M , the even-
tual output is given to A. This query is ignored if π is not waiting for input.
Note that π is either an AddUserU, an AddUserG or a Handshake protocol
session. If π is an AddUserU session and accepts after processing M then id
from π.result is added to IDLi.

Reveal(π) This query is defined only if π is a handshake session. Then, if π.state �=
running it returns π.state and π.key; otherwise the query is ignored.

Corrupt(∗) The input is either a pseudonym id or a group identifier G:

Corrupt(id): If id ∈ IDLi then, for any group G where id is registered, the
corresponding credential id.cred is given to A.

Corrupt(G): For a group G created by CreateGroup() this query hands G’s
long term secret G.sk and control over G’s revocation list G.prl over to A.

Revoke(G, id) This query lets the GA of G include id ∈ IDLi in its pseudonym
revocation list G.prl.

A.2 Definition of Untraceability

The idea behind untraceability is that, even in the presence of a malicious GA,
any member remains untraceable throughout its AH-AKE sessions. As discussed
in Section 1, this is a new (individual) privacy requirement, distinct from AKE-
and LAH-security. We formalize it using the indistinguishability approach: we
let A specify group parameters for a group G and pick two users U0 and U1

that are then enrolled into G by the challenger that obtains their respective
pseudonyms id0 and id1. Untraceability means the inability of A to trace idb

where b ∈R {0, 1}.

Definition 3 (Untraceability). Let LAH-AKE = {CreateGroup, AddUser,
Handshake, Revoke}, b a randomly chosen bit, and Q = {CreateGroup, AddUserU,
AddUserG, Handshake, Send, Reveal, Corrupt, Revoke} the set of queries available

Taming Big Brother Ambitions: More Privacy for Secret Handshakes 165

to A. By Gametrace,b
A,LAH-AKE(κ) we denote the following interaction of A with par-

ticipants, where, for obvious reasons, we prevent A from accessing the up-to-date
pseudonym list IDLi:

– AQ(1κ) interacts with all participants using the queries in Q and outputs a
triple (G.par, U0, U1) where G.par are public parameters of a group G and U0

and U1 are two distinct users.
– U0 and U1 are admitted to G through the execution of AddUser(U0, G) and

AddUser(U1, G) protocols in which the corresponding pseudonyms id0 and
id1 are generated. Note that, during this process, protocol sessions on behalf
of G can be executed by A, however, the game does not proceed until the
corresponding protocol sessions executed on behalf of U0 and U1 accept.

– A is given idb and continues to interact with all participants via queries until
it terminates and outputs bit b′, which is also the output of the game.

We define: Advtrace
A,LAH-AKE(κ) :=

∣∣∣2 Pr[Gametrace,b
A,LAH-AKE(κ) = b]− 1

∣∣∣
and denote by Advtrace

LAH-AKE(κ) the maximum advantage over all PPT adversaries
A. We say that LAH-AKE is untraceable if this advantage is negligible (in κ).

A.3 Proof of Untraceability (Theorem 3)

It is well known that blind Schnorr signatures (see Figure 3) offer unconditional
blinding [18,17]. In fact the two blinding values α and β as used in the AddUser
protocol act as one-time-pad encryption in �q and therefore offer perfect secrecy.
It follows directly that the group authority of G cannot learn any information
about id or id.cred as established by an AddUser protocol session. Therefore, the
probability that for a given pseudonym idb in Gametrace,b

A,LAH-AKE(κ) an Untraceabil-
ity adversary A can output b = b′ is strictly the probability of a random guess,
i.e. 1/2. Hence our LAH-AKE protocol offers unconditional untraceability, i.e.
we have

Advtrace
A,LAH-AKE(κ) = 0 (for all κ)

Observe that Handshake sessions are completely independent of the user run-
ning them and depend solely on the deployed pseudonym id and membership
credential id.cred. Even a Corrupt(id) query does not reveal the owning user of
the given id.

	Taming Big Brother Ambitions:More Privacy for Secret Handshakes
	Introduction
	Malicious GAs: Impact and Challenges
	SH and AH-AKE
	Impact of GA Corruptions
	Challenges and Design Rationale

	Untraceable LAH-AKE Protocol with Untrusted GAs
	Security Analysis and Performance Comparison
	Conclusion
	References
	Model and Proof for Untraceability
	Adversary Model
	Definition of Untraceability
	Proof of Untraceability (Theorem 3)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

