
Practical Affiliation-Hiding Authentication
from Improved Polynomial Interpolation

(Full Version?)

Mark Manulis and Bertram Poettering

Cryptographic Protocols Group
Department of Computer Science

TU Darmstadt & CASED
Germany

mark@manulis.eu , bertram.poettering@cased.de

Abstract. Among the plethora of privacy-friendly authentication techniques, affiliation-
hiding (AH) protocols are valuable for their ability to hide not only identities of commu-
nicating users behind their affiliations (memberships to groups), but also these affiliations
from non-members. These qualities become increasingly important in our highly comput-
erized user-centric information society, where privacy is an elusive good.

Only little work on practical aspects of AH schemes, pursuing optimized implementations
and deployment, has been done so far, and the main question a practitioner might ask
— whether affiliation-hiding schemes are truly practical today — remained widely unan-
swered. Improving upon recent advances in the area of AH protocols, in particular on
pioneering results in the multi-affiliation setting, we can give an affirmative answer to
this question. To this end, we propose numerous algorithmic optimizations to a recent
AH scheme leading to a remarkable performance gain. Our results are demonstrated not
only at theoretical level, but we also offer implementations, performance measurements,
and comparisons. At the same time, our improvements advance the area of efficient poly-
nomial interpolation in finite fields, which is one of our building blocks.

Keywords. affiliation-hiding authentication, privacy-oriented cryptography, polynomial
interpolation, IHME

1 Introduction and Background

Secure communication in modern computer networks is usually achieved by means of authenti-
cation mechanisms provided by public key infrastructures (PKI). However, these mechanisms,
in particular those built from traditional signature schemes, cannot satisfy the increasing de-
mand of users for better privacy and anonymity. A valid digital signature reveals per definition
the identity (public key) of the signer, and serves as strong evidence for the authentication
attempt of a particular PKI user. Achieving authentication while preserving privacy of users
upon their interactions is a challenging task due to the seemingly contradictory nature of both
requirements. Nevertheless, many cryptographic authentication techniques, both interactive and
non-interactive, aiming at various flavors of privacy, have been proposed, and the area remains
a focus of ongoing research.

? A preliminary version of this paper appears in ACM ASIACCS 2011. This is the full version.

2 Mark Manulis and Bertram Poettering

1.1 Affiliation-Hiding Authentication

Affiliation-Hiding (AH) is a property of privacy-preserving authentication protocols such as
secret handshakes [1,2,6,16,18,29,30,32], and, more generally, affiliation-hiding key establishment
protocols [14, 15, 22]. These schemes hide user identities by means of group authentication, but
unlike group signatures [3, 7], that also offer this property, the distinguishing privacy property
of AH protocols is that they also hide the actual groups (affiliations) of participants: Whenever
the affiliations of both participants match, the authentication is successful, whereas, in all other
cases, the protocol terminates without leaking any information about the groups, except for the
fact that they do not match. In this light, AH protocols are interactive and bear high potential
for protecting privacy in online communications. Moreover, the intrinsic requirement of AH
protocols is to support (efficient) revocation of group membership, which is usually performed by
respective Group Authorities (GAs), who manage their own groups independently of each other.
AH protocols may have many variations, which are highlighted, from the practical perspective,
below.

(Un)Linkability AH protocols can be of two flavors: linkable or unlinkable. In linkable proto-
cols, such as [2, 6, 15, 22, 30], users communicate using pseudonyms for which they hold corre-
sponding group membership credentials. These pseudonyms can be revoked by the GAs, i.e. put
into revocation lists, which are distributed in an authenticated manner. Linkable protocols are
usually more efficient than unlinkable protocols. In unlinkable protocols [1, 16, 18, 29], in order
to prevent any correlation amongst sessions of the same user, complex group management tech-
niques are deployed or some security compromise is taken into account: For example, [1] does
not support revocation, [16] needs synchronization of revocation epochs amongst members, [29]
requires costly group signatures and broadcast encryption techniques, while [18] attempts to
combine group signatures with verifier-local revocation and private conditional oblivious trans-
fer schemes.

Trustworthiness of Group Authorities In all AH protocols, group membership credentials
are issued to users by respective GAs. Yet, existing protocols differ with regard to the amount of
trust put in these GAs. While the majority of protocols assumes that GAs are trusted with both
security of management of the group and privacy for its members, some recent protocols [22,23]
aim at relaxing the latter trust relationship by extending privacy protection of users even against
malicious GAs, sometimes with considerable extra costs such as zero-knowledge proofs in [22].

Multi-Group Affiliation-Hiding Authentication Protocols Most AH protocols are single-
group protocols: they can only cope with one input membership credential per user and session.
In practice this is a severe limitation, as, for example, in social networks, either distributed
or centralized, where users become members of multiple, independent interest groups. In these
multi-affiliation settings, the purpose of an AH protocol is to determine whether two communi-
cation participants have interest groups in common and which groups these are. This problem,
also known as the group discovery problem [15], can be solved with a single-group protocol only
by trying many different combinations of group credentials. This is inefficient since the number
of required sessions is quadratic in the number of memberships per user.

Only few AH protocols [5,17,21], which we call multi-group protocols, can efficiently handle
the group discovery problem, i.e. perform group discovery using multiple membership credentials
within one protocol session. In these protocols, the overall computational workload (in terms
of public-key operations) and the bandwidth complexity remain linear in the number of input
credentials, in contrast to the näıve combinatorial approach. Yet, amongst these protocols, only

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 3

the multi-group AH solution of [21] can be seen as a generic transformation of a single-group
AH protocol into a multi-group one, and its concrete instantiation is so far the only one that
captures multiple input credentials per user and session within an adequate security model and
is supported by a formal security proof. The conceptual advantage of [21] is that their generic
transformation, based on a new primitive, called Index-Hiding Message Encoding (IHME), prov-
ably preserves properties of the single-group protocol to which IHME is applied, being these its
(un)linkability or the amount of trust set into GAs. At a high level, IHME combines messages
of n single-group AH protocols, each executed with a different group credential, into a structure
of the same size, in such a way, that it is impossible for the communication partner to tell
whether a credential of some particular group has been used to compute that structure, unless
this partner has himself a valid credential for that group. The so-far only known realization of
IHME (see [21]) is based on polynomial interpolation over finite fields.

1.2 How Practical is Affiliation-Hiding?

Prior work has advanced in designing new AH protocols and developing security models to ad-
dress different security and privacy flavors. Nevertheless, only little is known about the practical
deployability of these protocols, as their implementation aspects, not to mention their concrete
performance, have not been analyzed in most cases. In fact, the few estimations given in the
corresponding papers are of theoretical nature only, and refer to the number of required public-
key operations, e.g. modular exponentiations. Although we know that public-key operations are
most expensive, neglecting other costs in AH protocols may not be the right approach, as we
discuss now.

Recall from the above discussion, that only multi-group AH protocols, such as [17,21], are of
practical interest, and indeed, the computation costs they offer in terms of public-key operations
are linear. Intuitively, this is also a lower bound, as a linear number of group membership
certificates must be processed by each of the protocol participants. However, both existing
protocols have hidden quadratic (!) costs, regarding either symmetric decryption as in [17], or
finite field operations (e.g. multiplications/inversions) in [21]. Are these hidden costs? Or, in
other words, is the asymptotically quadratic computational complexity of current multi-group
AH protocols really negligible in practice, where users may become members of lots of groups?1

How does the computation scale? And, finally, is affiliation-hiding really practical today?

1.3 Contributions and Organization

For the benefit of their general approach over the dedicated construction in [17], this paper gives
an in-depth analysis of [21], aiming to answer the aforementioned questions, and comes to the
result that affiliation-hiding techniques can be made truly practical.

To reach this goal, however, we suggest numerous optimizations at the algorithmic level to
both the polynomial-based construction of IHME and the entire AH protocol from [21], resulting
in remarkable improvements of efficiency in comparison to the original schemes. We demonstrate
this not only through theoretical estimations but also with complete implementations and mea-
surements. Along the paper, we provide various algorithms with regard to efficient polynomial
interpolation, and even propose our own optimizations to this field. Furthermore, we provide
a complete dissection of the multi-group AH protocol from [21], showing how to optimize all
of its further building blocks (besides IHME), with the result that our protocol considerably
outperforms its predecessor.

All algorithms that appear in this paper, are written in an implementation-close way, and
can be readily translated into the program code.
1 For instance, an average Facebook user is connected to about 80 community pages and groups [10].

4 Mark Manulis and Bertram Poettering

Organization We start, in Section 2, by giving a basic overview over both IHME and the AH
protocol from [21]. In Section 3 we focus on IHME and show how to realize it in practice: We
show that some well-known interpolation algorithms do not serve for IHME implementations,
and that although some less known algorithms can be used, they are not as efficient as those we
introduce. In Sections 3.5 and 3.8 we further give concrete implementation results and analyze
the performance of IHME according to various metrics. In Section 4 we focus on further building
blocks and techniques that constitute (in addition to IHME) the entire AH protocol from [21].
Here, too, we use numerous tricks and present various optimization techniques with regard to
different phases of the protocol, namely group setup, the registration of users to groups, and the
actual multi-group handshake protocol. In Section 5 we give concrete implementation results
and analyze the performance and scalability of the entire AH protocol.

We stress that our optimizations are performed at the algorithmic level and are of inde-
pendent interest since e.g. polynomial interpolation over finite fields appears in many other
cryptographic schemes whose practical deployment could also benefit from this work.

2 Initial Techniques: IHME and Multi-Group AH Protocols

In this section, we briefly recall the IHME technique and the multi-group AH scheme from [21],
which serves as a starting point for our optimized construction.

2.1 Index-Hiding Message Encoding (IHME)

IHME is an encoding technique recently introduced and constructed in [21]. It is specified for some
sets of indices I and messages M, and consists of two algorithms iEncode and iDecode, such that
S ← iEncode(P) pools a set of input index/message pairs P = {(i1,m1), . . . , (in,mn)} ⊆ I ×M
into a single data structure S, whereas m← iDecode(S, ij) recovers m from S for any 1 ≤ j ≤ n,
such that m = mj . The intrinsic security property of IHME is index-hiding. It ensures that an
attacker, who learns S and might even know some of the indices and corresponding messages,
cannot identify any other indices used to encode messages in S.

A multi-group AH protocol can be constructed from a single-group AH protocol in a generic
way using IHME as follows: The first user, say U1, computes the first messages mj for each of
her group memberships using the single-group protocol, then computes the IHME structure S
from these messages mj using corresponding public group parameters as indices (or, alterna-
tively, hashes of public group keys), and finally sends S to U2, who can correctly decode and
answer messages in those groups for which U2 also has group credentials. The IHME encoding
is separately applied for each round of the original single-group protocol.

2.2 Multi-Group Affiliation-Hiding Authentication Protocol

The concrete multi-group AH protocol from [21] works, highly simplified, as follows. We remark
that a more detailed explanation of the protocol will be given step by step in our discussions
regarding the optimization of the protocol in Section 4.

Each GA creates its own group by independently selecting the corresponding public group
RSA parameters (n, e, g), where n is the RSA modulus, e the public exponent, and g a generator
of a large subgroup of Z×n (CreateGroup algorithm). The GA keeps the corresponding secret
exponent d as a private key to itself. Membership credential cred of a user with pseudonym
id in a group with public key (n, e, g) and secret key d is cred = Hn(id)d modn, i.e. the Full-
Domain Hash RSA Signature on the pseudonym of the user, computed using an appropriate hash
function Hn. This credential is granted to the user, typically over a secure channel, by the GA of

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 5

that group during user registration (AddUser) phase. The actual multi-group affiliation-hiding
handshake protocol (Handshake) takes two communication rounds. In the first round, users
exchange, using the above IHME technique, values of the form θ = (gtcred) modn, for all groups
they are member of, where t is some random exponent that will be also used for the computation
of the session key in a fashion similar to the basic Diffie-Hellman approach, yet in subgroup
〈g〉 ⊆ Z×n . In the second round of the protocol, participants exchange confirmation messages for
this key. Through their verification users also learn the intersection of their affiliations (groups),
and by using the established key they can continue communicating securely.

3 Optimized IHME from Improved Polynomial Interpolation

A possible instantiation of IHME, based on polynomial interpolation in finite fields, is proposed
in [21]. In this section, we describe this construction in detail, give several optimized algorithms
for its implementation, and compare them in respect to computational efficiency and memory
consumption. Note that in [21] these implementational aspects were left unconsidered.

All algorithms presented below make computations in an arbitrary finite field F. Efficient
implementation of field arithmetic and element representation is a wide field of research and out
of the scope of this paper; see Hankerson et al. [13, Chapter 2] for a comprehensive overview.
Generally speaking, fields of small characteristic (e.g. F = GF (2k) for some k) offer speed
advantages on SIMD machines and dedicated hardware, while modern PCs with 32/64 bit ALUs
benefit from fields of large characteristic (e.g. F = GF (p) for a large prime p).

In the analysis of the following algorithms, we measure computational performance by count-
ing the number of expensive field operations, i.e. multiplications (c← ab), inversions (c← a−1),
and divisions (c← a/b). As a/b = ab−1, divisions can always be implemented at the cost of one
inversion and one multiplication. However, often both operations can be conflated into a single
operation of the cost of one inversion [13, Section 2.3.6]. In the following, we denote the time
needed to perform a multiplication, an inversion, or a division, by M , I and D, respectively. In
practice, it is reasonable to expect I ≈ D ≈ 60M (cf. [13, Section 5.1.5]).

3.1 Polynomial-based IHME Construction

Let F denote an arbitrary finite field. After setting I =M = F, an index-hiding message encod-
ing scheme IHME = (iEncode, iDecode) with index space I and message spaceM is constructed
by the following algorithms:

iEncode(P) : On input of P = {(i1,m1), . . . , (in,mn)} ⊆ I ×M = F2, the encoding is defined
as the list S = (cn−1, . . . , c0) of coefficients of the polynomial p(x) =

∑n−1
k=0 ckx

k ∈ F[x] that
interpolates all points in P, i.e. p(ij) = mj for all (ij ,mj) ∈ P. Note that this polynomial
exists uniquely (cf. Theorem 1), i.e. the iEncode algorithm is deterministic.

iDecode(S, i) : On input of S = (cn−1, . . . , c0) and index i ∈ I, this algorithm outputs the
evaluation m = p(i) =

∑n−1
k=0 cki

k of p at position i.

We note that efficient implementations of iEncode and iDecode are implied by efficient algo-
rithms for polynomial interpolation and evaluation. Furthermore, we note that the index-hiding
property of the above construction holds information-theoretically, as proven in [21].

6 Mark Manulis and Bertram Poettering

3.2 Polynomial Interpolation2

The following well-known theorem [28] ensures existence and uniqueness of interpolation poly-
nomials.

Theorem 1 (Polynomial Interpolation). In a field F, let (x1, y1), . . . , (xn, yn) ∈ F× F be n
pairs of elements satisfying i 6= j ⇒ xi 6= xj. Then there exists a polynomial p ∈ F[x] of degree
deg(p) < n that interpolates all points (xi, yi), i.e. yi = p(xi) for all 1 ≤ i ≤ n. Moreover, this
polynomial exists uniquely.

For fixed n ∈ N, the set Πn consisting of all polynomials p ∈ F[x] of degree deg(p) ≤ n natu-
rally forms a vector space over F. Algorithms for polynomial interpolation [28] usually represent
computed polynomials in Πn by the coefficients of the corresponding linear combination of some
basis elements of Πn. While the monomial basis {1, x, x2, . . . , xn} seems to be the most versa-
tile one, popular interpolation algorithms do not refer to it, but instead compute coefficients in
respect to specially crafted bases, that often depend on the specific problem instance. We stress
that such algorithms might not serve for secure IHME implementations. For example, the bases
of two well-known interpolation algorithms, namely Lagrange and Newton Interpolation, are
directly dependent on deployed x-abscissas. This behavior contradicts the desired index-hiding
property of IHME, as x-values (i.e. indices) would have to be included in IHME structures S.

Lagrange Interpolation In the terms of Theorem 1, a polynomial that interpolates (x1, y1), . . . ,
(xn, yn) is given by

p(x) =
n∑
k=1

(
yk

n∏
j=1
j 6=k

x− xj
xk − xj

)
.

Correctness of this approach can be seen as follows: For a fixed k, function

Lk(x) =
n∏

j=1,j 6=k

x− xj
xk − xj

is a polynomial of degree n − 1 which evaluates to 1 at position xk, and evaluates to 0 at
positions xl for all 1 ≤ l ≤ n, l 6= k. It follows that p(x) =

∑n
k=1 ykLk(x) ∈ Πn−1 interpolates

(x1, y1), . . . , (xn, yn).
Relating this to the said above, Lagrange’s method for polynomial interpolation does not

look for coefficients of a linear combination of fixed basis elements of Πn−1, but rather outputs
vectors L1, . . . , Ln in Πn−1 such that p is their ‘trivial’ linear combination with coefficients yi.

In practice, Lagrange’s method is rarely used for polynomial interpolation for being awkward
and inefficient. Its importance is more on the theoretical side, e.g. for proving ‘existence’ in
Theorem 1.

Newton Interpolation A far more efficient (and popular) way to perform polynomial inter-
polation in the context of scientific computing is due to Newton. We refer to [28, Section 4.2] for
a detailed exposition, but stress that this method outputs coefficients ak in respect to Newton

2 We clarify that by ‘polynomial interpolation’ we comprehend the determination of a set of coefficients
that fully describe the sought for polynomial. In the literature, however, often the evaluation of this
polynomial at given points is subsumed under the same term, possibly without explicit computation
of the coefficients.

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 7

bases {N1, . . . , Nn} of Πn, which are instance-specific as well. In particular, they consist of the
elements

Nk(x) =
k−1∏
j=1

(x− xj).

Corresponding coefficients ak = [y1, . . . , yk] can be efficiently computed via divided differ-
ences [28], to obtain the interpolating polynomial as p(x) =

∑n
k=1 akNk(x).

3.3 Interpolation without Precomputation

An algorithm for polynomial interpolation that outputs coefficients in respect to monomial basis
{1, x, x2, . . . , xn} of Πn is due to Björck and Pereyra [4], and portrayed below as Algorithm 1.
It has (quadratic) running time

n(n− 1)
2

(D +M)

and, as most of the algorithms proposed in this section, needs no extra storage, as all calculations
can be implemented ‘in place’.

Algorithm 1 Polynomial Interpolation
Input: Pairs (x1, y1), . . . , (xn, yn) ∈ F× F with i 6= j ⇒ xi 6= xj

Output: Coefficients c0, . . . , cn−1 ∈ F such that yi =
∑n−1

k=0 ck(xi)
k ∀i

(c0, . . . , cn−1)← (y1, . . . , yn)
for k = 0 to n− 2 do

for j = n− 1 downto k + 1 do
cj ← (cj − cj−1)/(xj+1 − xj−k)

end for
end for
for k = n− 2 downto 0 do

for j = k to n− 2 do
cj ← cj − xk+1cj+1

end for
end for

Algorithm 1 already solves the problem of polynomial interpolation in reasonable time. How-
ever, we can further improve computational efficiency by reducing the number of divisions from
O(n2) to 1, while at the same time moderately increasing the number of multiplications.

The trick is to represent intermediate variables c not as field elements, but as fractions

c/d =̂ (c, d) ∈ F× F×,

where we identify fraction (c, 1) with field element c.
Two fractions (c, d), (c′, d′) ∈ F × F× are considered equivalent (or equal) if cd′ = c′d.

Fractions are normalized to equivalent field elements by the reduction mapping (c, d) 7→ cd−1. If
n of these reductions are to be computed in batch, the required n divisions can be conflated into
a single inversion, at the cost of some additional multiplications (see Algorithm 8 in Appendix B,
or Cohen [8, Algorithm 10.3.4] and Montgomery [25]).

The benefit achieved by the redundancy introduced by the ‘computing with fractions’ tech-
nique is that most divisions can be replaced by multiplications, as the example (c, d)/(c′, d′) =

8 Mark Manulis and Bertram Poettering

(cd′, dc′) illustrates. This technique, applied to Algorithm 1, results in Algorithm 2, which has
computational performance (5n(n− 1)

2
+ 1
)
M + 1I.

Its speed advantage over Algorithm 1 is obvious for D � M . We note that Algorithm 2 needs
extra storage for n− 1 auxiliary variables d1, . . . , dn−1.

Algorithm 2 Interpolation with Deferred Inversion
Input: Pairs (x1, y1), . . . , (xn, yn) ∈ F× F with i 6= j ⇒ xi 6= xj

Output: Coefficients c0, . . . , cn−1 ∈ F such that yi =
∑n−1

k=0 ck(xi)
k ∀i

(c0, . . . , cn−1)← (y1, . . . , yn)
for j = n− 1 downto 1 do
cj ← cj − cj−1

dj ← xj+1 − xj

end for
for k = 1 to n− 2 do

for j = n− 1 downto k + 1 do
cj ← cjdj−1 − cj−1dj

dj ← djdj−1(xj+1 − xj−k)
end for

end for
cj ← cjd

−1
j for all 1 ≤ j ≤ n− 1 (see note on batched reduction)

for k = n− 2 downto 0 do
for j = k to n− 2 do
cj ← cj − xk+1cj+1

end for
end for

3.4 Interpolation with Precomputation

In some occasions polynomial interpolations have to be computed many times in succession, with
fixed inputs xi but variable inputs yi. These cases are susceptive for improvements in efficiency
by splitting calculations into a precomputation phase (on input the xi), and a computation phase
(on input the yi, plus some precomputed state). The overall costs of polynomial interpolation
are then determined by the costs of the second step, which might be more efficient than a regular
interpolation (Algorithm 1 and 2).

Observe that for the coefficients ck of a polynomial p(x) =
∑n−1
k=0 ckx

k ∈ F[x] that passes
through a set of points {(x1, y1), . . . , (xn, yn)} the following system of equations holds:1 x1 x2

1 · · · xn−1
1

...
...

1 xn x2
n · · · xn−1

n

 c0

...
cn−1

 =

y1...
yn

 (1)

The (n × n)-matrix V = V (x1, . . . , xn) on the left is called Vandermonde matrix [28]. It is
known from Numerical Analysis that V is invertible iff i 6= j ⇒ xi 6= xj . After computing V −1

in a precomputation step, one can solve (1) for c0, . . . , cn−1 by calculating (c0, . . . , cn−1)T =
V −1(y1, . . . , yn)T , essentially performing a matrix/vector multiplication with n2M costs (cf.
Algorithm 3). Explicit formulae for V −1 are developed in [9] and included as Algorithm 7 in
Appendix A.

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 9

Algorithm 3 Interpolation after Precomputation
Input: Matrix V −1 = (m1,1, . . . ,mn,n) ∈ Fn×n as output by Algorithm 7, elements y1, . . . , yn ∈ F
Output: Coefficients c0, . . . , cn−1 ∈ F such that yi =

∑n−1
k=0 ck(xi)

k ∀i
for i = 1 to n do
ci−1 ← 0
for j = 1 to n do
ci−1 ← ci−1 +mi,jyj

end for
end for

3.5 Performance Comparison of Interpolation Algorithms

In Figure 1, we compare presented Algorithms 1, 2 and 3 in efficiency. It becomes obvious that
Algorithm 1 from [4] is actually not competitive with our optimized variant (Algorithm 2), and
that precomputations can, moreover, roughly halve running time. Time consumption, on the
right axis, is estimated by assuming M = 0.44µs, as measured in our test implementation (see
also notes in Figure 4).

Fig. 1. Efficiency comparison of interpolation algorithms 1, 2 and 3. The axis on the left reflects the
number of executed field multiplications (we assume D = I = 60M), the axis on the right indicates
time consumption for a finite field F of about 280 elements.

3.6 Polynomial Evaluation

For a given set c0, . . . , cn−1 ∈ F of coefficients, the näıve way of evaluating polynomial p(x) =∑n−1
k=0 ckx

k ∈ F[x] at a given point x ∈ F would have O(n2) performance. Deployment of Horner’s
Scheme (Algorithm 4), however, reduces the running time to (n− 1)M .

3.7 Interleaved IHME

In Sections 3.3, 3.4 and 3.6 we have seen implementations of IHME’s iEncode and iDecode routines
of performance O(n2) and O(n), respectively. However, their running time was measured with

10 Mark Manulis and Bertram Poettering

Algorithm 4 Polynomial Evaluation
Input: Coefficients c0, . . . , cn−1 ∈ F and x ∈ F
Output: Element y ∈ F with y =

∑n−1
k=0 ckx

k

y ← cn−1

for k = n− 2 downto 0 do
y ← ck + xy

end for

regards to a fixed finite field F. In practice [21], these fields may become rather large, e.g.
|F| ≥ 21024, and IHME will perform accordingly slow (although still in O(n2)). In this section,
we present an interleaving technique which allows to further speedup IHME. Note that the
algorithms remain in O(n2), it is rather the constant that is considerably reduced.

Consider, for instance, an IHME setting with F = GF (21024) and M = I = F ∼= {0, 1}1024.
Instead of encoding messages m1,m2, . . . ∈ M over this field, one could split all messages mi

into, say, 8 chunks mi,1, . . . ,mi,8, each of length 1024/8 = 128. Now, using IHME over field
F′ = GF (2128), all mi,1 can be IHME-encoded into a structure S1, all mi,2 can be independently
encoded into a structure S2, and so on. The overall encoding is then S = (S1, . . . ,S8). The gain
in efficiency is caused by the trade of superlinear costs of finite field arithmetics for linear costs
of IHME interleaving. We formalize the ideas of this paragraph as follows.

ν-fold IHME For an arbitrary finite field F and ν ∈ N, after setting I = F and M = Fν ,
an index-hiding message encoding scheme IHME = (iEncode, iDecode) with index space I and
message space M is constructed from standard IHME′ = (iEncode′, iDecode′) over F as follows
(cf. Section 3.1):

iEncode(P) : On input of P = {(i1, (m1,1, . . . ,m1,ν)), . . . , (in, (mn,1, . . . ,mn,ν))} ⊆ I ×M =
F× Fν , the encoding is defined as the list S = (S1, . . . ,Sν) of IHME′-encodings

Sk = iEncode′({(ij ,mj,k)}1≤j≤n), for 1 ≤ k ≤ ν.

iDecode(S, i) : On input of S = (S1, . . . ,Sν) and index i ∈ I, this algorithm outputs m =
(m1, . . . ,mν) where

mk = iDecode′(Sk, i), for 1 ≤ k ≤ ν.

In the following sections, by iEncode(P, Π, ν), for prime Π and natural number ν, we denote
an IHME-encoding with index space I = [0, Π − 1] and message space M = [0, Πν − 1], i.e.
P ⊆ I × M. Such an IHME-scheme is constructed by exploiting the existence of finite field
F = GF (Π) and the natural and efficient bijections [0, Π − 1] → F and [0, Πν − 1] → Fν (e.g.,
for the latter, the representation to basis Π, i.e. a 7→ (a0, . . . , aν−1) where a =

∑ν−1
k=0 akΠ

k).
Analogously, by iDecode(S, Π, ν, i) we denote the corresponding IHME-decoding at index i ∈ I.

3.8 Performance Gain with Interleaved IHME

The gain in efficiency over Standard IHME, achieved by deployment of ν-fold IHME, is illustrated
in Figure 2. We use 1104 bit fields in the test case because fields of this size naturally emerge in
the setting of affiliation-hiding protocols (cf. Sections 2.2 and 4). We observe that ν-fold IHME
outperforms standard IHME by about 30%, for both underlying Algorithms 2 and 3.

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 11

Fig. 2. Efficiency comparison of Standard IHME (Section 3.1) and ν-fold IHME (Section 3.7). Precisely,
we compare Standard IHME over a 1104 bit field with (the more or less equivalent) 14-fold IHME over
a 80 bit field (note that 80 · 14 = 1120), both without and with precomputations (Algorithms 2 and 3,
respectively). The offset on the y-axis for interpolations without precomputation is due to the (relatively
high) cost of the inversion in Algorithm 2.

4 Optimized Multi-Group Affiliation-Hiding Authentication Protocol

Our further optimizations towards truly practical affiliation-hiding authentication concern the
different phases of the multi-group AH protocol from [21]. Along the description of its three
main phases, namely the initialization of groups, registration of users, and executions of group-
discovering handshakes, we introduce modifications that achieve substantial efficiency improve-
ments, considering both computational performance and bandwidth consumption.

In all algorithms and protocols, by κ and κ′ we denote security parameters of symmetric and
asymmetric building blocks, respectively. Reasonable choices for κ, κ′, hash functions and other
building blocks will be proposed in Section 5.

4.1 Group Initialization Phase

The CreateGroup algorithm is run once per group authority and, hence, computational efficiency
is not too important for its implementation. Instead, we decided to improve on storage size of
group parameters. Recall that public parameters in [21] are triples (n, e, g), where n is a safe
RSA modulus, e is an RSA exponent suitable for modulus n, and g is a generator of a maximum
order subgroup of Z×n such that −1 6∈ 〈g〉. Our improved algorithm, shown as Algorithm 5,
outputs RSA moduli n that are crafted in such a way that g = 2 and e = 3 are valid group
generators and RSA exponents, respectively. As consequence, it suffices to store just modulus n
as public group key.

In addition, in Section 4.3, we will see that choosing g = 2 offers an attractive opportunity
of implementing the exponentiations in the Handshake protocol very efficiently.

We start by giving some fundamental number-theoretical definitions and relations. We refer
to [24] for a more detailed exposition. A safe prime p is a prime number such that p = 2p′ + 1,

12 Mark Manulis and Bertram Poettering

where p′ is prime as well. For a safe prime p, the multiplicative group Z×p has order 2p′, and
each of its subgroups has order 1, 2, p′ or 2p′ (by Lagrange’s theorem).

The subgroup of order p′ consists exactly of all squares in Z×p , it is hence called the subgroup
of quadratic residues mod p, QR(p) for short. Note that QR(p) is generated by each square in
Z×p , except by 1. The Legendre symbol

(·
p

)
: Z×p → {−1, 1} is defined by

(
a
p

)
= 1 :⇔ a ∈ QR(p).

The Chinese Remainder Theorem (CRT) states that Zpq ∼= Zp×Zq for all (safe) primes p, q,
implying also Z×pq ∼= Z×p × Z×q . The corresponding isomorphism is given by an 7→ (an mod p,
an mod q), and its inverse by (ap, aq) 7→ ap + ph for h = (aq − ap)/p (mod q).

For all m ∈ N, Carmichael function λ(m) indicates the order of the largest cyclic subgroup
in Z×m. For primes p we have λ(p) = p − 1, for RSA moduli n = pq it holds that λ(n) =
lcm(p − 1, q − 1). In particular, for safe RSA moduli, i.e. moduli n = pq with safe primes
p = 2p′ + 1, q = 2q′ + 1, we have λ(n) = 2p′q′.

Lemma 1. Let p = 2p′ + 1 be a safe prime. Then p = 11 (mod 12).

Proof. As p′ is a prime number we have p′ ∈ {1, 5} (mod 6). Case p′ = 1 (mod 6) leads to
p = 2p′ + 1 = 3 (mod 12), a contradiction. Hence p′ = 5 (mod 6) and p = 11 (mod 12). ut

Lemma 2. Let n = pq for safe primes p = 2p′ + 1, q = 2q′ + 1 with p = 3 (mod 8) and
q = 7 (mod 8). Then g = 2 generates a subgroup of Z×n of maximal order. In addition, we have
−1 6∈ 〈g〉.

Proof. It is known [24] that
(

2
p

)
= −1 and

(
2
q

)
= 1. Hence g ∈ Zn, considered as element

g ∈ Zp, generates 〈g〉p = Z×p , while g ∈ Zq generates 〈g〉q = QR(q). By applying CRT, we see
〈g〉n ∼= 〈g〉p × 〈g〉q and that the order of g ∈ Zn is lcm(2p′, q′) = 2p′q′ = λ(n). In addition, as
q = 3 (mod 4), we have

(−1
q

)
= −1, i.e. −1 6∈ QR(q) = 〈g〉q, and hence −1 6∈ 〈g〉n. ut

Algorithm 5 outputs safe RSA moduli n and private keys d such that g = 2 is a generator
of a maximum order subgroup of Z×n with −1 6∈ 〈g〉, and d and e = 3 are valid RSA signing and
verification keys, respectively, i.e. ed = 1 (modλ(n)). Factor p = 2p′ + 1 of n = pq is chosen
such that p = 11 (mod 12) and p = 3 (mod 8), and hence p = 11 (mod 24), while for q = 2q′ + 1
we require q = 11 (mod 12) and q = 7 (mod 8), i.e. q = 23 (mod 24) (compare to Lemmas 1
and 2). The search for safe primes for which these congruences hold is performed by the two
while loops. The remaining part of the algorithm is straight forward3. Note that λ(n) = 2p′q′,
and hence e = 3 is always invertible modλ(n).

Further Improvements A speed improvement for Algorithm 5 is gained if the two primality
tests in the condition of the first while loop are executed in an interleaved way. Fully establishing
p’s primality if small factors of (p − 1)/2 are easily detected is waste of computing power.
Instead, a seek for small divisors in both p and (p − 1)/2 should be completed before starting
any (expensive) Miller-Rabin exponentiation [24]. The analogue applies to the second while loop.

A further technique for improving computational efficiency of Algorithm 5 bases on ideas
of Naccache4. In [26] he describes an algorithm for accelerated generation of safe primes: First,

3 By RandNum([a, b]) we denote the uniformly random choice of an integer x with a ≤ x ≤ b. By
IsPrime(x) we denote the application of a (probabilistic) primality test, e.g. the Miller-Rabin test, to
integer x.

4 We point out that Naccache’s original algorithm [26] is not optimal in the sense that it does not
regard the result of Lemma 1: When seeking for prime candidates, instead of narrowing the focus on
integers p with p = 11 (mod 12), his algorithm tries all p with p = 3 (mod 4). Hence, in two of three
cases neither (p− 1)/2 nor 2p+ 1 can be prime.

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 13

Algorithm 5 Implementing CreateGroup

Input: Security parameter κ′ (typically 1024 ≤ κ′ ≤ 2048)
Output: Public parameters (n, e, g) and private key d, where e = 3 and g = 2
`← bκ′/2c
p← 24 · bRandNum([2`−1, 2` − 1])/24c+ 11
while ¬IsPrime(p) ∨ ¬IsPrime((p− 1)/2) do
p← p+ 24

end while
q ← 24 · bRandNum([2`−1, 2` − 1])/24c+ 23
while ¬IsPrime(q) ∨ ¬IsPrime((q − 1)/2) do
q ← q + 24

end while
λ = (p− 1)(q − 1)/2
(n, e, g)← (pq, 3, 2)
d← e−1 modλ

random integers p = 2p′ + 1 satisfying p = 11 (mod 12) are drawn and tested for primality,
until a prime is found. If, in addition, p′ is prime then we are done. If, on the other hand, p′ is
not prime, then P := 2p + 1 is considered a candidate for being safe prime and is checked via
a single invocation of IsPrime. All in all, fewer primality tests have to be run for finding safe
primes. This technique can be integrated into both while loops of Algorithm 5, but attention is
needed to ensure that the length of n stays in an acceptable range, and that p and q fulfill their
specific congruences mod 8.

4.2 User Registration Phase

In the AddUser protocol from [21], users obtain credentials cred of the form Hn(id)d modn, i.e.
Full-Domain Hash RSA signatures on their respective identities id. (A concrete instantiation of
hash function Hn : {0, 1}∗ → Zn will be proposed in Section 5). We observe that, in the actual
handshake protocol from [21], term Hn(id) only occurs in contexts where values are divided by
Hn(id). For the sake of efficiency, and without influencing the scheme’s security, we move these
necessary inversions into the registration process, by altering the generation of user credentials
to

cred = (n, σ) with σ = Hn(id)−d modn.

A standard trick [19] to speed up private RSA operations is to apply CRT before computing
exponentiations by d. More concretely, if the factorization of RSA modulus n = pq is known, then
y = xd modn can be computed by CRT-decomposing x into xp = xmod p and xq = xmod q, by
computing yp = xp

d = x
dmodϕ(p)
p (mod p) and yq = xq

d = x
dmodϕ(q)
q (mod q), and by mapping

(yp, yq) back to Zn, by applying CRT a second time. Besides the fact that exponentiations mod p
and mod q can be computed substantially faster than exponentiations modn, many intermediate
values of this alternative signing method can be precomputed. An implementation of the AddUser
algorithm that includes these optimizations is given in Algorithm 6.

4.3 Multi-Group Handshake Protocol

Users that possess a set C = {cred1, . . . , credm} of group credentials for their pseudonym id
are ready to perform a multi-group Handshake session. Our optimized version of the protocol is
presented in Figure 3. Note that by H : {0, 1}∗ → {0, 1}κ we denote a hash function.

14 Mark Manulis and Bertram Poettering

Algorithm 6 Implementing AddUser

Input: Public parameters (n, e, g), private key (p, q), pseudonym id ∈ {0, 1}∗
Output: User credential cred = (n, σ)
Precompute: dp ← −e−1 (mod p− 1)

dq ← −e−1 (mod q − 1)
u← p−1 (mod q)

h← Hn(id)
(hp, hq)← (hmod p, hmod q)
(σp, σq)← (hp

dp mod p, hq
dq mod q)

a← u(σq − σp) (mod q)
σ ← σp + pa
cred← (n, σ)

The principal enhancement of our design over [21] is the deployment of the more efficient
Interleaved IHME technique presented in Section 3.7. In the original protocol [21], all messages
exchanged in the two communication rounds are, when IHME encoded, considered as elements
of a certain finite field F. In particular, in the first round, padded RSA values of length κ′ + κ
are exchanged. Hence, F has to be chosen accordingly large (|F| ≥ 21104 at least, see Section 5)
and field arithmetics perform rather slow. In contrast, in our protocol (Figure 3), first-round
messages θ ∈ [0, Πν − 1] are encoded over a (much smaller) field of Π elements, where Π
is a prime number slightly greater than 2κ, using the ν-fold interleaved technique. Note that
careful choice of Π, e.g. of low Hamming weight, allows impressively fast implementations of field
arithmetics [13, Section 2.2.6]. Considering the second round messages, in [21], the per-group
key confirmation messages are of length κ′ + κ, where κ bits would suffice. In our protocol,
however, confirmation messages are shortened to this more reasonable level and encoded using
IHME, again over the field of Π ≈ 2κ elements. Both these optimizations lead to a considerable
boost of computational and bandwidth efficiency, when compared to a näıve implementation
of [21].

A consequence of the switch to smaller fields is that also deployed IHME indices have to be
chosen from a smaller set (see Section 3.1). While in [21] public RSA moduli n serve directly as
group index, in our protocol the set of possible indices is reduced to the elements of F, which is
much too small for allowing a direct embedding of moduli n. We solve this problem by hashing
public group parameters into F. These hash values, hn = H(n), can further on be considered
as convenient ‘handles’ for groups, and are therefore designated as the elements of the ‘shared
group’ set groups that is output of the protocol (see line 31).

A further improvement over [21] is the more straight forward way of session key derivation.
In [21], the key is computed as the hash value of a string that is composed of several per-group
secrets. To achieve correctness of the protocol, both protocol participants have to mount this
string in the same order. For this, a canonical ordering of groups has to be assumed. In our
protocol (Figure 3), however, the key is computed as XOR-sum of per-group secrets (line 32),
which, without loss of security, now can be computed in any order.

In contrast to [21], in our protocol, ephemeral exponents t (see lines 6, 7 and 19) are not
chosen from Zn/2 (where n is an RSA modulus of length κ′), but from much smaller range
[0, 22κ − 1]. This, again, leads to a notable gain in efficiency in the modular exponentiations.
Under the common assumption [11, 12] that Discrete Logarithm Problem (DLP) in Z×n is hard
even when exponents are short, distributions of ephemeral keys with short and long exponents,
respectively, are computationally indistinguishable from each other (see Lemma 3.6 in [12]).
Hence, shortening ephemeral keys in the described way does not result in a considerably weaker
security of the protocol.

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Initiator on inputs (id, C)

ν ← ⌈(κ′ + κ)/κ⌉
P1 ← ∅, T ← ∅
for all cred ∈ C:

parse cred as (n, σ)
hn ← H(n)
(b, t)←R [0, 1]× [0, 22κ − 1]
ϑ← (−1)b2tσ mod n
k←R [0, ⌊Πν/n⌋ − 1]
θ ← ϑ + kn
P1 ← P1 ∪ {(hn, θ)}
T ← T ∪ {(n, hn, t)}

S1 ← iEncode(P1, Π, ν)

sid← H(m‖m′)
P2 ← ∅, R ← ∅
for all (n, hn, t) ∈ T :

if id′ 6∈ prl:
θ ← iDecode(S ′

1, Π, ν, hn)
r ← (θ3Hn(id′))2t mod n
c0 ← H(sid‖r‖0)
c1 ← H(sid‖r‖1)
c2 ← H(sid‖r‖2)
R ← R∪ {(hn, c0, c2)}

else: c1 ←R {0, 1}κ
P2 ← P2 ∪ {(hn, c1)}

S2 ← iEncode(P2, Π, 1)

K ← 0κ, groups← ∅
for all (hn, c0, c2) ∈ R:

if iDecode(S ′
2, Π, 1, hn) = c2:

groups← groups ∪ {hn}
K ← K ⊕ c0

if groups 6= ∅ then
(key, partner)← (K, id′)
terminate with “accept”

else
(key, partner)← (⊥,⊥)
terminate with “reject”

m = (id,S1)−−−−−−−−−−−−−−→
m′ = (id′,S ′

1)←−−−−−−−−−−−−−−−

S ′
2←−−−−−−−−−−
S2−−−−−−−−−−→

Responder on inputs (id′, C′)

ν ← ⌈(κ′ + κ)/κ⌉
P1 ← ∅, T ← ∅
for all cred ∈ C′:

parse cred as (n, σ)
hn ← H(n)
(b, t)←R [0, 1]× [0, 22κ − 1]
ϑ← (−1)b2tσ mod n
k←R [0, ⌊Πν/n⌋ − 1]
θ ← ϑ + kn
P1 ← P1 ∪ {(hn, θ)}
T ← T ∪ {(n, hn, t)}

S ′
1 ← iEncode(P1, Π, ν)

sid← H(m‖m′)
P2 ← ∅, R ← ∅
for all (n, hn, t) ∈ T :

if id 6∈ prl:
θ ← iDecode(S1, Π, ν, hn)
r ← (θ3Hn(id))2t mod n
c0 ← H(sid‖r‖0)
c1 ← H(sid‖r‖1)
c2 ← H(sid‖r‖2)
R ← R∪ {(hn, c0, c1)}

else: c2 ←R {0, 1}κ
P2 ← P2 ∪ {(hn, c2)}

S ′
2 ← iEncode(P2, Π, 1)

K ← 0κ, groups← ∅
for all (hn, c0, c1) ∈ R:

if iDecode(S2, Π, 1, hn) = c1:
groups← groups ∪ {hn}
K ← K ⊕ c0

if groups 6= ∅ then
(key, partner)← (K, id)
terminate with “accept”

else
(key, partner)← (⊥,⊥)
terminate with “reject”

Fig. 3. Specification of optimized Handshake protocol.

Observe that the exponentiation in line 7 has an a-priori known basis, namely g = 2. In
general, diverse fast algorithms for fixed-basis exponentiations are known [24, Section 14.6].
However, we stress that in our case exponentiations’ performance can be even further improved

16 Mark Manulis and Bertram Poettering

by exploiting the structure of ‘square and multiply’ algorithms [24], where an accumulator is
repeatedly multiplied by the base element. When g = 2, this multiplication becomes a doubling of
the accumulator, which can be implemented by a simple left-shift. The overall performance then
depends solely on the cost of the squaring operation. We remark that term (−1)b for b ∈ {0, 1}
in line 7 should, of course, never be computed by calling an exponentiation subroutine, but by
doing a distinction of cases. We conclude this paragraph by noting that messages θ (or even
whole IHME structures S1) can be precomputed before the protocol session starts in order to
further reduce run-time computations.

Note that, even though the protocol in Figure 3 is displayed as four-message protocol, by
concatenating messages m′ and S ′2 into a single message, the protocol is trivially turned into
a three-message protocol. We intentionally did not thoroughly specify the check of partner’s
pseudonym against pseudonym revocation list prl (line 17). Although in [21] revocation lists
were considered of group-wide validity and managed by the corresponding authority, we can
imagine other types of revocation management as well, for instance local ‘per-user’ revocation
lists, or prls managed by third parties. The most useful type of revocation depends on the actual
application. Thus, we leave the choice to the implementor.

5 Performance Analysis and Discussion

In this section we discuss the choice of practical parameters and further building blocks for a
concrete implementation of our optimized Handshake protocol from Figure 3 and analyze its
performance.

We start by proposing reasonable combinations of symmetric and asymmetric key sizes (κ
and κ′, respectively). The following table reproduces key length recommendations by NIST [27]
and lists corresponding choices for Π and ν:

κ κ′ Π ν
80 1024 2κ + 13 14

112 2048 2κ + 25 20
128 3072 2κ + 51 25
192 7680 2κ + 133 41
256 15360 2κ + 297 61

The hash function H (cf. Section 4.3) can be instantiated with any cryptographic hash
function of output length κ. For example, SHA256 truncated to κ bits would serve in all the
above cases.

As for the second hash function Hn : {0, 1}∗ → Zn, we propose the deployment of a
PKCS#1.5-type padding [19], i.e. Hn(id) = s ‖ H(id), where s is some constant prefix inter-
preted as an integer modn. Observe that in our multi-group setting we have Hn(id) = Hn′(id)
for all ids and n, n′ of the same bit length, i.e. |n|2 = |n′|2 .

Finally, in Figure 4, we present performance measurements and investigate the scalability
of our implemented Handshake protocol for the security level (κ, κ′) = (80, 1024) and varying
numbers of user credentials m = |C| (i.e. number of different group memberships per user).

We observe that the percentage of the running time spent in IHME computations increases
with growing m. This is due to the fact that IHME operations are relatively cheap but there are
O(m2) of them, while exponentiations are expensive but their number is O(m). Hence, only for
large m the IHME workload becomes noticeable. Note that in typical applications of multi-group
AH protocols, e.g. in social networks, the average number of affiliations (social groups) per user
can be bounded by 100. It turns out that, in this case, the quadratic nature of IHME is still
acceptable for practice.

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 17

m 5 10 25 50 100 250

total (ms) 14 29 80 188 492 2096

expos (ms) 13 (91%) 26 (90%) 65 (81%) 131 (69%) 263 (53%) 657 (31%)

IHME (ms) 1.2 (8%) 2.8 (9%) 14 (18%) 57 (30%) 229 (46%) 1438 (68%)

m 5 10 25 50 100 250

total (ms) 13 27 73 164 394 1480

expos (ms) 13 (97%) 26 (95%) 65 (89%) 131 (80%) 263 (66%) 657 (44%)

IHME (ms) 0.2 (2%) 1.2 (4%) 8 (10%) 32 (19%) 131 (33%) 823 (55%)

Fig. 4. Timing measurements of an implementation of our protocol (Figure 3), for security level
(κ, κ′) = (80, 1024). The particular rows indicate the total time consumption of one protocol execu-
tion with m input groups, and the fraction of running time spent in exponentiation algorithms and
IHME encoding/decoding, respectively. In the upper table, ν-fold IHME-encoding was used basing on
Algorithm 2, while the possibility to perform IHME precomputations (Algorithm 3) was taken into
account in the lower table. All timings were measured on a single core of an ‘Intel XEON 2.66GHz’
machine, using the gcrypt library [20] for bigint arithmetic.

6 Conclusion

We showed that affiliation-hiding authentication in the multi-group setting is truly practical
for modern applications, where, on average, each user is a member of roughly 100 groups. We
improved upon the scheme and building blocks from [21] by proposing numerous algorithmic
optimizations. In particular, we explored existing solutions and developed improved algorithms
for polynomial interpolation in finite fields — a major prerequisite for efficient IHME imple-
mentations. Moreover, we heavily modified the group management and handshake algorithms
proposed in [21] to achieve considerably better performance in both computational means and
bandwidth consumption. Our work yields a highly efficient affiliation-hiding multi-group authen-
tication and key establishment protocol, for which implementations and appropriate performance
measurements were provided.

References

1. G. Ateniese, J. Kirsch, and M. Blanton. Secret Handshakes with Dynamic and Fuzzy Matching. In
Network and Distributed System Security Symposium (NDSS 2007). The Internet Society, 2007.

2. D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H.-C. Wong. Secret Handshakes
from Pairing-Based Key Agreements. In IEEE Symposium on Security and Privacy 2003, pages
180–196. IEEE CS, 2003.

3. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of Group Signatures: Formal Definitions,
Simplified Requirements, and a Construction Based on General Assumptions. In EUROCRYPT
2003, volume 2656 of LNCS, pages 614–629. Springer, 2003.

4. A. Björck and V. Pereyra. Solution of Vandermonde Systems of Equations. Mathematics of Com-
putation, 24(112):893–903, 1970.

5. R. Bradshaw, J. Holt, and K. Seamons. Concealing Complex Policies with Hidden Credentials. In
CCS 2004, pages 146–157. ACM, 2004.

6. C. Castelluccia, S. Jarecki, and G. Tsudik. Secret Handshakes from CA-Oblivious Encryption. In
ASIACRYPT 2004, volume 3329 of LNCS, pages 293–307. Springer, 2004.

7. D. Chaum and E. van Heyst. Group Signatures. In EUROCRYPT 1991, volume 547 of LNCS,
pages 257–265. Springer, 1991.

8. H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag New York, 1993.

18 Mark Manulis and Bertram Poettering

9. M. Dejnakarintra and D. Banjerdpongchai. An Algorithm for Computing the Analytical Inverse of
the Vandermonde Matrix. In 3rd Asian Control Conference (ASCC), 2000.

10. Facebook’s Statistics. http://www.facebook.com/press/info.php?statistics.
11. R. Gennaro, H. Krawczyk, and T. Rabin. Okamoto-Tanaka Revisited: Fully Authenticated Diffie-

Hellman with Minimal Overhead. In ACNS 2010, volume 6123 of LNCS, pages 309–328. Springer,
2010.

12. O. Goldreich and V. Rosen. On the Security of Modular Exponentiation with Application to the
Construction of Pseudorandom Generators. J. Cryptology, 16(2):71–93, 2003.

13. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer, 2004.
14. S. Jarecki, J. Kim, and G. Tsudik. Group Secret Handshakes or Affiliation-Hiding Authenticated

Group Key Agreement. In CT-RSA 2007, volume 4377 of LNCS, pages 287–308. Springer, 2007.
15. S. Jarecki, J. Kim, and G. Tsudik. Beyond Secret Handshakes: Affiliation-Hiding Authenticated

Key Exchange. In CT-RSA 2008, volume 4964 of LNCS, pages 352–369. Springer, 2008.
16. S. Jarecki and X. Liu. Unlinkable Secret Handshakes and Key-Private Group Key Management

Schemes. In ACNS 2007, volume 4521 of LNCS, pages 270–287. Springer, 2007.
17. S. Jarecki and X. Liu. Affiliation-Hiding Envelope and Authentication Schemes with Efficient

Support for Multiple Credentials. In ICALP (2), volume 5126 of LNCS, pages 715–726. Springer,
2008.

18. S. Jarecki and X. Liu. Private Mutual Authentication and Conditional Oblivious Transfer. In
CRYPTO 2009, volume 5677 of LNCS, pages 90–107. Springer, 2009.

19. J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1 (RFC 3447), 2003.

20. W. Koch. GNU Privacy Guard — The gcrypt Library. http://www.gnupg.org/.
21. M. Manulis, B. Pinkas, and B. Poettering. Privacy-Preserving Group Discovery with Linear Com-

plexity. In ACNS 2010, volume 6123 of LNCS, pages 420–437. Springer, 2010.
22. M. Manulis, B. Poettering, and G. Tsudik. Affiliation-Hiding Key Exchange with Untrusted Group

Authorities. In ACNS 2010, volume 6123 of LNCS, pages 402–419. Springer, 2010.
23. M. Manulis, B. Poettering, and G. Tsudik. Taming Big Brother Ambitions: More Privacy for Secret

Handshakes. In PETS 2010, volume 6205 of LNCS, pages 149–165. Springer, 2010.
24. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,

2001.
25. P. L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factorization. Mathematics

of Computation, 48(177):243–264, 1987.
26. D. Naccache. Double-Speed Safe Prime Generation. http://eprint.iacr.org/2003/175.pdf.
27. National Institute of Standards and Technology (NIST). SP 800-57 Part 1, Recommendation for

Key Management, 2007.
28. M. Schatzman. Numerical Analysis: A Mathematical Introduction. Clarendon Press, Oxford, 2002.
29. G. Tsudik and S. Xu. A Flexible Framework for Secret Handshakes. In PETS 2006, volume 4258

of LNCS, pages 295–315. Springer, 2006.
30. D. Vergnaud. RSA-Based Secret Handshakes. In Intl. Workshop on Coding and Cryptography (WCC

2005), volume 3969 of LNCS, pages 252–274. Springer, 2005.
31. H. J. Wertz. On the Numerical Inversion of a Recurrent Problem: The Vandermonde Matrix. In

IEEE Transactions on Automatic Control, 1965.
32. S. Xu and M. Yung. k-Anonymous Secret Handshakes with Reusable Credentials. In CCS 2004,

pages 158–167. ACM, 2004.

Practical Affiliation-Hiding Authentication from Improved Polynomial Interpolation 19

A Computing the Inverse of a Vandermonde Matrix

Explicit formulae for the computation of the inverse V −1 = (m1,1, . . . ,mn,n) ∈ Fn×n of a
Vandermonde matrix V = V (x1, . . . , xn) (cf. Section 3.4) are sketched by Wertz in [31] and
worked out by Dejnakarintra and Banjerdpongchai in [9]. Algorithm 7 has running time O(n2)
and requires n ≥ 2.

Algorithm 7 Precomputation for Interpolation
Input: Elements x1, x2, . . . , xn ∈ F with i 6= j ⇒ xi 6= xj

Output: Square Matrix (m1,1, . . . ,mn,n) ∈ Fn×n

a1 ← −(x1 + x2)
a2 ← x1x2

for i = 3 to n do
ai ← −xiai−1

for m = i− 1 downto 2 do
am ← am − xiam−1

end for
a1 ← a1 − xi

end for
for i = 1 to n do
pi ← 1
for j = 1 to n do

if j 6= i then
pi ← pi(xi − xj)

end if
end for

end for
for i = 1 to n do
b1 ← 1
for j = 1 to n− 1 do
bj+1 ← aj + xibj

end for
for j = 1 to n do
mj,i ← bn−j+1/pi

end for
end for

B Simultaneous Reduction of Fractions

Suppose that multiple fractions (cf. Section 3.3) have to be reduced simultaneously, i.e. for
given (c1, d1), . . . , (cn, dn) ∈ F × F× the reductions c1d

−1
1 , . . . , cnd

−1
n have to be computed.

This can, obviously, be done by computing all divisions independently of each other, with total
computation cost of nD. In the following, we describe a technique due to Cohen [8, Algorithm
10.3.4] and Montgomery [25] for doing this job at cost (4n− 3)M + I. It is more efficient than
the näıve way whenever I > 4M . We motivate Algorithm 8 by observing that the inverses
of arbitrary a1, a2 ∈ F× can be calculated simultaneously by computing u ← (a1a2)−1 and
(a−1

1 , a−1
2)← (u · a2, u · a1). This idea is generalized to more than two variables in Algorithm 8.

Note that in Algorithm 8 fractions ci/di are reduced in place, i.e. input variables ci are
overwritten by cid−1

i . Elements di are left unmodified. Observe moreover that, after the first for

20 Mark Manulis and Bertram Poettering

Algorithm 8 Simultaneous Reduction of Fractions
Input: Fractions (c1, d1), . . . , (cn, dn) ∈ F× F×
Output: Elements c1d

−1
1 , . . . , cnd

−1
n ∈ F

u← d1

for k = 2 to n do
ck ← ck · u
u← u · dk

end for
u← u−1

for k = n downto 2 do
ck ← ck · u
u← u · dk

end for
c1 ← c1 · u

loop, we have u =
∏n
k=1 di. It follows that error condition di = 0, for any i, can be detected

efficiently by asserting u 6= 0 right before the inversion step.

