
Linkable Democratic Group Signatures?

Mark Manulis??, Ahmad-Reza Sadeghi, and Jörg Schwenk

Horst-Görtz Institute
Ruhr-University of Bochum

D-44801, Germany
{mark.manulis, joerg.schwenk}@nds.rub.de, sadeghi@crypto.rub.de

Abstract. In a variety of group-oriented applications cryptographic primitives like
group signatures or ring signatures are valuable methods to achieve anonymity of
group members. However, in their classical form, these schemes cannot be deployed
for applications that simultaneously require (i) to avoid centralized management au-
thority like group manager and (ii) the signer to be anonymous only against non-
members while group members have rights to trace and identify the signer.
The idea of recently introduced democratic group signatures is to provide these prop-
erties. Based on this idea we introduce a group-oriented signature scheme that allows
the group members to trace the identity of any other group member who issued a
signature while non-members are only able to link the signatures issued by the same
signer without tracing. For this purpose the signature scheme assigns to every group
member a unique pseudonym that can be used by any non-member verifier to commu-
nicate with the anonymous signer from the group. We present several group-oriented
application scenarios where this kind of linkability is essential.
We propose a concrete linkable democratic group signature scheme for two-parties,
prove its security in the random oracle model, and describe how to modularly extend
it to the multi-party case.

Key words: democratic group signatures, anonymity, pseudonymity, linkability, group
communication

1 Introduction

Designing anonymity-preserving cryptographic schemes for group-oriented applications,
such as group signatures and ring signatures (c.f. Section 2), has been an appealing sub-
ject of the research. In this paper we consider group communication scenarios between
members of a group and non-members where the anonymity of group members should be
preserved only against non-members, but is not desired within the group. In other words,
signed messages on behalf of the group must be verifiable by group members and non-
members, but the signer’s identity should be revealed only by other group members. Since
a non-member may receive signed messages from different group members, it is essential
for non-members to distinguish between signatures produced by the same signer (linkabil-
ity of signatures) in order to respond accordingly. In this context it is likely that the unique
pseudonyms of group members may be used to provide this kind of linkability for non-
members. Further, we consider communication scenarios where no central management
authorities needed who controls the initialisation of the group and the communication pro-
cess.
In their classical form group and ring signatures cannot be deployed for those applications
that require the mentioned properties. Recently the idea of a democratic group signature
was introduced in [20] that allows group members to initialise the group and maintain it
over dynamic group changes in a collective manner without relying on any centralized

? This is the full version of the paper which appears at ISPEC 2006, Lecture Notes of Computer
Science, Volume 3903. c©Springer-Verlag, 2006.

?? The author was sponsored by the European Commission through IST-2002-507932 ECRYPT.

authority like group manager. However, the proposed model is too strong for the communi-
cation scenarios considered in this paper. This is because the model in [20] requires unlink-
ability of issued group signatures. Clearly, if signatures are unlinkable then non-members
are not able to distinguish between messages signed by the anonymous communication
partner from the group, and are, therefore, not able to respond to the signer. Therefore,
in this paper we propose a relaxed model for linkable democratic group signatures. As a
consequence more efficient schemes can be designed. In the following we describe some
communication scenarios for linkable democratic group signatures.

Consultative Group Decision. Consider a group of people G who has to make their common
decision based on anonymous consultations with third parties in T . Every member of G
is allowed to initiate an anonymous consultation with any party ti ∈ T such that only
other group members can identify it and follow the consultation process. Any party ti
may be queried from different members at the same time and must, therefore, be able to
determine the sender to respond accordingly. Concrete applications are: anonymous review
and discussion of submitted papers by the program committee, selection of participants for
a project tender based on their proposals. Group members may use linkable democratic
group signatures to sign their queries to ti. If referees want to discuss several topics of
the submitted paper with its authors without revealing their identities, then they can use
the scheme to sign their messages. The authors are able to distinguish between queries of
different referees using pseudonyms and respond accordingly.

Distributed Group Control. Consider a scenario of the distributed control, e.g., in a battle-
field. Given set F of field devices and set C of control devices, such that any device in C
can send its orders to any device in F with respect to some control policy P . Any field de-
vice that receives an order must be able to respond to the control device that has issued the
order. For strategic reasons field devices should not know, which control device has issued
the order, but still must be able to verify that the order comes from an authentic control
device in C. Any other device in C must know which orders have been sent and also which
control device is the issuer of a certain order. The latter allows the control devices to ex-
clude a malicious control device whose orders are not conform with P . The solution based
on linkable democratic group signatures is that all control devices from C form a group,
whereas field devices are considered as non-members. Any control device ci broadcasts its
signed order so that upon its reception any party in C and in F can verify whether the order
is from a ci ∈ C but only members of C can determine the identity of ci while members of
F can communicate with ci over its pseudonym.

Anonymous Intergroup Communication. Linkable democratic group signatures allow au-
thentic anonymous communication between members of multiple groups. Members of dif-
ferent groups can exchange signed messages without revealing own identities such that
only members of their groups are able to open their signatures. For example, two teams
want to carry out a fair two-player game competition (e.g., chess). Assume that players
of one team know strengths and weaknesses of players of another team. Thus, if a player
knows its opponent then it might benefit from this knowledge during the game. Therefore,
to achieve fairness it is preferable that players do not know their opponents. However, once
the game is started, both players have to be able to verify that all game moves come from
the same opponent. After competition is finished, both teams should be able to figure out
the authentic result, and reveal the identities of the opponent players for each pair.

It is thinkable to realize linkable democratic group signatures using certified pseudonyms
[19] issued by a certification authority (CA) to every group member. However, this triv-
ial construction requires an active involvement of the CA during the initialisation and is,
therefore, opposed to the assumed trust model. The solution with certified pseudonyms is
also impracticable if the group has to be formed spontaneously, e.g., teams in the example
of anonymous intergroup communication may be built ad-hoc for each game from a pool
of players. In this case a solution without active involvement of the CA is preferable.

Organization In Section 2 we discuss the main differences between linkable democratic
group signatures and other known group-oriented signatures. The formal model and secu-
rity requirements of linkable democratic group signatures are described in Section 3. We
propose a concrete scheme for two parties and prove its security in the random oracle model
in Section 4. In Section 5 we describe a straightforward extension for the multi-party case.

2 Related Work

Although there exist various group-oriented digital signatures, linkable democratic group
signatures differ from them in trust relationship and signer’s anonymity as discussed in the
following.

Group signatures introduced by Chaum et. al. [11] and later studied and improved in [10,
9, 2, 7, 4, 8, 16] allow members of a group to sign messages on behalf of the group so that
it is not possible to distinguish who the actual signer is. Nevertheless, there exists a des-
ignated group manager that can open the signature, i.e., reveal the identity of its signer.
We are interested in two security requirements of group signatures, namely the unlinka-
bility and the anonymity. The first one means that no party except for the group manager
should be able to relate two or more signatures as being produced by the same signer. The
second one means that no party except for the group manager should be able to reveal
the signer’s identity [2]. There are several differences between group signatures and link-
able democratic group signatures: Firstly, in group signatures all group members trust the
group manager that computes all group secrets. This is obviously is not the case in the trust
model of linkable democratic group signatures. Secondly, group signatures are unlinkable.
Thus, group members and non-members that receive a signed message are not able to relate
it to any previously received signed message. The only party that is able to do this is the
group manager. Obviously, this is an obstacle for the communication in scenarios described
above. Thirdly, the anonymity requirement of group signatures allows only the group man-
ager to reveal the identity of the signer from the signature. In linkable democratic group
signatures, however, all group members are allowed to do this.

Traceable signatures introduced by Kiayias et. al. [15] extend group signatures as follows.
There exist several members, called tracers, that receive a tracing trapdoor from the group
manager and are able to link all group signatures that correspond to that tracing trapdoor.
The tracing trapdoor reveals no information about the identity of the signer. Thus, tracers
are able to collect all signatures of a certain group member without being able to iden-
tify him, while the group signatures produced by other group members remain unlinkable,
unless the group manager reveals their tracing trapdoors too. Like in classical group sig-
natures only group manager is able to identify the signer. Another property of traceable
signatures is that group members are able to produce claiming proofs for their group signa-
tures, i.e. a group member can convince any verifier that he is the author of a certain signed
message. In the context of linkable democratic group signatures tracing trapdoors can be
seen as pseudonyms that allow tracers to follow the communication by linking signed mes-
sages of the same authors. Since, by definition, tracing trapdoors are only known to the
group manager, other group members and also non-members are not able to distinguish
signatures generated by the same member. The property of traceable signatures that allows
members to claim their signatures can be utilized to overcome this obstacle, i.e., after the
signer has generated a signature and a claiming proof he sends the signature to all com-
munication participants (group members and non-members), but sends the claiming proof
only to group members that are then able to identify the signer during the verification of
the proof. This can be achieved by encryption of the proof with the secret group key. Ob-
viously, the drawback of this realisation is the increased communication and computation
due to the additional generation and distribution of claiming proofs and their encryption,
besides that the group manager is still the only authority that can identify the signer.

Ring signatures introduced by Rivest et. al. [21] and further studied in [18] and [5] do
not require any group manager to form a group. For the signature generation every user
builds a set of public keys that includes his public key and the public keys of other users.
A generated signature does not reveal the public key of the signer, but a set of public keys
of all possible signers. Therefore, ring signatures cannot be used for a direct communi-
cation between a verifier and a signer. Additionally, ring signatures provide unconditional
anonymity, i.e., no party can reveal the signer’s identity. Linkable democratic group sig-
natures are similar to ring signatures in the sense that no group manager is required to
initialise a group, and that a verifier knows the set of possible signers without being able
to identify the signer. However, the differences are that in linkable democratic group signa-
tures: (i) every member actively participates in the initialisation process, (ii) a non-member
verifier is able to respond to the signer using the signer’s pseudonym, and (iii) group mem-
bers are able to identify the signer.

Democratic group signatures introduced recently in [20] result from changes to the stan-
dard model of group signatures caused by elimination of the group manager’s role and
distribution of the tracing rights to individuals. Group members initialise the group and
control it over dynamic changes in a collective manner. Every group member has indi-
vidual right to trace issued signatures to their signers. To provide individual tracing rights
group members agree on a tracing trapdoor. The signer’s anonymity is provided against
non-members. However, the model in [20] requires unlinkability of signatures. This prop-
erty is an obstacle for the direct communication between a non-member and an anonymous
group member, because the non-member would no more be able to distinguish the mes-
sages of the same signer. Therefore, we relax the model of democratic group signatures
to provide the linkability of generated signatures. Additionally, this results in a more effi-
cient construction, i.e., the signatures in our scheme have the length of O(1) whereas the
signatures in [20] have the length of O(n).

3 Model
3.1 Notations and Terminology
For a string x, |x| denotes its length. For a finite set or tuple X , |X| denotes its size. We
use {, } to specify a set, and (,) to specify a tuple. ε denotes an empty string, tuple or set
according to the context. We use x := y to define value of x to be y where y can be a value,
a tuple or a set. If y is a tuple then x

$
:= y specifies a random permutation of values in y.

If T is a randomized algorithm or protocol then [T (X)] denotes the set of random variables
having positive probability of being output by T on input X , and Y

$← T (X) denotes a
concrete output of T on the same input with freshly generated coins. For a finite set X ,
x

$← X denotes the algorithm that samples an element uniformly at random from X . If T
is deterministic then Y ← T (X) denotes the output of T on input X .
We say one-argument function v : N→ N is negligible if for any positive polynomial poly
there exists l′ ∈ N, such that for all l ∈ N, l > l′: v(l) < 1/poly(l). We say two-argument
function w : N × N → N is negligible if for any polynomial time function f : N → N for
that exists a positive polynomial poly, such that f(k) ≤ poly(k),∀k ∈ N, the one-argument
function wf (l) = w(l, f(l)) is negligible for all l ∈ N. This definition of two-argument
negligibility introduced in [2] is used in our scheme to show the negligibility of functions
which are parameterized with a security parameter and a number of group members.
In the context of the security requirement <req> we use Exp<req>

A to denote an experi-
ment with an algorithm A aiming to break this requirement. By Adv<req>

A we denote the
advantage function of A.

3.2 Linkable Democratic Group Signatures: Algorithms and Protocols
Definition 1. A linkable democratic group signature schemeLDGS = {Setup, Sign, Verify,
Trace} is a digital signature scheme that consists of:

– A randomized protocol Setup between all members that takes as input a security pa-
rameter l ∈ N and a number of members n ∈ N. The public output is a set of identities
ID and a set of pseudonyms PS of group members. The identity and the pseudonym of
a member i are denoted idi and psi, respectively. The private output for each member
i is the individual secret signing key ski from the set SK.

– A randomized algorithm Sign that on input a secret signing key sk ∈ SK and a message
m, outputs a signature σ on m.

– A deterministic algorithm Verify that on input a candidate signature σ, a message m,
and the set of pseudonyms PS outputs either a pseudonym ps if it accepts the signature
or ⊥ if it rejects it.

– A deterministic algorithm Trace that on input a candidate signature σ, a message m,
any secret signing key sk ∈ SK, the set of pseudonyms PS, and the set of identities ID
outputs either an identity id or the symbol ⊥ if a failure occurs. Since every ski ∈ SK
can be used as input to the signing and tracing algorithms there should exist a tracing
trapdoor as part of every ski.

Remark 1. In linkable democratic group signatures the scheme is initialised in a collective
manner by all group members. Note that members may be in possession of certified public
keys for the authentication of their messages during the Setup protocol, but we stress that
no third trusted party like a certification authority (CA) is actively involved in the protocol.

Note that the stronger model of democratic group signatures in [20] that requires unlinka-
bility of signatures considers additional protocols for dynamic groups, i.e., protocols that
handle joins and exclusions of group members. However, in dynamic groups the property
of linkability would allow non-members to reveal identities of group members that have
joined to the group or have been excluded from it. In case of join a non-member may
record the identity of the joining member. Then it can simply figure out which pseudonyms
in the changed group formation are linkable to pseudonyms of the previous group forma-
tion, and so find out the pseudonym which cannot be linked, i.e. the pseudonym of the
joined member. Similar, in case of the exclusion a non-member can record the identity of
the excluded group member, then relate the pseudonyms from the previous group formation
to the pseudonyms of the changed group formation, and figure out the pseudonym of the
excluded member. Therefore, we consider linkable democratic group signatures only for
static groups.

3.3 Trust Model and Assumptions

After the scheme is initialised every group member must be trusted not to reveal its secret
signing key or any information that can be used to link any idi and psi for the same i to
any other party. The setup protocol must also be resistant against attacks that aim to reveal
such links. We require also the existence of at least one honest group member who acts
according to the setup protocol and does not take part in any collusion of group members
trying to cheat against non-members.

3.4 Security Requirements

Definition 2 (Correctness). A linkable democratic group signature scheme LDGS from
Definition 1 is correct if for all l, n ∈ N, (ID, PS, SK) ∈ [Setup(l, n)], ski, skj ∈ SK,
idi ∈ ID, psi ∈ PS, m ∈ {0, 1}∗, and σ

$← Sign(ski,m) :

Verify(σ,m, PS) = psi ∧ Trace(σ,m, skj , PS, ID) = idi

The following security requirements are derived from the full-anonymity and full-traceability
requirements proposed by Bellare in [2] for group signature schemes and have been mod-
ified with respect to the model of linkable democratic group signatures. The modified re-
quirements subsume the standard requirements on anonymity, collusion-resistance, framing
and unforgeability requirements. We require from a linkable democratic group signature
scheme, once initialised, to be resistant against the following attacks.

Anonymity Informally, in an anonymity attack against a linkable democratic group sig-
nature scheme the adversary tries to figure out the identity idi of the signer of a signature.
The formal definition is given by experiment Expanon−b

A (l, n) in Figure 1. Adversary A
operates in two stages: choose and guess. In the choose stage it is given the set of identi-
ties ID, the set of pseudonyms PS produced by the protocol Setup(l, n), and outputs two
identities id0, id1, a message m ∈ {0, 1}∗, and some state information St to be used in
the second stage of the attack. In the guess stage A is given St, and a signature σb of the
member with idb on m where b is a random bit. In order to cover chosen message attacks A
is also allowed to query oracle Sign∗ on any message m∗ of its choice. The oracle answers
with the signature σb∗ on m∗. At the end of the stage A outputs bit d as a guess for b.

Definition 3. The anonymity advantage of A is given by the function

Advanon
A (l, n) = Pr[Expanon−1

A (l, n) = 1]− Pr[Expanon−0

A (l, n) = 1].

A linkable democratic group signature scheme LDGS from Definition 1 is anonymous if
for any polynomial time adversary A the anonymity advantage Advanon

A (l, n) is negligible
in terms of negligibility of two-argument functions.

Traceability Informally, in a traceability attack against a linkable democratic group sig-
nature scheme the adversary A is allowed to corrupt members (obtain their secret signing
keys), and tries to generate a forged signature that either cannot be traced to any member
or can be traced to an uncorrupted member. The formal definition is given by experiment
Exptrace

A (l, n) in Figure 1. Adversary A operates in two stages: corrupt and forge. A starts
its attack by adaptively corrupting a set IDc of members. The adversary has free choice of
the identities and the number of corrupted members. At the end of the corrupt stage the set
IDc contains identities of corrupted members. In the stage forge adversary knowing the set
SKc of secret signing keys of corrupted members outputs a forgery (σ,m). The experiment
returns 1 if σ fulfils verification requirements, but the tracing algorithm outputs either ⊥ or
an identity idi of an uncorrupted member. In both stages adversary is given access to the
signing oracle Sign that outputs a signature of the member with idi on a query (idi,m

′).

Definition 4. The traceability advantage of A is given by the function

Advtrace
A (l, n) = Pr[Exptrace

A (l, n) = 1].

A linkable democratic group signature scheme LDGS from Definition 1 is traceable if for
any polynomial time adversary A the traceability advantage Advtrace

A (l, n) is negligible in
terms of negligibility of two-argument functions.

3.5 Discussion on Sizes

Since every member has its unique identity, pseudonym and secret signing key we follow
that the lower size bounds of ID, PS and SK are equal to n. To the contrary, it is preferable
that the size of a generated signature σ remains constant, i.e., does not grow with n.

4 A Two-Party Linkable Democratic Group Signature Scheme

In this section we present a linkable democratic group signature scheme for two parties. A
straightforward extension for a multi-party case is given later in Section 5. After description
of required cryptographic primitives we specify the protocols and algorithms of the scheme
and prove its security in the random oracle model.

Expanon−b

A (l, n): Exptrace

A (l, n):

(ID, PS, SK)
$← Setup(l, n); (ID, PS, SK)

$← Setup(l, n);
(St, id0, id1, m)

$← A(choose, ID, PS); St := (ID, PS); IDc := ε; SKc := ε; next := 1;
b

$←{0, 1}; σ
$← Sign(skb, m); Until (next = 0) do

d
$← ASign∗(·)(guess, St, σ); (next, St, idi)

$← ASign(·,·)(corrupt, St, SKc);
return d; If next = 1 then IDc ← IDc ∪ {idi}; SKc ← SKc ∪ {ski} EndIf

EndUntil;
(σ, m)

$← ASign(·,·)(forge, St);
If Verify(σ, m, PS) = ⊥ then return 0 EndIf;
If Trace(σ, m, PS, skj) = ⊥ for any 0 ≤ j < n then return 1 EndIf;
idi ← Trace(σ, m, PS, skj);
If idi 6∈ IDc and Sign(·, ·) was not queried on (idi, m) then return 1

else return 0 EndIf;

Fig. 1. Experiments used to define anonymity and traceablity of LDGS

4.1 Cryptographic Primitives

Proof of the Equality of Two Discrete Logarithms Let G :=< g, p, q > be a cyclic
subgroup of the multiplicative group Z∗p with generator g and order q, where q and p are
large prime numbers with q|(p−1). In our scheme we use a non-interactive zero-knowledge
(NIZK) proof system (P, V) for the equality of two discrete logarithms. A probabilistic
proving algorithm P on input x = (g0, g1, y0, y1) ∈ G4 and w ∈ Zq outputs a non-
interactive proof π for the equality w = logg0

(y0) = logg1
(y1). A deterministic verifying

algorithm V on input x, and a proof π checks whether π is a correct proof and outputs
either 1 or 0 (1 if V accepts the proof). Both algorithms have access to a random oracle R
from the family of random oracles (c.f. [3]). The proof system (P, V) must satisfy the usual
requirements of completeness, soundness and zero-knowledge.
Note that the equality of two discrete logarithms in the context of digital signature schemes
has already been used by Goh and Jarecki in [13]. Their scheme utilizes a NIZK proof sys-
tem for the signature generation and is proven to be secure in the random oracle model. Our
scheme is designed to work with any NIZK proof system for the equality of two discrete
logarithms in the random oracle model, e.g., the efficient scheme used in [13] can be ap-
plied. In this case the random oracle R in the description of our algorithms can be replaced
by a cryptographic secure hash function.
Due to some technical reasons concerning the zero-knowledge simulation we have to use
adaptive NIZK proof systems in our security proof. In Appendix A we provide a more
detailed description and the definition of adaptive NIZK proof systems in the random oracle
model based on the description of these systems in the common reference string model
along the lines in [12] and [22].

Simultaneous Decisional Diffie-Hellman Assumption In the following we introduce a
cryptographic assumption which we call a simultaneous decisional Diffie-Hellman (SDDH)
assumption. This assumption is an extension of a well-known Decisional Diffie-Hellman
(DDH) assumption [6] and is essential for the anonymity property of our scheme as shown
below.

Definition 5 (SDDH Assumption). Given a cyclic subgroup G :=< g, p, q > and security
parameter l as above. Let As be a polynomial time distinguisher that tries to distinguish
between two distributions D′

0 and D′
1 according to the following experiment:

Expsddh−b

As
(l):

n ∈ N; y
$← Zq;

For i = 0 to n− 1 do xi, ri
$← Zq EndFor;

D′
0 := (g, gx0 , . . . , gxn−1 , gy, gr0 , . . . , grn−1);

D′
1 := (g, gx0 , . . . , gxn−1 , gy, gx0y, . . . , gxn−1y);

b
$← {0, 1};

d
$← As(D

′
b);

return d;

The advantage function of As is defined as

Advsddh
As

(l) = Pr[Expsddh−1

As
(l) = 1]− Pr[Expsddh−0

As
(l) = 1] (1)

The SDDH assumption is that Advsddh
As

(l) is negligible.

Theorem 1 (SDDH ⇔ DDH). The SDDH assumption is equivalent to the Decisional
Diffie-Hellman (DDH) assumption. Formally, for all distinguishers A, As and for all l ∈ N :
Advsddh

As
(l) = Advddh

A (l).

Proof. The proof is given in Appendix B.1.

The idea of SDDH assumption in the context of our scheme is that every group member
i has a temporary private key xi ∈ Zq and the corresponding public key gxi which is
used as identity idi. In our scheme both group members compute the same tracing trap-
door k ∈ Zq as part of their secret signing keys and the blinded version gk is public. The
pseudonym psi of a group member i contains a value gxik. According to Definition 1 a
verifier obtains the signer’s pseudonym. In order to provide anonymity the verifier must
not be able to distinguish which temporary public key gxi corresponds to the obtained
signer’s pseudonym. Considered that y is the tracing trapdoor k, the distribution D′

1 from
the experiment Expsddh−b

As
(l) consists of public keys and pseudonyms of all group mem-

bers. Intuitively, if an adversary is able to distinguish between D′
1 and D′

0 then it is able to
distinguish which pseudonym corresponds to which temporary public key.

4.2 Parameters
All computations in our scheme are performed in the cyclic subgroup G :=< g, p, q >
of the multiplicative group Z∗

p with generator g and prime order q, such that q|(p − 1). In
our scheme we use a NIZK proof system (P, V) with a random oracle R as described in
Section 4.1 and a publicly known strong collision-resistant hash function H : {0, 1}∗ →
Zp. We assume that members agree on the description of G, R and H before they begin
with the setup procedure. All protocols and algorithms of our scheme implicitly know the
description of G and R.
Every participant i is equipped with an identity certificate that contains its authenticated
public key pkeyi. The corresponding private key skeyi is known only to this participant. We
assume that the key pair (pkeyi, skeyi) is used by member i to authenticate his messages
during the setup protocol. Each secret signing key ski consists of the member’s temporary
private key xi and the tracing trapdoor k that is known only to the group members. For
simplicity the identity idi of member i is given by its temporary public key yi, such that
yi ← gxi , hence ID := {y0, y1}. The pseudonym psi of member i is a tuple (bk, ỹi), where
bk ← gk is the blinded common tracing trapdoor, and ỹi ← yk

i is its pseudonym token.

4.3 Protocols and Algorithms
Protocol Setup: Both participants 0 and 1 perform protocol Setup in Figure 2. We require
that all information sent by a participant i during this protocol is signed with a secure digital

Member 0 Member 1

x0
$← Zq; y0 ← gx0 x1

$← Zq; y1 ← gx1

−
(y0, Sigskey0

(y0))

−−−−−−−−−−−−−−→

←−
(y1, Sigskey1

(y1))

−−−−−−−−−−−−−−
k ← yx0

1 ; bk ← gk k ← yx1
0 ; bk ← gk

∀i = 0, 1 : ỹi ← yk
i , psi := (bk , ỹi) ∀i = 0, 1 : ỹi ← yk

i , psi := (bk , ỹi)
ID := {y0, y1}; PS := {ps0, ps1}; ID := {y0, y1}; PS := {ps0, ps1};

sk0 := (x0, k, ps0); sk1 := (x1, k, ps1);

Fig. 2. Protocol Setup with n := 2

signature scheme using its private key skeyi, denoted Sigskey
i
(), and is verified by every

recipient. For simplicity we omit the indication of the verification procedure.
In the beginning of the protocol both participants 0 and 1 choose own temporary key pairs
(x0, y0) and (x1, y1), respectively, exchange the temporary public keys in an authentic
manner and compute the tracing trapdoor k as a secret shared key according to the authen-
ticated Diffie-Hellman key agreement. Every member blinds the tracing trapdoor to bk and
computes the pseudonym tokens ỹ0 and ỹ1. In order to allow third parties to verify signa-
tures, the sets ID and PS have to be made public in an authentic manner such that no third
party can relate any psi ∈ PS to idi ∈ ID for the same i. For this purpose the order of
pseudonyms in PS must be randomized, denoted PS

$
:= {ps0, ps1}. A simple possibility

to provide authenticity of ID and PS is that one member, w.l.o.g. member 0, publishes the
computed sets signed with skey0 and member 1 verifies the correctness of the published sets
and complains upon any inconsistency. If no complains occur then ID and PS are authentic.

Remark 2. To simplify the security proof we assume that published sets ID and PS remain
correct during the whole lifetime of the scheme.

Algorithms Sign, Verify, Trace: Algorithms Sign, Verify, and Trace in Figure 3 allow mem-
bers to generate and verify signatures and trace signer’s identities according to Definition
1. The signer i uses its secret signing key ski to generate a signature on a message m. It
hashes the message m with a random string r to obtain h, and computes z ← hxi , where xi

is its temporary private key. In order to bind the signature to own pseudonym psi = (bk, ỹi)
the signer computes a non-interactive zero-knowledge prove π of logh(z) = logbk(ỹi) us-
ing the proving algorithm P. The idea behind this is that π can only be constructed by the
signer who is in possession of the temporary private key xi = logh(z) = logbk(ỹi). This
is important for the traceability (unforgeability) property of the scheme. The signature of
member i consists of r, z, psi and π. Note that instead of including psi in the signature it
is sufficient to include only the index of psi in PS. The verification is done by recomputing
the hash value h, and by the verification of the proof π. The verification algorithm returns
the pseudonym ps of the signer if it accepts the signature or ⊥ if the signature is rejected.
In order to trace the signature to the identity of its signer the knowledge of the tracing trap-
door k is required. Since k is part of every secret signing key ski, every member i is able
to perform the tracing algorithm. After the signature is verified the identity of its signer is
computed as y ← ỹ1/k, where 1/k is the inverse value of the tracing trapdoor and ỹ is
the pseudonym token of the signer obtained from the signature. This is possible due to the
construction of the latter as ỹ = yk.

Sign(ski, m): Verify(σ, m, PS):

Parse ski as (xi, k, psi); Parse psi as (bk, ỹi); Parse σ as (r, z, ps, π); Parse ps as (bk, ỹ);
r

$← Zp; h
$← H (m, r); z ← hxi ; If ps 6∈ PS then return ⊥ EndIf;

π
$← P(R, h, bk, z, ỹi, xi); h

$← H (m, r);
σ := (r, z, psi, π); return σ; If V(R, h, bk, z, ỹ, π) = 1 then return ps

else return ⊥ EndIf;

Trace(σ, m, sk, PS, ID):

If Verify(σ, m, PS) = ⊥ then return ⊥ EndIf;
Parse σ as (r, z, ps, π); Parse ps as (bk, ỹ); Parse sk as (x, k, ps′); y ← ỹ1/k;
If y ∈ ID then return y else return ⊥ EndIf;

Fig. 3. Algorithms Sign, Verify, Trace

4.4 Security Analysis

Let (P, V) be an adaptive1 NIZK proof system for the equality of two discrete logarithms in
the random oracle model, and let 2−LDGS = (Setup, Sign, Verify, Trace) be a two-party
linkable democratic group signature scheme from our construction in Section 4.3.

Theorem 2. The two-party linkable democratic group signature scheme 2−LDGS is cor-
rect.

Proof. According to Definition 2 we have to show that

Verify(σ,m, PS) = psi ∧ Trace(σ,m, skj , PS, ID) = idi

for all l, n ∈ N, (ID, PS, SK) ∈ [Setup(l, n)], ski, skj ∈ SK, idi ∈ ID, psi ∈ PS,
m ∈ {0, 1}∗, and σ

$← Sign(ski,m). The proof of the correctness is obvious from the
constructions given in figures 2 and 3. The signature can be parsed as σ = (r, z, psi, π).
After the verification of the pseudonym (i.e., psi ∈ PS) and of the proof π, the pseudonym
psi is returned by the verification algorithm. The tracing algorithm checks first whether
the signature σ is verifiable. This step ensures also the validity of the pseudonym psi. The
computation of the identity yi ← ỹ

1/k
i from the pseudonym token ỹi is valid according

to the construction ỹi ← yk
i . The identity idi is returned by the tracing algorithm after its

verification (i.e., idi ∈ ID). Thus, 2−LDGS is correct.

In the following we prove anonymity and traceability of our linkable democratic group
signature scheme in the random oracle model.

Theorem 3. The two-party linkable democratic group signature scheme 2−LDGS is anony-
mous in the random oracle model assuming that (P, V) is an adaptive NIZK proof sys-
tem for the equality of two discrete logarithms and that the SDDH assumption holds in
G =<g, p, q> .

Proof (Sketch). The complete proof is given in Appendix C.1. To prove the anonymity of
2−LDGS in the random oracle model we suppose that H is a random oracle and show
that for any polynomial time adversary A against the anonymity property it is possible to
construct a polynomial time distinguisher D against the zero-knowledge property of the
NIZK proof system (P, V) (i.e., D distinguishes between simulated and real proofs), and
adversary As that is able to break the SDDH assumption, such that for all l ∈ N

Advanon
A (l, 2) < 2Advzk

D(l) + 2Advsddh
As

(l) +
2

poly(l)
Obviously, Advanon

A (l, 2) is negligible in terms of the negligibility of a two-argument func-
tion. Hence, 2−LDGS is anonymous.

1 For the security analysis we require the adaptivity of (P, V).

Theorem 4. The two-party linkable democratic group signature scheme 2−LDGS is trace-
able in the random oracle model assuming that (P, V) is an adaptive NIZK proof system for
the equality of two discrete logarithms and that the Computational Diffie-Hellman (CDH)
assumption holds in G =<g, p, q>.

Proof (Sketch). The complete proof is given in Appendix C.2. To prove the traceability of
2−LDGS in the random oracle model we suppose that H is a random oracle and show
that for any polynomial time adversary A against the traceability property it is possible to
construct a polynomial time adversary Ac that is able to break the CDH [6] assumption in
the random oracle model, such that for all l ∈ N

Advtrace
A (l, 2) < 2Advcdh

Ac
(l) +

3
poly(l)

Obviously, Advtrace
A (l, 2) is negligible in terms of the negligibility of a two-argument

function. Hence, 2−LDGS is traceable.

5 Extension to a Multi-Party Linkable Democratic Group Signature
Obviously, the tracing process in 2−LDGS is trivial, because one member upon receiving a
signature which it has not generated immediately knows that another member is the signer,
i.e., the execution of the tracing algorithm is not required. However, tracing becomes more
interesting in a multi-party case. Our 2−LDGS scheme can be immediately extended to a
multi-party case using the idea proposed for democratic group signatures in [20]. The clue
is to replace an authenticated Diffie-Hellman protocol in the computation of the tracing
trapdoor by an authenticated Diffie-Hellman based group key agreement protocol. Amongst
so-called contributory group key agreement (CGKA) protocols there exists protocols like
[14] and [17] where each member i contributes its temporary public key yi = gxi for the
interactive computation of the secret shared key k (common tracing trapdoor). To keep the
extended n−LDGS scheme secure the applied CGKA protocol should satisfy the security
requirements stated in [14]. For some practical details and comparison of known CGKA
protocols we refer to [1]. Note that the algorithms Sign, Verify and Trace of 2−LDGS
remain unchanged in 2−LDGS because xi, and k are part of the secret signing key ski,
and ỹi can still be computed as yk

i .

6 Conclusion

In this paper we have proposed a model for linkable democratic group signatures that can be
applied in communication scenarios for groups where a centralized control by a trusted au-
thority is undesirable and the anonymity of the signer is required only against non-members
while other group members have rights to trace and identify the signer. By the assignment
of a unique pseudonym to every group member any non-member verifier is able to com-
municate with the anonymous signer from the group.

References

1. Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the performance of group key agreement
protocols. ACM Transactions on Information and System Security, 7(3):457–488, 2004.

2. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In Advances
in Cryptology (EUROCRYPT 2003),Lecture Notes in Computer Science, volume 2656, pages
614–629. Springer-Verlag, 2003.

3. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In Proceedings of the 1st ACM conference on Computer and communications security,
pages 62–73. ACM Press, 1993.

4. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups.
In CT-RSA, Lecture Notes in Computer Science, volume 2656, pages 136–153. Springer-Verlag,
2005.

5. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and constructions
without random oracles. In Theory of Cryptography Conference 2006 (to appear), Lecture Notes
in Computer Science. Springer-Verlag, 2006.

6. D. Boneh. The Decision Diffie-Hellman problem. In ANTS-III: Proceedings of the Third Inter-
national Symposium on Algorithmic Number Theory, pages 48–63. Springer-Verlag, 1998.

7. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology—
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 41–55. Springer-
Verlag, 2004.

8. J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical aspects. In
SCN, Lecture Notes in Computer Science, volume 3352, pages 120–133. Springer-Verlag, 2004.

9. J. Camenisch and M. Michels. A group signature scheme with improved efficiency. In Pro-
ceedings of the International Conference on the Theory and Applications of Cryptology and
Information Security, pages 160–174. Springer-Verlag, 1998.

10. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In Proceedings
of the 17th Annual International Cryptology Conference on Advances in Cryptology, Lecture
Notes in Computer Science, volume 1294, pages 410–424. Springer-Verlag, 1997.

11. D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology (EUROCRYPT
1991),Lecture Notes in Computer Science, volume 547, pages 257–265. Springer-Verlag, 1991.

12. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs under
general assumptions. SIAM Journal on Computing, 29(1):1–28, September 1999.

13. E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-Hellman problem. In Ad-
vances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 401–415. Springer-Verlag, 2003.

14. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In Advances in
Cryptology (CRYPTO 2003),Lecture Notes in Computer Science, volume 2729 of Lecture Notes
in Computer Science, pages 110–125. Springer-Verlag, 2003.

15. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Advances in Cryptology (EURO-
CRYPT 2004), volume 3027 of Lecture Notes in Computer Science, pages 571–589. Springer-
Verlag, 2004.

16. A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Advances in Cryptol-
ogy - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 198–214.
Springer-Verlag, 2005.

17. Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key agreement. ACM Transactions on
Information and System Security, 7(1):60–96, 2004.

18. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group signature for
ad hoc groups (extended abstract). In Information Security and Privacy: 9th Australasian Con-
ference, ACISP 2004., volume 3108 of Lecture Notes in Computer Science, pages 325–335.
Springer-Verlag, 2004.

19. A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In Proceedings
of the 6th Annual International Workshop on Selected Areas in Cryptography, pages 184–199.
Springer-Verlag, 2000.

20. M. Manulis. Democratic Group Signatures (On an Example of Joint Ventures - Fast Abstract). In
Fast Abstracts Proceedings of ACM Symposium on Information, Computer and Communications
Security (ASIACCS’06). ACM Press, 2006. Full version at: http://eprint.iacr.org/2005/446.

21. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT ’01: Proceedings of
the 7th International Conference on the Theory and Application of Cryptology and Information
Security, volume 2248 of Lecture Notes in Computer Science, pages 552–565. Springer-Verlag,
2001.

22. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, page 543. IEEE Computer Society, 1999.

A Adaptive Non-Interactive Zero-Knowledge Proof Systems in the
Random Oracle Model

For the security proof of our scheme we use an adaptive non-interactive zero-knowledge
(NIZK) proof system of membership in NP languages as part of sign and verify algo-
rithms. In the following we give a short description of such proof systems in the random
oracle model. Our description is similar to the description of adaptive NIZK proof systems
in the common reference string model as presented in [12] and [22].
We start with the description of the binaryNP relation ρ : {0, 1}∗×{0, 1}∗. It is required
that the membership of (x,w) ∈ ρ is decidable in polynomial time and that there exists a
polynomial poly, such that |w| ≤ poly(|x|). Let value l ← |x| be the security parameter
for the hardness of ρ. The value x is called a theorem, and w its witness. For any such NP
relation ρ there exists an associated NP language

Lρ = {x|∃w : (x, w) ∈ ρ}.

A non-interactive (NI) proof system for NP languages consists of two polynomial time
algorithms P and V, where proving algorithm P is randomized and verifying algorithm V
deterministic. Both algorithms have access to the random oracle R : {0, 1}∗ → {0, 1}∞
from the family of random oracles, denoted 2∞. On input a random oracle R, a theorem x,
and its witness w, such that (x, w) ∈ ρ, algorithm P outputs a non-interactive proof π of the
membership of x ∈ Lρ with respect to R. The input to the algorithm V is a random oracle
R, a theorem x and a proof π. V verifies whether π is a correct proof for the membership of
x ∈ Lρ and outputs either 1 or 0 (1 if V accepts the proof). NI proof systems must satisfy
the requirements on completeness (if x ∈ Lρ then proof π computed by P must be accepted
by V) and soundness (if x 6∈ Lρ then for any proving algorithm P∗ the probability that V
accepts its proof π is negligible).
Non-interactive zero-knowledge (NIZK) proof systems have additionally a zero-knowledge
requirement, which involves the existence of the probabilistic polynomial time algorithm
S, called a simulator. The input to the simulator S is the theorem x (equivalent to the input
to P and V), however, without its associated witness w. The output of S consists of the
simulation of the random oracle2 R′ and the simulated non-interactive proof π′, such that
algorithm V accepts π′ if x ∈ Lρ. Another part of the requirement is that the simulated ran-
dom oracle and simulated non-interactive proofs must be computationally indistinguishable
from the real random oracle and the real proofs computed by P.
Adaptive NIZK proof systems strengthen the notion of NIZK proof systems in two ways.
The soundness requirement is changed so that any proving algorithm P∗ is allowed to
choose a theorem x 6∈ Lρ after having access to the random oracle R and that V still ac-
cepts its proofs only with negligible probability. For the zero-knowledge requirement the
simulator S has to output the simulation of the random oracle before it is given a theorem x,
for which it has then to simulate the non-interactive proof π′. For this purpose we assume
that the simulator operates in two stages, generate and prove, as shown in Definition 6. In
the stage generate S outputs R′. In the stage prove the simulator is given the theorem x, and
has to output the simulated proof.

Definition 6 (An Adaptive NIZK Proof System). An adaptive non-interactive zero-know-
ledge proof system for a NP language Lρ is given by two polynomial time algorithms
(P, V) if there exists a polynomial poly such that the following conditions are satisfied:

2 Since random oracle is an infinite object the simulator cannot output it directly. Bellare et. al.
provide in [3] the construction of the simulated random oracle using a special random oracle com-
pletion operation that takes as input a finite sequence of input/output pairs of strings precomputed
by S and fills the rest at random. The oracle R′ constructed in this way is a random subject to
the constraint that on inputs that are parts of the precomputed pairs it returns the corresponding
outputs, but on any other input its output is fully random.

1. Completeness: ∀(x, w) ∈ ρ, ∀l ∈ N, |x| ≤ l

Pr[R $← 2∞;π $← P(R, x, w) : V(R, x, π) = 1] = 1

2. Soundness: ∀P∗, ∀l ∈ N, |x| ≤ l

Pr[R $← 2∞; (x, π) $← P∗(R) : V(R, x, π) = 1 ∧ x 6∈ Lρ] <
1

poly(l)

3. Zero-Knowledge: Let S and D be two algorithms. Consider the following experiments
where D may query a black-box oracle Prove() on any (x,w)∈ρ:

Expzk−1

D (l): Expzk−0

D (l):

R $← 2∞; R′ $← S(generate, l);
d

$← DProve(·,·)(R); d
$← DProve(·,·)(R′);

return d; return d;

Prove(x, w): Prove(x, w):
π

$← P(R, x, w); π′
$← S(prove, R′, x);

return π; return π′;

We require that there exists a polynomial time simulator S such that for any polynomial
time distinguisher D the following is negligible in l:

Advzk
D(l) = Pr[Expzk−1

D (l) = 1]− Pr[Expzk−0

D (l) = 1] (2)

Advzk
D(l) denotes the advantage of D in distinguishing the real experiment Expzk−1

D (l)
from the simulated experiment Expzk−0

D (l). (Note that in Expzk−1

D (l) oracle Prove()
contains the proving algorithm P, whereas in Expzk−0

D (l) it contains the simulator S.)

This definition of the advantage function is intuitively equivalent to the requirement of in-
distinguishability between random oracles and their simulation, and between real proofs
and simulated proofs. The output bit d of the distinguisher D is a guess of the environ-
ment (experiment) in which it is running, either simulated (d = 0) or real (d = 1). The
experiments in the zero-knowledge part of the definition represent the adaptive indistin-
guishability test from [12].

According to [12] and [22] an adaptive NIZK proof system exists for any NP language
Lρ under the assumption that one-way trapdoor permutations exist for the associated NP
relation ρ.

The NP relation ρ which is used in our construction can be formally described as ρ :
G4 × Zq with

(x,w) ∈ ρ⇐⇒ x := (g0, g1, y0, y1), {gi, yi} ∈ G, i ∈ {0, 1}∧w := logg0
(y0) = logg1

(y1),

and the associated NP language is Lρ := {x|∃w : (x, w) ∈ ρ}.

Obviously, ρ specifies the equality of two discrete logarithms and the one-way trapdoor
permutation associated with ρ is given by the discrete logarithm function log. Hence, there
exists an adaptive NIZK proof system (P, V) of the membership in Lρ.

B SDDH assumption

B.1 Proof of Theorem 1 (SDDH ⇔ DDH)

The proof of equivalence of both assumptions consists of two reductions, SDDH ≤ DDH
and DDH ≤ SDDH. Let Expddh−b

A (l) denote the experiment where a polynomial time
distinguisher A tries to distinguish between two distributions D0 = (g, gx, gy, gr) and
D1 = (g, gx, gy, gxy) with x, y, r ∈ Zq, i.e., A tries to break the DDH assumption [6]
by guessing which distribution Db it has received. By Advddh

A (l) = Pr[Expddh−1

A (l) =
1] − Pr[Expddh−0

A (l) = 1] we denote the success probability of A. The hardness of the

DDH assumption requires that Advddh
A (l) is negligible.

The reduction SDDH≤DDH is trivial: As receives D′
b = (g, gx0 , . . .,gxn−1 ,gy ,gs0 ,. . .,gsn−1)

where for all j ∈ [0, n − 1] sj is either a random value from Zq (case b = 0) or a product
xjy (case b = 1); As picks i

$← {0, . . . , n − 1}, and passes the tuple Db = (g,gxi ,gy ,gsi)
over to A in the experiment Expddh−b

A (l). The output of A is also the output of As.

In the following we show that for any As being able to break the SDDH assumption, one
can construct a polynomial time distinguisher A against the DDH assumption (Figure 4),
such that ∀l ∈ N : Advddh

A (l) = Advsddh
As

(l). A uses As as a black-box. The input to A is

A(g, gx, gy, gs):

n
$← N; For i = 1 to n− 1 do ui

$← Zq EndFor;
D′

b := (g, (gx)u0 , (gx)u1 , . . . , (gx)un−1 , gy, (gs)u0 , (gs)u1 , . . . , (gs)un−1);
d

$← As(D
′
b);

return d;

Fig. 4. Construction of the distinguisher A (DDH ≤ SDDH)

a distribution Db from experiment Expddh−b

A (l). In case b = 0 value s is a random value
from Zq, whereas in case b = 1 it equals to the product xy. A extends the distribution Db to
a distribution D′

b by picking random values ui
$← Zq for all i ∈ [0, n−1] and using them as

exponents for gx and gs, i.e., computing the values gxui and gsui , such that sui is either a
random value from Zq or the product xyui depending on the initial value for b. The SDDH
distribution D′

b is then passed over to As that outputs bit d, which is also the output of A.
In case that s is a random value from Zq the distribution D′

b is indistinguishable from the
distribution D′

0 in Expsddh−b

As
(l) in Definition 5 because the values gxui and gsui are indis-

tinguishable for any i ∈ [0, n−1]. In case that s is a product xy the distribution D′
b is indis-

tinguishable from the distribution D′
1 since the same dependencies between gxui and gsui

are preserved. It is obvious, that A guesses correctly the distribution Db it has been given,
exactly when As guesses correctly the distribution D′

b it has received from A, i.e., if As

wins in the experiment Expsddh−b

As
(l), no matter what b is. In the following we compute the

advantage of A, i.e., Advddh
A (l) = Pr[Expddh−1

A (l) = 1]−Pr[Expddh−0

A (l) = 1], where
Pr[Expddh−1

A (l) = 1] = Pr[As(D′
1) = 1] and Pr[Expddh−0

A (l) = 1] = Pr[As(D′
0) = 1].

Considering that Pr[As(D′
1) = 1] = Pr[Expsddh−1

As
(l) = 1] and Pr[As(D′

0) = 1] =

Pr[Expsddh−0

As
(l) = 1] with Equation (1) we obtain:

Advddh
A (l) = Pr[Expsddh−1

As
(l) = 1]− Pr[Expsddh−0

As
(l) = 1] = Advsddh

As
(l)

C Security Proof of 2−LDGS

C.1 Proof of Theorem 3 (Anonymity)

By the assumption (P, V) is an adaptive NIZK proof system for the equality of two discrete
logarithms (Definition 6), and sets ID and PS remain correct after being published in the
Setup protocol (Remark 2), such that ∀yi ∈ ID, psi ∈ PS : psi = (bk , ỹi)∧ bk = gk ∧ ỹi =
yk

i .
We show that for any polynomial time adversary A being able to attack the anonymity of
2−LDGS it is possible to construct a polynomial time distinguisher D that distinguishes
between simulated and real proofs, and an adversary As that is able to break the SDDH
assumption (Definition 5) in the random oracle model, such that for all l ∈ N

Advanon
A (l, 2) < 2Advzk

D(l) + 2Advsddh
As

(l) +
2

poly(l)
(3)

By the assumption on the security of (P, V) and SDDH, all advantage functions on the right
side are negligible, and so is the function on the left. Thus, Advanon

A (l, 2) is negligible in
terms of negligibility of a two-argument function, and it follows that 2−LDGS is anony-
mous. Besides the random oracle R A can query oracle H (for the hash function H from
algorithms Sign and Verify) on tuples of the form (r, m).

THE DISTINGUISHER FOR ZERO-KNOWLEDGE. The distinguisher D (Figure 5) starts by
initialising the scheme with Setup protocol that it performs for both members 0 and 1. D
chooses the description of G :=< g, p, q >. The random oracle R is supplied to D by the
environment in which it is run, so that it can be either simulated or real. All new queries
of A to the random oracle H are answered by D at random. After D has initialised the
scheme it runs A against the anonymity of 2−LDGS. D passes the tuple (G, R, PS, ID)
over to A. In the choose stage A outputs a message m. D computes the signature σb on
m using a secret signing key skb for a random b

$← {0, 1} as follows. First, D computes
values r, h and z according to Sign algorithm, and then queries black-box Prove on the
tuple ((h, bk, z, ỹb), xb), and obtains a proof π for logh(z) = logbk(ỹb), which is either
simulated or real depending on the environment in which D is running. D includes π in
σb. In the guess stage A may query oracle Sign∗ on any message m∗ of its choice. The
oracle answers with the signature σb∗ on m∗ computed as σb above. At the end of the
stage A outputs bit d. The output of D is 1 if d = b and 0 otherwise. In the following we
compute the advantage of D in breaking the zero-knowledge property of (P,V,S) according
to Equation (2).

First, we consider experiment Expzk−1

D (l). In this experiment the random oracle R is real
and π is computed by the real proving algorithm P. Thus, σb perfectly emulates the signa-
ture returned by the signing algorithm Sign. D outputs 1 whenever A is able to distinguish
between these signatures. We write A(guess) for the outcome of the guess stage of A,
when σb is a perfectly emulated signature. In the following we compute the probability of
D distinguishing its environment for this case, i.e. ouputting 1:

Pr[Expzk−1

D (l) = 1] = Pr[A(guess) = 1|b = 1]Pr[b = 1] + Pr[A(guess) = 0|b = 0]Pr[b = 0]

=
1
2
Pr[Expanon−1

A (l, 2) = 1] +
1
2
Pr[Expanon−0

A (l, 2) = 0]

=
1
2
Pr[Expanon−1

A (l, 2) = 1] +
1
2
(1− Pr[Expanon−0

A (l, 2) = 1])

=
1
2

+
1
2
(Pr[Expanon−1

A (l, 2) = 1]− Pr[Expanon−0

A (l, 2) = 1])

=
1
2

+
1
2
Advanon

A (l, 2)

(4)

Secondly, we consider experiment Expzk−0

D (l). In this experiment D is running in the sim-
ulated environment, i.e., the random oracle R and proof π are produced by the simulator
S. Thus, σ is a signature-like looking tuple. We classify these tuples into two distributions
Eb, b = {0, 1}, depending on the pseudonym psb that is part of σb. D outputs 1 whenever
A is able to distinguish between these signature-like looking tuples. We write A(E0) and
A(E1) for the outcome of the guess stage of A, when σb is sampled from distribution E0

and E1, respectively.

Pr[Expzk−0

D (l) = 1] = Pr[A(E1) = 1]Pr[b = 1] + Pr[A(E0) = 0]Pr[b = 0]

=
1
2
(Pr[A(E1) = 1] + Pr[A(E0) = 0])

(5)

In order to estimate this probability precisely we relate it to the probability of breaking the
SDDH assumption by the adversary As that uses A, assuming that A is able to distinguish
between signatures sampled from Eb. The construction of such As is given in Figure 5 and
described in the following.

ADVERSARY AGAINST SDDH ASSUMPTION. The idea is to construct As that challenges
A on signature-like looking tuples from distributions Eb, b = {0, 1}. According to experi-
ment Expsddh−b

As
(l) from Definition 5 As is given a distribution D′ = (g,gx0 ,gx1 ,gy ,gs0 ,gs1),

such that si, i ∈ {0, 1} is either a random value from Zq or equals to the product xiy. As

knows the description of G :=< g, p, q > from the environment that has produced D’. As

obtains random oracle R from the simulator’s S generate stage, defines yi ← gxi , bk ← gy

(unknown y is considered to be the tracing trapdoor k) and ỹi ← gsi , and passes the tuple
(G, R, PS, ID) over to A. As simulates H by answering any new query of A at random. In
order to compute the signature-like looking tuple from distribution Eb adversary As selects

r, u
$← Zq, computes h ← bku and z ← ỹu

b , obtains from S the simulated proof π for
logh(z) = logbk(ỹb), sets H(r, m) to h and returns σb := (r, z, psb, π) to A. In the guess
stage A may query oracle Sign∗ on any message m∗ of its choice. The oracle answers with
the signature σb∗ on m∗ computed as σb above. At the end of the stage A outputs bit d. The
output of As is 1 if d = b and 0 otherwise. In the following we compute the advantage of
As in breaking the SDDH assumption according to Equation (1).

First, we consider experiment Expsddh−1

As
(l). In this experiment As receives distribution

D′ = (g,gx0 , gx1 ,gy ,gx0y ,gx1y), hence ỹi = yk
i holds. The signature σb that As passes

over to A contains real value for psb but simulated proof π, and is therefore sampled from
distribution Eb. As outputs 1 whenever A is able to distinguish between these signatures-
like looking tuples. In the following we compute the probability of As breaking the SDDH
assumption in this case, i.e., Expsddh−1

As
(l) outputs 1:

Pr[Expsddh−1

As
(l) = 1] = Pr[A(E1) = 1]Pr[b = 1] + Pr[A(E0) = 0]Pr[b = 0]

=
1
2
(Pr[A(E1) = 1] + Pr[A(E0) = 0])

With Equation (5) we obtain:

Pr[Expsddh−1

As
(l) = 1] = Pr[Expzk−0

D (l) = 1] (6)

Secondly, we consider the experiment Expsddh−0

As
(l). In this experiment As receives dis-

tribution D′ = (g,gx0 ,gx1 ,gy ,gr0 ,gr1), where ri are random values from Zq. Hence, pseu-
donym tokens ỹi are random values and ỹi 6= yk

i . The signature σb that As passes over to A
contains the random value for psb and the simulated proof π. For this kind of signature-like

looking tuples we specify further two distributions E′
b, b = {0, 1}. As outputs 1 whenever

A is able to distinguish between signature-like looking tuples sampled from E′
b. We write

A(E′
0) and A(E′

1) for the outcome of the guess stage of A, when σ is sampled from dis-
tribution E′

0 and E′
1, respectively. Since signatures of E′

b consist of all random values and
simulated proofs A can distinguish them only with a probability that is negligibly greater
than that of a random guess. Hence,

Pr[Expsddh−0

As
(l) = 1] = Pr[A(E′

1) = 1]Pr[b = 1] + Pr[A(E′
0) = 0]Pr[b = 0]

=
1
2
(Pr[A(E′

1) = 1] + Pr[A(E′
0) = 0])

<
1
2

(
1
2

+
1

poly(l)
+

1
2

+
1

poly(l)

)
=

1
2

+
1

poly(l)
(7)

Distinguisher DProve(·,·)(R, l): Adversary As(D′):

Choose G :=< g, p, q >; (ID, PS, SK)
$← Setup(l, 2); Parse D′ as (g, gx0 , gx1 , gy, gs0 , gs1); Get G :=< g, p, q >;

(St, m)
$← AH(·,·)(choose, G, R, PS, ID); R $← S(generate, l); bk ← gy;

b
$← {0, 1}; ∀i ∈ {0, 1} : yi ← gxi , ỹi ← gsi , psi := (bk, ỹi);

r
$← Zp; h

$← H(r, m); z ← hxb ; ID := {yi}; PS
$

:= {psi};
π

$← Prove((h, bk, z, ỹb), xb); [black-box query] (St, m)
$← AH(·,·)(choose, G, R, PS, ID);

σb := (r, z, psb, π); d
$← ASign∗(·), H(·,·)(guess, St, σb); b

$← {0, 1};
If d = b then return 1 else return 0 EndIf; r

$← Zp, until H(r, m) has not been previously queried;
u

$← Zq; h← bku; z ← ỹu
b ; define H(r, m) := h;

π
$← S(prove, (h, bk, z, ỹb)); [note, logh(z) = logbk(ỹb)]

σb := (r, z, psb, π); d
$← ASign∗(·), H(·,·)(guess, St, σb);

If d = b then return 1 else return 0 EndIf;

Fig. 5. Distinguisher D and adversary As

PUTTING IT ALL TOGETHER. In the following we show how to relate the probabilities
for the outcome of experiments described above with the advantage of A in breaking the
anonymity of 2−LDGS. We start with the advantage of distinguisher D according to Equa-
tion (2):

Advzk
D(l) = Pr[Expzk−1

D (l) = 1]− Pr[Expzk−0

D (l) = 1]

With Equations (4) and (6) we get:

Advzk
D(l) =

1
2

+
1
2
Advanon

A (l, 2)− Pr[Expsddh−1

As
(l) = 1]

Now, we add to both sides of the above equation the left side of Equation (7) and transform
it:

Advzk
D(l) + Pr[Expsddh−0

As
(l) = 1]

=
1
2

+
1
2
Advanon

A (l, 2)− (Pr[Expsddh−1

As
(l) = 1]− Pr[Expsddh−0

As
(l) = 1])

With Equation (1) and additional transformations we get:

Advanon
A (l, 2) = 2Advzk

D(l) + 2Advsddh
As

(l) + 2Pr[Expsddh−0

As
(l) = 1]− 1

We obtain the desired inequality using (7):

Advanon
A (l, 2) < 2Advzk

Ds
(l) + 2Advsddh

As
(l) + 2

(
1
2

+
1

poly(l)

)
− 1

= 2Advzk
D(l) + 2Advsddh

As
(l) +

2
poly(l)

C.2 Proof of Theorem 4 (Traceability)

By the assumption (P, V) is an adaptive NIZK proof system for the equality of two discrete
logarithms, and sets ID and PS remain correct after being published in the Setup protocol,
such that ∀yi ∈ ID, psi ∈ PS : psi = (bk , ỹi) ∧ bk = gk ∧ ỹi = yk

i .
We show that for any polynomial time adversary A against the traceability of 2−LDGS
it is possible to construct a polynomial time adversary Ac that is able to break the CDH
assumption ([6]) in the random oracle model, such that for all l ∈ N

Advtrace
A (l, 2) < 2Advcdh

Ac
(l) +

3
poly(l)

. (8)

All functions on the right side are negligible, and so is the function on the left. Thus,
Advtrace

A (l, 2) is negligible in terms of negligibility of a two-argument function, and it fol-
lows that 2−LDGS is traceable.

Let A be a traceability adversary against 2−LDGS and let IDc be a set of identities of mem-
bers corrupted by A during its attack. A wins the traceability experiment, i.e., Exptrace

A (l) =
1, if it returns (σ,m) according to

Case 0: Verify(σ,m, PS) = ps and Trace(σ,m, PS, sk) = ⊥ or
Case 1: Verify(σ,m, PS) = ps and Trace(σ,m, PS, sk) = id and id 6∈ IDc and

Sign(·, ·) was not queried on (id,m)

With respect to the construction of 2−LDGS A wins in the traceability experiment if it can
produce forgeries of the following types.

TYPE 0. The forgery is given by (σ = (r, z, ps, π),m) where ps = (bk , ỹ) such that
case 0 is occured, i.e., Verify(σ, m, PS) = ps and Trace(σ,m, PS, sk) = ⊥. According
to algorithm Trace in Figure 3 case 0 can only occur if y = ỹ1/k and y 6∈ ID. By the
assumption that sets ID and PS remain correct after being published in the Setup protocol
the probability that such y exists is negligible, thus for any security parameter l we can
bound the probability that A produces a forgery of type 0 (event is denoted by F0) as
follows:

Pr[F0] = Pr[∃y 6∈ ID∃ps = (bk , ỹ) ∈ PS : ỹ = yk] <
1

poly(l)
(9)

In case 1 we distinguish between the following two types of a forgery (σ = (r, z, ps, π),m):

TYPE 1. The forgery is given by (σ = (r, z, ps, π),m) according to case 1 where ps =
(bk , ỹ) with V(R, h, bk, z, ỹ, π) = 1 and logh(z) 6= logbk(ỹ). According to the soundness
requirement of the adaptive NIZK proof system (P, V) we can bound the probability that

A produces a forgery of type 1 (event is denoted by F1) for any security parameter l as
follows:

Pr[F1] = Pr[A outputs (σ,m), σ = (r, z, ps, π), ps = (bk , ỹ), h← H (m, r) :

V(R, h, bk, z, ỹ, π) = 1 and logh(z) 6= logbk(ỹ)] <
1

poly(l)
(10)

TYPE 2. The forgery is given by (σ = (r, z, ps, π),m) according to case 1 where ps =
(bk , ỹ) with V(R, h, bk, z, ỹ, π) = 1 and logh(z) = logbk(ỹ).
Let Expcdh

Ac
(l) denote the experiment where a polynomial time adversary Ac given a tuple

(ga, gb) with a, b ∈ Zq tries to compute gab, and lets say succeeds if Expcdh
Ac

(l) returns 1.

Obviously, A tries to break the CDH assumption [6]. By Advcdh
Ac

(l) = Pr[Expcdh
Ac

(l) = 1]
we denote the success probability of A. The hardness of the CDH assumption requires that
Advcdh

Ac
(l) is negligible.

In the following we show that for any polynomial time adversary A being able to construct
forgeries of type 2 (event is denoted by F2) there exists a polynomial time adversary Ac

against the CDH assumption in the random oracle model, such that for any l ∈ N

Pr[F2] < Advcdh
Ac

(l) +
1

poly(l)
(11)

ADVERSARY AGAINST THE CDH ASSUMPTION. Ac in Figure 6 uses A as black-box.
We show that if A outputs a forgery (σ,m) of type 2 according to experiment Exptrace

A (l)
then Ac is able to break the CDH assumption. Ac is given a pair (ga, gb) and obtains the
description of G :=< g, p, q > from the environment. It obtains a random oracle R from
the simulator, chooses bit w, and sets the temporary public key yw := ga (note Ac does not
know xw = a). With this choice Ac tries to guess the identity idw that will be returned by
algorithm Trace on input the forgery (σ,m) produced by A at the end of the interaction.
Then Ac generates temporary private and public keys of the second member, i.e., x1−w

and y1−w, computes the tracing trapdoor k and its blinded version bk, and corresponding
sets ID, PS and SK. Ac passes the tuple (G, R, PS, ID) over to A. In its corrupt stage A
is allowed to request secret signing keys ski ∈ SK (note that if skw is requested then Ac

aborts, since it failed to guess the identity of a member whose signature will be forged).
A’s requests of the type (m, r) to the oracle H are handled by Ac as follows. On every new
query Ac picks random d

$← Zq, computes h ← (gb)d, saves tuple ((m, r), h, d) in the
history list of H, and returns h. A’s requests of the type (idi,m) to the signing oracle Sign
are answered by Ac as follows. If idi = id1−w then Ac computes σ using original signing
algorithm Sign, because the corresponding secret signing key sk1−w was generated by Ac.
If, however, idi = idw then Ac has to create a signature without knowing the secret signing
key skw. For this purpose it selects random r

$← Zp, such that H has not yet been queried on
(m, r), then it selects random t

$← Zq, computes z ← yt
w, h ← gt and sets H(m, r) := h,

then simulates the proof π for logh(z) = logbk(ỹw), and returns σ := (r, z, psw, π). It is
obvious that S can be used to simulate π because logh(z) = logbk(ỹw) is a valid theorem,
i.e, ỹw = yk

w = (ga)k = bka and z = yt
w = (ga)t = ha. At the end of stage forge A returns

a valid forgery (σ = (r, z, ps, π),m). Ac tries to translate it into computing gab as follows:
if Trace(σ,m, PS, sk) = ⊥ then abort, else idi ← Trace(σ,m, PS, sk); if idi 6= idw or A
has not queried H on (m, r) then abort, else compute gab ← z1/d where d stemms from the
corresponding tuple ((m, r), h, d) in the history list of H. The computation of gab is correct
if z = ha where h = H(m, r) = (gb)d, thus logh(z) = logbk(ỹw) should be satisfied.
In the following we compute the advantage of Ac in breaking the CDH assumption. Thus,
we have to compute the success probability of Ac outputting gab. Obviously, Ac suc-
ceeds whenether A outputs a successful forgery (σ = (r, z, psw, π),m) such that idw ←

Adversary Ac(g
a, gb):

Get G :=< g, p, q >; R $← S(generate, l);
w

$← {0, 1};
yw ← ga; x1−w

$← Zq; y1−w ← gx1−w ; ID := {yw, y1−w};
k ← y

x1−w
w ; bk ← gk; ỹw ← yk

w; ỹ1−w ← yk
1−w; psw := (bk, ỹw); ps1−w := (bk, ỹ1−w); PS

$
:= {psw, ps1−w};

skw := (⊥, k, psw); sk1−w := (x1−w, k, ps1−w); SK := {skw, sk1−w};
Run A:

– if in the corrupt stage A requests skw then abort;
– when A makes a Sign-oracle query (id1−w, m) do σ

$← Sign(sk1−w, m); return σ to A;
– when A makes a Sign-oracle query (idw, m) do

r
$← Zp; If H has already been queried on (m, r) then retry EndIf;

t
$← Zq; z ← yt

w; h← gt; define H(m, r) := h; π
$← S(prove, (h, bk, z, ỹw)); return σ := (r, z, psw, π) to A;

– when A makes a H-oracle query (m, r) do
If H has already been queried on (m, r) then return h from the history list to A EndIf;
d

$← Zq; h← (gb)d; define H(m, r) := h; save ((m, r), h, d) in the history list; return h to A;
Until A stops and returns (σ, m);
Parse σ as (r, z, psi, π);
If Trace(σ, m, PS, sk) = ⊥ then abort EndIf;
idi ← Trace(σ, m, PS, sk);
If idi 6= idw then abort EndIf;
If H has not been queried on (m, r) then abort EndIf;
Find tupel ((m, r), h, d) in the history list of H; Return gab ← z1/d;

Fig. 6. Adversary Ac

Trace(σ,m, PS, sk) and logh(z) = logbk(ỹw) (notice this is equivalent to type 2 forgeries,
i.e, event F2), and oracle H has been queried on (m, r) (event is denoted HQ), and Ac has
correctly guessed w. The probability that Ac correctly guesses w is 1/2 and is independent
from other events, thus we obtain:

Advcdh
Ac

(l) = Pr[Expcdh
Ac

(l) = 1] =
1
2
Pr[F2 ∧HQ]

(12)

Observe that Pr[F2 ∧ HQ] = Pr[F2] − Pr[F2 ∧ ¬HQ]. Pr[F2 ∧ ¬HQ] is given by the
probability that A outputs a forgery of type 2 without querying oracle H. Thus, A has to
find z such that z−a = h = H(m, r) (note A is not in possession of a). This probability
is negligible. With Equation (12) we obtain Pr[F2 ∧ ¬HQ] = Pr[F2] − 2Advcdh

Ac
(l) <

1/poly(l). This is equivalent to

Pr[F2] < 2Advcdh
Ac

(l) +
1

poly(l)
(13)

PUTTING IT ALL TOGETHER. Using Equations (9), (10) and (13) we can bound the advan-
tage of A as desired in Equation (8):

Advtrace
A (l, 2) = Pr[A wins experiment Exptrace

A (l)]

= Pr[F0 or F1 or F2]

<
1

poly(l)
+

1
poly(l)

+ 2Advcdh
Ac

(l) +
1

poly(l)

= 2Advcdh
Ac

(l) +
3

poly(l)

