
UPBA: User-Authenticated Property-Based
Attestation

Mark Manulis
Cryptographic Protocols Group

TU Darmstadt & CASED, Germany
Email: mark@manulis.eu

Marion Steiner
Cryptographic Protocols Group

TU Darmstadt & CASED, Germany
Email: marion.steiner@cased.de

Abstract—Remote attestation of computing platforms, using
trusted hardware, guarantees the integrity, and by this the
trustworthiness of a host to remote parties. While classical
binary attestation attests the configuration itself, property-based
attestation (PBA) attests properties and thus offers higher privacy
guarantees to the host and its user. Nonetheless, both techniques
are free from any user authentication mechanisms. Especially in
distributed applications involving user interactions, the remote
party may require assurance for the trustworthiness of the
host and the authenticity of its user. Independence of user
authentication from platform attestation may become an obstacle
due to potential relay attacks. The User-Authenticated Property-
Based Attestation (UPBA), introduced in this work, can assure a
remote party that some computing platform is trustworthy, and
that it is used at that very moment by some particular user.
Our basic protocol is secure and practical. We prove its security
formally, discuss its compatibility with current trusted computing
technology, and illustrate several nice enhancements.

I. INTRODUCTION AND BACKGROUND

In modern computer systems secure interaction amongst
different system components is inherent for ensuring the trust-
worthiness of the computing processes and distributed appli-
cations. The establishment of secure communication channels
over possibly insecure networks can be easily done with
modern technology based on traditional cryptographic authen-
tication and key establishment techniques [7]. However, while
securing the communication is feasible many modern threats in
distributed systems and applications come from the insufficient
protection of the communication end-points (hosts). Problems
arise when two or more potentially distrusting communication
partners, prior to their interaction and possible exchange
of application information, wish to be convinced about the
integrity or, more general, the trustworthiness of each other’s
computing platforms.

These problems can be addressed with the help of trusted
computing technologies [26], [11] and, in particular, their
platform attestation techniques. Such technology, as specified,
e.g., in [28], uses trusted, tamper-proof hardware to mea-
sure and attest the entire configuration of one platform to
its communication partner, who in turn can decide whether
this configuration is admissible for the computing task or
application, and either accept or refuse to communicate.

Available platform attestation techniques, see e.g. [15] for
a recent survey (and also Section I-A), differ in offered
privacy guarantees: for example, binary attestation [28] attests

some specific configuration of the platform (e.g. its operation
system), whereas property-based attestation (PBA) [20], [22]
assumes mappings from concrete configurations to some more
general properties (e.g. availability of a VPN connection)
that can be satisfied by multiple configurations. This latter
attestation type is more privacy-friendly with respect to the
owner of the platform as it hides the actual configuration
of the platform (behind the property), and can, thus, prevent
discrimination of certain configurations.

Nonetheless, even PBA may have its deficiencies, when
it comes to a deployment in practice, due to the following
observation: In modern distributed systems and, especially,
in distributed applications, the attestor (verifier) should be
convinced not only about the trustworthiness of the host, but
also about the trustworthiness of the user, who controls the
host, and, more importantly, that this user is indeed using
that particular host. However, current attestation techniques do
not include user authentication mechanisms, which are usually
treated independently at some higher level subsequent to the
attestation process. While this is satisfying for inter-machine
communications, problems may arise when user interaction
is involved, as the relay attack suggests [27]: A session is
established between a verifier and a trustworthy host after
the successful platform attestation process. This session is
then hijacked and redirected at application level to some non-
trustworthy host, where the user authentication is performed.
From this point, communication and user interaction take place
between the non-trustworthy host and the verifier, therefore
the attested properties do not apply anymore. This attack can
be avoided by binding user authentication to the platform
attestation process and, possibly, enriching the latter with the
establishment of secure session keys for subsequent commu-
nication between the host and its verifier.

In this paper we show, how to achieve such binding with
current technologies by extending the concept of PBA from
[20], [22] towards user-authenticated PBA (UPBA). We ad-
dress the problem from both the practical and formal perspec-
tives: First, we design an UPBA protocol maintaining a high
level of modularity, that implicitly authenticates users as part
of the platform attestation step, and, in addition, establishes a
secure session key between the host and the verifier. We also
discuss the compatibility of the protocol with available trusted
computing technology. Second, we define an appropriate syn-

2011 Ninth Annual International Conference on Privacy, Security and Trust2011 Ninth Annual International Conference on Privacy, Security and Trust

978-1-4577-0584-7/11/$26.00©2011 IEEE

tax for such UPBA protocols, specify their security model, and
give a formal proof of security for our solution. Our UPBA
model and protocol can be seen as modular extensions of
the state-of-the-art PBA solution from [9]. For simplicity, our
UPBA protocol and its security definitions assume a single-
user ownership setting, where a particular device is used and
controlled by at most one user. We discuss the limitations
of this setting and highlight main challenges and obstacles
that arise for UPBA in a multi-user ownership model, where
devices can be shared amongst users.

A. Related Work on Platform Attestation

Binary attestation. The Trusted Platform Module (TPM) [28],
specified by the Trusted Computing Group (TCG), provides
functionality for trusted computing and platform attestation.
This module, which is built into some common available
computing platforms, can measure the software configuration
of a platform on binary level. In particular, a hash value of
the platform’s state is computed by the TPM during the boot
process and stored in its tamper-proof Platform Configuration
Registers (PCR). This hash value represents thus the configu-
ration of the platform. Of special interest for integrity checks
and reports is the functionality called binary attestation, which
allows some remote party (verifier) to obtain an authentic
report about the configuration of the proving platform (prover),
whereby the authenticity is provided by the TPM on the
prover’s side.

Binary attestation, however, is known to have some defi-
ciencies with regard to the privacy of attested platforms: First,
the verifier or any other party observing the attestation process
can link different attestation attempts of the same platform (as
the configuration is signed with a platform specific attesta-
tion identity key), and thus misuse this information, e.g. for
profiling. One solution is given by Privacy CA [28], which
resembles a trusted third party certifying new attestation keys
chosen by the TPM. A relief from requiring a trusted third
party for this process has been given by Brickell et al. [3]
in form of the Direct Anonymous Attestation (DAA) protocol
based on techniques that are similar to group signatures [8],
[2]. DAA has been subsequently improved and extended in
[4], [16], [6]. While our work does not primarily deal with
the unlinkability of platform attestations, the DAA scheme
can be used in our approach for the very same task. The
second deficiency, observed e.g. in [20], [22] is that the verifier
typically learns all information about the prover’s platform
configuration, not only which software is used, but possibly
in which version, since each particular hash code references
to a certain piece of software. This is more information than
one may be willing to reveal, and can, in fact, lead to discrim-
ination of certain platforms, e.g. by imposing different pricing
policies or by simply blocking access. The third shortcoming
is that the attestation protocol bears a risk of relay attacks, by
which a third party acting as man-in-the-middle can forward
messages between the verifier and the measured platform.
This limitation has been informally addressed in [27] with the
establishing of session keys within the attestation protocol.

Property-based attestation (PBA). PBA discovered in [20],
[22] and improved and realized in [14], [9] (see [18] for a
categorization and further challenges) addresses the second
shortcoming of the binary attestation process, as mentioned
above, by hiding particular configurations of attested platforms
behind (certified) properties. The PBA approach assumes that
each configuration (e.g. an operation system) may have several
properties and that some particular property is likely to be
satisfied by multiple configurations. Hence, attesting these
properties, rather than concrete configurations, may suffice
for many practical applications. Earlier PBA schemes such
as [22], [14] required property certifiers, that is additional
trusted parties (akin to Privacy CA) that were in charge of
certifying mappings between admissible configurations and
their properties. Later schemes, e.g. [9], do not have this
limitation, and even allow hosts and verifiers to negotiate
admissible configurations prior to the execution of the pro-
tocol. Nonetheless, existing PBA schemes, including [9], are
loose from any user authentication processes, and are, thus,
susceptible to the mentioned relay attacks.
Other attestation approaches. Sailer et al. [24] extended
TCG binary attestation to allow the verifier to gain assur-
ance about the integrity of Linux applications and system
components at runtime. More fine-grained form of binary
attestation for the portions of a code can be performed using
the BIND approach [25]. Some attestation approaches abstract
the attestation from physical platforms to the higher level of
virtual machines [13], [23] or a more general notion of trusted
virtual domains (TVD) [5], [12]. A comprehensive survey of
attestation techniques, including shortcomings and potential
solutions, can be found in the recent report by Lee-Thorp [15].

B. Organization

In Section II we define the system model and syntax for
UPBA protocols. In Section III we present our UPBA protocol,
analyze its complexity, and show how to realize the protocol
using available technology. In Section IV we present our
UPBA security model and define main security requirements.
Finally, we conclude in Section VI.

II. UPBA SYSTEM MODEL

In this section we describe the system model underlying
UPBA protocols, which also serves as a basis for the UPBA
security model we present in Section IV.
Protocol participants. As depicted on Figure 1, an UPBA
scheme involves two participants: a prover P and a verifier
V . The role of the prover is split into two parts: a host H
and its built-in TPM M. We assume that each M implicitly
identifies its host and that there is at most one host per TPM.
We work in the single-user ownership setting and thus assume
that each H is controlled by at most one user U . This means
that we neither model nor consider U as a separate protocol
participantas would be required in mult-users scenarios, as
discussed in Section V.

Our model considers multiple UPBA sessions. We model
them through multiple instances of participants and distinguish

P = (H,M) V

M

H
(skU , pkU), pkM

cf P

cf P
(skM, pkM)

secure
channel

pkU , pkMUPBA

insecure channel

CF
set in advance

KH or ⊥ KV or ⊥

measured

Fig. 1. UPBA system model

them using unique session ids sid. In particular, two instances
of P and V are treated as participants of the same protocol
session if their session ids match.
Communication model. For a given prover P = (H,M), we
assume that communication between H and M is performed
over a secure channel. Messages generated by M for the
corresponding verifier V and vice versa are delivered through
the hostH. As becoming clear in our security model in Section
IV, the only way for an adversary to directly communicate
with the TPM is by corrupting the host.

Secret keys and trust assumptions. Since our goal is to
bind user authentication to PBA we assume each user U is
in possession of a private/public key pair (skU , pkU). Given
that we work in a simplified single-user ownership setting,
where hosts represent their (unique) users, the secret key skU
is assumed to be stored at H. The public key pkU is assumed
to be known to the corresponding verifier V .

Additionally, UPBA protocols rely on TPMs, which are
assumed to be trusted by all parties. Each TPMM is assumed
to be in possession of a secret (signing) key skM which is
internal to that TPM. In contrast, the corresponding public
(verification) key pkM is assumed to be known to its host H
and the corresponding verifier V .

Properties and configurations. Each prover P has a configu-
ration value denoted cf P , which is an authenticated record of
its host’s configuration. The value cf P is known to both the
host H and the TPM M, and it is computed by M from cor-
rectly measured configuration information, stored securely in
special-purpose registers – the platform configuration registers
(PCRs). As a result, H cannot modify this value without being
detected. This is guaranteed by the technology. It is assumed
that before running the UPBA protocol, P and V have already
agreed on a set of admissible configuration values, denoted
CF = {cf 1, . . . , cf n}, that satisfy some predefined property.
So, we say that a configuration value cf P satisfies a given
property associated with CF , if and only if cf P ∈ CF .

DEFINITION 1 (USER-AUTHENTICATED PBA): A user-
authenticated property-based attestation (UPBA) scheme
(Setup,UPBA) consists of the following algorithms and
protocols:

Setup(1κ): On input a security parameter 1κ this probabilis-
tic algorithm outputs the list of admissible configu-
ration values CF = {cf 1, . . . , cf n} and generates

public/private key pairs (skM, pkM) for each TPM
M and (skU , pkU) for every user U .

UPBA(P,V): This is a probabilistic protocol between
the instances of a prover P = (H,M) and a
verifier V with matching session ids sid. The inputs
of the prover consist of (skU , pkU , pkM, cf P ,CF)
for the host H and (skM, pkM, cf P) for its built-
in TPM M. The input of the verifier contains
(pkM, pkU ,CF). Finishing the execution UPBA out-
puts either the session keys KH to H and KV to V
indicating the execution was successful or ⊥.

DEFINITION 2 (CORRECTNESS OF UPBA): An UPBA
scheme (Setup,UPBA) is correct if for all outputs (skM,
pkM, skU , pkU ,CF)← Setup(1κ) the execution of UPBA(P,
V) for P = (H,M) on the corresponding inputs (skU , pkU ,
pkM, cf P ,CF) to H, (skM, pkM, cf P) to M, and (pkM,
pkU ,CF) to V results in two instances of P and V with
matching session ids such that if cf P ∈ CF then H computes
KH, V computes KV , and KH = KV .

III. OUR UPBA SCHEME

A. Notations and Building Blocks

By G := 〈g〉 we denote a cyclic group of prime order Q
of length κ and generator g. We assume that the classical
Decision Diffie-Hellman (DDH) problem in G is hard and
denote by AdvddhG (1κ) the maximal advantage probability for
distinguishing DDH tuples (g, ga, gb, gab) from random tuples
(g, ga, gb, gc) where a, b, c ∈ Z∗Q, which is assumed to be
negligible.

TPM and Host Signatures. Let Σ := (KGen,Sig,Ver) be
a digital signature scheme, where KGen(1κ) generates a key
pair (sk, pk), Sig(sk,m) outputs a signature σ on a message
m, and Ver(pk, σ,m) outputs 1 if σ is a valid signature on m
and 0 otherwise. We assume that Σ is existentially unforgeable
under chosen message attacks (EUF-CMA) and denote by
Succuf−cma

Σ (1κ) the maximal success probability for forging
signatures, which is assumed to be negligible.

In our UPBA scheme, Σ will be used by both hosts and
their built-in TPMs for signing certain protocol messages. We
do not distinguish between the signature schemes used by
these entities since we only expect these schemes to satisfy the
minimal security requirement of EUF-CMA security. In prac-
tice, however, existing TCG technology defines two options by
which TPMs can sign, the DAA scheme [3], which ensures
unforgeability of TPM signatures and hides the identity of
the TPM, or some ordinary signature scheme (typically RSA
signature) and an attestation identity key for signing, chosen
by the TPM.

Commitment Scheme Our UPBA scheme uses the general
version of Pedersen commitments [19], which we denote COM.
Working in the cyclic group G := 〈g〉 of prime order Q
we denote by h ∈R G an additional generator G, chosen at
random such that logg(h) is unknown. Then, (g, h) constitutes
the public key of the scheme. In order to commit to some
message m ∈ ZQ, the committer sends C := gmhr to

the verifier using some uniformly chosen r ∈R ZQ. By
AdvhideCOM (1κ) we denote the probability for breaking the hiding
property of COM and by SuccbindCOM (1κ) for breaking its binding
property. It is well known that Pedersen commitments provide
perfectly hiding and computationally binding, assuming the
hardness of the Discrete Logarithm problem in G.

In our UPBA protocol, the TPM will commit to the configu-
ration value cf P and output the corresponding commitment C
to the host together with the secret randomness r being used.
Ring Signature. A ring signature scheme RS := (RGen,
RSig,RVer) has been introduced by Rivest et al. [21] as a
privacy-preserving primitive that allows the signer to create
a signature with respect to a set of public keys such that its
successful verification convinces a verifier that a private key
corresponding to one of the public keys has been used, yet
without disclosing which one.

Similar to [9], our UPBA scheme cannot use an arbitrary
ring signature scheme. Due to the design of our protocol we
need a ring signature scheme that allows to extract a set of
valid public keys out of the generalized Pedersen commitment
C and use the corresponding randomness r as a secret signing
key. Fortunately, the efficient scheme by Abe et al. [1], which
we recall in a generalized version, satisfies our goals. The
scheme works in the same group G := 〈g〉 of primer order
Q as the commitment scheme COM and uses a hash function
H : {0, 1}∗ 7→ ZQ modeled as a random oracle.

RGen(1κ): On input 1κ this key generation algorithm out-
puts a private/public key pair (xi, yi) with xi ∈R Z∗Q
and yi := gxi for each signer Ui, i = 1, . . . , n.

RSig(xi, Y,m): On input the secret key xi, the set of public
keys Y = (y1, ..., yn), and a message m ∈ {0, 1}∗
the ring signature σR is computed as follows:
• α, cj ∈R Z∗Q for j = 1, . . . , n, i 6= j.
• z := gα

∏n
j=1,j 6=i y

cj
j .

• c := H(g,Q, Y, z,m).
• cj := c−(c1+...+ci−1+ci+1+...+cn) mod Q.
• s := α− ci · xi mod Q.

The algorithm outputs σR := (s, c1, ..., cn).
RVer(Y, σR,m): On input a set of public keys

Y = (y1, . . . , yn), a candidate ring signature
σR = (s, c1, ..., cn), and a message m
this algorithm outputs 1 if

∑n
i=1 ci ≡

H(g,Q, Y, gsyc11 · · · ycnn ,m) mod Q and 0
otherwise.

By Succuf−cma
RS (1κ) we denote the maximal success proba-

bility for forging the scheme under chosen message attacks
that has been proven negligible in [1]. By Succuf−cma

RS (1κ)
we denote the maximal advantage probability for breaking the
anonymity property of the scheme, which has been proven to
be 0 (i.e. unconditional) in [1].

Intuitively, the ring signature scheme will be used in our
UPBA protocol for ensuring the property attestation and
configuration privacy requirements.
Key derivation function. In our UPBA protocol session keys
will be derived from Diffie-Hellman keys, which are elements

of G, using some appropriate key derivation function KDF :
{0, 1}∗ 7→ {0, 1}κ, which can be realized using some hash
function or a randomness extractor [10]. By AdvKDF(1

κ) we
denote the maximum advantage probability of distinguishing
the outputs of KDF from uniformly sampled values in {0, 1}κ
and assume that this probability is negligible.

B. Basic UPBA Scheme

Our basic UPBA scheme (Setup,UPBA) consists of the
following algorithms and protocols. We assume that the de-
scription of a cyclic group G = 〈g〉 of prime order Q as well as
the public key (g, h) used in the Pedersen commitment scheme
is an implicit input to all algorithms and entities participating
in the protocol.

Setup(1κ): This algorithm outputs for every TPM M
a signature/verification key pair (skM, pkM) ←
KGen(1κ), for every user U a signature/verification
key pair (skU , pkU)← KGen(1κ), which is stored in
the corresponding host H, and a set of admissible
configuration values CF = (cf 1, . . . , cf n) ∈ ZnQ.

Note that configuration values are assumed to be elements
of ZQ, which can be realized by hashing the configurations
using an appropriate hash function.

UPBA(P,V): The description of the UPBA protocol is
given in Figure 2. We assume that for a given prover
P = (H,M) the corresponding configuration value
cf P has been measured by M.

The verifier V picks a random exponent xV which serves
two purposes: on the one hand it is seen as an exponent for
the computation of the Diffie-Hellman key with the host; on
the other hand, its public version gxV also becomes part of
the session id sid, that is then signed by the parties and is
thus, seen as a nonce protecting against replay attacks. Similar
purpose have also the exponent xH and its public version gxH ,
chosen and communicated by the host.

The TPM M generates a signature σM on a Pedersen
commitment C to the configuration value cf P , whereby the
session id sid is included into the signed message. M then
discloses C and used randomness r. By dividing C with gcf j

for each cf j ∈ CF , j = 1, . . . , n, the host obtains a set of
public keys Y = (y1, . . . , yn) that will be used to build the
ring signature σR. Note that one public key in Y , namely the
one which corresponds to the operation C/gcf P , has the form
hr, whereby all other public keys are randomly distributed in
G. That is, the host can effectively compute a ring signature
σR using the received randomness r as the secret signing key.
In order to authenticate the user U , the host also computes a
digital signature σU on the session id and outputs the session
key KH derived using the key derivation function KDF, after
sending (gxH , C, σM, σU , σR) to the verifier.
V checks whether all received signatures are valid. In

particular, for the verification of the ring signature σR, V
has to extract public keys Y using the set CF of admissible
configuration values. If at least one signature verification
fails then V aborts the protocol execution and outputs ⊥.

Otherwise, it computes the session key KV derived using the
key derivation function KDF. Observe that KH = KV holds if
both H and V compute the same Diffie-Hellman key gxHxV

and use matching session ids sidH = sidV .
UPBA in its basic form is not concerned with authentication

of verifiers. Such extensions could be useful in practice, and
are discussed in the full version [17].

C. Properties of the Basic Scheme

Efficiency and comparison. Concerning efficiency, our so-
lution requires almost no additional costs on TPM side,
i.e. one multiexponentiation more compared to [28]. Addi-
tional costs atH are dominated by the extraction of public keys
(y1, . . . , yn), which involves n modular exponentiations and
inversions. Note that the actual computation of the ring signa-
ture σR, which is due to [1], requires a linear amount of single-
exponentiations in n, but can be computed more efficiently
through one multi-exponentiation with n + 1 exponents. The
verifier has essentially the same costs as the prover. Further, we
observe that in comparison to the PBA scheme from [9], which
serves as a basis for our UPBA, the overhead at the host’s side
amounts to two modular exponentiations for the computation
of the Diffie-Hellman value gxVxP and the generation of σH,
whereas at the verifier’s side to the additional verification of
σH. The costs for KDF are negligible. Finally, notice that in
practice Q can be a prime number of 160 to 180 bits, which
implies the same size for the configuration values in CF .

No trusted third parties. Similar to the PBA approach from
[9], and unlike earlier ones in [22], [14], our UPBA protocol
does not require any trusted property certifier for the set CF ,
although may have one, if needed.

Compatibility with TCG technology. Our proposed UPBA
protocol is practical and realizable with current TPM stan-
dards and functionality [28]. In particular, TPMs are al-
ready equipped with random number generators and have
the ability to perform modular exponentiations, as well as
generate signatures. Regarding the computation of σM :=
Sig(skM, C|sidH) observe, that in practice, the TPM will
rather sign the hash of C|sidH. We omit this implicit hashing
in our protocol, but remark that this corresponds to the
standard hash-and-sign approach, which is known to offer
sufficient security.

IV. SECURITY MODEL AND ANALYSIS

A. UPBA Security Model

Adversary model. The adversary A, modeled as a PPT ma-
chine, has control over different communication links between
the parties involved in the attestation protocol and is also able
to corrupt selected parties and reveal their secrets. In particular,
A interacts with the parties via following set of queries:
• send(E, sid,m) with E ∈ {H,V}: A can send a direct

message m to an entity E in session sid. In response, A
is given the message generated by E (if any).

• sendTPM(M,m): A can send direct messages to a TPM
M. This query can only be asked after A queried

corrupt(H) for the host H of that TPM; note that each
M implicitly identifies its host. With this restriction we
model the fact that in order to communicate with the
built-in TPM directly, the adversary must take control
over the host.

• corrupt(E) with E ∈ {H,V}: A is able to compromise
some entity E and in response obtain all secrets stored
in E. This query also gives A the ability to impersonate
E. Note that we do not allow corruptions of TPMs due
to their tamper-resistance property [28].

An UPBA scheme (Setup,UPBA) should satisfy four secu-
rity requirements that address various intuitive goals regarding
property-based attestation, privacy of configurations, authen-
tication of the users, and the establishment of secure session
keys, specified in the following.
Property Attestation. This requirement aims at attesting that
the configuration cf P of prover P = (H,M) satisfies some
predefined property. Informally, an adversary A should not
be able to maliciously convince an honest verifier V that
the prover’s configuration cf P is amongst the admissible set
CF when in fact cf P 6∈ CF . We formalize this requirement
in a setting, where A can corrupt the host and change its
configuration, which captures potential malware attacks as
well as malicious user activities.

DEFINITION 3 (UPBA PROPERTY ATTESTATION): Let
(Setup,UPBA) be an UPBA scheme. Let Gamepr−attA (1κ)
be the following attack game with an adversary A: After
execution of Setup(1κ), A first picks prover P = (H,M)
and some configuration cf P 6∈ CF , which then serves as
input to M in all UPBA sessions involving chosen P . Then,
A is given access to the queries of the form send, sendTPM,
and corrupt. A interacts with the parties using these queries
until it stops.
A wins, denoted by Gamepr−attA (1κ) = 1, if at the end of

the game all of the following holds:
• There exists a verifier V that on input CF has computed

the key KV in the execution of some UPBA session sid
with P .

• There has been no corrupt(V) query, i.e. the mentioned
verifier remained uncorrupted.

Let Succpr−attA (1κ) := Pr[Gamepr−attA (1κ) = 1] denote the
success probability of A and Succpr−att(1κ) its maximum over
all PPT adversaries A (running in time polynomial in κ). The
UPBA scheme (Setup,UPBA) provides property attestation if
Succpr−att(1κ) is negligible in κ.
Configuration privacy. The requirement of configuration
privacy aims at hiding the actual configuration cf P of the
prover P = (H,M) from malicious verifiers. The underlying
assumption is that some property of the platform can be
satisfied by multiple, different configurations, which are all
part of the admissible set CF . Hence, the goal of configuration
privacy is to prevent the adversary from being able to decide,
which configuration cf P ∈ CF has been used by P in a
successful execution of the protocol. We model this property
using the standard indistinguishability approach, by consid-

TPM M
(skM, pkM, cf P)

Host H
(skU , pkU , pkM, cf P ,CF)

Verifier V
(pkU , pkM,CF)

xV ∈R Z∗Q
send gxV to H

←−−−−
gxV

−−−−−−−−−−−
xH ∈R Z∗Q
sidH := gxV |gxH

←−
sidH
−−−−−−−−

r ∈R Z∗Q
C := gcfP hr

σM := Sig(skM, C|sidH)

−
C|r|σM
−−−−−−−−→

for j = 1 to n : yj := C/gcf j

Y := (y1, . . . , yn)
σR := RSig(r, Y, sidH)
σU := Sig(skU , sidH)

−
gxH |C|σM|σU |σR
−−−−−−−−−−−−−−−→

KH := KDF((gxV)xH , sidH)
sidV := gxV |gxH
if Ver(pkM, σM, C|sidV) = 0
or Ver(pkU , σU , sidV) = 0
then output ⊥ else
for j = 1 to n : yj := C/gcf j

Y := (y1, . . . , yn)
if RVer(Y, σR, sidV) = 0
then output ⊥ else
KV := KDF((gxH)xV , sidV)

Fig. 2. UPBA protocol session between prover P = (H,M) and verifier V with CF = {cf 1, . . . , cf n}

ering two different configurations cf 0, cf 1 ∈ CF chosen by
A. The goal of A is to decide, which configuration has been
used in an execution of the UPBA protocol, in which A is
allowed to play the role of the malicious verifier. Since cf P is
implicitly known to both the corresponding TPM M and the
host H, the definition prevents A from corrupting that host.

DEFINITION 4 (UPBA CONFIGURATION PRIVACY): Let
(Setup,UPBA) be an UPBA scheme. Let Gamecf−priA (1κ)
be the following attack game with an adversary A: After
execution of Setup(1κ) A is given access to the queries of
the form send, sendTPM, and corrupt. At some stage A
picks (P, cf 0, cf 1) such that cf 0, cf 1 ∈ CF (where CF
has been returned by Setup). Then, a bit b ∈R {0, 1} is
chosen uniformly and an UPBA session sid is executed on
behalf of selected P = (H,M) with cf P := cf b being the
configuration value input to H and M. Finally, A outputs b′.
A wins, denoted Gamecf−priA (1κ) = 1, if at the end of the

game all of the following holds:

• b = b′.
• There has been no corrupt(H) query, i.e. the target host

remained uncorrupted.

Let Advcf−priA (1κ) := |Pr[Gamecf−priA (1κ) = 1]− 1
2 | denote

the advantage probability of A (over a random guess) and
Advcf−pri(1κ) its maximum over all PPT adversaries A (run-
ning in time polynomial in κ). The UPBA scheme (Setup,
UPBA) provides configuration privacy if Advcf−pri(1κ) is
negligible in κ.

User Authentication. The requirement of user authentication
aims at ensuring that some particular user U is involved in
the attestation protocol. It can be seen as dual to the property
attestation, which attests the configuration of the platform but

fails to provide the binding to a particular user. A protocol
which achieves both requirements effectively binds session es-
tablishment to some particular device and its user. Informally,
an adversary A should not be able to maliciously convince an
honest verifier V that some UPBA protocol session between
P and V is executed on behalf of some user U . That is user
authentication prevents A from impersonating the user. Since
we work in the single-user ownership setting where user’s
authentication keys are typically stored on the corresponding
host it is necessary to prevent A from obtaining these keys,
modeled by prohibiting corruption of the host. We still allow
A to initiate protocol sessions with V using other hosts and
possibly knowing secret authentication keys of users behind
those hosts.

DEFINITION 5 (UPBA USER AUTHENTICATION): Let
(Setup,UPBA) be an UPBA scheme. Let Gameus−autA (1κ)
be the following attack game with an adversary A: After
execution of Setup(1κ) A is given access to the queries of
the form send, sendTPM, and corrupt. A interacts with the
parties using these queries until it stops.
A wins, denoted by Gameus−autA (1κ) = 1, if at the end of

the game all of the following holds:
• There exists a verifier V that has computed a key KV

in the execution of some UPBA session sid with prover
P = (H,M) for which no matching session exists.

• There have been neither corrupt(V) nor corrupt(H)
queries for the mentioned V and H.

Let Succus−autA (1κ) := Pr[Gameus−autA (1κ) = 1] denote the
success probability ofA and Succus−aut(1κ) its maximum over
all PPT adversaries A (running in time polynomial in κ). The
UPBA scheme (Setup,UPBA) provides user authentication if
Succus−aut(1κ) is negligible in κ.

An UPBA protocol (Setup,UPBA), which simultaneously
provides property attestation and user authentication, guaran-
tees to an honest verifier V , upon the successful computation of
the session key KV , that the protocol session has been executed
on a platform with an admissible configuration (which satisfies
some predefined property) and that the platform belongs to a
legitimate user.

Session key (SK) security. The requirement of session key
(SK) security for an UPBA scheme is motivated by the fact
that, in practice, users authenticate themselves to verifiers and
then continue communicating with them. It is desirable to
protect this later communication as well. The goal of SK
security is to establish a secure session key between the
protocol participants. We model SK-Security akin to [7] by
providing the adversary A with two additional queries (see
[17] for the detailed description):
• reveal(E, sid) with E ∈ {H,V}: A can reveal session

key KE (if existing) computed by entity E in session sid.
• test(E, sid) with E ∈ {H,V}: This query can be asked

only once and only if entity E has computed key KE in
session sid. In this case a uniform bit b ∈R {0, 1} is
flipped and if b = 1 then A receives KE ; otherwiseA
receives a uniformly chosen string K ∈R {0, 1}κ.

Taking into account that basic UPBA scheme ensures at-
testation and authentication of provers (and not of verifiers),
we exclude trivial impersonation attacks on unauthenticated
verifiers by restricting the send(H, sid,m) query: For UPBA
sessions invoked between P = (H,M) and V the adversary
A can query send(H, sid,m) only after having compromised
V (by querying corrupt(V) at some earlier stage).

DEFINITION 6 (UPBA SESSION KEY SECURITY): Let
(Setup,UPBA) be an UPBA scheme. Let Gamesk−secA (1κ)
be the following attack game with an adversary A: After
execution of Setup(1κ) A is given access to the queries of
the form send, sendTPM, corrupt, reveal, and test. At
some point A queries test(E, sid) to an entity E that has
computed the session key KE and receives either KE or
some random string K (depending on the bit b). Then, A
continues interacting with parties using the above queries
until it outputs some bit b′.
A wins, denoted Gamesk−secA (1κ) = 1, if at the end of the

game all of the following holds:
• b′ = b (i.e. A successfully guessed the bit chosen in

response to the test query).
• There has been no reveal(E, sid) query and no
corrupt(E) query prior to the computation of KE .

• If E = H and there is a matching session sid for some
verifier V then: There has been no reveal(V) query
and there has been no corrupt(V) query prior to the
computation of KE .

• If E = V and there is a matching session sid for some
prover P = (H,M) then: There has been no reveal(H)
query and there has been no corrupt(H) query prior to
the computation of KE .

Let Advsk−secA (1κ) := |Pr[Gamesk−secA (1κ) = 1] − 1
2 |

denote the advantage probability of A (over a random guess)
and Advsk−sec(1κ) its maximum over all PPT adversaries
A (running in time polynomial in κ). The UPBA scheme
(Setup,UPBA) provides SK-security if Advsk−sec(1κ) is neg-
ligible in κ.

B. Security Analysis of Our UPBA Scheme
The following theorems show that our UPBA scheme

(Setup,UPBA) introduced in Section III satisfies the defined
security requirements of property attestation, configuration
privacy, user authentication, and SK-security in the single-user
ownership setting (proofs of these theorems are delegated to
the full version [17]).

Theorem 1 (Property Attestation): The UPBA scheme
(Setup,UPBA) provides property attestation, assuming un-
forgeability of the signature scheme Σ, unforgeability of the
ring signature scheme RS, and the binding property of the
commitment scheme COM. Moreover,

Succpr−att(1κ) ≤ q2

2κ
+Succuf−cma

Σ (1κ)+

Succuf−cma
RS (1κ) + SuccbindCOM (1κ),

where q is the number of executed UPBA sessions.
Remark. Although not explicitly stated in Theorem 1, our

proof inherits the random oracle assumption needed for the
unforgeability of ring signatures scheme from [1].

Theorem 2 (Configuration Privacy): The UPBA scheme
(Setup,UPBA) provides configuration privacy against com-
putationally unbounded adversaries, due to the unconditional
anonymity of the ring signature scheme RS and perfect hiding
of the commitment scheme COM, i.e. Advcf−pri(1κ) = 0.

Theorem 3 (User Authentication): The UPBA scheme
(Setup,UPBA) provides user authentication, assuming un-
forgeability of the signature scheme Σ, i.e.

Succus−aut(1κ) ≤ q2

2κ
+ Succuf−cma

Σ (1κ),

where q is the number of executed UPBA sessions.
Remark. The security of commitment scheme COM and

ring signature scheme RS is not required to provide user
authentication since authentication of the user is performed
in a modular way via a separate signature scheme. However,
since our UPBA scheme also provides property attestation,
both these requirements together guarantee that the protocol
was executed on a platform with an admissible property owned
by a legitimate user.

Theorem 4 (SK-Security): The UPBA scheme
(Setup,UPBA) provides SK-security, assuming the
unforgeability of the signature scheme Σ, the hardness
of the DDH problem in G, and the pseudorandomness of the
key derivation function KDF. Moreover,

Advsk−sec(1κ) ≤ q2

2κ
+Succuf−cma

Σ (1κ)+

qAdvddhG (1κ) + qAdvKDF(1
κ),

where q is the number of executed UPBA sessions.

V. ON UPBA IN A MULTI-USER OWNERSHIP MODEL

Our UPBA security model and protocol are designed in
a simplified ownership model, where each device (host) is
controlled by at most one user and the secret key skU can
be stored safely at the host. In a multi-user ownership model
where one device is shared amongst several users this defini-
tion is not sufficient as some user may attempt to impersonate
another user while using the device. A meaningful definition
of user authentication for such multi-user setting would have
to consider users as separate entities in addition to hosts, and
allow adversary corruptions of hosts and all users except for
the future victim. Clearly, our protocol would not fulfil this
requirement as the adversary would be able to obtain skU
upon corruption of H. Therefore, one necessary condition
in a multi-user setting is not to store secret authentication
material persistently on the device, unless the device storage is
trusted to restrict access to these secrets to the corresponding
user U when using the device. An alternative would be to
store secret keys at some other location (e.g. in an user’s
smart card or some electronic identity document) or to resort
to password-based authentication techniques. Unfortunately,
both approaches are still insufficient since corruption of hosts
implicitly allows A to install malware which seems to be the
main threat in the multi-user setting to capture authentication
secrets related to other users. On the other hand, assuming
a device is malware-free, even if users might be malicious,
seems a too strong assumption.

Bottom line, while our security model can be easily ex-
tended to capture the multi-user ownership setting, the actual
design of such UPBA protocols remains an open problem.

VI. CONCLUSION

Modern platform attestation techniques, aiming at assuring
the trustworthiness of computing platforms, have shortcom-
ings, when user interaction is involved, and trustworthiness
of the user, in particular authenticity, should be guaranteed as
well. Without a binding between attestation and authentication
of users, relay attacks are possible. Focusing on the property-
based attestation (PBA), we designed a user-authenticated ver-
sion of PBA in a single-user ownership setting. In addition to
giving a concrete UPBA protocol and evaluating its efficiency,
we gave a formal security model for such schemes and used
it to analyze our own construction. We suggested several
extensions, aiming at stronger security and privacy properties.
Note that ideas behind our UPBA scheme can also be applied
to the traditional TCG’s binary attestation process.

REFERENCES

[1] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n Signatures from a
Variety of Keys. In ASIACRYPT 2002, volume 2501 of LNCS, pages
415–432. Springer, 2002.

[2] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of Group
Signatures: Formal Definitions, Simplified Requirements, and a Con-
struction Based on General Assumptions. In EUROCRYPT 2003, volume
2656 of LNCS, pages 614–629. Springer, 2003.

[3] E. F. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attesta-
tion. In ACM CCS 2004, pages 132–145. ACM, 2004.

[4] E. F. Brickell and J. Li. Enhanced Privacy ID: A Direct Anonymous
Attestation Scheme with Enhanced Revocation Capabilities. In ACM
WPES 2007, pages 21–30. ACM, 2007.

[5] A. Bussani, J. L. Grifin, B. Jasen, K. Julish, G. Karjot, H. Maruyama,
M. Nakamura, R. Perez, M. Shunter, A. Tanner, L. V. Doorn, E. V.
Herreweghen, M. Waidner, and S. Yoshihama. Trusted Virtual Domains:
Secure Foundation for Business and IT services. Technical Report
RC23793, IBM Research, 2005.

[6] J. Camenisch. Better Privacy for Trusted Computing Platforms. In
ESORICS 2004, volume 3193 of LNCS, pages 72–88. Springer, 2004.

[7] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and
Their Use for Building Secure Channels. In EUROCRYPT 2001, volume
2045 of LNCS, pages 453–474. Springer, 2001.

[8] D. Chaum and E. van Heyst. Group Signatures. In EUROCRYPT 1991,
volume 547 of LNCS, pages 257–265. Springer, 1991.

[9] L. Chen, H. Löhr, M. Manulis, and A.-R. Sadeghi. Property-Based
Attestation without a Trusted Third Party. In ISC 2008, volume 5222
of LNCS, pages 31–46. Springer, 2008.

[10] Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin. Ran-
domness Extraction and Key Derivation Using the CBC, Cascade and
HMAC Modes. In CRYPTO 2004, volume 3152 of LNCS, pages 494–
510. Springer, 2004.

[11] E. Gallery. An Overview of Trusted Computing Technology. In Trusted
Computing (Professional Applications of Computing). Chapter 3, IEEE
Press, 2005.

[12] J. L. Griffin, T. Jaeger, R. Perez, R. Sailer, and L. van Doorn Ramón
Cáceres and. Trusted Virtual Domains: Toward Secure Distributed
Services. In Hot Topics in System Dependability 2005, 2005.

[13] V. Haldar, D. Chandra, and M. Franz. Semantic Remote Attestation –
Virtual Machine Directed Approach to Trusted Computing. In Virtual
Machine Research and Technology Symposium, pages 29–41. USENIX,
2004.

[14] U. Kühn, M. Selhorst, and C. Stüble. Realizing Property-Based
Attestation and Sealing with Commonly Available Hard- and Software.
In ACM STC 2007, pages 50–57. ACM, 2007.

[15] A. Lee-Thorp. Attestation in Trusted Computing: Challenges and Poten-
tial Solutions. Technical Report RHUL-MA-2010-09, Royal Holloway,
University of London, 2010.

[16] A. Leung, L. Chen, and C. J. Mitchell. On a Possible Privacy Flaw in
Direct Anonymous Attestation (DAA). In TRUST 2008, volume 4968
of LNCS, pages 179–190. Springer, 2008.

[17] M. Manulis and M. Steiner. UPBA: User-Authenticated Property-Based
Attestation, PST 2011. Full Version.

[18] A. Nagarajan, V. Varadharajan, M. Hitchens, and E. Gallery. Property
Based Attestation and Trusted Computing: Analysis and Challenges. In
NSS 2009, pages 278–285. IEEE CS, 2009.

[19] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In CRYPTO 1991, volume 576 of LNCS,
pages 129–140. Springer, 1991.

[20] J. Poritz, M. Schunter, E. V. Herreweghen, and M. Waidner. Property
Attestation—Scalable and Privacy-friendly Security Assessment of Peer
Computers. Technical Report 3548, IBM Research Zurich, 2004.

[21] R. L. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In
ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer,
2001.

[22] A.-R. Sadeghi and C. Stüble. Property-Based Attestation for Computing
Platforms: Caring about Properties, not Mechanisms. In ACM NSPW
2004, pages 67–77. ACM, 2004.

[23] A.-R. Sadeghi, C. Stüble, and M. Winandy. Property-Based TPM
Virtualization. In ISC 2008, volume 5222 of LNCS, pages 1–16.
Springer, 2008.

[24] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement Architecture.
In USENIX Security Symposium, pages 223–238. USENIX, 2004.

[25] E. Shi, A. Perrig, and L. van Doorn. BIND: A Fine-Grained Attestation
Service for Secure Distributed Systems. In IEEE Symposium on Security
and Privacy, pages 154–168. IEEE CS, 2005.

[26] S. W. Smith. Trusted Computing Platforms: Design and Applications.
Springer, 2004.

[27] F. Stumpf, O. Tafreschi, P. Röder, and C. Eckert. A Robust Integrity
Reporting Protocol for Remote Attestation. In WATC 2006, 2006.

[28] Trusted Computing Group. Trusted Platform Module Main Specification,
version 1.2, revision 62 edition, October 2003.

