
Modeling Leakage of Ephemeral Secrets
in Tripartite/Group Key Exchange

(Full Version)

Mark Manulis1, Koutarou Suzuki2, and Berkant Ustaoglu2

1 Cryptographic Protocols Group, TU Darmstadt & CASED, Germany
mark@manulis.eu

2 NTT Information Sharing Platform Laboratories
3-9-11 Midori-cho Musashino-shi Tokyo 180-8585, Japan
{suzuki.koutarou, ustaoglu.berkant}@lab.ntt.co.jp

Abstract. Recent advances in the design and analysis of secure two-party key exchange (2KE)
such as the leakage of ephemeral secrets used during the attacked sessions remained unnoticed
by the current models for group key exchange (GKE). Focusing on a special case of GKE — the
tripartite key exchange (3KE) — that allows for efficient one-round protocols, we demonstrate
how to incorporate these advances to the multi-party setting. From this perspective our work
closes the most pronounced gap between provably secure 2KE and GKE protocols.
The proposed 3KE protocol is an implicitly authenticated protocol with one communication
round which remains secure even in the event of ephemeral secret leakage. It also significantly
improves upon currently known 3KE protocols, many of which are insecure. An optional key
confirmation round can be added to our proposal to achieve the explicitly authenticated protocol
variant.

1 Introduction

Bellare and Rogaway [2] and Blake-Wilson, Johnson and Menezes [3] independently proposed models
for analyzing security of two-party key exchange (2KE) protocols in the shared and public key settings,
respectively. In their approach an adversary is given the ability to interact with parties and controls the
communication with the simple goal of distinguishing a test session key from a random key. Motivating
with the signed variant1 of the classical unauthenticated Diffie-Hellman [13] protocol, Canetti and
Krawzcyk [10] argued that it is desirable to augment the 2KE adversary with the ability to learn session-
specific and protocol-defined ephemeral information that is not related to the test session. LaMacchia,
Lauter and Mityagin [25] allowed leakage of some test session specific ephemeral information under
certain conditions. Menezes and Ustaoglu [31] extended the timing of the information leakage. All
these developments were within the framework of two-party key exchange.

Group key exchange (GKE) protocols are essentially the generalization of 2KE protocols to the
group case. However, this generalization brings additional problems both in the design and the analysis
of the protocols. The first formal model for GKE protocol was described by Bresson et al. [5] inspired
by the two-party approach in [2]. Many modifications and improvements appeared thereafter, see
the survey in [30]. GKE models mainly focus on the outsider security which is modeled through the
requirement of AKE-security, e.g. [5,4,21,9], as this requirement deals explicitly with the secrecy of
the established keys, which becomes meaningless if the adversary is an insider. Yet, several models,
e.g. [20,6,8,15,14], consider the optional insider security aiming to prevent attacks by which insiders
force parties to complete either with different keys (usually modeled as MA-security) or with keys
that have some biased distribution (usually modeled as contributiveness). Several compilers have been
proposed to augment AKE-secure protocols with security against insider attacks, e.g. [20,6,7]. Beside
consideration of outsider and insider security GKE models differ in the treatment of corruptions. Earlier
1 In the signed Diffie-Hellman protocol users sign outgoing ephemeral public keys with their static keys.

This is the full version of the paper which appears in:
Information Security and Cryptology, 12th International Conference, ICISC 2009, Seoul, Korea, December 02-04, 2009.
D. H. Lee, S. Hong (Eds.) Springer-Verlag, LNCS vol. ???? , pp. ??-??.

http://www.manulis.eu
file:suzuki.koutarou@lab.ntt.co.jp
http://www.cryptolounge.net

GKE models, e.g. [5,21], considered weak corruptions allowing the adversary to obtain users’ static
keys, but not their ephemeral session secrets. Later models, e.g. [9,8,14] assumed strong corruptions
allowing the adversary to learn both static private keys and session specific secrets through a single
query. Manulis and Bresson [8], inspired by the two-party approach in [10] refined the notion of strong
corruptions in GKE allowing the adversary to obtain static keys independently from ephemeral session
secrets; yet, restricting the leakage of ephemeral secrets to sessions for which the adversary does
not need to distinguish the key. The reason is that GKE protocols known today become insecure
if ephemeral secrets used to compute a group key leak, in other words leaking ephemeral secrets of
one session affects the security of other non-partnered sessions. As a result many GKE protocols are
insecure if parties for better performance pre-compute their ephemeral secrets off-line. Gorantla et.
al. [14] subsequently strengthened [8] by considering key compromise impersonation attacks.

Despite of their significant improvement over the years GKE models remain incomparable to the
2KE models in terms of security guarantees they provide. In contrast to the 2KE models such as [23,31],
GKE models do not consider leakage of ephemeral secrets for the session which is to be proven AKE-
secure. In this paper we aim to fix the gap between 2KE and GKE models. Focusing on AKE-security
we first revise the latest GKE models to accommodate leakage of ephemeral secrets against the attacked
session. In order to illustrate that our model is reasonable and practical for our analysis we focus on
three-party key exchange (3KE), which is a special class of GKE protocols and come up with a provably
secure solution that resists these stronger leakage attacks.

Notation. Let ê : G×G 7→ GT be a non-degenerate bilinear map from a group G to a group GT both
of prime order q. Let P be a generator of G; for a user UA we set UA’s static and ephemeral keys
SA = sAP and XA = xAP , respectively. The lowercase letters are the private keys.

2 Three vs two party key establishment

Antoine Joux [17,18] used properties of pairings to extends the classical (unauthenticated) two-party
Diffie-Hellman protocol [13] to the case of three parties, preserving the optimal one-round communica-
tion complexity. Since then tripartite key exchange as a special form of group key exchange has gained
attention of the research community and several attempts have been made to improve the original
protocol in order to enlarge the class of attacks it can resist.

2.1 Authenticating outgoing messages

Shim [32] argued that Joux’s protocol fails to a variant of the well know person-in-the-middle attack
against the (unauthenticated) Diffie-Hellman protocol. To address that shortcoming Shim proposed a
protocol where Alice broadcasts

TA = xAsAP. (1)

Upon exchanging these ephemeral public keys the parties compute t = ê(P, P)sAsBsC and the session
key

k = H(ê(P, P)xAxBxCsAsBsCt, UA, UB , UC). (2)

Shim’s protocol fails to key compromise impersonation attack [33,29]. Suppose Malice sends two
ephemeral public keys uP and vP to Alice on behalf of Bob and Charlie respectively. With the
knowledge of Alice’s static private key Malice can compute t; with the knowledge of u Malice can
also compute k = ê(vP, TA)ut, which is the key Alice computes. Lin and Lin [29] observe that the
attack is possible since Shim’s protocol does not authenticate the TA’s origin. To resolve such issues
one venue is introducing new elements into the communicated messages: along the ephemeral public
key a user could append extra information that identifies messages’ origin or provides evidence for
following protocol specifications. For example [11] requires that along the message in Shim’s protocol
Alice also computes and broadcasts XA = xAP ; the suggested session key is

k = ê(P, P)xAxBxCsAsBsC .

2

Suppose, however, that an adversary Malice can obtain a certificate for an ephemeral public key
XA used by Alice. Malice can then send XM = SA, TM = TA, and the certificate to Bob and Charlie.
As a result Bob and Charlie will believe the session key is shared with Malice, whereas the key is shared
with Alice, who correctly identifies all session peers. This example resembles Kaliski’s on-line unknown
key share (UKS) attack [19] on the MQV protocol [26]. It is plausible [22, §7.3], that the ephemeral
public keys pre-computed for efficiency reasons are not as securely stored as the ephemeral private
keys. In that case the UKS attack can be made off-line implying that timing information leakage has
important security consequences.

The modification to Shim’s protocol in [29] requires that in addition to TA, Alice also computes
and broadcasts

mA = H(sA, xA) (3)

uA = (sAxA)−1(mA + sA) mod q. (4)

Bob and Charlie verify Alice’s message by computing tA = uA
−1 mod q, zA = tAmA mod q, and

checking that

TA
?= zAP + tASA. (5)

The session key (as computed by Alice) is

k = H(ê(SB + TB , SC + TC)sA+sAxA , UA, UB , UC)

= H(ê(P, P)(sA+sAxA)(sB+sBxB)(sC+sCxC)
, UA, UB , UC). (6)

Malice can easily circumvent the verification by selecting a random integer mB , setting

TB = −mBP − SB and uB = −1 mod q,

and sending these values on Bob’s behalf to Alice and Charlie; see also [28, §4.1]. Alice (as well as
Charlie) compute tB = −1−1 = −1 mod q, zB = −mB mod q and verify Equation 5 namely,

TB = zBP + tBSB = −mBP − SB .

Subsequently, Alice computes the key

k = H(ê(SB + TB , SC + TC)sA+sAxA , UA, UB , UC)
= H(ê(SB −mBP − SB , SC + TC)sA+sAxA , UA, UB , UC)

= H(ê(P, P)(sA+sAxA)(−mB)(sC+sCxC)
, UA, UB , UC). (7)

With the knowledge of mB Malice can compute the same session key.
Lim et al. [28] further propose a “fix” to the above problem that requires additional information in

the messages and further verification procedures. However, as observed in [27, §4.2], uA relates the static
and ephemeral key such that given the static private key sA an adversary can derive the ephemeral
private key xA and thereafter recover the session key, so protocols with uA as in Equation 4 do not
provide forward secrecy. As an alternative [27] suggests WA = xAH(xA)(SA), nA = H(TA,WA, pA) for
a time stamp pA, and

sA = (sAxAH(xA))−1(mA + sAnA) mod q. (8)

The above examples aimed to provide certain assurances about incoming messages without allegedly
sacrificing security. Compilers can be viewed as an abstraction to such approach, at the expense of
overhead like complicated messages or more communication rounds. A more rigorous analysis of that
approach can be found in [21,16].

3

Ephemeral key leakage has been motivated for two party key agreement protocols [10,23,34], but
so far we did not include it in our analysis. In Equation 8 if sA is leaked the adversary cannot obtain
xA, but if xA is leaked, then the adversary can easily obtain the static secret sA. Furthermore, in [24]
authors observed that within a party cryptographic primitives can share the source of randomness;
if the source is weak then signature schemes such as DSA can leak static private keys. Therefore, in
the presence of leakage of ephemeral private information compilers’ based solutions are non-trivial to
adopt.

2.2 Al-Riyami and Patterson protocols

Al-Riyami and Patterson [1] proposed four one round three party key agreement protocols. The design
aims to “avoid the use of expensive signature computations”. The protocols broadcast a message
consisting of a single ephemeral public key along with necessary certificates, but differ in the key
derivation procedures which are inspired by two-party protocols. These protocols inherit vulnerabilities
from the underlying two-pass protocols, but suggest that lessons from two-party protocols should be
applied to three-party protocols. In the TAK-4 protocol, akin to MQV [26] and HQMV [23], Alice, Bob
and Charlie after exchanging static-ephemeral key pairs (SA, XA), (SB , XB) and (SC , XC), respectively,
compute the session key

k = ê(P, P)(xA+He(XA,SA)sA)(xB+He(XB ,SB)sB)(xC+He(XC ,SC)sC)
.

Given, the complicated HMQV security argument it is not surprising that no security argument for
TAK-4 is provided. In fact as described in [1] TAK-4 fails to the following UKS attack in which Alice
and Bob will falsely think that they share a key with Malice, whereas Charlie correctly identifies his
peers as Alice and Bob. In the attack Malice, who owns a certificate for the public key 1G2, intercepts
all public keys and computes XM = XC+He(XC , SC)SC , implicitly defining xM = xC+He(XC , SC)sC .
Note that

k = ê(P, P)(xA+He(XA,SA)sA)(xB+He(XB ,SB)sB)(xC+He(XC ,SC)sC)

= ê(P, P)(sA+He(SA,SA)sA)(xB+He(XB ,SB)sB)(xC+He(XC ,SC)sC+H(XM ,1G)0)

= ê(P, P)(sA+He(SA,SA)sA)(xB+He(XB ,SB)sB)(xM+H(XM ,1G)0)
.

Therefore, by sending (SM , XM) instead of (SC , XC) to Alice or Bob, Malice successfully mounts a
UKS attack on TAK-4. The possibility of such attacks is acknowledged in [1], which also offers two
alternatives to prevent them. The requirements in [1] do not prevent the adversary from mounting the
above attack thus the more sound approach is to include identities in the key derivation as typically
done in two party key agreement. In general fewer assumptions and primitives are better as they leave
less room for security vulnerabilities.

2.3 Ephemeral information leakage

In general, the security considerations important for two-party protocols are also relevant for multi-
party protocols. Motivation for ephemeral information leakage is independent from number of users
involved in a key agreement protocol. Primitives used in compilers often assume no ephemeral key
leakage. Thus, it is worth considering implicitly authenticated key exchange protocols.

Ephemeral keys introduce further security aspects. For example, in Shim’s protocol leaking static
keys does not reveal the past session keys, but an adversary that can access one ephemeral and one
static private key from different users can compute the session key. So, for a party concerned with
forward secrecy with respect to its own static key, there is a difference if its peer static or ephemeral
private key is leaked: the session key is still secure in the former case but no longer in the latter.
2 The element 1G is the identity element in G.

4

3 Implicitly authenticated tripartite protocol

Informally, in our proposed protocol P parties exchange ephemeral and static keys and derive the
keying material as described bellow. Optionally, there can be a key confirmation round.

Initialization. User Ui performs:
1. Select an ephemeral private key xi ∈R [1, q] and compute Xi = gxi .
2. Create a session state, identified by (P, Ui, Xi) that contains only (xi, Xi).

Communication. Upon receiving request: (P, Ui, Ui+1, Ui+2, rl), user Ui broadcasts (1|P, U0, U1, U2, rl, Xi).
Derivations. Upon receiving the first round of messages Ui does the following:

1. Verify that Xi+1, Xi+2 ∈ G∗.
2. Compute sidi = P|U0|X0|U1|X1|U2|X2.
3. Compute KeyDer(Ui, rl, sidi, xi, si).

Completion. To complete the session Ui does:
1. Destroy the session state.
2. Accept the session key k.

Key material. On input (Ui, rl, sidi, xi, si) the auxiliary key derivation KeyDer computes:

1. Compute f0 = He(X0), f1 = He(X1) and f2 = He(X2).
2. Compute

σ0 =

(ê(X1 + S1, X2 + S2))x0+f0s0 if rl = 0
(ê(X0 + f0S0, X2 + S2))x1+s1 if rl = 1
(ê(X0 + f0S0, X1 + S1))x2+s2 if rl = 2

(9)

3. Compute

σ1 =

(ê(X1 + f1S1, X2 + S2))x0+s0 if rl = 0
(ê(X0 + S0, X2 + S2))x1+f1s1 if rl = 1
(ê(X0 + S0, X1 + f1S1))x2+s2 if rl = 2

(10)

4. Compute

σ2 =

(ê(X1 + S1, X2 + f2S2))x0+s0 if rl = 0
(ê(X0 + S0, X2 + f2S2))x1+s1 if rl = 1
(ê(X0 + S0, X1 + S1))x2+f2s2 if rl = 2

(11)

5. Compute

σ3 =

(ê(X1 + f1S1, X2 + f2S2))x0+f0s0 if rl = 0
(ê(X0 + f0S0, X2 + f2S2))x1+f1s1 if rl = 1
(ê(X0 + f0S0, X1 + f1S1))x2+f2s2 if rl = 2

(12)

6. Return k = H(σ0, σ1, σ2, σ3, sidi).

Instances with the same session id sid, and hence with the same ephemeral public keys and partners,
compute the same output since

H(σ0, σ1, σ2, σ3, sid
i) = H

(
(ê(P, P))(x0+f0s0)(x1+s1)(x2+s2),

(ê(P, P))(x0+s0)(x1+f1s1)(x2+s2),

(ê(P, P))(x0+s0)(x1+s1)(x2+f2s2),

(ê(P, P))(x0+f0s0)(x1+f1s1)(x2+f2s2), sidi
)
. (13)

A special attention should be paid to the content of the internal state which by definition contains
only the ephemeral private keys used by session throughout the protocol execution. Neither the static
private key si, nor the values σ0. . .σ3, nor the derived key material become part of the session state.
This is different from the definition used in [12], where the model allows the adversary to learn the

5

complete state of the Turing machine. Our formulation is similar to the more common approach for
two party Diffie-Hellman protocols, see for example [10,23,34], where the session state consists only of
the ephemeral private key xi used by Ui.

To include key confirmation, the output of H is modified to (km, k). Furthermore, after Derivation
and before Completion users perform the following:

Confirmation. To execute key confirmation Ui does:
1. Compute tags T0 = H3(km, U0, X0, sidi), T1 = H3(km, U1, X1, sidi), and T2 = H3(km, U2, X2, sidi).
2. Record3 Ti+1 and Ti+2, and delete km.
3. Broadcast (2|P, Ti, Ui, sidi, rl)

Verification. Ui verifies that the incoming Ti+1 and Ti+2 are equal to the tags stored in the session
state.

In the analysis of many two-party protocols ephemeral public and private keys can be obtained
by the adversary only during the session execution. Thus such arguments do not cover pre-computed
ephemeral key pairs. In some cases the adversary may be able to recover past ephemeral keys. For this
reason in our protocol description the ephemeral key pairs are pre-computed and the adversary can
access them before event the session is initialized. Indeed the Initialization stage can be performed
long before the Communication stage. Similarly, the protocol description does not explicitly destroy
the ephemeral private key (but should be done in practice) to allow the possibility that the adversary
obtain the ephemeral key after observing some subsequent actions of the parties. These modifications
only increase the power of the adversary and does not decrease it relative to the usual approach where
ephemeral keys can be obtained only during the session execution.As mentioned in the introduction,
Bresson and Manulis [8] considered leakage of ephemeral secrets from the internal states prior to
the execution of a session, thus incorporating pre-computations into the model, and also after the
completeness of the session, thus implicitly requiring the erasure of ephemeral secrets from the state.
However, their approach disallows leakage of ephemeral secrets during the execution of the session.

4 The Model and Security Definitions

Our model can be seen as an extension of the strong authenticated key exchange model for two-party
protocols from [31] to the group setting. It is described using the classical notations and terminology
from previous models for GKE protocols, in particular those in [21,8,14].

Protocol Participants and Initialization Let U := {U1, . . . , UN} be a set of potential protocol partici-
pants and each user Ui ∈ U is assumed to hold a static private/public key pair (si, Si) generated by
some algorithm Gen(1κ) on a security parameter 1κ during the initialization phase.

Protocol Sessions and Instances Any subset of U can decide at any time to execute a new protocol
session and establish a common group key. Participation of some U ∈ U in multiple sessions is modeled
through an number of instances {Πs

U | s ∈ [1 . . . n], U ∈ U}, i.e. the Πs
U is the s-th session of U. Each

instance is invoked via a message to U with a partner id4 pidsU ⊆ U , which encompasses the identities
of all the intended session participants (note that pidsU also includes U). We say that U owns the
instance Πs

U . In the invoked session Πs
U accepts if the protocol execution was successful, in particular

Πs
U holds then the computed group key ksU .

3 To prevent leakage of these confirmation tags, Ui can store fingerprint of these tags. Upon obtaining tags
from the alleged peers Ui computes and compares fingerprints of incoming tags with the fingerprints stored
in the session state. Thus we can assume that the confirmation tags do not become part of the session state.

4 Invocation may also include other public information such as the protocol name that is invoked, the order
of user and so on.

6

Session state. During the session execution each participating Πs
U creates and maintains a session

id sidsU and an associated internal state statesU which in particular is used to maintain ephemeral
secrets used by Πs

U during the protocol execution. We say that U owns session sidsU if the instance
Πs
U was invoked at U. Note that the integer s is only a tool to describe the model. The users do not

keep track of s, instead sessions are identified via the vector sidsU . At the onset of the instance the
user that owns the instance may not have enough information to create sidsU ; until sidsU is created
the instance is identified via pidsU and the outgoing ephemeral public key5 which is unique per user
except with negligible probability. Furthermore, we assume that instances that accepted or aborted
delete all information in their respective states.

Partnering. Two instances Πs
U and Πt

U∗
are called partnered or matching if sidsU ⊆ sidtU∗ or sidtU∗ ⊆

sidsU and pidsU = pidtU∗ . The first condition models the fact that if session ids are computed during
the protocol execution, e.g. from the exchanged messages, then their equality should be guaranteed
only at the end of the protocol, i.e. upon the acceptance of Πs

U and Πt
U∗

.
Note also that the notion of partnering is self-inclusive in the sense that any Πs

U is partnered with
itself. If the protocol allows a user U to initiate sessions with U, then the equality pidsU = pidtU∗ is a
multi-set equality.

Adversarial Model. The adversary A, modeled as a PPT machine, can schedule the protocol execution
and mount own attacks via the following queries:

– AddUser(U, SU): This query allows A to introduce new users. In response, if U 6∈ U (due to the
uniqueness of identities) then U with the static public key SU is added to U ; Note that A is not
required to prove the possession of the corresponding secret key sU6.

– Send(Πs
U ,m): With this query A can deliver a message m to Πs

U whereby U denotes the identity
of its sender. A is then given the protocol message generated by Πs

U in response to m (the output
may also be empty if m is not required or if Πs

U accepts). A special invocation query of the
form Send(U, (′start′, U1, . . . , Un)) with U ∈ {U1, . . . , Un} creates a new instance Πs

U with pidsU =
{U1, . . . , Un} and provides A with the first protocol message.

– RevealKey(Πs
U): This query models the leakage of session group keys and provides A with ksU . It

is answered only if Πs
U has accepted.

– RevealStaticKey(U): This query provides A with the static private key sU .
– RevealState(Πs

U): A is given the ephemeral secret information contained in statesU at the moment
the query is asked. Note that the protocol specifies what the state contains.

– Test(Πs
U): This query models the indistinguishability of the session group key according to the

privately flipped bit τ . If τ = 0 then A is given a random session group key, whereas if τ = 1 the
real ksU . The query is requires that Πs

U has accepted.

Correctness. A GKE protocol is said to be correct if, when in the presence of benign7 adversary all
instances invoked for the same protocol session accept with the same session group key.

Freshness. The classical notion of freshness of some instance Πs
U is traditionally used to define the goal

of AKE-security by specifying the conditions for the Test(Πs
U) query. For example, the model in [21]

defines an instance Πs
U that has accepted as fresh if none of the following is true: (1) at some point, A

asked RevealKey to Πs
U or to any of its partnered instances; or (2) a query RevealStaticKey(U∗) with

U∗ ∈ pidsU was asked before a Send query to Πs
U or any of its partnered instances.

Unfortunately, these restrictions are not sufficient for our purpose since Πs
U becomes immediately

unfresh if the adversary gets involved into the protocol execution via a Send query after having learned
5 Implicitly, this assumes that the first outgoing message contains the ephemeral public key. If necessary this

can be modified to accommodate other types of protocols.
6 In our security argument we will only assume that SU chosen by A is checked to be an element of G.
7 Benign adversary executes an instance of the protocol and faithfully delivers messages without any modifi-

cation.

7

the static key sU∗ of some user U∗ those instance participates in the same session as Πs
U . We fairly

remark that [21] does not address (strong) corruptions of ephemeral secrets.
The recent model in [8] defines freshness using the additional AddUser and RevealState queries as

follows. According to [8], an instance Πs
U that has accepted is fresh if none of the following is true:

(1) A queried AddUser(UM , SUM
) with some U∗ ∈ pidsU ; or (2) at some point, A asked RevealKey to

Πs
U or any of its partnered instances; or (3) a query RevealStaticKey(U∗) with U∗ ∈ pidsU was asked

before a Send query to Πs
U or any of its partnered instances; or (4) A queried RevealState to Πs

U or
any of its partnered instances at some point after their invocation but before their acceptance.

Although this definition is already stronger than the one in [21] it is still insufficient for the main
reason that it excludes the leakage of ephemeral secrets of instances in the period between the pro-
tocol invocation and acceptance. Also this definition of freshness does not model key compromise
impersonation attacks.

The recent update of the freshness notion in [14] addressed the lack of key compromise imperson-
ation resilience. In particular, it modifies the above condition (3) by requiring that if there exists an
instance Πt

U∗
which is partnered with Πs

U and A asked RevealStaticKey(U∗) then all messages sent
by A to Πs

U on behalf of Πt
U∗

must come from Πt
U∗

intended for Πs
U . This condition should allow the

adversary to obtain static private keys of users prior to the execution of the attacked session while
requiring its benign behavior with respect to the corrupted user during the attack.

Yet, this freshness requirement still prevents the adversary from obtaining ephemeral secrets of
participants during the attacked session. What is needed is a freshness condition that would allow the
adversary to corrupt users and reveal the ephemeral secrets used by their instances in the attacked
session at will for the only exception that it does not obtain both the static key sU∗ and the ephemeral
secrets used by the corresponding instance of U∗; otherwise security can no longer be guaranteed. In
the following we give the combined definition of freshness taking into account the previously described
problems.

Definition 1. An instance Πs
U that has accepted is fresh if none of the following is true:

1. A queried AddUser(U∗, SU∗) with some U∗ ∈ pidsU ; or
2. A asked RevealKey to Πs

U or any of its accepted partnered instances; or
3. A queried both RevealStaticKey(U∗) with U∗ ∈ pidsU and RevealState(Πt

U∗
) for some instance Πt

U∗
partnered with Πs

U ; or
4. A queried RevealStaticKey(U∗) with U∗ ∈ pidsU prior to the acceptance of Πs

U and there exists no
instance Πt

U∗
partnered with Πs

U .

Note that since U ∈ pidsU and since the notion of partnering is self-inclusive Condition 3 prevents the
simultaneous corruption of static and ephemeral secrets for the corresponding instance Πs

U as well.
In case when users are allowed to own two partnering instances i.e., they can initiate protocols with
themselves the last condition should be modified to say that the number of instances U equals the
number of times U appears in pidsU . Note also that the above definition captures key-compromise
impersonation resilience through Condition 4: A is allowed to corrupt participants of the test session
in advance but then must ensure that instances of such participants have been honestly participating
in the test session. In this way we exclude the trivial break of security where A reveals static keys of
users prior to the test session and then actively impersonates that users during it. On the other hand,
as long as A remains benign with respect to such users their instances will still be considered as fresh.

AKE-Security. We are ready to generalize the strong AKE-security definition from [25,31] to a group
setting.

Definition 2. Let P be a correct GKE protocol and τ be a uniformly chosen bit. We define the ad-
versarial game Gameake−τ

A,P (κ) as follows: after initialization, A interacts with instances via queries.
At some point, A queries Test(Πs

U), and continues own interaction with the instances until it outputs

8

a bit τ ′. If Πs
U to which the Test query was asked is fresh at the end of the experiment then we set

Gameake−τ
A,P (κ) = τ ′.

We define: Advake
A,P(κ) := |2 Pr[τ = τ ′]− 1|

and denote with Advake
P (κ) the maximum advantage over all PPT adversaries A. We say that a GKE

protocol P provides strong AKE-security if this advantage is negligible.

5 Security Arguments

In this section, we provide security arguments of the proposed implicitly authenticated tripartite
protocol. We need the gap BDH(Bilinear Diffie-Hellman) assumption, where one tries to compute
BDH(U, V,W) accessing the BDDH oracle. Here, we denote BDH(U, V,W) = ê(P, P)logU log V logW ,
and the BDDH oracle on input (uP, vP,wP, ê(P, P)x) returns the bit 1 if uvw = x and the bit 0
otherwise.

Theorem 1. If G is a group where gap Bilinear Diffie-Hellman assumption holds and H and He are
random oracles, the proposed implicitly authenticated tripartite protocol in Section 3 is secure in the
sense of Definition 2.

Proof of Theorem 1 is provided in Appendix A. Here, we give an intuition of the proof. We denote
by (S0, X0), (S1, X1), (S2, X2) the static and ephemeral public keys of users U0, U1, U2 in the test
session sidt. Consider the case, where user U0 is honest, ephemeral public key X0 is not revealed,
and static public keys S1 and S2 are not revealed. In this case, solver S embeds instance (U, V,W) of
gap BDH problem as X0 = U, S1 = V, S2 = W . Since H is random oracle, adversary A need to ask
σ0, σ1, σ2, σ3 to H, s.t. BDDH(X0 + f0S0, X1 + S1, X2 + S2, σ0) = 1, BDDH(X0 + S0, X1 + f1S1, X2 +
S2, σ1) = 1, BDDH(X0 + S0, X1 + S1, X2 + f2S2, σ2) = 1, and BDDH(X0 + f0S0, X1 + f1S1, X2 +
f2S2, σ3) = 1, to distinguish the session key. Since user U0 is honest, solver S knows s0 = log(S0).
By using s0, solver S can compute four independent terms w.r.t. s1 = log(S1) and s2 = log(S2):
σ′0 = ê(X1 + S1, X2 + S2)−f0s0σ0 = ê(P, P)x0(x1+s1)(x2+s2), σ′1 = ê(X1 + f1S1, X2 + S2)−s0σ1 =
ê(P, P)x0(x1+f1s1)(x2+s2), σ′2 = ê(X1+S1, X2+f2S2)−s0σ2 = ê(P, P)x0(x1+s1)(x2+f2s2), and σ′3 = ê(X1+
f1S1, X2 + f2S2)−f0s0σ3 = ê(P, P)x0(x1+f1s1)(x2+f2s2). By using these four independent terms, solver
S can compute answer of gap BDH problem ((σ′−1

0 σ′1)−1σ′−1
2 σ′3)1/((f1−1)(f2−1)) = BDH(X0, S1, S2).

This is why the proposed protocol uses four terms σ0, σ1, σ2, σ3.

6 Conclusion

We presented a new 3KE protocol and a more general GKE model that takes into account ephemeral
key leakage. In this way we closed the outstanding gap in the modeling of AKE-security for 2KE
and GKE protocols. Our implicitly authenticated 3KE protocol does not make use of compilers and
proceeds in one round achieving this desired higher level of security. As such it is the first one-round
tripartite key exchange protocol having these security properties without complicating the messages
of the original protocol by Joux [17,18].

We did not take into account malicious insiders in GKE protocols [8,14] and did not consider the
possibility of invoking sessions with destination addresses as done in the so called post-specified peer
model [10,31]. It is an interesting open problem to formally consider the post-specified peer setting.
Furthermore, it is of independent worth to provide methods for key confirmation and contributiveness
for implicitly authenticated protocols that tolerate malicious insiders.

References

1. S. S. Al-Riyami and K. G. Paterson. Tripartite Authenticated Key Agreement Protocols from Pairings.
In 9th IMA International Conference, volume 2898 of LNCS, pages 332–359, 2003.

9

2. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Advances in Cryptology –
CRYPTO’93, volume 773 of LNCS, pages 232–249, 1993.

3. S. Blake-Wilson, D. Johnson, and A. Menezes. Key Agreement Protocols and their Security Analysis. In
6th IMA International Conference, volume 1355 of LNCS, pages 30–45, 1997.

4. E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-Hellman Key Exchange under
Standard Assumptions. In Advances in Cryptology – EUROCRYPT’02, volume 2332 of Lecture Notes in
Computer Science, pages 321–336. Springer, 2002.

5. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authenticated Group Diffie-
Hellman Key Exchange. In Proceedings of the 8th ACM conference on Computer and Communications
Security (CCS’01), pages 255–264. ACM Press, 2001.

6. E. Bresson and M. Manulis. Malicious Participants in Group Key Exchange: Key Control and Contribu-
tiveness in the Shadow of Trust. In Proceedings of the 4th Autonomic and Trusted Computing Conference
(ATC 2007), volume 4610 of Lecture Notes in Computer Science, pages 395–409. Springer-Verlag, 2007.

7. E. Bresson and M. Manulis. Contributory Group Key Exchange in the Presence of Malicious Participants.
IET Information Security, 2(3):85–93, 2008.

8. E. Bresson and M. Manulis. Securing Group Key Exchange against Strong Corruptions. In Proceedings of
ACM Symposium on Information, Computer and Communications Security (ASIACCS’08), pages 249–260.
ACM Press, 2008. Full version in Intl. J. Applied Cryptography in 2008.

9. E. Bresson, M. Manulis, and J. Schwenk. On Security Models and Compilers for Group Key Exchange
Protocols. In Proceedings of the 2nd International Workshop on Security (IWSEC 2007), volume 4752 of
Lecture Notes in Computer Science, pages 292–307. Springer-Verlag, October 2007.

10. R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building Secure
Channels. In Advances in Cryptology – EUROCRYPT’01, volume 2045 of LNCS, pages 453–474, 2001.

11. Z. Cheng, L. Vasiu, and R. Comley. Pairing-based one-round tripartite key agreement protocols. Cryptology
ePrint Archive, Report 2004/079, 2004.

12. C. Cremers. Session-state reveal is stronger than ephemeral key reveal: Attacking the NAXOS key exchange
protocol. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, Applied Cryptography
and Network Security, 7th International Conference, ACNS 2009, volume 5536 of LNCS, pages 20–33.
Springer Verlag, June 2009.

13. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory,
IT-22(6):644–654, November 1976.

14. M. C. Gorantla, C. Boyd, and J. M. González-Nieto. Modeling Key Compromise Impersonation Attacks
on Group Key Exchange Protocols. In Public Key Cryptography – PKC 2009, volume 5443 of LNCS, pages
105–123, 2009.

15. M. C. Gorantla, C. Boyd, and J. M. González-Nieto. Universally Composable Contributory Group Key
Exchange. In Proceedings of the 4th International Symposium on Information, Computer, and Communi-
cations Security (ASIACCS’09), pages 146–156. ACM, 2009.

16. Y. Hitchcock, C. Boyd, and J. M. G. Nieto. Tripartite Key Exchange in the Canetti-Krawczyk Proof
Model. In INDOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 17–32. Springer, 2004.

17. A. Joux. A one round protocol for tripartite Diffie–Hellman. In W. Bosma, editor, Algorithmic Num-
ber Theory 4th International Symposium, ANTS-IV, Proceedings, volume 1838 of LNCS, pages 385–393.
Springer, 2000.

18. A. Joux. A one round protocol for tripartite Diffie–Hellman. Journal of Cryptology, 17(4):263–276, 2004.
19. B. S. Kaliski Jr. An unknown key-share attack on the mqv key agreement protocol. ACM Transaction on

Information and System Security, 4(3):275–288, 2001.
20. J. Katz and J. S. Shin. Modeling Insider Attacks on Group Key-Exchange Protocols. In Proceedings of the

12th ACM Conference on Computer and Communications Security (CCS’05), pages 180–189. ACM Press,
2005.

21. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In D. Boneh, editor,
Advances in Cryptology – CRYPTO 2003, volume 2729 of LNCS, pages 100–125. Springer, 2003. Full
version available at http://eprint.iacr.org/2003/171.

22. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. Cryptology ePrint Archive,
Report 2005/176. Full version of [23].

23. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In R. Cramer, editor, Advances
in Cryptology – CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer Verlag, 2005.

24. B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange. Cryptology
ePrint Archive, Report 2006/073, 2006.

10

http://eprint.iacr.org/2004/079
http://eprint.iacr.org/2003/171
http://eprint.iacr.org/2005/176
http://eprint.iacr.org/2006/073

25. B. LaMacchia, K. Lauter, and A. Mityagin. Stronger Security of Authenticated Key Exchange. In Provable
Security: First International Conference, ProvSec 2007, volume 4784 of LNCS, pages 1–16, 2007.

26. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for authenticated key
agreement. Designs, Codes and Cryptography, 28(2):119–134, 2003.

27. M.-H. Lim, S. Lee, and H. Lee. Cryptanalysis on improved one-round Lin-Li’s tripartite key agreement
protocol. Cryptology ePrint Archive, Report 2007/411.

28. M.-H. Lim, S. Lee, Y. Park, and H. Lee. An enhanced one-round pairing-based tripartite authenticated key
agreement protocol. In O. Gervasi and M. L. Gavrilova, editors, Computational Science and Its Applications
– ICCSA 2007, volume 4406 of LNCS, pages 503–513. Springer, 2007.

29. C.-H. Lin and H.-H. Lin. Secure one-round tripartite authenticated key agreement protocol from Weil
pairing. In Y. Shibata and T. K. Shih, editors, 19th International Conference on Advanced Information
Networking and Applications – AINA05, volume 2, pages 135–138. IEEE, 2005.

30. M. Manulis. Survey on Security Requirements and Models for Group Key Exchange. Technical Report
2006/02, Horst-Görtz Institute, Network and Data Security Group, January 2008.

31. A. Menezes and B. Ustaoglu. Comparing the Pre- and Post-specified Peer Models for Key Agreement. In
Information Security and Privacy – ACISP 2008, volume 5107 of LNCS, pages 53–68. Springer, 2008.

32. K. Shim. Efficient one round tripartite authenticated key agreement protocol from Weil pairing. IET
Electronics Letters, 39(2):208–209, 2003.

33. H.-M. Sun and B.-T. Hsieh. Security Analysis of Shim’s Authenticated Key Agreement Protocols from
Pairings. Cryptology ePrint Archive, Report 2003/113, 2003.

34. B. Ustaoglu. Comparing SessionStateReveal and EphemeralKeyReveal for Diffie-Hellman protocols. 2009.
to appear in ProvSec09.

A Outline of Proof of Theorem 1

In this section, we provide outline of proof of Theorem 1, because of page limitation. We need the gap
BDH(Bilinear Diffie-Hellman) assumption, where one tries to compute BDH(U, V,W) accessing the BDDH ora-
cle. Here, we denote BDH(U, V,W) = ê(P, P)log U log V log W , and the BDDH oracle on input (uP, vP,wP, ê(P, P)x)
returns the bit 1 if uvw = x and the bit 0 otherwise.

Let κ denote the security parameter, and let A be a polynomially (in κ) bounded adversary. We assume
that A succeeds in an environment with n users, activates at most s sessions within a user. We use A to
construct a gap BDH solver S that succeeds with non-negligible probability. The adversary A is said to be
successful with non-negligible probability if A wins the distinguishing game with probability 1

2
+ p(κ), where

p(κ) is non-negligible, and the event M denotes a successful A.
Let the test session be sidt = (P,UA, XA, UB , XB , UC , XC). Let H∗ be the event that A queries H with

(σ0, σ1, σ2, σ3, sid
t). Let H∗ be the complement of event H∗. Let sid∗ be any completed session owned by an

honest user such that sid∗ 6= sidt and sid∗ is non-matching to sidt. Since sid∗ and sidt are distinct and
non-matching, the inputs to the key derivation function H are different for sidt and sid∗. Since H is a random
oracle, A cannot obtain any information about the test session key from the session keys of non-matching
sessions. Hence Pr(M ∧ H∗) ≤ 1

2
and Pr(M) = Pr(M ∧ H∗) + Pr(M ∧ H∗) ≤ Pr(M ∧ H∗) + 1

2
, whence

Pr(M ∧H∗) ≥ p(κ). Henceforth the event M ∧H∗ is denoted by M∗.
We will consider the not exclusive classification of all possible events in the following tables. In the tables,

we denote by (A,X), (B, Y), (C,Z) the static and ephemeral public keys of users UA, UB , UC in the test session
sidt. Events can be classified not exclusively as in Table 1 when A,B,C are distinct, as in Table 2 when
A = B 6= C, as in Table 3 when A = C 6= B, as in Table 4 when A 6= B = C, and as in Table 5 when
A = B = C. Since the classification covers all possible events, at least one event Exy ∧ M∗ in the tables
occurs with non-negligible probability, if event M∗ occurs with non-negligible probability. Thus, the gap BDH
problem can be solved with non-negligible probability, and that means we shows that the proposed protocol is
secure. We will investigate each of these events in the following subsections.

A.1 Event E1a ∧ M∗

Setup The algorithm S begins by establishing n honest users that are assigned random static key pairs. S
embed instance (U, V,W) of gap BDH problem as follows. S randomly selects three users UA, UB , UC and integer
i ∈R [1, s]. S selects static and ephemeral key pairs on behalf of honest users with the following exceptions.
The i-th ephemeral public key X selected on behalf of UA is chosen to be U , the static public key B selected
on behalf of UB is chosen to be V , and the static public key C selected on behalf of UC is chosen to be W , S
does not possess the corresponding static and ephemeral private keys.

11

http://eprint.iacr.org/2007/411
http://eprint.iacr.org/2003/113

Simulation S activates A on this set of users and awaits the actions of A. S simulate oracle queries as
follows.

1. Send(P, Ui, Uj , Uk): S selects an ephemeral private key xi randomly, computes ephemeral public key Xi =
gxi , broadcasts (P, Ui, Uj , Uk, Xi), and records it.

2. Send(P, Ui, Uj , Uk, Xi, Xj , Xk): If (P, Ui, Uj , Uk, Xi) is recorded, S records the session is completed. Other-
wise, S records the session is not completed.

3. RevealKey(sid = (P, Ui, Si, Xi, Uj , Sj , Xj , Uk, Sk, Xk): S maintains list LS of query sid and answered
session key K.

(a) If the session sid is not completed then S returns error.
(b) Else if the session sid is recorded in LS then S returns recorded session key K.
(c) Else if (σ0, σ1, σ2, σ3, sid) is recorded in LH and

BDDH(Xi + fiSi, Xj + Sj , Xk + Sk, σ0) = 1,
BDDH(Xi + Si, Xj + fjSj , Xk + Sk, σ1) = 1,
BDDH(Xi + Si, Xj + Sj , Xk + fkSk, σ2) = 1,
BDDH(Xi + fiSi, Xj + fjSj , Xk + fkSk, σ3) = 1,

then S returns recorded session key K and records it in in LS .
(d) Otherwise, S returns random session key K, and records it in LS .

4. H(σ0, σ1, σ2, σ3, P, Ui, Si, Xi, Uj , Sj , Xj , Uk, Sk, Xk): S maintains list LH of query (σ0, σ1, σ2, σ3, sid) and
answered hash value K.

(a) If (σ0, σ1, σ2, σ3, sid) is recorded in LH then S returns recorded session key K
(b) Else if the session sid is recorded in LS and

BDDH(Xi + fiSi, Xj + Sj , Xk + Sk, σ0) = 1,
BDDH(Xi + Si, Xj + fjSj , Xk + Sk, σ1) = 1,
BDDH(Xi + Si, Xj + Sj , Xk + fkSk, σ2) = 1,
BDDH(Xi + fiSi, Xj + fjSj , Xk + fkSk, σ3) = 1,

then S returns recorded session key K and records it in in LH .
(c) Else if (Ui, Si, Xi, Uj , Sj , Xj , Uk, Sk, Xk) = (UA, A,X = U,UB , B = V, Y, UC , C = W,Z), and

BDDH(X +DA,Y +B,Z + C, σ0) = 1,
BDDH(X +A, Y + EB,Z + C, σ1) = 1,
BDDH(X +A, Y +B,Z + FC, σ2) = 1,
BDDH(X +DA,Y + EB,Z + FC, σ3) = 1,

and UA is honest, i.e., S knows a = log(A), then S stops and is successful by outputting the answer
of the gap BDH problem

((σ′−1
0 σ′1)−1σ′−1

2 σ′3)1/((E−1)(F−1)) = BDH(X,B,C),

where σ′0 = ê(Y + B,Z + C)−Daσ0, σ′1 = ê(Y + EB,Z + C)−aσ1, σ′2 = ê(Y + B,Z + FC)−aσ2,
σ′3 = ê(Y + EB,Z + FC)−Daσ3, and D = fA = He(X), E = fB = He(Y), F = fC = He(Z).

(d) Otherwise, S returns random hash value K, and records it in LH .

5. He(∗): S simulates random oracle in the usual way.
6. RevealState(sid): If ephemeral public key of session sid is U , then S aborts with failure, otherwise responds

to the query faithfully.
7. RevealStaticKey(Ui): If static public key of user Ui is V or W , then S aborts with failure, otherwise

responds to the query faithfully.
8. AddUser(Ui, S): S responds to the query faithfully.
9. Test(sid): If ephemeral public key of a user is not U and static public keys of the other users are not V,W

in session sid, then S aborts with failure, otherwise responds to the query faithfully.
10. If A outputs a guess γ, S aborts with failure.

Analysis The simulation of A environment is perfect except with negligible probability. The probability that
A selects the session, where ephemeral public key of a user is U and static public keys of the other users are
V,W , as the test session sidt is at least 1

n3s
. Suppose this is indeed the case, S does not abort as in Step 9,

and suppose event E1a ∧M∗ occurs, S does not abort in Step 7 and Step 6.
Under event M∗ except with negligible probability, A queries H with BDH(X + DA,Y + B,Z + C),

BDH(X +A, Y +EB,Z +C), BDH(X +A, Y +B,Z +FC), and BDH(X +DA,Y +EB,Z +FC). Therefore
S is successful as described in Step 4c and does not abort as in Step 10.

Hence, S is successful with probability Pr(S) ≥ p1a
n3s

, where p1a is probability that E1a ∧M∗ occurs.

12

A.2 Other Events

Event E1b ∧ M∗ Same as the event E1a ∧M∗ in Subsection A.1, except the following points. In Setup, S
embeds gap BDH instance (U, V,W) as A = U,B = V,C = W . In Simulation of H, S extracts BDH(U, V,W)
as follows:

((σ′−1
0 σ′1)−1σ′−1

2 σ′3)1/((E−1)(F−1)) = BDH(A,B,C),

where σ′0 = (ê(Y + B,Z + C)−xσ0)1/D, σ′1 = ê(Y + EB,Z + C)−xσ1, σ′2 = ê(Y + B,Z + FC)−xσ2, σ′3 =
(ê(Y + EB,Z + FC)−xσ3)1/D.

Event E2a ∧ M∗ Same as the event E1a ∧M∗ in Subsection A.1, except the following points. In Setup, S
embeds gap BDH instance (U, V,W) as X = U, Y = V,Z = W . In Simulation of H, S extracts BDH(U, V,W)
as follows:

((σ′E0 σ′−1
1)F (σ′E2 σ′−1

3)−1)1/((E−1)(F−1)) = BDH(X,Y, Z),

where σ′0 = ê(Y + B,Z + C)−Daσ0, σ′1 = ê(Y + EB,Z + C)−aσ1, σ′2 = ê(Y + B,Z + FC)−aσ2, σ′3 =
ê(Y + EB,Z + FC)−Daσ3.

Event E2b ∧ M∗ Same as the event E1a ∧M∗ in Subsection A.1, except the following points. In Setup, S
embeds gap BDH instance (U, V,W) as A = U, Y = V,Z = W . In Simulation of H, S extracts BDH(U, V,W)
as follows:

((σ′E0 σ′−1
1)F (σ′E2 σ′−1

3)−1)1/((E−1)(F−1)) = BDH(A, Y, Z),

where σ′0 = (ê(Y + B,Z + C)−xσ0)1/D, σ′1 = ê(Y + EB,Z + C)−xσ1, σ′2 = ê(Y + B,Z + FC)−xσ2, σ′3 =
(ê(Y + EB,Z + FC)−xσ3)1/D.

Event E3a ∧ M∗ Same as the event E1a ∧M∗ in Subsection A.1, except the following points. In Setup, S
embeds gap BDH instance (U, V,W) as X = U,B = V,Z = W . In Simulation of H, S extracts BDH(U, V,W)
as follows:

((σ′−1
0 σ′1)F (σ′−1

2 σ′3)−1)1/((E−1)(F−1)) = BDH(X,B,Z),

where σ′0 = ê(Y + B,Z + C)−Daσ0, σ′1 = ê(Y + EB,Z + C)−aσ1, σ′2 = ê(Y + B,Z + FC)−aσ2, σ′3 =
ê(Y + EB,Z + FC)−Daσ3.

Event E3b ∧ M∗ Same as the event E1a ∧M∗ in Subsection A.1, except the following points. In Setup, S
embeds gap BDH instance (U, V,W) as A = U,B = V,Z = W . In Simulation of H, S extracts BDH(U, V,W)
as follows:

((σ′−1
0 σ′1)F (σ′−1

2 σ′3)−1)1/((E−1)(F−1)) = BDH(A,B,Z),

where σ′0 = (ê(Y + B,Z + C)−xσ0)1/D, σ′1 = ê(Y + EB,Z + C)−xσ1, σ′2 = ê(Y + B,Z + FC)−xσ2, σ′3 =
(ê(Y + EB,Z + FC)−xσ3)1/D.

Event E3′a ∧ M∗ and E3′b ∧ M∗ Events E3′a ∧M∗ and E3′b ∧M∗ can be handled in the same way as
events E3a ∧M∗ and E3b ∧M∗ in Subsection A.2 because of symmetry of B and C, respectively.

A.3 Other Cases

In the case of A = B 6= C, events E1
1b, E

1
2a, E

1
3b, E

1
3′a in Table 2 can be handled same as events E1b, E2a, E3b, E3′a

in Table 1, with condition A = B 6= C.
In the case ofA = C 6= B, events E1′

1b, E
1′
2a, E

1′
3a, E

1′
3′b in Table 3 can be handled same as events E1b, E2a, E3a, E3′b

in Table 1, with condition A = C 6= B.
In the case ofA 6= B = C, events E2

1a, E
2
1b, E

2
2a, E

2
2b in Table 4 can be handled same as events E1a, E1b, E2a, E2b

in Table 1, with condition A 6= B = C.
In the case of A = B = C, events E3

1b, E
3
2a in Table 5 can be handled same as events E1b, E2a in Table 1,

with condition A = B = C.

13

A X B Y C Z succ. prob.

E1a r ok ok r/n ok r/n p1a/n
3s

E1b ok r ok r/n ok r/n p1b/n
3

E2a r ok r ok r ok p2a/n
3s3

E2b ok r r ok r ok p2b/n
3s2

E3a r ok ok r/n r ok p3a/n
3s2

E3b ok r ok r/n r ok p3b/n
3s

E3′a r ok r ok ok r/n p3′a/n
3s2

E3′b ok r r ok ok r/n p3′b/n
3s

Table 1. Classification of events, when A,B,C are distinct. “ok” means the static key is not revealed,
or the matching session exists and the ephemeral key is not revealed. “r” means the static or ephemeral
key may be revealed. “r/n” means the ephemeral key may be revealed if the matching session exists
or no matching session exists. “succ. prob.” row shows the probability of success of solver S, where
pxy = Pr(Exy ∧M∗) and n and s is the number of parties and sessions.

A X B = A Y C Z succ. prob.

E1
1b ok r ok r/n ok r/n p1

1b/n
3

E1
2a r ok r ok r ok p1

2a/n
3s3

E1
3b ok r ok r/n r ok p1

3b/n
3s

E1
3′a r ok r ok ok r/n p1

3′a/n
3s2

Table 2. Classification of events, when A = B 6= C.

A X B Y C = A Z succ. prob.

E1′
1b ok r ok r/n ok r/n p1′

1b/n
3

E1′
2a r ok r ok r ok p1′

2a/n
3s3

E1′
3a r ok ok r/n r ok p1′

3a/n
3s2

E1′

3′b ok r r ok ok r/n p1′

3′b/n
3s

Table 3. Classification of events, when A = C 6= B.

A X B Y C = B Z succ. prob.

E2
1a r ok ok r/n ok r/n p2

1a/n
3s

E2
1b ok r ok r/n ok r/n p2

1b/n
3

E2
2a r ok r ok r ok p2

2a/n
3s3

E2
2b ok r r ok r ok p2

2b/n
3s2

Table 4. Classification of events, when A 6= B = C.

A X B = A Y C = A Z succ. prob.

E3
1b ok r ok r/n ok r/n p3

1b/n
3

E3
2a r ok r ok r ok p3

2a/n
3s3

Table 5. Classification of events, when A = B = C.

14

	Modeling Leakage of Ephemeral Secretsin Tripartite/Group Key Exchange

