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Abstract. We enrich the classical notion of group key exchange (GKE) protocols by a new property that
allows each pair of users to derive an independent peer-to-peer (p2p) key on-demand and without any subse-
quent communication; this, in addition to the classical group key shared amongst all the users. We show that
GKE protocols enriched in this way impose new security challenges concerning the secrecy and indepen-
dence of both key types. The special attention should be paid to possible collusion attacks aiming to break
the secrecy of p2p keys possibly established between any two non-colluding users.
In our constructions we utilize the well-known parallel Diffie-Hellman key exchange (PDHKE) technique in
which each party uses the same exponent for the computation of p2p keys with its peers. First, we consider
PDHKE in GKE protocols where parties securely transport their secrets for the establishment of the group
key. For this we use an efficient multi-recipient ElGamal encryption scheme. Further, based on PDHKE we
design a generic compiler for GKE protocols that extend the classical Diffie-Hellman method. Finally, we
investigate possible optimizations of these protocols allowing parties to re-use their exponents to compute
both group and p2p keys, and show that not all such GKE protocols can be optimized.
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1 Introduction

Traditional group key exchange (GKE) protocols allow users to agree on a secret group key and are fundamental
for securing applications that require group communication. However, messages authenticated or encrypted
with the group key attest only that the originator of the message is a valid member of the group. The goal
of this paper is to investigate the enrichment of GKE protocols with the additional derivation of peer-to-peer
(p2p) keys for any pair of users. A single run of a GKE protocol enriched in this way would suffice to set up a
secure group channel providing possibly each pair of users with an independent secure peer-to-peer channel “for
free”, thus implicitly allowing for a secure combination of group and p2p communication. Note that messages
authenticated or encrypted with a p2p key would attest not only the group membership but also allow for the
identification of the sender. For example, in digital conferences or instant messaging systems each user can
participate in a secure group discussion and if necessary switch for a while to a secure bilateral discussion with
some other user; or a user can encrypt some file for all users using the group key and attach supplementary files
encrypted with p2p keys for the selected subset of its peers.

Obviously, the simultaneous computation of group and p2p keys can be achieved through the execution of
a GKE protocol in parallel with the execution of a two-party key exchange (2KE) protocol between every pair
of users. The drawback of this approach is that it would require (n2 − n)/2 parallel 2KE executions in order to
provide each pair with the own key (where n is the number of users). The only way to avoid such parallel 2KE
executions is to consider solutions where p2p keys are computed on-demand; we denote such GKE protocols
by GKE+P.

A rather naïve construction of GKE+P protocols can be obtained from the execution of a GKE protocol
followed by a separate execution of a 2KE protocol between some pair of users. The drawback of this solution
is the additional interaction for the computation of p2p keys (in the worst case requiring up to n − 1 different
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2KE protocol runs involving the same user) and the deployment of two different protocols (GKE and 2KE).
Therefore, since GKE participants already interact to establish the group key it appears interesting to investigate
whether GKE+P protocols can be constructed enabling the completely non-interactive derivation of p2p keys?

GKE+P protocols raise new security challenges concerning the independence of group and p2p keys. Tra-
ditional GKE protocols require that a session group key remains secret from any adversary that is an external
entity to that session. In GKE+P protocols this requirement should hold even in case where p2p keys leak. By the
same token GKE+P protocols should provide secrecy of the p2p keys computed in some session independent of
whether the adversary learns the group key or not. However, the most significant challenge specific to GKE+P
protocols results from the independence amongst different p2p keys computed in the same session and even by
the same user (for different peers). In particular GKE+P protocols should provide secrecy of some session p2p
key if other participants that are not intended to compute that key collude. Thus, when defining the secrecy of
some session p2p key we should no longer assume that the adversary remains an external entity to that session
but rather that it may act on behalf of colluding participants and thus deviate from the protocol specification.

Specification of the appropriate security requirements and efficient, provably secure solutions for GKE+P
protocols represents the main focus of our work.

1.1 Related Work

The basic security goal of any key exchange protocol is called (Authenticated) Key Exchange security ((A)KE-
security, for short) and deals with the secrecy or indistinguishability of the established session group key with
respect to an (active) adversary which is usually modeled as an external entity from the perspective of the
attacked session. This requirement became an inherent part of all security models for 2KE protocols, e.g. [3,5–
7,17–19,34,38], and GKE protocols, e.g. [10,11,13,15,28,29]. A general signature-based compilation technique
proposed by Katz and Yung [29] can turn any KE-secure (group) key exchange protocol into an AKE-secure
one, thus by adding the authentication and thwarting possible impersonation attacks. Additionally, we remark
that some of the mentioned security models for GKE protocols (e.g. [12,13,28]) aim at defining optional security
against insider attacks, and the corresponding compilers defined in these papers can turn any AKE-secure GKE
protocol into a protocol that withstands such attacks. These compilers also provide the so-called requirement
of mutual authentication (MA) [7,11,15], which ensures the bilateral authentication of all protocol participants
and is usually combined with a key confirmation step.

From the variety of the existing GKE protocols (see [9, 35] for surveys) of special interest in the context
of our GKE+P constructions are the (unauthenticated) extensions of the classical 2KE approach by Diffie and
Hellman [21] to a group setting, e.g. [16,20,24,31,32,37,39,40]. Let us denote all these protocols for simplicity
as Group Diffie-Hellman (GroupDH) protocols since they derive the group key from some shared secret which
in turn depends on the individual exponents chosen by the protocol participants during the execution. For the
design of GKE+P protocols it appears promising to investigate to what extent the existing GroupDH protocols
allow for the non-interactive, on-demand computation of p2p keys, in particular whether or not secret exponents
used in these GroupDH protocols can be safely re-used for the computation of p2p keys.

GKE protocols proposed in [1, 36] are partially related since they consider a 2KE protocol as a building
block in order to obtain a secure GKE protocol, yet without enabling on-demand computation of p2p keys
amongst any pair of users. Also, the so-called group secret handshakes [25, 26] should be noticed since these
can be seen as extensions of GKE protocols with another property called affiliation-hiding. We mention them
here since the on-demand computation of p2p keys can be also considered in that scenarios (in particular in
particular our results can be extended to deal with [25] that is based on the GKE protocol from [16]).

One of the main building blocks across all our GKE+P constructions is the parallel execution of the 2KE
Diffie-Hellman protocol (PDHKE), in which each user broadcasts a value of the form gx (for the appropriate
generator g and private user’s exponent x) and uses x for the computation of different p2p keys. In this context,
Jeong and Lee [27] recently specified and analyzed a related mechanism where keys are derived in parallel from
ephemeral and long-lived exponents. However, their security model does not consider collusion attacks against
the secrecy of p2p keys computed by non-colluding users. Note also the recent work by Biswas [8] who revised
the 2KE Diffie-Hellman protocol allowing its participants to choose two different exponents each and obtain 15
different shared keys.
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1.2 Contributions and Organization

We start in Section 2 with the extension of the classical GKE security model from [29] in order to address
the additional challenges of GKE+P protocols and define the corresponding requirements of (A)KE-security of
group and p2p keys; the latter in the presence of collusion attacks. Our model is designed in a modular way and
can be selectively applied to GKE+P and GKE protocols, and also to the protocols like PDHKE. In Section 3
we introduce general notations and recall some classical assumptions.

In Section 4 we present and analyze our first GKE+P protocol, denoted PDHKE-MRE. In this protocol we
merge PDHKE with the multi-recipient ElGamal encryption (MRE) from [4, 33]. PDHKE-MRE optimizes the
combination of PDHKE and MRE in that it utilizes user’s exponent for both — generation of p2p keys and de-
cryption of ElGamal ciphertexts. This optimization is tricky (compared to the simple “black-box” combination)
since it requires an additional hardness assumption. Our security analysis of PDHKE-MRE also demonstrates
that PDHKE can be used as a stand-alone protocol to obtain KE-secure p2p keys in the presence of collusion
attacks.

In Section 5 we obtain more efficient GKE+P protocols from GroupDH protocols (see related work for
examples). First, we describe a general compilation technique to obtain GKE+P solutions from any GroupDH
protocol based on PDHKE, yet assuming that the exponents used for the derivation of p2p keys are independent
from those used in the computation of the group key. Additionally, we investigate whether private exponents
that are implicit to the GroupDH protocols can be re-used for the on-demand computation of p2p keys. The
key observation here is that many GroupDH protocols require each user Ui to choose some exponent xi and
broadcast a public value gxi . The natural question is whether a value gxixj , if computed from the exponents
xi and xj used in the GroupDH protocol, would be suitable for the derivation of a secure p2p key between Ui
and Uj? In this light we analyze the well-known communication-efficient protocols by Burmester and Desmedt
(BD) [16] and by Kim, Perrig, and Tsudik (KPT) [31] (the latter as a representative for the family of Tree
Diffie-Hellman protocols). We show that in the BD protocol this technique will not guarantee the KE-security
of p2p keys, whereas in the KPT protocol it will, though at the cost of an additional hardness assumption. The
latter result is of special interest since we do not introduce any new communication costs to the KPT protocol.

In Section 6, we compare the performance of the introduced GKE+P protocols.
In Section 7 we show that the authentication compiler introduced in [29] for securing traditional KE-secure

GKE protocols is also sufficient for adding the authentication to KE-secure GKE+P protocols.

2 Security Model for GKE+P Protocols

Our security model for GKE+P protocols extends the meanwhile standard GKE security model from [29] by
capturing the additional requirements concerning the on-demand computation of p2p keys.

2.1 Participants, Sessions, and Correctness of GKE+P Protocols

By U we denote a set of at most N users (more precisely, their identities which are assumed to be unique) in the
universe. Any subset of n users (2 ≤ n ≤ N ) can participate in a single session of a GKE+P protocol P . Each
Ui ∈ U holds a (secret) long-lived key LLi.1 The participation of Ui in distinct, possibly concurrent protocol
sessions is modeled via an unlimited number of instances Πs

i , s ∈ N. Each instance Πs
i can be invoked for

one session with some partner id pidsi ⊆ U encompassing the identities of the intended participants (including
Ui). At the end of the interactive phase Πs

i holds a session id sidsi which uniquely identifies the session. Two
instances Πs

i and Πt
j are considered as partnered if sidsi = sidtj and pidsi = pidtj . The success of the

interactive phase by some instance Πs
i is modeled through its acceptance, in which case the instance holds a

session group key ksi . Each instance Πs
i that has accepted can later decide to compute a session p2p key ksi,j for

some user Uj ∈ pidsi . We are now ready to formally define what a GKE+P protocol is.

1 Our GKE+P protocols are first analyzed in the authenticated links model where long-lived keys are assumed to be empty.
The authentication in GKE+P protocols using the compiler technique from [29] that we discuss in Section 7 will assume
that each LLi corresponds to some digital signature key pair.
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Definition 1 (GKE+P Protocol and Correctness). P is a group key exchange protocol enabling on-demand
derivation of p2p keys (GKE+P) if P consists of the group key exchange protocol GKE and a p2p key derivation
algorithm P2P defined as follows:

P.GKE(U1, . . . , Un): For each input Ui a new instance Πs
i is created and a probabilistic interactive protocol

between these instances is executed such that at the end every instance Πs
i accepts holding the session

group key ksi .
P.P2P(Πs

i , Uj): On input an accepted instance Πs
i and some user identity Uj ∈ pidsi this deterministic

algorithm outputs the session p2p key ksi,j . (We assume that P2P is given only for groups of size n ≥ 3 since
for n = 2 the group key is sufficient.)

A GKE+P protocol P is correct if (when no adversary is present) all instances participating in the protocol
P.GKE accept with identical group keys and P.P2P(Πs

i , Uj) = P.P2P(Πt
j , Ui) holds for any pair of partnered

instances Πs
i and Πt

j .

2.2 Adversarial Model and Security Goals

Security model for GKE+P protocols must address the following two challenges that are new compared to the
classical GKE setting: The first challenge is to model the secrecy of a session group key ksi by taking into
account possible leakage of any p2p key that can be computed in that session (including all ksi,j). Since for the
secrecy of the session group key the adversary is treated as an external entity and not as a legitimate participant
of that session our model should provide the adversary with the ability to schedule the on-demand computation
of p2p keys and to reveal them. The second, main challenge is to model the secrecy of a session p2p key ksi,j
by taking into account the leakage of the group key and also the leakage of other p2p keys computed in that
session (with the obvious exclusion of ktj,i when Πs

i and Πt
j are partnered). Note that the secrecy of p2p keys

does not require the adversary to be an external entity (unlike the secrecy of the group key). Hence, we have to
face possible collusion attacks aiming to break the secrecy of ksi,j and allow for the active participation of the
adversary in the attacked session.

ADVERSARIAL MODEL The adversaryA, modeled as a PPT machine, can schedule the protocol execution and
mount own attacks via the following queries:

– Execute(U1, . . . , Un): This query executes the protocol between new instances of U1, . . . , Un ∈ U and
provides A with the execution transcript.

– Send(Πs
i ,m) : With this query A can deliver a message m to Πs

i whereby U denotes the identity of its
sender. A is then given the protocol message generated by Πs

i in response to m (the output may also be
empty if m is unexpected or if Πs

i accepts). A special invocation query of the form Send(Ui, (′start′, U1,
. . . , Un)) creates a new instance Πs

i with pidsi := {U1, . . . , Un} and provides A with the first protocol
message.

– Peer(Πs
i , Uj): This query allows A to schedule the on-demand computation of p2p keys. In response, Πs

i

computes ksi,j ; the query is processed only if Πs
i has accepted and Uj ∈ pidsi , and it can be asked only

once per input (Πs
i , Uj).

– Reveal(Πs
i ): This query models the leakage of group keys and provides A with ksi . It is answered only if

Πs
i has accepted.

– RevealPeer(Πs
i , Uj): This query models the leakage of p2p keys and provides A with ksi,j ; the query is

answered only if Peer(Πs
i , Uj) has already been asked and processed.

– Corrupt(Ui): This query providesA with LLi. Note that in this caseA does not gain control over the user’s
behavior, but might be able to communicate on behalf of the user.

– Test(Πs
i ): This query models indistinguishability of session group keys. Depending on a given (privately

flipped) bit b A is given, if b = 0 a random session group key, and if b = 1 the real ksi . This query can be
asked only once and is answered only if Πs

i has accepted.
– TestPeer(Πs

i , Uj): This query models indistinguishability of session p2p keys. Depending on a given (pri-
vately flipped) bit b A is given, if b = 0 a random session p2p key, and if b = 1 the real ksi,j . It is answered
only if Peer(Πs

i , Uj) has been previously asked and processed.
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TERMINOLOGY We say that U is honest if no Corrupt(U) has been asked by A; otherwise, U is corrupted (or
malicious). This also refers to the instances of U .

TWO NOTIONS OF FRESHNESS The classical notion of freshness imposes several conditions in order to pre-
vent any trivial break of the (A)KE-security. Obviously, we need two definitions of freshness to capture such
conditions for the both key types.

First, we define the notion of instance freshness which will be used in the definition of (A)KE-security of
group keys. Our definition is essentially the one given in [29].

Definition 2 (Instance Freshness). An instance Πs
i is fresh if Πs

i has accepted and none of the following is
true, whereby Πt

j denotes an instance partnered with Πs
i : (1) Reveal(Πs

i ) or Reveal(Πt
j) has been asked, or

(2) Corrupt(U ′) for some U ′ ∈ pidsi was asked before any Send(Πs
i , ·).

Note that in the context of GKE+P the above definition restricts A from active participation on behalf of any
user during the attacked session, but implicitly allows for the leakage of (all) p2p keys.

Additionally, we define the new notion of instance-user freshness which will be used to specify the (A)KE-
security of p2p keys.

Definition 3 (Instance-User Freshness). An instance-user pair (Πs
i , Uj) is fresh if Πs

i has accepted and
none of the following is true, whereby Πt

j denotes an instance partnered with Πs
i : (1) RevealPeer(Πs

i , Uj)
or RevealPeer(Πt

j , Ui) has been asked, or (2) Corrupt(Ui) or Corrupt(Uj) was asked before any Send(Πs
i , ·)

or Send(Πs
j , ·).

Here A is explicitly allowed to actively participate in the attacked session on behalf of any user except for Ui
and Uj . Also A may learn the group key ki and all p2p keys except for ki,j . This models possible collusion of
participants during the execution of the protocol aiming to break the secrecy of the p2p key ksi,j .

(A)KE-SECURITY OF GROUP AND P2P KEYS For the (A)KE-security of group keys we follow the definition
from [29]. Note that in case of KE-security A is restricted to pure eavesdropping attacks via the Execute query
without being able to access the Send queries.

Definition 4 ((A)KE-Security of Group Keys). Let P be a correct GKE+P protocol and b a uniformly chosen
bit. By Game(a)ke-g,b

A,P (κ) we define the following adversarial game, which involves a PPT adversary A that is
given access to all queries (except for Send when dealing with KE-security):

– A interacts via queries;
– at some point A asks a Test(Πs

i ) query for some instance Πs
i which is (and remains) fresh;

– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define: Adv(a)ke-g
A,P (κ) :=

∣∣∣2 Pr[Game(a)ke-g,b
A,P (κ) = b]− 1

∣∣∣
and denote with Adv(a)ke-g

P (κ) the maximum advantage over all PPT adversaries A. We say that P provides
(A)KE-security of group keys if this advantage is negligible.

Finally, we define (A)KE-security of p2p keys where we must consider possible collusion attacks. For this
it is essential to allow A access to Send queries, even in the case of KE-security. The difficulty is that given
general access to Send queries A can trivially impersonate any protocol participant. Hence, when dealing with
KE-security of p2p keys we must further restrictA to truly forward all messages sent by honest users. According
to our definition of instance-user freshness of (Πs

i , Uj) this restriction will imply an unbiased communication
between the instances of Ui and Uj .

Definition 5 ((A)KE-security of P2P Keys). Let P be a correct GKE+P protocol and b a uniformly chosen bit.
By Game(a)ke-p,b

A,P (κ) we define the following adversarial game, which involves a PPT adversary A that is given
access to all queries (with the restriction to truly forward all messages of honest users in case of KE-security):
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– A interacts via queries;
– at some pointA asks a TestPeer(Πs

i , Uj) query for some instance-user pair (Πs
i , Uj) which is (and remains)

fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define: Adv(a)ke-p
A,P (κ) :=

∣∣∣2 Pr[Game(a)ke-p,b
A,P (κ) = b]− 1

∣∣∣
and denote with Adv(a)ke-p

P (κ) the maximum advantage over all PPT adversaries A. We say that P provides
(A)KE-security of p2p keys if this advantage is negligible.

3 General Notations and Preliminaries

Throughout the paper, unless otherwise specified, by G := 〈g〉we denote a cyclic subgroup in Z∗P of prime order
Q|P − 1 generated by g, where P is also prime. By Hg, Hp : {0, 1}∗ → {0, 1}κ we denote two cryptographic
hash functions, which will be used in our constructions for the purpose of derivation of group and p2p keys,
respectively. Additionally, we recall the following three well-known cryptographic assumptions:

Definition 6 (Hardness Assumptions). Let G := 〈g〉 as above and a, b, c ∈R ZQ. We say that:
The Discrete Logarithm (DL) problem is hard in G if the following success probability is negligible:

SuccDLG (κ) := max
A′

(
Pr
a

[
A′(g, ga) = a

])
;

The Decisional Diffie-Hellman (DDH) problem is hard in G = 〈g〉 if the following advantage is negligible:

AdvDDHG (κ) := max
A′

∣∣Pr
a,b

[
A′(g, ga, gb, gab) = 1

]
− Pr
a,b,c

[
A′(g, ga, gb, gc) = 1

]∣∣;
The Square-Exponent Decisional Diffie-Hellman (SEDDH) problem is hard in G2if the following advantage is
negligible:

AdvSEDDHG (κ) := max
A′

∣∣Pr
a

[
A′(g, ga, ga

2
) = 1

]
− Pr
a,b

[
A′(g, ga, gb) = 1

]∣∣.
Note that SuccDLG (κ), AdvDDHG (κ), and AdvSEDDHG (κ) are computed over all PPT adversariesA′ running within

time κ.

4 Optimized PDHKE-MRE

Here we introduce our first GKE+P protocol, called PDHKE-MRE. The optimization concerns the utilization
of each xi ∈ ZQ as a private decryption key for the multi-recipient ElGamal encryption [4, 33] and as a secret
exponent for the computation of p2p keys via PDHKE. Note that PDHKE-MRE can be generalized by applying
other multi-recipient public key encryption schemes [4]. However, in this case our optimization may no longer
hold.

4.1 Parallel Diffie-Hellman Key Exchange (PDHKE)

Assuming that users interact over the authenticated channels we define PDHKE as follows (we describe all our
protocols from the perspective of one session using the identities of users and not their instances):

Round 1 Each Ui chooses a random xi ∈R ZQ and broadcasts yi := gxi .

2 Wolf [41] showed that SEDDH is reducible to DDH and that the converse does not hold.
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P2P key computation Each Ui for a given identity Uj computes k′i,j := gxixj and derives ki,j := Hp(k′i,j , Ui|yi,
Uj |yj). W.l.o.g. we assume that i < j and that if Uj computes own p2p key for Ui it uses the same order
for the inputs of Hp as Ui does.

A special attention in PDHKE should be paid to the key derivation step based on Hp. Note that in the random
oracle model this construction ensures the independence of different p2p keys (possibly computed by the same
Ui for different Uj). The reason is that if Ui is honest then the hash input remains unique for each derived p2p
key (due to the uniqueness of Ui|yi across different sessions and the uniqueness of each Uj within the same
session). The uniqueness of hash inputs is of importance. Assume, that ki,j would be derived as Hp(k′i,j). In
this case A may impose dependency between k′i,j and k′i,a for some user Ua that it may control, e.g. by using
ya = yj . With this simple attack A cannot compute k′i,a due to the lack of xa = xj but it can easily distinguish
ki,j by obtaining ki,a (which would then be equal to ki,j) via an appropriate RevealPeer query to an instance of
honest Ui.

4.2 Multi-Recipient ElGamal Encryption (MRE)

In the classical ElGamal encryption [23] a message m ∈ G is encrypted under the recipient’s public key y = gx

through the computation of the ciphertext (gr, yrm) using some random r ∈R ZQ. A multi-recipient ElGamal
encryption (MRE) [4,33] re-uses the random exponent r for the construction of ciphertexts of several messages
m1, . . . ,mn under several public keys y1 = gx1 , . . . , yn = gxn , i.e., by computation of (gr, yr1m1, . . . , y

r
nmn).

However, in PDHKE-MRE we will be encrypting the same message m = m1 = . . . = mn. For this case [33]
defines a computation-efficient MRE version where the ciphertext has the form (mgr, yr1, . . . , y

r
n). Obviously,

this technique results in shorter ciphertexts should a single protocol message contain ciphertexts for multiple
recipients. Informally, the IND-CPA security of MRE means that any encrypted plaintext remains indistinguish-
able, even if the adversary is in possession of the secret keys {xj}j 6=i. This has been proven in [33] (and also
in [4] under a stronger setting) based on the DDH assumption.

4.3 Description of PDHKE-MRE

Our optimization in PDHKE-MRE is based on the idea to re-use the same exponent xi for both — derivation
of p2p keys from k′i,j = gxixj and decryption of {x̄j}j . The protocol PDHKE-MRE.GKE amongst a set of n
users U1, . . . , Un proceeds in two rounds:

Round 1 Each Ui chooses a random xi ∈R ZQ and broadcasts yi := gxi .
Round 2 Each Ui chooses random x̄i ∈R G, ri ∈R ZQ, computes zi := x̄ig

ri and {zi,j := yri
j }j and

broadcasts (zi, {zi,j}j).

Group key computation Each Ui decrypts
{
x̄j := zj

z
(1/xi)
j,i

}
j

and accepts with ki := Hg(x̄1, . . . , x̄n, sidi)

where sidi := (U1|y1, . . . , Un|yn).

The algorithm PDHKE-MRE.P2P when executed by some user Ui for a peer Uj computes k′i,j := gxixj and
outputs ki,j := Hp(k′i,j , Ui|yi, Uj |yj) whereby the inputs Ui|yi and Uj |yj are taken from sidi. W.l.o.g. we
assume that i < j and that Uj will use the same order for the inputs to Hp in the computation of kj,i.

4.4 Security Analysis of PDHKE-MRE

Although the stand-alone security of MRE can be proven under the DDH assumption, its optimized merge with
PDHKE requires the additional use of the SEDDH assumption for the proof of KE-security of group keys as
motivated in the following.

The natural way to prove the IND-CPA security of MRE under the DDH assumption would be to simulate
yj = gaαj , zi = x̄ig

bβi , and each zi,j = gabαjβi , where ga and gb belong to the DDH tuple and αj , βi ∈R ZQ
(observe that the DDH problem is self-reducible). However, in PDHKE-MRE this simulation would also mean
that yi = gaαi for some αi ∈R ZQ and possibly imply gxixj = ga

2αiαj upon the simulation of p2p keys, which
in turn involves ga

2
from the SEDDH tuple.
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Theorem 1. If both problems DDH and SEDDH are hard in G then PDHKE-MRE provides KE-security of
group keys and

Advke-g
PDHKE-MRE(κ) ≤

2(N(qEx + qSe)2 + qHg)
Q

+
(qHg + qHp)

2

2κ−1
+ 2NAdvSEDDHG (κ) + 2N(N − 1)AdvDDHG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at most qHg and qHp random
oracle queries being asked.

Proof. In the following we show that the advantage of A in distinguishing ki from some random element from
{0, 1}κ is negligible. We construct a sequence of games G0, . . . ,G5 and denote by Winke-g

i the event that the
bit b′ output by A is identical to the randomly chosen bit b in the i-th game. Recall that in each game Test(Πs

i )
is answered only if the instance Πs

i is fresh.
Game G0. This is the real execution of PDHKE-MRE in which a simulator ∆ truly answers all queries of

A on behalf of the instances as defined in Gameke-g,b
A,PDHKE-MRE(κ).

We assume that A has access to the hash queries for the hash functions Hg and Hp, which are modeled as
random oracles in the classical way, i.e., by returning new random values for new queries and replaying answers
if the queries were previously made.

Game G1. In this game we exclude for every honest user Ui the collisions of the transcripts (Ui, yi) and
group keys ki computed in different sessions. We also exclude any collisions between ki and any ki,j . Re-
garding the transcripts we observe that if Ui is honest then its session value yi is randomly distributed in G
(as a result of yi := gxi for xi ∈R ZQ). Thus, according to the birthday paradox the collision on transcripts
occurs with the probability of at most N(qEx + qSe)2/Q over all possible users (recall that sessions can be
invoked via Execute and Send queries). The uniqueness of transcripts also implies the uniqueness of inputs to
Hg(x̄1, . . . , x̄n, U1|y1, . . . , Un|yn). By construction inputs to Hg remain always different from the inputs to Hp.
Since Hg and Hp are modeled as random functions we can also apply the birthday paradox and upper-bound the
probability of collisions for ki and collisions between ki and any ki by (qHg + qHp)

2/2κ. Thus,

|Pr[Winke-g
1

]− Pr[Winke-g
0

]| ≤ N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ
.

Game G2. In this game we assume that ∆ chooses some random value a ∈R ZQ and simulates the proto-
col execution in response to some Execute(U1, . . . , Un) query according to the real specification for the only
difference that it sets each yi := gaαi for some random αi ∈R ZQ and computes any ki,j using k′i,j := ga

2αiαj .
Clearly, the distributions do not change, thus Pr[Winke-g

1
] = Pr[Winke-g

2
].

Game G3. In this game we assume that ∆ chooses an additional random value b ∈R ZQ and simulates the
protocol execution in response to a Execute(U1, . . . , Un) query as in the previous game except that now any
ki,j is computed using k′i,j := gbαiαj , thus independently from both yi = gaαi and yj = gaαj . Obviously,
both games remain indistinguishable in case that the SEDDH assumption holds in G (note that (g, ga, ga

2
) and

(g, ga, gb) embedded respectively in G2 and G3 correspond to a SEDDH tuple). Hence,

|Pr[Winke-g
3

]− Pr[Winke-g
2

]| ≤ NAdvSEDDHG (κ).

Observe, that in this game all k′i,j are uniformly distributed in G and independent, due to the use of αi and αj
(in each session there are at most n linearly independent equations of the form logg k′i,j = bαiαj). Note also
that in this game ∆ computes zi and zi,j as specified in the protocol.

Game G4. Now we assume that ∆ (holding a, b ∈R ZQ) modifies the simulation as follows: It no longer
computes k′i,j using b but chooses it at random from ZQ. Note, this does not affect the distribution of k′i,j
compared to the previous game. ∆ computes now each zi := x̄ig

bβi using some additional random βi and,
therefore, also each zi,j := gabαjβi (recall that we still have yj = gaαj ). Note that all distributions remain the
same compared to the previous game, s.t. Pr[Winke-g

3
] = Pr[Winke-g

4
].

Game G5. In this game we assume that ∆ chooses an additional random value c ∈R ZQ and simulates the
protocol execution in response to a Execute(U1, . . . , Un) query as in the previous game except that it computes
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each zi,j := gcβiαj , that is completely independent of zi = gbβi and yj = gaαj . Both games remain indistin-
guishable in case that the DDH assumption holds in G (note that (g, ga, gb, gab) and (g, ga, gb, gc) embedded
respectively in G4 and G5 correspond to a DDH tuple). Hence,

|Pr[Winke-g
5

]− Pr[Winke-g
4

]| ≤ N(N − 1)AdvDDHG (κ).

Observe, that in this game for any fixed index i all values zi,j are uniformly distributed in G and independent due
to the use of βi and different αj (in each session for every index i there are exactly n− 1 linearly independent
equations of the form logg zi,j = cβiαj). This implies that each x̄i (encrypted in all zi,j) is uniformly distributed
in G.

Let us now investigate the success probability of A in this game. From Game G1 we know that the input to
Hg used by some honest Ui to compute the group key ki is unique across multiple sessions. Since Hg is modeled
as a random function the group key ki computed by some fresh instance of Ui remains independent of the group
keys computed in other sessions and any p2p keys ki,j . Hence, the probability that A wins without querying
Hg(x̄1, . . . , x̄n, U1|y1, . . . , Un|yn) is given by a random guess 1/2, on the other hand the probability thatA asks
such a query is given by qHg/Q

n ≤ qHg/Q (for the guess of x̄1, . . . , x̄n which are uniformly distributed in G).
Hence, Pr[Winke-g

5
] ≤ 1/2 + qHg/Q. Summarizing the above equations we obtain a negligible advantage

Advke-g
PDHKE-KPT(κ) = |2 Pr[Winke-g

0 ]− 1|

≤
2(N(qEx + qSe)2 + qHg)

Q
+

(qHg + qHp)
2

2κ−1
+ 2NAdvSEDDHG (κ) + 2N(N − 1)AdvDDHG (κ).

ut

Since secret contributions x̄i used in the computation of the group key are independent from the secret
exponents xi we can prove that PDHKE-MRE provides KE-security of p2p keys based on the DDH assumption.

Theorem 2. If the DDH problem is hard in G then PDHKE-MRE provides KE-security of p2p keys and

Advke-p
PDHKE-MRE(κ) ≤

N(2(qEx + qSe)2 + qSeqHp)
Q

+
(qHg + qHp)

2

2κ−1
+NqSeAdvDDHG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at most qHg and qHp random
oracle queries being asked.

Proof. In the following we show that the advantage ofA in distinguishing some p2p key ki,j from some random
value in {0, 1}κ is negligible. We construct a sequence of games G0, . . . ,G4 and denote by Winke-p

i the event
that the bit b′ output by A is identical to the randomly chosen bit b in the i-th game. Recall that in each game
TestPeer(Πs

i , Uj) is answered only for some instance-user pair (Πs
i , Uj) which is fresh.

Game G0. This is the real execution of PDHKE-MRE in which a simulator ∆ truly answers all queries of
A on behalf of the instances of users as specified in Gameke-p,b

A,PDHKE-MRE(κ). We assume that A has access to the
hash queries for the hash functions Hg and Hp modeled as random oracles.

Game G1. In this game we exclude for every honest user Ui the collisions of the transcripts (Ui, yi) and
group keys ki. We also exclude collisions between ki and any ki,j . Additionally, we exclude collisions between
p2p keys ki,j for different (possibly malicious) Uj . Since sessions can be invoked via Execute and Send queries
we obtain for the collisions of transcripts (according to the birthday paradox) the probability of at mostN(qEx+
qSe)2/Q over all possible users. Collisions amongst ki and collisions between ki and any ki,j can be upper-
bounded by (qHg + qHp)

2/2 using the same arguments as in Game G1 from the proof of Theorem 1. This
upper-bound also includes collisions between different p2p keys ki,j computed by the same honest user Ui for
different Uj . Indeed, even if Uj is malicious and defines own yj is some rogue way (e.g. replaying the value of
some other honest user) the input to Hp(k′i,j , Ui|yi, Uj |yj) still remains unique due to the uniqueness of the user
identities. That is even if Uj is malicious its identity which is among the inputs to Hp is unique. Hence,

|Pr[Winke-p
1

]− Pr[Winke-p
0

]| ≤ N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ
.
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Game G2. In this game ∆ randomly selects two user identities Ui∗ , Uj∗ ∈R U and a value q∗ ∈R [1, qSe]
and aborts the simulation (setting bit b′ at random) if A asks the TestPeer query on an input which is different
from (Πs

i∗ , Uj∗) or (Πt
j∗ , Ui∗) in a session which is not the q∗-th session. Let E be an event that the guesses are

correct. Since the guesses for the user identities (Ui∗ , Uj∗) are independent from the guess of the q∗-th session
we have Pr[E] = 2/NqSe. Then,

Pr[Winke-p
2

] = Pr[Winke-p
2
|E] Pr[E] + Pr[Winke-p

2
|¬E] Pr[¬E]

= Pr[Winke-p
1

]
2

NqSe
+

1
2

(
1− 2

NqSe

)
,

and

Pr[Winke-p
1

] =
NqSe

2

(
Pr[Winke-p

2
]− 1

2

)
+

1
2
.

As a result of this game it is sufficient for the simulator to focus on the q∗-th session and to simulate instances
of users Ui∗ and Uj∗ that participate in that session. Note that a pair (Πs

i∗ , Uj∗) (or equivalently (Πt
j∗ , Ui∗)) to

which the TestPeer query is asked in this game must be fresh.
Game G3. In this game we assume that ∆ chooses random a, b ∈R ZQ and in the q∗-th session which

is invoked via a query Send(Ui∗ , (′start′, U1, . . . , Un)) or Send(Uj∗ , (′start′, U1, . . . , Un)) s.t. U1, . . . , Un
includes both Ui∗ and Uj∗ proceeds as follows: In the first round∆ computes yi∗ := gaαi∗ and yj∗ := gbαj∗ for
some random αi∗ , αj∗ ∈R ZQ. In the second round ∆ follows the protocol specification treating aαi∗ and bαj∗
as the corresponding ephemeral exponents xi∗ and xj∗ . Thus, ∆ will also compute k′i∗,j∗ := gabαi∗αj∗ . Here
it is important to mention that the freshness of (Πs

Ui∗
, Uj∗) or (Πt

Uj∗
, Ui∗) ensures that messages exchanged

between the instances of Ui∗ and Uj∗ , in particular values yi∗ and yj∗ , are truly forwarded by A. It is easy to
see that the original distributions remain unchanged, so that Pr[Winke-p

2
] = Pr[Winke-p

3
].

Game G4. This game proceeds identical to the previous one, except that in the q∗-th session ∆ chooses
an additional random c ∈R ZQ and the only computation which is modified is that of k′i∗,j∗ := gcαi∗αj∗ . The
simulation in this game remains indistinguishable from the previous one incase that the DDH assumption holds
in G. Thus,

|Pr[Winke-p
4

]− Pr[Winke-p
3

]| ≤ AdvDDHG (κ).

As a consequence of Game G1 the inputs to Hp used to compute p2p keys involving Ui∗ or Uj∗ remain
unique. Since Hp is modeled as a random function the p2p key ki∗,j∗ computed in this q∗-th session remains
independent of any other p2p key (in the same or other sessions). Hence, the probability thatAwins in this game
without asking a query Hp(k′i∗,j∗ , Ui∗ |yi∗ , Uj∗ |yj∗) is given by a random guess, i.e. 1/2. On the other hand, A
can ask such a query with probability at most qHp/Q (since k′i∗,j∗ is uniform in G). Therefore, Pr[Winke-p

4
] =

1/2 + qHp/Q. Summarizing the above equations we obtain a negligible advantage

Advke-p
PDHKE-MRE(κ) = |2 Pr[Winke-p

0 ]− 1|

≤
N(2(qEx + qSe)2 + qSeqHp)

Q
+

(qHg + qHp)
2

2κ−1
+NqSeAdvDDHG (κ).

ut

4.5 On Security of PDHKE as a Stand-Alone Protocol

The result of Theorem 2 allows us to derive the following corollary, which is of independent interest since it
addresses security of PDHKE as a stand-alone protocol.

Corollary 1. If the DDH problem is hard in G then PDHKE as defined in Section 4.1 guarantees the KE-
security of p2p keys in the random oracle model in the sense of Definition 5.3

3 Observe that our security model can be used to deal with PDHKE as a stand-alone protocol assuming that in the execution
of PDHKE instances accept with empty group keys. In this case all parts of the model that explicitly deal with the
computation and security of group keys become irrelevant.
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4.6 Performance Limitations of PDHKE-MRE

The drawback of PDHKE-MRE despite of our optimizations is the quadratic communication complexity, i.e. the
total number of bits communicated throughout the protocol and usually measured in the size of group (or public
key) elements [29]. This complexity is due to the rather naïve secure transport of each x̄i for the computation
of the group key. Note that the linear communication complexity of PDHKE used to compute p2p keys is
already optimal since each user has to broadcast at least one message in order to contribute to the on-demand
computation of its p2p keys.

Therefore, we will try to replace the computation of the group key via MRE with an alternative process,
while preserving the computation of p2p keys based on PDHKE. Since PDHKE derives p2p keys from Diffie-
Hellman secrets it appears promising to search for alternative candidates amongst the family of GroupDH
protocols, i.e. GKE protocols that extend the original Diffie-Hellman method.

5 GKE+P Protocols from Group Diffie-Hellman Protocols

We start by describing a generic solution that would convert any secure GroupDH protocol into a secure GKE+P
protocol. Then, we address possible optimization issues.

5.1 GKE+P Compiler based on PDHKE

Let us first capture the similarities between different GroupDH protocols by providing a generalized definition
of what a GroupDH protocol should mean (we define from the perspective of one session).

Definition 7 (GroupDH Protocols). A GroupDH protocol is a GKE protocol amongst n users U1, . . . , Un
such that during its execution each user Ui chooses own exponent xi ∈R ZQ and at the end computes a group
element k′i ∈ G which can be expressed as the output of f(g, x1, . . . , xn) for some function f : G × ZnQ → G
which is specific to the protocol.

We say that a GroupDH protocol is KE-secure if it achieves KE-security of group keys in the sense of
Definition 4 whereby considering k′i instead of ki and thus requiring its indistinguishability from some random
element in G instead of some random string in {0, 1}κ.4

The above definition of KE-secure GroupDH protocols already captures many protocols, including those
from [16, 20, 24, 31, 32, 37, 39, 40].

The actual generic solution (GKE+P compiler) for obtaining a GKE+P protocol from such GroupDH pro-
tocols is to combine them with PDHKE, while ensuring independence between the exponents used in both
protocols. More precisely, GKE+P compiler requires each user Ui to choose a random exponent x̄i ∈R ZQ and
broadcast ȳi := gx̄i prior to the execution of the given GroupDH protocol. If the GroupDH protocol requires
each user to broadcast a message in the first round, e.g. [16, 31, 32, 39], then the compiler can also append ȳi to
this message, without increasing the number of rounds. After the GroupDH protocol is executed each Ui holds
the secret group element k′i. The GKE+P compiler computes sidi := (U1|ȳ1, . . . , Un|ȳn) and derives the group
key ki := Hg(k′i, sidi). On-demand, the compiler computes any ki,j := Hp(ȳx̄i

j , Ui|ȳi, Uj |ȳj).
The key derivation is essentially the same as in PDHKE-MRE. The only difference is that sidi is constructed

from ȳi instead of yi = gxi for the exponent xi which is implicit to the original GroupDH protocol. The reason
is that yi may not be available to all users at the end of the protocol. For example, in [24, 40] only two users U1

and U2 compute such y1 and y2, whereas in [20, 37] each Ui computes yi but sends it only to some designated
subset. Of course, for the latter case it is possible to add a modification to the original protocol by requiring users
to broadcast yi; however, this contradicts to the idea of a compiler, which takes some protocol as a “black-box”.

The KE-security of group keys output by our compiler follows from the KE-security of the group elements
k′ and can be proven similarly to Theorem 1. Note that the replacement of yi with ȳi in the computation of sidi
has no impact since also ȳi is uniformly distributed in G for any honest Ui. Since the exponents xi and x̄i are
independent and values ȳi and ȳj exchanged between any two honest users Ui and Uj are not modified during

4 Note that Definition 4 can be easily adapted by the appropriate modification of the Test query.



12 Mark Manulis

the transmission (as required by our model) the KE-security of computed p2p keys would follow directly from
Corollary 1. We omit the detailed analysis of the GKE+P compiler, which seems fairly natural.

Instead, we focus on the next challenge and investigate whether GroupDH protocols can be merged with
PDHKE in order to obtain possibly more efficient GKE+P protocols than those given by our generic compiler.
Can we find suitable GroupDH protocols where the implicitly used exponents x1, . . . , xn can be safely re-used
for the computation of p2p keys? Intuitively, this question should be answered separately for each GroupDH
protocol. Due to space limitations, we restrict our analysis to two well-known protocols from [16] and [31] that
implicitly require each Ui to broadcast yi := gxi and so seem suitable at first sight for the merge with PDHKE.

5.2 PDHKE-BD is Insecure

The Burmester-Desmedt (BD) protocol from [16] is one of the best known unauthenticated GroupDH protocols.
It has been formally proven KE-secure under the DDH assumption in [29]. Its technique has influenced many
GKE protocols, including [2, 30]. The BD protocol arranges participants U1, . . . , Un into a cycle, and requires
two communication rounds:

Round 1 Each Ui broadcasts yi := gxi for some random xi ∈R ZQ.
Round 2 Each Ui broadcasts zi := (yi+1/yi−1)xi (the indices i form a cycle, i.e. 0 = n and n+ 1 = 1).

This allows each Ui to compute the secret group element

k′i := (yi−1)nxi · zn−1
i · zn−2

i+1 · · · zi+n−2 = gx1x2+x2x3+...+xnx1 .

At first sight, BD suits for the merge with PDHKE, i.e. we would have then k′i := Hg(k′i, U1|y1, . . . , Un|yn) and
any ki,j := Hp(yxi

j , Ui|yi, Uj |yj). Unfortunately, this merge is insecure. We analyze two distinct cases based on
the indices of Ui and Uj .

CASE Ui AND Ui+1 The attack in this case is trivial since the knowledge of k′ and the secret exponents of
all other colluding users allows to compute gxixi+1 . This would break the secrecy of the p2p key ki,i+1 when
derived using gxixi+1 for any group size n ≥ 3. Also observe that each Ui sends zi = gxi+1xi−xixi−1 ; thus
every Ui−1 can individually extract gxi+1xi and every Ui+1 is able to compute gxixi−1 , even without colluding
with other users.

CASE Ui AND Uj In this case we consider ki,j (w.l.o.g. we assume that i < j) computed for a pair of users that
do not have neighbor positions within the cycle, i.e. j 6= i+1. We demonstrate that also this key remains insecure
if derived using gxixj . Our attack, which is not as trivial as in the previous case, works because users may collude
and misbehave while attacking the secrecy of p2p keys. In particular, we assume that Ui−2, Ui−1, and Ui+1

collude and their goal is to obtain gxixj upon the successful execution of the protocol from the perspective of
honest Ui and Uj . Due to the collusion of three users the attack works for any group size n > 4. The core of the
attack is to letUi−1 broadcast yi−1 := yj , which is possible since the communication is asynchronous andA can
wait for the protocol message of Uj containing yj ; observe that xj is chosen by Uj and remains unknown to the
colluding users. Other malicious users Ui−2 and Ui+1 choose their exponents xi−2 and xi+1 truly at random.
As a consequence, in the second round honest Ui broadcasts zi = gxi+1xi−xixi−1 = gxi+1xi−xixj . Then,
malicious Ui+1 can extract gxixj := y

xi+1
i /zi. Finally, Ui−1 without knowing the corresponding exponents

xj and xi has to broadcast a value of the form zi−1 = gxixi−1−xi−1xi−2 = gxixj−xjxi−2 which can be easily
done with the assistance of Ui+1 that provides gxixj and of Ui−1 that provides gxjxi−2 = y

xi−2
j . Thus, through

their cooperation malicious users Ui−2, Ui−1, and Ui+1 can extract gxixj for any Uj . The above attacks works
similarly even if Ui−1 re-randomizes yj , i.e. broadcasts yi−1 = yrj for some r ∈R ZQ.

A simpler variant of this attack is available for a group of n = 4 users, e.g. U1, . . . , U4. Assume that U1

and U3 are malicious and aim to obtain gx2x4 (the attack would work similar for the collusion of U2 and U4

with respect to gx1x3 ). First, U1 and U3 wait for honest U2 and U4 to broadcast y2 and y4, respectively. Then,
U1 broadcasts y1 := y4g

r = gx4+r for some random r ∈R ZQ whereas U3 broadcasts y3 = gr. In the second
round, U2 and U4 are first to broadcast z2 = grx2−x2(x4+r) = gx2x4 (which is the desired Diffie-Hellman
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secret) and z4 = g(x4+r)x4−x4r = gx
2
4 , respectively. The knowledge of r allows U1 to compute the well-formed

z1 = gx2(x4+r)−(x4+r)x4 := z1y
r
2/z4y

r
4 whereas U3 can compute z3 as usual using r as his own exponent.

This shows that BD cannot be merged with PDHKE in a secure way. Nevertheless, it can be compiled to a
KE-secure GKE+P protocol as discussed in Section 5.1.

5.3 PDHKE-KPT is Secure

Here we focus on the GKE protocols proposed by Kim, Perrig, and Tsudik [31, 32], which in turn extend the
less efficient construction by Steer et al. [39]. These protocols belong to a family of the so-called Tree Diffie-
Hellman protocols (see also [14, 22]). We analyze whether the protocol from [31], denoted here as KPT, which
is more efficient in communication than [32], can be securely merged with PDHKE.

The KPT protocol requires a special group G = 〈g〉 of prime orderQ, which is a group of quadratic residues
modulo a safe prime P = 2Q + 1 with the group law defined as ab := f(ab mod P ) for any a, b ∈ G where
f : ZP 7→ ZQ is such that if z ≤ Q then f(z) := z, otherwise ifQ < z < P then f(z) := P−z (see [14,31,32]
for more information about G which equals to ZQ as sets). In KPT each Ui derives the secret group element k′i
within two communication rounds (it is assumed that the sequence U1, . . . , Un is ordered):

Round 1 Each Ui broadcasts yi := gxi for some random xi ∈R ZQ.
Round 2 U1 computes and broadcasts (gz2 , . . . , gzn−1) whereby z2 := yx1

2 and each zi := y
zi−1
i for all i =

3, . . . , n− 1.

This allows each Ui to compute the common secret k′i := zn as follows.

– U1 computes k′1 := y
zn−1
n

– each Ui, 2 ≤ i ≤ n− 1 recomputes the subsequence zi, . . . , zn−1 and computes k′i := y
zn−1
n ; note that U2

starts with z2 := yx2
1 , whereas Ui, 3 ≤ i ≤ n− 1, starts with zi := (gzi−1)xi using gzi−1 received from U1.

– Un computes k′i := (gzn−1)xn using gzn−1 received from U1.

Note that each k′i has an interesting algebraic structure

k′i = gxng
xn−1g...gx3gx2x1

.

In the following we investigate the possibility of merging KPT with PDHKE, thus using exponents xi to com-
pute the group key ki := Hg(k′i, U1|y1, . . . , Un|yn) and any p2p key ki,j := Hg(k′i,j , Ui|yi, . . . , Uj |yj) with
k′i,j = gxixj . Our analysis shows that indeed this construction, which we denote PDHKE-KPT, gives us a
KE-secure GKE+P protocol.

Let us first provide some intuition. Note that the only value of the form gxixj which appears in the compu-
tations of KPT is gx1x2 (given by z2). Nevertheless, it will be computed only by U1 and U2, which is fine since
the p2p key should be known only to these users. Further we observe that the broadcast message of U1 con-
tains gz2 = gg

x1x2 and so hides gx1x2 in the exponent (under the hardness of the DL problem). By computing
k1,2 := Hp(gx1x2 , U1|y1, U2|y2) we are able to provide independence between k1,2 and gz2 while working in
the random oracle model since the corresponding RevealPeer query would reveal only k1,2 and not gx1x2 .

We start with the KE-security of group keys. The original KPT protocol has been proven KE-secure in [31]
(see also [14]) under the classical DDH assumption. Briefly, the proof considers several hybrid games. In the l-th
game, 2 ≤ l ≤ n, the simulator embeds a re-randomized DDH tuple (g, ga, gb, gab) to simulate gzl−1 = gaαl−1 ,
yi = gbβl , and zl = gabαl−1βl , such that in the final game the value zn = k′i is uniformly distributed and
independent. In general we can apply a similar simulation technique, however, we should additionally take care
of the special dependency z2 = k′1,2. The trick is first to obtain a uniform distribution of z2 = k′1,2 (in G) and
its independence from y1 and y2 using the above technique and then to compute k1,2 completely independent
from k′1,2, in which case a reduction to the DL problem becomes possible.
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Theorem 3. If both problems DDH and DL are hard in G then PDHKE-KPT provides KE-security of group
keys and

Advke-g
PDHKE-KPT(κ) ≤

2(N(qEx + qSe)2 + qHg)
Q

+
(qHg + qHp)

2

2κ−1
+ 2(N − 1)AdvDDHG (κ) + 2qHpSuccDLG (κ)

with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at most qHg and qHp random
oracle queries asked.

Proof. In the following we show that the advantage of A in distinguishing ki from some random element from
{0, 1}κ is negligible. We construct a sequence of games G0, . . . ,G3 and denote by Winke-g

i the event that the
bit b′ output by A is identical to the randomly chosen bit b in the i-th game. Recall that in each game Test(Πs

i )
is answered only if the instance Πs

i is fresh.
Game G0. This is the real execution of PDHKE-KPT in which a simulator ∆ truly answers all queries of

A on behalf of the instances, as specified in Gameke-g,b
A,PDHKE-KPT(κ). Additionally, we provide A with the access

to the hash queries for Hg and Hp, modeled as random oracles.
Game G1. In this game we exclude the same collisions on transcripts, group and p2p keys as in Game G1

from the proof of Theorem 1. Since the key derivation mechanisms are exactly the same we can re-use those
arguments to obtain

|Pr[Winke-g
1

]− Pr[Winke-g
0

]| ≤ N(qEx + qSe)2

Q
+

(qHg + qHp)
2

2κ
.

Game G2,l for l = 2, . . . , n. Each Game G2,l is composed of two hybrid Sub-Games G2,l,1 and G2,l,2

(note that the index l starts with 2 for the convenience of presentation).
Sub-Game G2,l,1. In this game we assume that ∆ is given access to some private random oracle H′ :

{0, 1}∗ → {0, 1}κ. Further, ∆ chooses some random a, b ∈R ZQ and in response to each Execute(U1, . . . , Un)
query proceeds as in the previous game except for the following rules (here we remark that G and ZQ are equal
as sets [14]):

Rule 1 If l = 2: Simulate y1 := gaα1 and y2 := gbβ2 for some random α1, β2 ∈R ZQ and compute all further
yi according to the protocol specification, thus using truly random exponents xi ∈R ZQ. This also implies
the simulation of z2 := gabα1β2 . All further zi, 3 ≤ i ≤ n− 1 are computed as specified in the protocol as
zi := gzi−1xi . Note that ∆ can easily compose the message gz2 , . . . , gzn−1 and compute the group key.

Rule 2 If l > 2: Simulate yl := gbβl using βl ∈R ZQ and compute all other yi using truly random exponents
xi ∈R ZQ. For each 2 ≤ i < l simulate gzi := gaαi (this simulation can be done without explicitly
computing zi and it applies for the first time in Sub-Game G2,3,1). Simulate zl := gabαl−1βl , whereas all
further zi, l < i ≤ n − 1 are computed as specified in the protocol as zi := gzi−1xi . Note that ∆ can still
easily compose the message gz2 , . . . , gzn−1 and compute the group key.

Note that these simulation rules ensure that the product ab is embedded only in the computation of zl and all zi
with 2 ≤ i < l are independent due to the use of different blinding factors αi. Note also that the indices of β
are bound to the sub-game index l which starts with 2 (hence, β1 does not exist).

Additionally, in response to a query Peer(Πs
i , Uj) the simulator proceeds as follows. First, ∆ computes k′i,j

(w.l.o.g. we consider only the case of i < j since k′i,j = k′j,i) depending on the following distinct cases implied
by the rules above:

Case R1.1 If l = 2 and j = 2 then we have k′i,j = k′1,2 which will be set equal to z2 (note that this may occur
only in Sub-Game G2,2,1 where z2 = gabα1β2 as explained in Rule 1);

Case R1.2 If l = 2 and j > 2 then we have: any k′1,j := gaα1xj , any k′2,j := gbα2xj , and any other k′i,j = gxixj

(this is consistent to the simulation of y1, y2, and every other yi in case that l = 2 as explained in Rule 1);
Case R2.1 If l > 2 and j = 2 then the computation of k′i,j = k′1,2 is omitted (the p2p key ki,j = k1,2 will be

computed from H′ as described below);
Case R2.2 If l > 2 and j > 2 then we have: any k′l,j := gbβlxj , any k′i,l := gxibβl , and any other k′i,j = gxixj

(this is consistent to the simulation of yl and every other yi in case that l = 2 as explained in Rule 2);
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Then, ∆ derives ki,j := Hp(k′i,j , Ui|yi, Uj |yj) with the only exception that if l > 2 and j = 2 then ki,j =
k1,2 := H′(U1|y1, U2|y2) that is completely independent of k′1,2. Note that H′ is used to compute k1,2 in each
Sub-Game G2,l,1 with l ≥ 3. Briefly, starting from Sub-Game G2,3,1 we simulate gz2 = gaα2 using some
random α2 ∈R ZQ. If we would still simulate k′1,2 = z2 (as we do in G2,2,1) then the simulation would no
more be perfect since k′1,2 must be of the form gx1x2 (according to Rule 2). Using the fact that k′1,2 cannot be
revealed we ignore it in the computation of k1,2, thus still allowing the simulation without explicit computation
of z2. This would have an impact on the indistinguishability between the hybrid sub-games G2,2,2 and G2,3,1

as discussed below.
Sub-Game G2,l,2. In this game we assume that ∆ holds an additional random value c ∈R ZQ. It

performs the simulation exactly as in Sub-Game G2,l,1 except that: In Rule 1 it simulates z2 = gcα1β2 , in
Rule 2 it simulates zl := gcαl−1βl with the obvious consequence for the computation of k′1,2 = z2 in case that
Rule 1 applies. Observe, that in this way the simulator can embed DDH tuples (g, ga, gb, gab) in G2,l,1 and
(g, ga, gb, gc) in G2,l,1. Since the re-randomized instances of the DDH problem are embedded only in zl we
can upper-bound |Pr[Winke-g

2,l,2]− Pr[Winke-g
2,l,1]| ≤ AdvDDHG (κ).

Furthermore, Pr[Winke-g
2,l+1,1] = Pr[Winke-g

2,l,2] for the only exception in the transition from G2,2,2 to G2,3,1

due to the use of H′ in the computation of k1,2. For this we observe that in G2,2,2 we have z2 = k′1,2 = gcα1β2

which is uniform in G and independent of y1 = gaα1 and y2 = gbβ2 , whereas in G2,3,1 we have z2 = gaα2 ,
y1 = gx1 , y2 = gx2 for some random x1, x2 ∈R ZQ (the distributions of y1 and y2 in both games are identical)
and k′1,2 is no longer used since the p2p key k1,2 is derived via H′(Ui|yi, Uj |yj). Obviously, both sub-games
remain indistinguishable unless A asks a query of the form Hp(k′1,2, U1|y1, U2|y2) and the only value that may
leak some information about k′1,2 in G2,3,1 is gz2 . However, for this case we can construct a solver for the DL
problem that would embed some value V for which it has to compute logg V in Rule 2 in the simulation of
G2,3,1 by defining gz2 = V and so preserving its distribution as there exists obviously some unknown random
α2 such that logg V = aα2. If the mentioned hash query is asked then the DL solver can output logg V . Note
that in G2,3,1 the knowledge of z2 is not necessary for the simulation, i.e. the DL solver can still compute
z3 := V bβ3 . Thus, |Pr[Winke-g

2,3,1]− Pr[Winke-g
2,2,2]| ≤ qHpSuccDLG (κ).

Further, observe that by construction in Sub-Game G2,2,1 (the first sub-game in the sequence, since the
index l starts with 2) the distributions remain identical to the real protocol execution, implying Pr[Winke-g

2,2,1] =
Pr[Winke-g

0 ]. And since l is a running variable from 2 to n and n ≤ N we can upper-bound the probability
difference between Game G2,n (which ends with Sub-Game G2,n,2) and G1 as follows:

|Pr[Winke-g
2,n ]− Pr[Winke-g

1 ]| ≤
N∑
l=2

AdvDDHG (κ) + qHpSuccDLG (κ) = (N − 1)AdvDDHG (κ) + qHpSuccDLG (κ).

Observe that at the end of Game G2,n we have k′i = zn = gcαn−1βn which is uniform in G and independent
from gzn−1 and yn (the independence from other gzi , 2 ≤ i < n− 1 and yi, 1 ≤ i < n is implied by the hybrid
games).

According to Game G1 the transcript U1|y1, . . . , Un|yn used by some honest user Ui in addition to k′i as
input to Hg for the computation of the group key ki is unique. According to the instance freshness, the instance
Πs
i to which the Test query is asked must belong to an honest user. Since Hg is modeled as a random oracle the

probability that A wins without querying Hg(k′i, y1, U1|y1, . . . , Un|yn) is given by a random guess 1/2, on the
other hand the probability that A asks such a query is given by qHg/Q (for the guess of k′i which is uniform in
G). Hence, Pr[Winke-g

1
] ≤ 1/2 + qHg/Q. Summarizing the above equations we obtain a negligible advantage:

Advke-g
PDHKE-KPT(κ) = |2 Pr[Winke-g

0 ]− 1|

≤
2(N(qEx + qSe)2 + qHg)

Q
+

(qHg + qHp)
2

2κ−1
+ 2(N − 1)AdvDDHG (κ) + 2qHpSuccDLG (κ).

ut

Finally, we prove that on-demand p2p keys computed in PDHKE-KPT are also KE-secure. In general we
can follow the proof of Theorem 2 based on the DDH assumption, however, we have also to take care of the
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special case (i, j) = (1, 2). Observe that if k1,2 becomes a subject of the attack then U1 and U2 must be honest,
in which case we can still apply the above trick.

Theorem 4. If both problems DDH and DL are hard in G then PDHKE-KPT provides KE-security of p2p keys
and

Advke-p
PDHKE-KPT(κ) ≤

N(2(qEx + qSe)2 + qSeqHp)
Q

+
(qHg + qHp)

2

2κ−1
+NqSe

(
AdvDDHG (κ) + qHpSuccDLG (κ)

)
with at most (qEx + qSe) sessions being invoked via Execute and Send queries and at most qHg and qHp random
oracle queries asked.

Proof. In the following we show that the advantage ofA in distinguishing some p2p key ki,j from some random
value in {0, 1}κ is negligible. We construct a sequence of games G0, . . . ,G5 and denote by Winke-p

i the event
that the bit b′ output by A is identical to the randomly chosen bit b in the i-th game. Recall that in each game
TestPeer(Πs

i , Uj) is answered only for some instance-user pair (Πs
i , Uj) which is fresh.

Game G0. This is the real execution of PDHKE-KPT in which a simulator ∆ truly answers all queries of
A on behalf of the instances of users as specified in Gameke-p,b

A,PDHKE-KPT(κ). We also give A access to the hash
queries for the hash functions Hg and Hp modeled as random oracles.

Game G1. In this game we exclude the same collisions on transcripts, group and p2p keys as in Game G1

from the proof of Theorem 2. Since the key derivation mechanisms are exactly the same we can apply the same
arguments and get

|Pr[Winke-p
1

]− Pr[Winke-p
0

]| ≤ N(qSe + qEx)2

Q
+

(qHg + qHp)
2

2κ
.

Game G2. In this game ∆ randomly selects two user identities Ui∗ , Uj∗ ∈R U and a value q∗ ∈R [1, qSe]
and aborts the simulation (setting bit b′ at random) if A asks the TestPeer query on an input which is different
from (Πs

i∗ , Uj∗) or (Πt
j∗ , Ui∗) in a session which is not the q∗-th session. Based on the arguments in Game G2

from the proof of Theorem 2 we get

Pr[Winke-p
1

] =
NqSe

2

(
Pr[Winke-p

2
]− 1

2

)
+

1
2
.

Game G3. In this game we assume that ∆ chooses random a, b ∈R ZQ and in response to the q∗-th session
invoked via Send(Ui∗ , (′start′, U1, . . . , Un)) or Send(Uj∗ , (′start′, U1, . . . , Un)) with U1, . . . , Un including
Ui∗ and Uj∗ (due to the guesses of the previous game) proceeds as follows:

Case (i∗, j∗) = (1, 2) In the first round it simulates y1 := gaα1 and y2 := gbα2 for some random α1, α2 ∈R
ZQ. All further values yi on behalf of honest users are computed truly according to the protocol specifi-
cation. Since i∗ = 1 the simulator must also compose the message gz2 , . . . , gzn−1 . For this it proceeds
according to the protocol specification. Note that this implies z2 := gabα1α2 .
In this case the simulation leads to the on-demand computation of k′1,2 := gabα1α2 = z2; note that dealing
in the authentication links model all protocol messages exchanged between the instances of U1 and U2, in
particular values y1 and y2, are truly forwarded by A and no framing attacks on U1 and U2 take place.

Case (i∗, j∗) 6= (1, 2) This case is the same as the previous one. However, there is some subtle difference. If U1

in the q∗-th session is honest then ∆ has still to simulate the message gz2 , . . . , gzn−1 . In this case it would
also compute z2 := yx1

2 for some random exponent x1 chosen on behalf of U1 (whereby y2 may also be
chosen by A). However, also in this case ∆ will compute on-demand k′i∗,j∗ := gabαi∗αj∗ .

Obviously, the simulation preserves the original distributions so that Pr[Winke-p
2

] = Pr[Winke-p
3

].
Game G4. This game proceeds identical to the previous one, except that ∆ chooses an additional random

c ∈R ZQ and modifies the simulation in the q∗-th session as follows. In case that (i∗, j∗) = (1, 2) it embeds
c into the computation of z2 = gcα1α2 and on-demand k′1,2 := gcα1α2 = z2 and if (i∗, j∗) 6= (1, 2) then c is
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embedded only in k′i∗,j∗ := gcαi∗αj∗ . Both games remain indistinguishable in case that the DDH assumption
holds in G. Thus,

|Pr[Winke-p
4

]− Pr[Winke-p
3

]| ≤ AdvDDHG (κ).

This game implies the uniformity of k′i∗,j∗ in G unless (i∗, j∗) = (1, 2). In the latter case both values k′1,2 and
z2 are equal but uniform in G.

Game G5. In this game we assume that ∆ is given access to a private random oracle H′ : {0, 1}∗ →
{0, 1}κ and change only the simulation of the on-demand p2p key ki∗,j∗ . Namely, we let ∆ compute ki∗,j∗ :=
H′(Ui∗ |yi∗ , Uj∗ |yj∗), thus completely independent from k′i∗,j∗ . Note that since both usersUi∗ andUj∗ are honest
as required by the definition of the instance-user freshness the transcript (Ui∗ |yi∗ , Uj∗ |yj∗) is unique according
to Game G1.

Both games remain indistinguishable unlessA queries Hp(k′i∗,j∗ , Ui∗ |yi∗ , Uj∗ |yj∗). From the previous game
we know that for the case (i∗, j∗) 6= (1, 2) the value k′i∗,j∗ is uniform in G. Therefore, the probability thatA asks
the mentioned hash query in this case is upper-bounded by a random guess of k′i∗,j∗ , i.e. by qHp/Q. However,
in case (i∗, j∗) = (1, 2) we have to exclude the possibility of A obtaining k′1,2 from gz2 (this is the only value
which may leak information about k′1,2), which is implied by the hardness of the DL problem. Thus,

|Pr[Winke-p
5

]− Pr[Winke-p
4

]| ≤
qHp
Q

+ qHpSuccDLG (κ).

Since in this game ki∗,j∗ is given by the output of the private random oracle H′ it follows that Pr[Winke-p
5

] =
1/2. Summarizing the above equations we obtain a negligible advantage

Advke-p
PDHKE-KPT(κ) = |2 Pr[Winke-p

0 ]− 1|

≤
N(2(qEx + qSe)2 + qSeqHp)

Q
+

(qHg + qHp)
2

2κ−1
+NqSe

(
AdvDDHG (κ) + qHpSuccDLG (κ)

)
.

ut

6 Performance Comparison and Discussion

In Table 1 we present a brief comparison of the complexity of the mentioned GKE+P solutions. We measure
the communication costs as a total number of transmitted elements in G, and computation costs as a number
of modular exponentiations per Ui (in the case of BD we count only exponentiations with xi assuming that
|xi| � n). From the latter we exclude the costs needed to compute a Diffie-Hellman secret k′i,j that requires
constantly one exponentiation per each Uj . For the GKE+P compiler from Section 5.1 with the prefix ‘+’ we
indicate the increase to the original costs of the given GroupDH protocol when combined with PDHKE; we
also mention the compiled GKE+P version of the BD protocol as a special case. Note that the PDHKE-KPT
protocol has asymmetric costs, depending on the position of Ui in the ordered sequence U1, . . . , Un; this may
have benefits in groups with heterogeneous devices.

Table 1. Communication and Computation Costs of Introduced GKE+P Protocols

GKE+P Protocols Communication (in log Q bits) Computation (in mod. exp. per Ui)

PDHKE-MRE n2 + n 2n

GKE+P compiler +n +1
BD (as a special case) 3n 3

PDHKE-KPT 2n− 2 n + 2− i (2n− 2 for U1)

From Table 1 we highlight that PDHKE-KPT has better communication complexity than the compiled ver-
sion of the BD protocol, but (in general much) worse computation complexity. The same holds for the original
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KPT and BD protocols. Therefore, we do not claim that GroupDH protocols when merged with PDHKE in an
optimized way (via exponent re-use) would result in more efficient constructions compared to other protocols
obtained via our GKE+P compiler. Nevertheless, with PDHKE-KPT we could show that there exist GKE proto-
cols that provide the property of non-interactive, on-demand computation of p2p keys almost “for free” (if one
neglects the computation costs needed for the derivation of keys then the costs of PDHKE-KPT from Table 1
are identical to those of KPT).

7 Adding Authentication to GKE+P Protocols

Yet, we were assuming that described GKE+P protocols are executed over authenticated links and focused on
the KE-security of the computed group and p2p keys. On the other hand, it is well-known that any KE-secure
GKE protocol can be converted into an AKE-secure protocol (preserving its forward secrecy) using the classical
and inexpensive compilation technique from [29] which assumes for each user Ui a long-lived digital signature
key pair (ski, pki) such that in the preliminary protocol round users exchange their nonces ri and then sign
each l-th round message ml concatenated with U1|r1| . . . |Un|rn prior to the transmission. The EUF-CMA
security of the digital signature and the negligible collision probability for the session nonces protects against
impersonation and replay attacks.

The following theorem shows that this technique is also sufficient to obtain AKE-security of group and p2p
keys in GKE+P protocols.

Theorem 5. If P is a GKE+P protocol that provides KE-security of group/p2p keys then P compiled with the
technique from [29] results in a GKE+P protocol P ′ that provides AKE-security of group/p2p keys.

Proof Idea: Theorem 5 can be proven in two steps (one for group keys, another one for p2p keys) using the
same strategy as in the proof of [29, Theorem 2]. Briefly, in each of the both steps the proof first eliminates
signature forgeries and replay attacks and then constructs an adversary A against the KE-security of group/p2p
keys that interacts with the user instances and also simulates the additional authentication steps while answering
the queries of an adversary A′ against the AKE-security of group/p2p keys. In case of group keys A will need
to guess the session in which the Test(Πs

i ) query will be asked in order to simulate the protocol execution in
that session through the authentication of the transcript, which A obtains initially via own Execute query. In
case of p2p keys A will need to guess the session in which the TestPeer(Πs

i , Uj) query will be asked and two
corresponding identities Ui and Uj of honest users in order to add authentication to their messages, which A
obtains by relaying the Send queries of A′. We omit the details.

8 Conclusion

We discussed the enrichment of GKE protocols with the property of non-interactive, on-demand derivation of
peer-to-peer keys, which allows for the establishment of a secure group channel and up to n independently se-
cure peer-to-peer channels through a single run of the protocol. We extended the standard GKE security model
capturing independence of group and p2p keys as well as possible collusion attacks against the secrecy of the
latter and proposed several provably secure solutions with varying efficiency. With PDHKE-KPT we demon-
strated the existence of GKE protocols that implicitly allow derivation of p2p keys without any increase of
their original communication complexity. Future work may include consideration of the optional insider threats
against the group keys computed in GKE+P protocols in the spirit of [12,13,28]. Another interesting direction is
to investigate to what extent (xi, gxi) often computed in GroupDH protocols can be used as key pairs in digital
signatures, public-key encryption schemes, etc.
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