
Contributory Group Key Agreement Protocols,
Revisited for Mobile Ad-Hoc Groups∗

Mark Manulis†

Horst-Görtz Institute, Ruhr-University of Bochum
IC4/157, D-44801 Bochum, Germany

mark.manulis@rub.de

Abstract

Security of various group-oriented applications for mo-
bile ad-hoc groups requires a group secret shared between
all participants. Contributory group key agreement (CGKA)
protocols, originally designed for peer groups in local- and
wide-area wired networks, can also be used in ad-hoc sce-
narios because of the similar security requirements and
trust relationship between participants that excludes any
trusted central authority (e.g., a group manager) from the
computation of the group key. We revise original protocols
from the perspective of the mobile ad-hoc communication,
classify mobile ad-hoc groups based on the performance of
involved mobile devices, specify trust relationship between
participants, propose further optimizations to original pro-
tocols to achieve better communication, computation and
memory complexities.

1. Introduction
Consider a group of people who wish to establish se-

cure ad-hoc communication using their mobile devices. The
group is calleddynamicif it allows to add and delete par-
ticipants during the communication session; otherwise the
group isstatic. Dynamic events should be handled without
any risks to the communication security. Participants may
be equipped with mobile devices of different types, e.g.,
laptops, PDAs or phones. Thus, performance constraints
may differ from device to device. We call an ad-hoc group
heterogeneousif its members are equipped with different
kinds of devices, andhomogeneousif devices have sim-
ilar performance properties. Note that our notion of het-
erogeneity in ad-hoc groups refers to the performance of
the devices, whereas heterogeneity of ad-hoc networks is
frequently used in the literature with respect to the un-
derlying infrastructure. Homogeneous ad-hoc groups may

∗ This is a full version of the paper appeared in Proceedings ofthe 2nd
IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS 2005), International Workshop on Wireless and SensorNet-
works Security (WSNS 2005), November 07-10, Washington, USA.
c© IEEE Computer Society 2005

† This work is supported by the European Commission through IST-
2002-507932 ECRYPT.

be, for example, meetings of employees of a company that
are equipped with equal devices according to some organi-
zational policy. In the contrary, heterogeneous groups are
meetings, like conferences, auctions, elections, where par-
ticipants and involved devices are unpredictable. The task
of securing the communication reduces to the problem of
the shared secret key establishment among all participants,
and its maintenance over the dynamic events. The group
key management must consider different ad-hoc communi-
cation requirements.

In this paper we considercontributory group key agree-
ment(CGKA) protocols: BD [3], CLIQUES [13], STR [7]
and TGDH [8], that were originally designed for local- and
wide-area wired networks. These protocols allow partici-
pants to compute the group key as a function of their per-
sonal contributions, and can be applied in mobile ad-hoc
scenarios because of the similar security requirements and
trust relationship between participants. Essential is theab-
sence of a trusted central authority (e.g., a group manager
or a key server) that is actively involved in the computation
of the group key. Since these CGKA protocols have been
designed for local- and wide-area wired networks we opti-
mize them with respect to the communication, computation
and memory constraints in a mobile ad-hoc environment,
and discuss their suitability for static and dynamic, homo-
geneous and heterogeneous ad-hoc groups. Some parts of
Section 7 may be considered as a survey of existing CGKA
protocols from the perspective of mobile ad-hoc networks
based on the requirements that have not been taken previ-
ously into account.

2. Related Work
Amir et. al. ([1]) have compared performance of these

protocols for local- and wide-area wired networks. Their
analysis includes the total number of required rounds and
messages, and serial (i.e., operations that can be computed
by members in parallel are counted as a single operation)
computation costs for heavy operations, like modular ex-
ponentiations. Their work does not take into account some
special requirements that have to be considered in ad-hoc
networks. Neither [1] nor any other work describes the

memory complexity of the protocols. We close this gap
comparing the size of data that has to be stored per de-
vice. Another point of interest is the total size of sent mes-
sages, because of the limited bandwidth in mobile networks.
This is not covered in their work either. Serial computation
costs say nothing about the actual costs that a certain de-
vice has to bear. Especially for heterogeneous groups, the
knowledge of the exact computation costs per device is es-
sential. Bhaskar ([2]) provides exact computation costs for
CLIQUES and STR, but only average costs for TGDH. He
compares original protocols without considering any possi-
ble optimizations that may lead to a significant performance
enhancement as we show throughout this paper.

3. Our Contribution
The main contributions of this paper are: classification

of homogeneous and heterogeneous ad-hoc groups based
on the performance quantification presented in [10], defini-
tion of additional performance requirements, eliminationof
redundancy and performance enhancement of the described
CGKA protocols for mobile ad-hoc scenarios, exact analy-
sis of the computation and memory costs per device, and of
the total size of sent messages, and discussion of suitabil-
ity of optimized protocols for static and dynamic homoge-
neous and heterogeneous groups.

4. Mobile Ad-Hoc Group Communication

4.1. Mobile Devices
In order to distinguish between homogeneous and het-

erogeneous groups it must be possible to distinguish be-
tween performances of the mobile devices (i.e., to say that
one device is more or less powerful than another). Intu-
itively, laptops are more powerful than PDAs, and PDAs
are more powerful than mobile phones.Performance ratio
parameterµi ∈ R introduced in [10] allows to quantify the
performance of a mobile deviceMi (for simplicity the same
notation is used for members and their devices). It is defined
as a value returned by a benchmarking functionf which
takes as input the hardware parameters ofMi, such as CPU
clocks, memory capacity and battery power consumption,
and performs some network and cryptographic application
specific operations. LetM be a set of mobile devices. For
Mi, Mj ∈ M, Mi is more powerful thanMj if µi > µj .
The listP = (M1, . . . , M|M|) is called aperformance ra-
tio order if µi ≥ µi+1 holds for anyMi, Mi+1 ∈ M. Note
that given a positioni it is possible to reveal the correspond-
ing deviceMi and its performance ratioµi.

4.2. Mobile Ad-Hoc Groups
In this section we distinguish between various kinds of

mobile ad-hoc groups.

Definition 1 Let G be a mobile ad-hoc group,P a perfor-
mance ratio order ofn involved mobile devices, andǫ ∈ R.
G is called homogeneous if∀µi, µj ∈P : |µi−µj| ≤ ǫ, and
heterogeneous if∃µi, µj ∈P : |µi − µj | > ǫ. The valueǫ
is called a limit of homogeneity.

Note thatǫ can be specified in advance with respect to the
performed application measurements on different kinds of
mobile devices.
Mobile ad-hoc groups can be either static or dynamic. In
staticgroups the initial number of participants remains un-
changed during the whole communication period. Indy-
namicgroups we distinguish between additive and subtrac-
tive events.Additive events arejoin (new participant has
to be added to the group) andmerge(merging of multiple
groups to a single group).Subtractiveevents areleave(a
current participant has to be excluded from the group) and
partition (splitting of the group into multiple subgroups). A
dynamic event can be eitherexplicit if it is triggered by the
application orimplicit if it occurs unexpectedly (e.g., net-
work failure).

5. Model
In this section we describe communication and security

models for CGKA protocols in mobile ad-hoc networks.

5.1. Communication
The CGKA protocols require from the underlying group

communication platform to bepublic (note that messages
that are broadcasted over this channel can be intercepted by
a passive adversary), andreliable, i.e., all messages reach
their destination after being sent, and the order of sent mes-
sages is preserved. Reliability in ad-hoc networks can be
achieved using reliable multicast protocols like RDG [9].

5.2. Security

Trust Relationship In a mobile ad-hoc group there is no
trusted central authority that is actively involved in the
computation of the group key, i.e., all participants have
equal rights during the computation process. We emphasize
this by definition of theverifiable trust relationshipwhich
should be provided by a CGKA protocol.

Definition 2 A verifiable trust relationship consists of the
following two requirements:

1. Group members are trusted not to reveal the group key
or secret values that may lead to its computation to any
other party, and

2. Group members must be able to verify the computation
steps of the CGKA protocol.

Authentication All CGKA protocols require authen-
tic communication channels in order to prevent imper-
sonation attacks. The authentication of messages can be

achieved, for example, with digital signatures and certi-
fied public keys. Every participantMi should have a cer-
tificate for its public keypkeyi and use its secret key
skeyi to sign own protocol messages. Note that conven-
tional PKI techniques with a trusted certification authority
may not be available in a mobile ad-hoc network be-
cause of dynamics and missing infrastructure. Management
of public key certificates in ad-hoc networks is cur-
rently a hot research topic, e.g., [4]. We assume that an
appropriate management mechanism for public key cer-
tificates is available, so that participants can authenticate
their messages. In the description of protocols we omit in-
dication of the authentication since it is common for all
protocols.

Requirements All CGKA protocols analysed in this paper
fulfill the following security requirements from [8]:compu-
tational group key secrecy(it must be computationally in-
feasible for a passive adversary to discover any secret group
key),decisional group key secrecy(it must be computation-
ally infeasible for a passive adversary to distinguish any bits
of the secret group key from random bits),forward secrecy
(any passive adversary being in possession of a subset of
old group keys must not be able to discover any subsequent
group key),backward secrecy(any passive adversary be-
ing in possession of a subset of subsequent group keys must
not be able to discover any preceding group key), andkey
independence(any passive adversary being in possession
of any subset of group keys must not be able to discover
any other group key). Additionally, [10] introduces a per-
formance requirement that is specific to homogeneous and
heterogeneous mobile ad-hoc groups:cost fairness(com-
putation, communication and memory costs of the CGKA
protocol must be distributed between mobile devices con-
sidering their performance ratios). Intuitively, it meansthat
protocol costs are distributed uniformly in homogeneous,
and non-uniformly in heterogeneous groups. Cost fairness
immediately implies a security requirement, calledperfor-
mance honesty, that is no participant should be able to cheat
on the performance ratio of its device, e.g., to pretend that
it has a smaller performance ratio than it really does in or-
der to save own protocol costs at the expense of other par-
ticipants. Note that in case of performance honesty the ad-
versary is active (i.e., a participant of the protocol), whereas
in security requirements described above it is passive. Ac-
cording to [10] one possibility to achieve performance hon-
esty is to use a tamper-resistant (trusted) hardware compo-
nent1 that stores an authentic performance ratio of the de-
vice, such that the user gains access to the computed group
key only if the trusted component authenticates the claimed
performance ratio (property-based sealing).

1 for example, the trusted platform module (TPM) proposed bythe TCG

6. Efficiency with ECC
All CGKA protocols apply public key cryptography. Al-

though it is costly there are no other techniques to agree
on a key over a public channel. Therefore, in order to re-
duce computation costs we switch toelliptic curve cryptog-
raphy(ECC) whose computation and communication costs
are much smaller due to the smaller key sizes (≈ 160 bits).
We can switch to ECC because all operations in the anal-
ysed protocols can be also performed in groups of points
of elliptic curves defined over finite fields. Note that orig-
inal protocols are described in the groupZ∗

p. It may seem
that the mapping to ECC is mostly mechanical, however,
several strong requirements as shown below have to be con-
sidered; otherwise the risk is large that protocols become
insecure or that the computation of the group key fails be-
cause of the mathematical inconsistency. Mapping to ECC
is a significant part towards a better efficiency of CGKA
protocols when used in mobile ad-hoc groups. LetE be
an elliptic curve over a finite fieldFq, such thatFq is ei-
ther prime (q is a prime) or binary (q = 2m, m ∈ N)
field. E(Fq) denotes a commutative group of points inE.
Let G ∈ E(Fq) be a point with high prime ordert that
devidesq − 1. G generates a subgroup ofE(Fq) denoted
<G>= {O, G, 2G, . . . , (t − 1)G}, whereO is the point of
infinity. We remark that all computations in the optimized
protocols are done in<G>. Some protocols require to map
a pointQ ∈ E to an integer in the range[1, . . . , q − 1]. The
most natural way is to mapQ to its x-coordinate. We sug-
gest to use the following functionmap : E(Fq) → N de-
fined in [12]: if q = p andp is prime thenmap(Q) = (Q)x,
else ifq = 2m, m ∈ N, and(Q)x = (am−1 . . . a1a0) with
ai ∈ {0, 1} thenmap(Q) =

∑m−1
i=0 2iai.

7. Optimized CGKA Protocols
In this section we describe and optimize Burmester-

Desmedt (BD) [3], CLIQUES [13], STR [7] and TGDH
[8] protocols with respect to the requirements of mobile
ad-hoc communication and performance limitations of de-
vices. Due to space limits we describe only the setup proto-
cols, and mention general ideas for the handling of dynamic
events.

7.1. µBD
Original Burmester-Desmedt (BD) protocol ([3], [6]) ar-

ranges members in a ring structure, such that any member
Mi, i ∈ {1, . . . , n} knows its neighbours:Mi−1 andMi+1

(if i = 1 then Mi−1=Mn). Our elliptic curve equivalent
µBD is given in Figure 1. All members compute the same
group keyK. BD is stateless, thus current group members
have to restart the protocol after any new dynamic event.
(µ)BD do not provide verifiable trust relationship, since no
other group member can verify the correctness of the broad-
castedXi (note, at least two members have to cooperate).

• Mi selects randomri ∈R {1, . . . , t − 1}, computes and
broadcastsZi = riG.

• Mi computes and broadcastsXi = ri(Zi+1 − Zi−1) =

(riri+1 − riri−1)G.
• Mi computesK = nriZi−1+(n−1)Xi +. . .+Xi+n−2 =

(r1r2 + r2r3 + . . . + rn−1rn)G.

Figure 1. µBD Setup

7.2. µCLIQUES

Original CLIQUES ([13]) is a CGKA protocol suite that
arranges group members in a list structure(M1, . . . , Mn).
The protocol specifies a role of the controller that collects
contributions of other group members, adds own contribu-
tion, and broadcasts information that allows all members to
compute the group key. We stress that this role is tempo-
rary and does not mean a trusted central authority whose
existence in the group was excluded. The choice of the con-
troller depends on the dynamic event and the current list
structure. CLIQUES mixes unicast and broadcast commu-
nication to achieve a better communication performance,
since unicast communication requires less costs. Our ellip-
tic curve equivalentµCLIQUES is given in Figure 2 with
Mn as controller. In additive events new members are ap-
pended to the end of the list. To achieve key independence
the controller changes its random valuer′. Last appended
member becomes a controller for the next additive event.
The new group key is computed in the same manner as in
the setup protocol, except for the difference that the com-
putation process starts from the controller’s position in the
list. In subtractive events the set of leaving membersL is

• 1 ≤ i ≤ n − 2: Mi selects randomri ∈R {1, . . . , t − 1},
and unicastsZi = riZi−1 to Mi+1. (note,Z1 = r1G)

• Mn−1 selects randomrn−1 ∈R {1, . . . , t − 1}, and broad-
castsZn−1 = rn−1Zn−2.

• Mi sendsXi = Zn−1/ri to Mn.
• Mn broadcastsS = {Si = rnXi|1 ≤ i ≤ n}.

Mi computesK = riSi = r1r2 . . . rnG with Si ∈ S .

Figure 2. µCLIQUES Setup

deleted from the list. The controller that is the most recent
remaining member chooses new random valuer′ and com-
putesS′ = {S′

i = r′Si|1 ≤ i ≤ n ∧ i 6∈ L}. Upon receiv-
ing S′ other members compute the new group key as in the
last step of the setup protocol. If the controller is a leaving
member then any other member can take over its role, as-
suming it has saved the previous setS. (µ)CLIQUES do not
provide verifiable trust relationship, because no other mem-
ber can check whether valuesZi or Xi forwarded byMi, or
the setS broadcasted by the controller are correctly built.

7.3. µSTR
Original STR ([7]) is a CGKA protocol suite that ar-

ranges members in a binary tree structure from Figure 3.
The tree has two kinds of nodes: leaf and internal nodes. An
internal node INi has two children: a lower internal node
INi−1 and a leaf node LNi. (IN1 = LN1 is the only excep-
tion). In the following we describe the structure of the group
key in ECC. Each LNi is associated with member (device)
Mi and contains its secretly chosensession randomri. Its
public version isRi = riG. Each INi is associated with a
secret keyki and its public counterpartKi = kiG. Every

M1 M2

M3

M4

k2,K2

k1 = r1

K1 = R1

IN1 = LN1

k3,K3

k4

r1,R1 r2,R2

r3,R3

r4,R4

IN2

IN3

IN4

LN4

LN3

LN2

Figure 3. STR binary tree (n = 4)

ki = riki−1G, i > 1 (note thatk1 = r1) is computed using
tree-based Diffie-Hellman key exchange method [8] in two
different ways:ki = map(riKi−1) or ki = map(ki−1Ri).
Sinceki has to be an integer in order to computeki+1, but
values (riKi−1) and (ki−1Ri) are points inE, the point-
to-integer mapping functionmap is used. The secret group
key K = kn can be computed by any memberMi that
knowsKi−1 and allRj for all 1 < i < j ≤ n. We present
µSTR in Figure 4. As in original STR it defines the role of
the sponsor (similar to the controller in CLIQUES) that is

• Mi selects randomri ∈R {1, . . . , t − 1}, computes and
broadcastsRi.

• M1 andM2 compute(k2, . . . , kn). M1 computes and broad-
casts(K1, . . . , Kn−1).

• Mi, i 6= {1, 2} computes(ki, . . . , K = kn).

Figure 4. µSTR Setup

temporary and can be assigned to different members on oc-
cured dynamic events depending on the current tree struc-
ture. The sponsor reduces the communication overhead as
it performes some operations on behalf of the group. We
stress that the sponsor is not a central authority. (µ)STR pro-
vide verifiable trust relationship because every broadcasted
public key can be verified by at least one other participant,
e.g.,Ki can be computed by membersMi andMj for all
j < i. In additive events new members are added on top of
the tree and sponsorMs is the highest-indexed member in
the initial tree. It changes own session randomr′s, computes
changed secret keyski and public keysKi for all i ≥ s, and
broadcasts updated tree with all public keys and public ses-

sion randoms.2 In subtractive events leaving members are
removed from the tree and sponsorMs is the member asso-
ciated in the initial tree with the leaf node located directly
below the leaf node of the lowest-numbered leaving mem-
ber. Its computations are similar to those in additive events.

Optimization Original protocol requires that the sponsor
Ms broadcasts the updated tree with all public keys and
public session randoms. A closer look shows that some
broadcasted data is redundant. Every memberMi, i > 1
must save only public keyKi−1, public session randoms
Rj and secret keyskj for all j ≥ i in order to be able to up-
date the group key and be prepared to take over the spon-
sor’s role in any further dynamic event. Thus,Ms has to
broadcast only changed valuesKj andRj , j ≥ s, since un-
changed values are already known. These modifications re-
duce the size of broadcasted messages and the size of stored
data inµSTR.

Modification for Heterogeneous Groups The protocol
µSTR-H presented in [10] is a modification ofµSTR for
heterogeneous ad-hoc groups.µSTR-H distributes costs
non-uniformly between all participants based on the perfor-
mance ratio orderP . The observation behind theµSTR-H
is that members located deeper in the tree perform more
computations and save more data than higher-located mem-
bers. All members computeP and maintain it upon dy-
namic changes. The management policy ofP ensures that
more powerful devices are inserted below less powerful de-
vices, and have, therefore, to bear higher computation and
memory costs as required by the cost fairness. New devices
are added into the tree on positions according toP , and not
simply on top of the tree as inµSTR.

7.4. µTGDH
Original TGDH ([8]) is a CGKA protocol suite that ar-

ranges members in a binary tree structure from Figure 5.
The tree is kept balanced, i.e., paths from leaf nodes up

k〈0,0〉

k〈1,0〉

M1 M2 M3 M4

l = 0

l = 1

l = 2

K〈1,0〉

k〈1,1〉

k〈2,0〉 k〈2,1〉 k〈2,2〉 k〈2,3〉

K〈1,1〉

K〈2,0〉 K〈2,1〉K〈2,2〉 K〈2,3〉

Figure 5. TGDH binary tree (n = 4)

to the root contain equal number of intermediate nodes.

2 In the original description of join it is not specified that anew mem-
ber receives all public keys and public session randoms. However, in
leave protocol the sponsor has to broadcast the whole tree with all
these values (denoted there asBTs). Thus, in case that a new mem-
ber becomes the sponsor of the leave event it must also know all pub-
lic keys and public session randoms of the current tree.

Each node〈l, v〉 is associated with a secret keyk〈l,v〉 and
a public keyK〈l,v〉 = k〈l,v〉G. Secret keys of leaf nodes
are chosen and kept secret by associated members. Every
k〈l,v〉, 0 ≤ v ≤ 2l − 1, 0 ≤ l ≤ h where h is the
height of the tree, is computed using Diffie-Hellman key
exchange between nodes〈l + 1, 2v〉 and 〈l + 1, 2v + 1〉
either ask〈l,v〉 = map(k〈l+1,2v〉K〈l+1,2v+1〉) or k〈l,v〉 =
map(k〈l+1,2v+1〉K〈l+1,2v〉). The secret group keyK =
k〈0,0〉 can be computed by any memberMi if it knows all
public keysK〈l,v〉 in the tree. Although original descrip-
tion of TGDH does not specify the setup procedure, we de-
rive the protocol in Figure 6 with respect to the group key
structure and techniques of other protocols of the suite. In
the setup protocol the sponsor of the (sub)tree is always the
rightmost member. In additive events new member (or the
sponsor of the merged group) sends own (group’s) public
key(s). Members determine the insertion node of the new
member (or merged group’s tree) that is the rightmost node
that does not increase the height of the tree. SponsorMs

of the event that is the rightmost member of the updated
tree, changes own contributionk〈ls,vs〉, computes all new
secret keys and public keys in its path up to the root, and
broadcasts the updated tree with all public keys so that other
members can update the tree and the group key upon the
sponsor’s message. In subtractive events leaf nodes of leav-
ing members are deleted from the tree. In case of leave the
sponsorMs is the rightmost member of the subtree rooted
at the leaving member’s sibling node. Computations ofMs

are equal to those in additive events. In case of partition the
leave protocol is performed for every partitioned member in
parallel. Thus, there may exist multiple sponsors that com-

1. Mi selects randomk〈li,vi〉 ∈R {1, . . . , t − 1}, computes
and broadcastsK〈li,vi〉, setsl := li − 1 andv := ⌊vi/2⌋.

2. Mi updates the tree structure, computes secret keyk〈l,v〉, and
public keyK〈l,v〉. The sponsor of the (sub)tree
rooted at node〈l, v〉 broadcastsK〈l,v〉.

3. Members repeat steps 2 and 3 withl := l−1 andv := ⌊v/2⌋

until every member can compute the group keyK = k〈0,0〉.

Figure 6. µTGDH Setup

pute new secret and public keys as far up the tree as pos-
sible before they broadcast corresponding trees including
the public keys. Partition protocol may take several rounds,
since the computation of the group key may be blocked un-
til the required public keys are broadcasted. (µ)TGDH pro-
vide verifiable trust relationship, because every broadcasted
public keyK〈ls,vs〉 can be verified by every group mem-
ber in the subtree rooted at node〈ls, vs〉.

Optimization Original TGDH can be optimized similarly
to STR. Every member requires only public keys of all sib-
ling nodes in its path up to the root to compute the group
key. However, members still have to save the tree structure

to be able to update it after dynamic events. Thus, mem-
bers save the tree structure with required public keys. The
size of the sponsor’s message can be reduced, if it broad-
casts updated tree including only changed public keys.

7.5. Security Analysis
Original security proofs of the described protocols are

given for BD in [6], for CLIQUES in [13], for STR in [7],
and for TGDH in [8]. All proofs build reductions from the
attacks against security requirements of the protocol to at-
tacks against well-known cryptographic assumptions. Our
optimizations do not change the computation process of the
group key in either of the described protocols. In all proto-
cols we map mathematical operations fromZ∗

p to <G>, i.e.,
switch to ECC according to Section 6. ECC does not bring
any security risks since all cryptographic assumptions that
hold in Z∗

p and are used in the original proofs, also hold in
<G> yielding that all optimized protocols remain secure.
The following cryptographic assumptions are used in origi-
nal proofs: Discrete Logarithm (DL) assumption (i.e., given
a generatorg of a multiplicative cyclic prime order groupG
andga ∈ G, it is hard to computea); Computational Diffie-
Hellman (CDH) assumption (i.e., giveng, ga, gb ∈ G, it is
hard to computegab); Decisional Diffie-Hellman (DDH) as-
sumption (i.e., giveng, ga, gb, gc ∈ G, it is hard to decide
whethergc = gab). According to [11] the ECC counter-
parts of DL and CDH assumptions are hard in<G> for all
types of elliptic curves. However, the hardness of the DDH
assumption could only be proven for special types of el-
liptic curves, i.e., non-supersingular and non-trace-2 ellip-
tic curves as described in [5]. Therefore, only these special
curves should be chosen for the implementation.

7.6. Complexity Analysis
Table 1 provides communication, computation and mem-

ory costs of the optimized protocols. We consider one pro-
tocol round as over if members have to wait for missing data
to continue with the computation of the group key. Columns
U and B represent the total number of unicast and broadcast
messages, respectively. The message size column gives the
total size of sent messages inlog q-bits whereq is the pa-
rameter of the finite fieldFq (in practiceq ≈ 160 bits).
Computation costs specify the total number of scalar-point
multiplications per member based on member’s index (po-
sition) in the group. This creates a basis for the suitabil-
ity analysis of the protocols for homogeneous and hetero-
geneous groups. The memory costs column specifies the
size of data that a device has to store in order to handle
dynamic events. The following notations are used:n - ini-
tial group size,i - updated index (position) ofMi, s - up-
dated index (position) of the sponsor,m - size of the merg-
ing group,p - number of leaving (partitioned) members,h

- height of the TGDH tree (noteh = ⌈log n⌉), li (ls) - up-
dated level of member’sMi (sponsor’sMs) node in TGDH
tree (note,li, ls ∈ {0, . . . , h}), lsj

(l′sj
) - updated (initial)

level of sponsor’sMsj
node in TGDH tree in merge and

partition protocols,T〈lsj
,vsj

〉 - subtree that represents the
initial merging group with sponsorMsj

, Msr
- the right-

most sponsor inµTGDH partition,s∗j - index of sponsor
Msj

whose levellsj
is maximal compared to other spon-

sors inµTGDH merge.

Communication Obviously,µSTR provides best commu-
nication efficiency concerning the total number of rounds
and sent messages. The total messages size in case of join
is constant, in case of merge depends on the number of
merging members, and in other cases scales linearly with
the sponsor’s position, varying between 1 andn. Compared
to µSTR the size ofµTGDH messages scales linearly with
the level of sponsor’s nodels, which varies between 0 and
h = ⌈log n⌉. Thus, in some casesµTGDH may require less
communication bandwidth thanµSTR.

Computation µBD protocol requires only 3 scalar-point
multiplications (we do not count additionaln − 1 multi-
plications with a small integer whose costs may become
non-negligible for largen). From all protocols that were de-
signed to handle dynamic events we point outµCLIQUES
and µTGDH. µCLIQUES requires a constant number of
multiplications for all members except for the sponsor. Sig-
nificant drawback is that the number of sponsor’s multipli-
cations scales linearly in the number of group members. In
µTGDH the number of multiplications performed byMi is
given by the functionf (notef(i, s) ≤ min(li, ls)), and can
be approximated byO(log n). Notable is also that inµSTR
andµSTR-H the number of multiplications per member is
proportional to its node’s position in the tree. This allows
non-uniform distribution of costs as required in heteroge-
neous groups.

Memory µBD is stateless and requires, therefore, from
group members to save only the group key. However, the
protocol has to be restarted to update the group key af-
ter occuring dynamic events. The handling of dynamic
events by other CGKA protocols requires from mem-
bers to save some auxiliary information. InµCLIQUES
all members have to save equal amount of informa-
tion (i.e, (n + 1) log q bits), regardless of their position
in the group. In µTGDH required memory space de-
pends on the level of member’s nodeli, which varies
between0 and h = ⌈log n⌉. Since the tree manage-
ment policy of µTGDH tries to keep the tree balanced
most members have to save⌈log n⌉ keys (i.e,⌈log n⌉ log q

bits), whereas inµSTR andµSTR-H the number of keys
that a member has to save scales linearly with his posi-
tion in the tree and may, therefore, vary between 4 and2n

keys (i.e, between4 log q and2n log q bits). This is essen-
tial for heterogeneous groups where less-powerful devices
are assigned to the lower nodes and have to save, there-
fore, less data.

Table 1: Computation, Communication and Memory Costs of Optimized CGKA Protocols

CGKA Protocol Communication Computation Memory
Rounds U B Message size Scalar-Point Multiplications Saved data

µBD S 2 0 2n 2n 3 1

S n + 1 2n − 3 2 3n − 2 i < n − 1: 3 n + 1
i = n − 1: 2, i = n: n

J 2 1 1 2n + 2 i = n, i = n + 1: n + 1
i < n: 1

µCLIQUES L 1 0 1 n − 1 i = s: n − 1

i 6= s: 1

M m + 1 m 1 m2+5m+4n+2

2
i < n: 1
n ≤ i ≤ n + m: i + 2

P 1 0 1 n − p i = s: n − p
i 6= s: 1

S 2 0 n + 1 2n − 2 i = s: 2n − 1 i = 1: 2n
i 6= s: n − i + 2 i > 1: 2(n − i + 2)

J 1 0 2 3 i = s: 4
i 6= s: 2

µSTR L 1 0 1 n − s i < s: n − s
i = s: 2(n − s)
i > s: n − i

M 2 0 3 2m i < s: m + 1
i = s: 2(n + m − s + 1)
i > s: n + m − i + 1

P 1 0 1 n − p − s + 1 i < s: n − p − s + 1
i = s: 2(n − p − s + 1)
i > s: n − p − i + 1

S 2 0 n + 1 2n − 2 i = s: 2n − 1 i = 1: 2n
i 6= s: n − i + 2 i > 1: 2(n − i + 2)

J 1 0 2 2n − 2s + 3 i < s: n − s + 2
i = s: 2(n − s + 2)
i > s: n − i + 2

µSTR-H L 1 0 1 n − s i < s: n − s
i = s: 2(n − s)
i > s: n − i

M 2 0 3 2n + 2m − s + 1 i < s: n + m − s + 1
i = s: 2(n + m − s + 1)
i > s: n + m − i + 1

P 1 0 1 n − p − s + 1 i < s: n − p − s + 1
i = s: 2(n − p − s + 1)
i > s: n − p − i + 1

S h 0 2n − 2 2n − 2 vi even:li + 1 2(li + 1)
vi odd:li + k

J 2 0 2 ls + 1 Ms: 2ls
Mi: f(i, s)

L 1 0 1 ls Ms: 2ls
Mi: f(i, s)

µTGDH M 2 0 3 ls + l′s1
+ l′s2

+ 2 Msj
: lsj

+ l′sj
+ 1

Mi ∈T〈lsj
,vsj

〉: f(i, sj)

Ms: ls + f(s, s∗
j) − 1

otherMi: f(i, s∗
j)

P min(⌈log p⌉ + 1, h) 0 min(2p, ⌈n
2
⌉) h · min(2p, ⌈n

2
⌉) Msj

: 2lsj
− 1, Msr : 2lsr

Mi: max({f(i, sj)|∀sj})

Remarks:S - setup, J - join, L - leave, M - merge, P - partition, Message size and size of saved data are given inlog q bits,

f(α, β) =

(

lα − ⌊log |vα − ⌊vβ/2lβ−lα⌋|⌋, if lα ≤ lβ
lβ − ⌊log |vβ − ⌊vα/2lα−lβ ⌋|⌋, if lα > lβ

k ∈ {1, . . . , h − 1} is the smallest integer such that⌊vi/2k⌋ is even.

8. Discussion

With respect to our complexity analysis and introduced
notion of verifiable trust relationship we discuss the suit-
ability of the optimized protocols for various mobile ad-hoc
groups.

8.1. Homogeneous Groups

Static groups Although µBD does not provide verifiable
trust relationship it has low computation costs per member
and good communication trade-off. Thus,µBD is sufficient
for applications with lower level of security. However, for
a higher security level we suggest to useµTGDH that pro-

vides cost fairness for homogeneous groups and verifiable
trust relationship, and fulfills all security requirements.

Dynamic groups µTGDH is the best choice for homoge-
neous ad-hoc groups with frequent dynamic events because
of the uniform distribution of computation and memory
costs due to the balanced tree. AlthoughµTGDH has higher
communication costs for setup, join and partition compared
to µSTR, it still provides a good trade-off between the mes-
sage size and the computation costs.

8.2. Heterogeneous Groups

Static groups For static heterogeneous ad-hoc groups
we compareµBD, µCLIQUES andµSTR-H setup pro-
tocols. µSTR-H has a better communication efficiency
thanµBD, althoughµBD requires only 3 multiplications.
Hence, we suggest to useµSTR-H if communication con-
straints are more significant than computation constraints.
µSTR-H should also be used to achieve a higher security
level, because neitherµBD norµCLIQUES do provide ver-
ifiable trust relationship. However, if a lower security level
is sufficient and communication is not the primary con-
straint then eitherµBD or µCLIQUES may be chosen: if
n is not very large and additional costs ofn − 1 multipli-
cations with small integers are negligible thenµBD is an
optimal solution since its communication complexity is bet-
ter than that ofµCLIQUES; otherwise if additional costs
are non-negligible due to largen thenµCLIQUES is a bet-
ter choice and the device with the highest performance ratio
should act as the sponsor.

Dynamic groups For dynamic heterogeneous ad-hoc
groups we recommend to choose betweenµSTR-H and
µCLIQUES. µSTR-H provides best communication effi-
ciency (especially in case of merge) and a higher level of se-
curity (i.e., verifiable trust relationship) thanµCLIQUES
that requires a constant number of computations for most
of the devices. In groups where communication con-
straints are more significant or security level must be
high we suggest to useµSTR-H. In groups where com-
putation constraints are more significant or a lower
security level is sufficientµCLIQUES may also be con-
sidered as a choice. Due to the highest computation costs
of the sponsor inµCLIQUES we suggest that if the ma-
jor part of the involved devices is less powerful (e.g., mobile
phones) and there are only several higher-performance de-
vices (e.g., laptops) thenµCLIQUES should be used
with the highest-performance device acting as a spon-
sor. However, if the group is mixed, e.g., the number
of involved mobile phones, PDAs and laptops is al-
most equal thenµSTR-H is a better choice, because of
the non-uniform distribution of computation costs with re-
spect to the cost fairness requirement.

9. Conclusion
In this paper we have revisited CGKA protocols from

the perspective of mobile ad-hoc networks and devices. We
have optimized all described protocols to achieve better
computation, communication and memory costs, and dis-
cussed the suitability of the modified protocols for static
and dynamic homogeneous and heterogeneous mobile ad-
hoc groups.

Obviously, none of the protocols can be used as a uni-
versal solution for all described classes of mobile ad-hoc
groups. Moreover, best suitable protocol should be cho-
sen according to our recommendations under consideration
of the expected dynamic behaviour in the group, required
level of the security for the application, and priority be-
tween computation and communication constraints (i.e., a
trade-off between device performance and network perfor-
mance).

References

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the per-
formance of group key agreement protocols.ACM Trans. Inf.
Syst. Secur., 7(3):457–488, 2004.

[2] R. Bhaskar. Group key agreement in ad hoc networks. Tech-
nical Report RR-4832, INRIA Rocquencourt, May 2003.
http://www.inria.fr/rrrt/rr-4832.html.

[3] M. Burmester and Y. Desmedt. A secure and efficient con-
ference key distribution system. InAdvances in Cryptology
(EUROCRYPT ’94),Lecture Notes in Computer Science, vol-
ume 950, pages 275–286. Springer-Verlag Berlin, May 1994.

[4] S. Capkun, L. Buttyn, and J.-P. Hubaux. Self-organized
public-key management for mobile ad hoc networks.IEEE
Transactions on Mobile Computing, 2(1):52–64, 2003.

[5] A. Joux and K. Nguyen. Separating decision diffie-hellman
from diffie-hellman in cryptographic groups. Cryptol-
ogy ePrint Archive, Report 2001/003, 2001.http://
eprint.iacr.org/.

[6] J. Katz and M. Yung. Scalable protocols for authenticated
group key exchange. InAdvances in Cryptology - CRYPTO
2003, volume 2729 ofLecture Notes in Computer Science,
pages 110–125. Springer, 2003.

[7] Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient
group key agreement. InInformation Systems Security, Proc.
of the 17th International Information Security Conference,
IFIP SEC’01, 2001.

[8] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key
agreement.ACM Transactions on Information and System
Security, 7(1):60–96, 2004.

[9] J. Luo, P. T. Eugster, and J.-P. Hubaux. Route driven gos-
sip: Probabilistic reliable multicast in ad hoc networks. In
INFOCOM, 2003.

[10] M. Manulis. Key agreement for heterogeneous mobile ad-
hoc groups. InProceedings of 11th International Conference
on Parallel and Distributed Systems (ICPADS 2005) Volume
2 International Workshop on Security in Networks and Dis-
tributed Systems (SNDS 2005), pages 290–294. IEEE Com-
puter Society, 2005.

[11] U. M. Maurer and S. Wolf. The Diffie-Hellman protocol.De-
signs, Codes and Cryptography, 19:147–171, 2000.

[12] Standards for Efficient Cryptography Group (SEC). Sec
1: Elliptic curve cryptography,http://www.sec.org,
September 2000.

[13] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in
dynamic peer groups.IEEE Transactions on Parallel and
Distributed Systems, 11(8), 2000.

