
Formalising Human Recognition: a Fundamental Building Block for
Security Proofs

Kenneth Radke1 Colin Boyd2 Juan Gonzalez Nieto3 Mark Manulis4

Douglas Stebila1

1 School of Electrical Engineering and Computer Science 2 Department of Telematics
Queensland University of Technology, Australia Norwegian University of Science and Technology

Email: k.radke, stebila@qut.edu.au Email: colin.boyd@item.ntnu.no

3 BAE Systems Detica 4 Department of Computing
Email: juan.gonzalez@baesystemsdetica.com University of Surrey, United Kingdom

Email: m.manulis@surrey.ac.uk

Abstract

A fundamental part of many authentication protocols
which authenticate a party to a human involves the
human recognizing or otherwise processing a message
received from the party. Examples include typical im-
plementations of Verified by Visa in which a message,
previously stored by the human at a bank, is sent
by the bank to the human to authenticate the bank
to the human; or the expectation that humans will
recognize or verify an extended validation certificate
in a HTTPS context. This paper presents general
definitions and building blocks for the modelling and
analysis of human recognition in authentication pro-
tocols, allowing the creation of proofs for protocols
which include humans. We cover both generalized
trawling and human-specific targeted attacks. As ex-
amples of the range of uses of our construction, we
use the model presented in this paper to prove the se-
curity of a mutual authentication login protocol and
a human-assisted device pairing protocol.

Keywords: Ceremony; human; HTTPS; TLS; prov-
able security; authentication; HPA; protocol.

1 Introduction

Practice-oriented provable security, for authentica-
tion protocols, was introduced by Bellare and Rog-
away in 1993 [1]. Since this time, many authenti-
cation protocols have been proven secure in theory,
only to fail to meet this level of security when used
in practice by a human. Increasingly there has been
a realisation that to create secure protocols which in-
volve humans, human capabilities need to be an ex-
plicit consideration of the security model, as exempli-
fied by Shostack and Stewart’s statements, “. . . our
approach to information security is flawed” and “the

This work was supported in part by Australian Research Coun-
cil Linkage Grant LP120200246.

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Australasian Information Security
Conference(ACSW-AISC 2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 149, Udaya Parampalli and Ian
Welch, Ed. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

way forward cannot be found solely in mathematics
or technology” [11].

We focus on authentication protocols involving a
human, in which the human is expected to authen-
ticate the party they are communicating with. This
may be either mutual authentication or one-way au-
thentication. For such protocols, the human is ex-
pected to recognise an authenticator, or perform some
task which accepts some security information as input
and outputs either accept or reject. In this way we
build on the recognise function introduced by Gajek
et al. [5,6] in their work on authentication to a human
in a protocol using TLS. We focus specifically on the
recognise functionality a human must perform, and
create a formalisation which may be reused in all such
protocols.

A formal construction of the human’s recognise ca-
pabilities can be used in a variety of types of proto-
cols. As already mentioned, there are uses such as
the Gajek et al. protocol, which is similar to proto-
cols that have been implemented by numerous finan-
cial institutions. Similarly, the construction allows for
formal analysis of implementations of the widely used
Verified by Visa protocol. In this protocol a message
that the human entered on first use of the system is
sent back to the human to authenticate Visa to the
human in all future executions of the protocol.

Less obvious real world protocols, which our con-
struction may allow for formal analysis of, are au-
thentication protocols over a telephone between two
humans. A common example is where an investor
calls her stockbroker using the telephone, says a pass-
word to the stockbroker, and the stockbroker ensures
that the password said by the investor matches the
password stored for that investor. Even login mes-
sages meant to allow users to compare the last time
the system recorded their login credentials were used,
against the last time the human remembers logging
in, could be analysed for their security properties.

The formalisation captures the distinction between
a targeted attack, where the adversary knows the
identity of the victim and may conduct research and
specific social engineering attacks against that per-
son, and a trawling or general attack [2], where the
adversary has no direct knowledge of who the vic-
tim is, and therefore must rely on population-wide
trends. Schechter et al. highlighted the significance
of targeted attacks, when they researched the secu-
rity of using personal questions as an authentication
mechanism to reset passwords [10]. At one level, ge-
ographic homogeneity was a factor in allowing the
successful guessing of participant answers 13% of the

Proceedings of the Twelfth Australasian Information Security Conference (AISC 2014), Auckland, New Zealand

37

time within five attempts. As the attack became more
targeted, success rates increased, with non-trusted
and semi-trusted acquaintances being able to guess
correctly 17% of the time, and trusted acquaintances
being able to guess correctly 28% of the time [10].
This means that the severity and likelihood of success
of an attack varies greatly, depending on whether the
attack is a targeted attack or a trawling attack.

We will show a range of uses for our formalization,
with two examples of adaptations of security proofs.
We will show how our approach may be applied in
the case of a web-based mutual authentication proto-
col (see Section 3), and in the case of human-assisted
pairing of two bluetooth devices (see Section 4.1).
The former will cover the case of human-selected au-
thenticators, while the latter will provide an exam-
ple of device-selected authenticators. In both cases
the central human recognise step remains critical and
constant.

2 Security Model for Human-Based Recogni-
tion

The security model describes the human’s role in
recognising information sent to the human, which is a
typical process in a protocol where the human authen-
ticates a second party. The model formally describes
how an attacker interacts with the human, and what
capabilities and constraints the attacker has.

2.1 Formalisation

We begin by describing the situation where a human
generates a HPA which they memorize. A HPA is a
human perceptible authenticator. Subsequently, some
information, HPA′, is generated by another party and
is sent to the human. The human assesses the HPA′

by comparing the received HPA′ to the HPA they
have stored in memory. A concrete illustrative exam-
ple may be the case where the human selected HPA
and the HPA′ generated by the other party are im-
ages and the human checks to see if the two images
HPA and HPA′ are equal.

A central ideal we have incorporated is that this
behaviour will be different from human to human.
That is, HPAs that a human generates will be human
specific. We shall call HPAs that are specific to a hu-
man HPAH . While in one context an example use of
the HPA is that the human shares the HPA with an
entity, so that the entity can use the HPA to authenti-
cate to the human, this may not be the case all of the
time as HPA’s could be generated by the entity and
given to a human in a setup stage. Therefore we fo-
cus exclusively on the recognise step common to most
device-to-human authentication protocols. That is, a
HPA′ is received by the human, the human compares
the HPA′ with their HPA, and either accepts or re-
jects that HPA′ is the same as HPA.

2.1.1 HPA Scheme

We defined HPASpace to be the space of HPAs. To
use the traditional example of alphanumeric pass-
words, for a specific protocol this space may be
bounded by the 94 character possibilities, consisting
of 26 lowercase, 26 upper case, 10 numerals and 32
special printable characters, and the number of char-
acters accepted for the password. For example, for
eight characters, this is 948 possibilities.

The value of HPAH is the output of a probabilistic
algorithm GenHPA which is specific to each human,

and hence accepts as inputs the human H and the
HPASpace of the protocol being analysed,

HPAH ← GenHPA(H,HPASpace).

To return to the example of an alphanumeric pass-
word, it is widely known that while the possibility of
selecting a randomly selected eight character pass-
word may be 94−8, or approximately 53 bits of se-
curity, non-random human selection typically brings
this figure closer to 30 bits of security for humans
in general [3]. However, for a specific human, the
set of alphanumeric passwords generated may be far
smaller [3], and hence the output HPAH will be part
of the human’s specific HPASpace i.e.

HPASpaceH =

{HPAH |HPAH ← GenHPA(H,HPASpace)}.

Notice that HPAH ∈ HPASpaceH ⊆ HPASpace.
The function Recognise is defined to model the hu-

man’s ability to take two inputs, HPA and HPA′, one
potentially in memory and the other being presented
to the human, and compare the two inputs. If, in
the human’s opinion, there is a match between HPA
and HPA′ then Recognise outputs a one, otherwise
Recognise outputs a zero. This models the human’s
assessment of “The two values are the same.” There-
fore, the Recognise algorithm depends on the human:

0/1← Recognise(H,HPA,HPA′)

Of course, no human performs the recognise func-
tion perfectly 100% of the time. There will be both
false positives and false negatives from the Recognise
function. False positives occur when the human as-
sesses there is a match between HPA and HPA′ and
yet the two values are different. False positives are
seen as being a result of human’s inability to distin-
guish between two objects, if they are similar enough
though not identical, and are discussed in detail be-
low. False negatives result when HPA = HPA′ and
yet the human assesses there is no match, and the
recognise function outputs a 0. False negatives, for
example the human being presented with two identi-
cal pictures and yet assessing them as different, are
seen as an error condition, modelled by an error prob-
ability ε. False negatives are in agreement with Hop-
per and Blum’s (α, β, t) method of describing human
protocols, where value β is the probability of the hu-
man not successfully executing the protocol [7].

2.1.2 Human Indistinguishability

We denote the set of different HPA′s which the user
recognises as being indistinguishable from their cho-
sen HPA as being the set WH,HPA. This is the set of
the actual HPA and false positives. Note that a HPA′

that is recognised by a human as being indistinguish-
able from their HPA may come from their human spe-
cific HPASpaceH or from the general HPASpace. For
the sake of analysis of a specific protocol, we explic-
itly exclude any other object in existence which is
not from HPASpace. That is, if the HPASpace of a
system is defined as a four digit personal identifica-
tion number, then a five digit personal identification
number would not be a valid HPA. This commonly
accepted constraint is a limitation of our approach,
since there may be objects from outside HPASpace
which the human will accept as being their HPA.

CRPIT Volume 149 - Information Security 2014

38

Figure 1: How WH,HPA relates to HPASpace and
HPASpaceH .

To aid in the understanding of how the set of
false positives WH,HPA interacts with HPASpace and
HPASpaceH , the relationship is depicted in Figure 1.
These false positives form a set of HPAs, specific to
a human, which are similar enough (or human indis-
tinguishable) that the Recognise function will output
a 1 for a given HPA:

WH,HPA = W
′

H,HPA ∪W
′′

H,HPA

where W
′

H,HPA is the set of HPAs from HPASpaceH
and W

′′

H,HPA is the set of HPAs from HPASpace which
are not in HPASpaceH . Formally:

W
′

H,HPA = {HPA′ ∈ HPASpaceH |
Recognise(H,HPAH ,HPA

′) = 1

with HPAH ← GenHPA(H,HPASpace)}

and

W
′′

H,HPA = {HPA′ ∈ {HPASpace \HPASpaceH}|
Recognise(H,HPAH ,HPA

′) = 1

with HPAH ← GenHPA(H,HPASpace)}.

The relationship between W
′

H,HPA and W
′′

H,HPA and
HPASpace is shown in Figure 2.

2.1.3 Security and Usability

An interesting distinction between false positives and
false negatives is made when considering security and
usability. False positives result in a less secure system.
That is, the adversary can now produce not just the
exact HPA, but any of potentially many HPA′ (i.e.
|WH,HPA|) which the human will accept as indistin-
guishable from HPA.

In contrast, false negatives do not impact security.
If a human is presented with HPA′ which equals HPA
but does not assess that this is a match, then the
protocol will be aborted and hence the system will
remain secure. However, false negatives do impact
usability in that if the protocol does not successfully
proceed when HPA′ = HPA, then the human will
not be able to use the system, or at the very least
the human will need to execute the protocol one time
more than they needed to. This is similar to the well
known trade-off in biometrics.

Figure 2: How W
′

H,HPA and W
′′

H,HPA relate to
HPASpace and HPASpaceH .

2.1.4 Probabilistic versus Deterministic

In our formalism, WH,HPA represents the set of HPA′s
which the user recognises (mistakenly, except in the
case where HPA′ = HPA) as being indistinguishable
from their chosen HPA. We have captured that this
will vary from human to human. We also, in Defini-
tion 2, capture that sometimes the real HPA will not
be recognised as being the real HPA by the human.
Finally, we capture that the set of HPAs that a spe-
cific human may pick will be different from human to
human, in our definition of GenHPA.

However, while this variability is captured and
gives useful results, the set WH,HPA is constant and
deterministic for a human in our model, whereas in
reality such a set may vary over time particularly with
context. Further, the set HPASpaceH is constant in
our model, and again this set may vary with context.

2.2 Security Definition for Human Recogni-
tion

In our model, we define security in terms of the ad-
versary A’s ability to obtain a HPA value which will
cause the human to output a 1 from the Recognise
function.

The security game proceeds as follows. A HPA is
generated for a specific human H using the GenHPA
algorithm. This models a human selecting their HPA.

HPAH ← GenHPA(H,HPASpace) (1)

The adversary A knows HPASpace and gets
oracle access to Recognise(H, HPAH , ·) and
GenHPA(·,HPASpace).

HPA′ ← ARecognise(H,HPAH ,·),GenHPA(·,HPASpace)

Access to the GenHPA oracle models A’s ability
to gain information about expected HPAs from hu-
mans, including the target human. That is, we have
not limited A to using the GenHPA oracle on only
the target human. This allows A to use the GenHPA
oracle to effectively construct HPASpaceH , includ-
ing frequency distribution, for both the target H and
other humans. We call this constructed HPASpaceH ,
“HPASpace ′H”. This is now a targeted attack, which
is more damaging than a general attack. Access to the
Recognise oracle allows A to test A’s selected HPA′

to see if the selected HPA′ is accepted.

Proceedings of the Twelfth Australasian Information Security Conference (AISC 2014), Auckland, New Zealand

39

Recognise(H,HPAH ,HPA
′) = 1.

2.2.1 Upper Bound on A’s Probability of Suc-
cess

The adversary can either work from HPASpace or
generate a HPASpace ′H for the human using the
GenHPA oracle. As shown in (1), HPASpaceH con-
tains at most qgen elements, where qgen corresponds
to the number of GenHPA(H,HPASpace) queries.

If the adversary selects from HPASpace then the
attack is described as a general attack, whereas if the
adversary selects from HPASpaceH then the attack is
described as a targeted attack.

Targeted Attack A selects an authenticator
HPA from HPASpaceH , creating a targeted attack.
In this case,

SuccA Human = Pr[A wins] ≤

max
HPA∗←GenHPA(H,HPASpace)

q′|W ′

H,HPA∗ |
|HPASpaceH |
· Pr[HPA∗] (2)

where q′ is the number of queries to the Recognise
oracle to test a HPA generated using queries to the
GenHPA oracle, and Pr[HPA∗] is the probability of
HPA∗ being generated by GenHPA. This is the case
of the targeted attack against a human, by A some-
how having knowledge of HPA choices for that human
(perhaps by knowing HPAs used by that human on
other systems).

Prior work by Gajek et al. [5] considered only non-
human-specific indistinguishability, and from the en-
tire HPASpace (|WHPA|). In addition to adapting this
to the human-specific targeted attack setting, the up-
per bound on A’s probability of success must take
into account the likelihood that a HPA is generated
by GenHPA(H,HPASpace).

Intuitively, a HPA∗ with a large |WH,HPA∗ | is un-
likely to be the upper bound on A’s success prob-
ability if the likelihood that HPA∗ is picked as the
authenticator is minute. This introduces the concept
of the frequency of use of HPA∗. Therefore, for the
targeted attack, informally the maximum of the fre-
quency of use Pr[HPA∗] combined with the size of set
WH,HPA∗ is the upper bound on A’s success.

Trawling Attack A picks an authenticator from
the general HPASpace. In this case,

SuccA Human
= Pr[Awins] ≤

max
HPA∗←HPASpace

q′′|WH,HPA∗ |
|HPASpace|

(3)

where q′′ is the number of queries to the Recognise
oracle with corresponding no prior query to the
GenHPA oracle. This is the case of the general trawl-
ing attack, with no prior knowledge regarding the hu-
man’s choices, such that the adversary has to select
from the entire HPASpace.

Usually we can expect that the targeted attack is
more likely to be successful than the trawling attack,
but there could be exceptional cases in which this is
not true. Therefore, in general the probability from
Equation (2) may be a more exact upper bound on
the adversary’s success probability. However without
access to GenHPA the upper bound remains as in
Equation (3). We can now define what it means for
our schemes to be secure and correct.

Definition 1 (δ-security). We say a HPA scheme is
δ-secure, meaning that the scheme can be used as an
authentication scheme for an entity to a human, if

SuccA ≤ δ.
Definition 2 (ε-correctness). We say a HPA scheme
is ε-correct if, for all HPAH in HPASpace, where
HPAH ← GenHPA(H,HPASpace),

Pr[Recognise(H,HPAH ,HPAH) = 1] ≥ 1− ε

where ε represents the false negative rate of correct-
ness. For correctness, we are not concerned about
false positives, which is covered by WH,HPA.

2.3 Analysis and Discussion

The HPASpace will be system specific. Using a classic
human authenticating scenario which may be adapted
to create mutual authentication, a system for bank-
ing Personal Identification Numbers (PINs) may have
a HPASpace limited to four numerical digits, while
other systems may have graphical or alphanumeric
HPASpaces. The effect of GenHPA taking as an in-
put HPASpace is that comparison between security
results for different systems can be made.

Giving the adversary A oracle access to the human
specific GenHPA, allows the modelling of the effect of
HPA reuse and of the preferences of the user. If the
size of HPASpaceH , the output of GenHPA, is less
than the size of HPASpace, then the adversary re-
ceives an advantage. There may be instances where
A does not get this capability, depending on whether
the attack is a targeted or trawling attack. A targeted
attack is by far the stronger and more damaging at-
tack, as in the real world this would model the case
where an adversary has knowledge of a human’s HPA
choices. This knowledge may exist because the adver-
sary may be a legitimate server where the human logs
in elsewhere, and thus the adversary has seen many
prior examples of the human’s HPA choices.

In general, ensuring that GenHPA and Recognise
are human specific functions, allows for modelling of
targeted attacks at a specific human. Giving A ora-
cle access Recognise(H,HPAH , ·) to the human spe-
cific Recognise function means that an adversary with
infinite resources could create the set WH,HPA for a
given HPA.

3 Human-Specific HPAGen

In this section we will describe the case where a hu-
man chooses the HPA. In the next section, we will
cover the alternative case where a device selects the
HPA for the human.

Our formalisation, as defined allowing for targeted
attacks, is ideal for use in existing device-to-human
(D2H) authentication scenarios, such as the protocol
by Gajek et al. [5], or protocols involving authentica-
tion by humans in general.

3.1 Gajek et al. Browser Based Mutual Au-
thentication over TLS

Gajek et al. have created a mutual authentication pro-
tocol including a human and a HPA. A sketch of the
Gajek et al. protocol, including a description of where
the HPA is used and how the human recognise func-
tion is applied, follows [5, 6]:

1. The protocol is between a server, a human’s com-
puter running a web browser (which has state),
and the human.

CRPIT Volume 149 - Information Security 2014

40

2. Before the protocol begins, the human has se-
lected a HPA and provided that HPA to the
server. The HPAs suggested by Gajek et al. are
a personally selected image or voice recording.

3. Both the server and the human’s computer have
authentication certificates and associated private
keys, and a secure TLS connection is estab-
lished between the browser and the server, when
the browser on the human’s computer opens the
server’s webpage. This process authenticates the
server to the human’s browser and the human’s
browser to the server.

4. The server sends the human the HPA that the
human has stored with the server (by complet-
ing a lookup of the human’s browser-specific cer-
tificate, to know whose HPA to send), via the
web browser which renders the HPA for the user.
This step authenticates the server to the human
if the human recognises the HPA.

5. Having recognised the HPA, the human sends the
server their traditional login and password. This
step authenticates the human to the server.

Our formalisation makes proof of such a protocol
more complete by replacing game 20 of their proof [6].
The sketch of their proof is that SSL is proven in
games 0 to 19, and in game 20 the ability of the adver-
sary to guess a HPA that the human will recognise is
considered. Further, the analysis presented [6] could
be simplified since the initialisation stage can now be
explicitly comprehended as running the GenHPA al-
gorithm, and the process of recognition realised as an
invocation of the Recognise function. Including the
concepts of Gajek et al.’s specific proof, the result of
this game would become:

|Pr[Win20]− Pr[Win19]| ≤ SuccA Human

where SuccA Human
is defined by either Equation (2) or

Equation (3). This is in contrast to the corresponding
equation in the original proof [6], using our notation:

|Pr[Win20]− Pr[Win19]| ≤ q|W |
|HPASpace|

where q is the number of executions of the protocol.
The above demonstrates how our formalism can

be used in a certificate or SSH-based key exchange
protocol. Our proof goes beyond the Gajek et al.
proof in the following areas:

1. In the Gajek et al. proof, A selects from all of
HPASpace, roughly equivalent to our trawling
attack, whereas our proof allows for a targeted
attack where A selects from the human-specific
HPASpaceH .

2. Our model covers the concept of frequency of use
of a HPA, not just the size of |W |.

Furthermore, the technique used here can be applied
to any authentication protocol, password authenti-
cated key exchange (PAKE) protocol or key agree-
ment protocol which requires the human to authenti-
cate a message in the protocol. While these examples
are network based, there are examples of use involv-
ing just the human and a device, such as a trusted
computing scenario where a computer’s trusted plat-
form module (TPM) could be used to securely assess
the computer and securely present a HPA to the user.

An example trusted computer scenario may in-
volve a login procedure where a picture is constructed

by the trusted module for the human. That is, the
TPM creates a list of hashes from different stages
of a computer’s boot sequence, and these hashes are
graphically presented to the user in some way. Thus,
the computer’s TPM could be used to securely as-
sess the computer and securely present a HPA to the
user where the HPA’s construction (rendering by the
TPM) depends on the status of the computer. As long
as nothing has changed on the computer, then the
same HPA will always be shown to the user to recog-
nise each time she logs in, otherwise a completely new
HPA will be sent to the user (i.e. in the same way that
a one bit change will create a completely new HASH
value). So a possible concrete implementation may be
a 64 pixel black and white picture, 8 pixels high by
8 pixels wide, so the size of HPASpace would be 264.
GenHPA would be generated by the trusted platform
module to generate HPAs uniformly over HPASpace.
A typical WH,HPA may consist of any picture with
a similar number of white (or black) pixels as HPA.
Since the HPAs are device controlled, A’s advantage
would be limited by Equation (3). Modelling the lo-
gin procedure in this way would allow adjustment of
security parameters such as the number of pixels and
the number of colours in the image constructed by the
TPM and presented to the user when they login, to
arrive at the desired security for the login procedure.

3.2 Human-based Recognition with Non-
human Controlled Authenticators

This leads us to the many practical protocols in use
where HPAs have been chosen by devices or the sys-
tem, rather than by the human. From a usability per-
spective, a human may be able to better remember a
HPA they have selected. However, the essence of a
D2H authentication protocol, where a human recog-
nises some information (HPA) sent by the device, is
that the HPA has been previously agreed on by the
human and the device. Whether a human registers a
HPA at a bank, or whether the bank sends the hu-
man a HPA in a setup stage, is irrelevant from the
perspective of whether the protocol will function. In
either case, the HPA can be sent to the human by the
bank in all future protocol runs to authenticate the
bank to the human.

Having the HPA chosen by the device means that
HPASpaceH , the subset of HPASpace which the HPA
will be in, encompasses all of HPASpace. This is be-
cause the device will choose the HPA from the entire
HPASpace by a probability distribution, presumably
a random distribution. From a security perspective,
this maximises the space that the adversary has to se-
lect from to acquire a HPA′ which the user will recog-
nise as their HPA. Having the HPA chosen by some-
thing other than the human, shifts the upper bound
available to the adversary from a more powerful tar-
geted attack to a weaker trawling attack.

We now adapt our formalisation towards non-
human specific HPA selection, where non-targeted
general trawling attacks apply. We focus on more
general cases, such as human-assisted pairing proto-
cols.

4 Non-Human-Specific HPAGen

Humans are often called on to play a part in pro-
tocols for the authentication of devices. For exam-
ple, an authenticated key agreement (AKA) protocol
employing short authenticated strings (SAS) may be
used to manually pair wireless devices by having the
user check matching values on each device [8].

Proceedings of the Twelfth Australasian Information Security Conference (AISC 2014), Auckland, New Zealand

41

In such device pairing protocols, two HPAs are
sent to a human, and if the human recognises the two
HPAs as matching and accepts, then the human takes
an action and the devices become paired. As always,
the HPAs can be any human perceptible authentica-
tor, such as two series of sounds, two series of flashing
lights, or text or images displayed on a screen. We
formalise this process by setting the HPA variable
to the output of a probabilistic algorithm GenHPA
which selects from the HPASpace of the protocol be-
ing analysed, i.e.

HPA← GenHPA(HPASpace)

Note the removal of the human from the GenHPA
step, and hence the space of the generated HPA is
HPASpace not HPASpaceH as it has been in the hu-
man generated HPA case. The Recognise function
remains human specific, and the adversary’s win con-
dition remains:

Recognise(H,HPA,HPA′) = 1

Since HPASpaceH is now the size of HPASpace and
hence the upper bound is as for a general trawling
attack, the bound on A’s probability of success for a
device chosen HPA is

SuccA Device
= Pr[A wins] ≤

max
HPA∗←GenHPA(HPASpace)

| q|WH,HPA∗ |
|HPASpace|

· Pr[HPA∗] |.

4.1 Human-based Recognition with Two De-
vices

An example implementation, which could now be rig-
orously examined using our formalisation, is pair-
ing protocols for Bluetooth devices. When using
human assisted pairing of devices using Bluetooth,
one method is for protocols based on short authenti-
cated strings (SAS). In these protocols, the SAS are
somehow represented on two devices for a human to
compare, using for example audible tones or flashing
lights. Now these protocols involving a human can be
examined formally using our model.

We will demonstrate how to incorporate our for-
malism by providing a security proof of Prasad and
Saxena’s human-assisted Bluetooth pairing protocol
[9] which is based on Pasini and Vaudenay’s SAS pro-
tocol shown in Figure 3 [8]. Pasini and Vaudenay’s
protocol is designed to allow for the authentication of
a potentially large message, by comparing two short
strings. Note that by ensuring the messages came
from a specific party, i.e. authentication, this also en-
sures integrity has been maintained. That is, if a third
party changes the message, thus breaking integrity,
then the message no longer originates from the initial
party that sent the message. So the intention of the
Pasini and Vaudenay protocol is to have no confiden-
tiality of the messages sent, but have assurances of
integrity and know who has sent the messages.

In Pasini and Vaudenay’s protocol, there is a crit-
ical final step over an authenticating channel. Using
Vaudenay’s definition of this channel from [13], “The
authentication channels provide to the recipient of a
message the insurance on whom sent it as is. In par-
ticular, the adversary cannot modify it (i.e. integrity
is implicitly protected). . . . (the) channels are not as-
sumed to provide confidentiality.” The SAS protocol
in Figure 3 employs a commitment scheme (commit,
open) and a keyed hash function. An overview of the
protocol is:

1. Alice selects a string K of length κ at random.

2. Alice commits to the value K and their message
mA. This commitment is c. The commitment is
such that Alice cannot later manipulate the value
of K having seen what value Bob later sends.

3. Alice sends c and mA to Bob.

4. Bob then picks R at random and sends R and
their message mB to Alice.

5. Alice sends d, used to open the commitment
scheme, to Bob.

6. Bob uses mA, c and d to create (or “open via
the commitment scheme”) K. The hats on the
values (shown in Figure 3), that is, comparing c
with ĉ, indicates that the value has passed over
an insecure channel. Thus the value at Bob, ĉ,
may no longer be the original c created by Alice.

7. Finally, both parties create a string, SAS, using
a keyed hash function. Both parties XOR (⊕) R
with the output of a hash, keyed with K, of the
value mB .

Informally, to give an intuitive understanding of
the benefits of the protocol, note that by both parties
XORing R with the output of a hash of the value mB ,
with the hash keyed with K, and by comparing the
SAS values the two parties create, if the SAS values
are equal then the following values must have been
the same:

K Otherwise the hashes would output different val-
ues.

R Otherwise the result of the XOR would be differ-
ent. Note the use of the commitment scheme
which generates K and the order of the protocol
ensures R is sent and known before the output
of the hash can be computed.

mB Otherwise the hashes would output different val-
ues.

mA Otherwise the opening of the commitment at
Bob would have resulted in a different K at Bob,
which would have meant the keyed hashes would
have output different values.

Thus, if the two SAS values are the same, then the
messages mA and mB have been successfully sent be-
tween the parties without being changed by a third
party.

Prasad and Saxena’s adapted protocol exchanges
and authenticates public keys by instantiating mA
from Figure 3 as pkA, and, critically, the human
makes the authentication assessment, thereby tak-
ing the role of Pasini and Vaudenay’s authenticating
channel. Thus, by comparing two short strings, the
(far longer) public keys are authenticated. Note that
the protocol of Pasini and Vaudenay’s is well suited
for exchanging public keys, as the keys are public but
there must be assurances that the keys belong to the
original senders, as is the goal of the Pasini and Vau-
denay protocol.

The authentication assessment is made possible by
transforming the constructed SAS string into a series
of audible tones (beeps) or flashing lights (blinks) for
the human to compare and, if the assessment is that
the devices are the same, to accept and pair the de-
vices. We shall call this protocol the Beep-Blink pro-
tocol. The adapted authentication stage of the pro-
tocol [9] is shown in Figure 4.

CRPIT Volume 149 - Information Security 2014

42

Alice Bob
input: mA input: mB

Pick K ∈U {0, 1}κ
(c, d)← commit(mA,K)

mA,c−−−−−−−−−−−−−−−−−−−−−−−−→

Pick R ∈U {0, 1}ρ

mB ,R←−−−−−−−−−−−−−−−−−−−−−−−−
d−−−−−−−−−−−−−−−−−−−−−−−−→

K̂ ← open(m̂A, ĉ, d̂)

Authentication Stage
SAS ← R̂⊕HK(m̂B) SAS ← R⊕HK̂(mB)

authenticateAlice(SAS)−−−−−−−−−−−−−−−−−−−−−−−−→
authenticateBob(SAS)←−−−−−−−−−−−−−−−−−−−−−−−−

check SAS is the same; check Alice 6= Bob
output: Bob, m̂B output: Alice, m̂A

Figure 3: Pasini and Vaudenay’s SAS Protocol

Alice Human Bob
input: pkA input: pkB

Authentication Stage

SASA ← R̂⊕HK(ˆpkB) SASB ← R⊕HK̂(pkB)
AuthenticatorA = AuthenticatorB =

Transform(SASA) Transform(SASB)

AuthenticatorA−−−−−−−−−−−−−→ AuthenticatorB←−−−−−−−−−−−−−
Comparison

Human checks Authenticators are the same; check Alice 6= Bob

output: Bob, ˆpkB output: Alice, ˆpkA

Figure 4: Prasad and Saxena’s human-assisted device pairing protocol based on SAS protocol [9]

Prasad and Saxena [9] state, “The security of our
scheme is equivalent to the security of the underly-
ing SAS protocol under the assumption that the user
does not commit any errors.” This leaves open to
what extent human errors may impact the security of
the protocol and how these can be dealt with in the
security analysis. We have shown that it is necessary
to go beyond the presumption of humans acting per-
fectly. Indeed, their human study [9] clearly showed
firstly that the humans did not act perfectly, and sec-
ondly that the level of error depended on the type of
HPA used.

An interesting philosophical point is that even 1s
and 0s for voltage levels in a circuit have already un-
dertaken a transform to be human recognisable. So
the SASs of Pasini and Vaudenay could be considered
HPAs, and the subsequent lights by Prasad and Sax-
ena are also, though different, HPAs from different
HPASpaces. In this way, the SAS-family of proto-
cols, or the transformed SAS into beeps and blinks,
can be seen as GenHPA algorithms, the probability
distribution of which may be very well known, which
output a HPA in the form of a visual or audible SAS.

Instead of the human being pre-loaded with a HPA
and being sent a HPA′ as the two HPA inputs to
the Recognise function, HPAA will be on device A,
and HPAB will be on device B. The formalisation for
the human specific version of Recognise, including the

concept of WH,HPA as the set of HPAs which are in-
distinguishable for that human, still apply. While the
intention of the Prasad and Saxena protocol would
seem to be that the human either accepts on both
devices or rejects on both devices [9], there clearly
exists the case where on one device the human se-
lects “Accept” and on the other device the human
selects “Reject”. As such, for device A, their (po-
tentially transformed) SAS is held as HPA and the

SAS supplied by device B will be HPA
′
; and similarly

for device B. The authentication stage of Prasad and
Saxena’s protocol, using our formalism, is shown in
Figure 5. We now use our contribution to present a
proof of the Prasad and Saxena protocol, capturing
some useful human considerations.

Prasad and Saxena’s protocol [9] may be seen as
an instantiation of Pasini and Vaudenay’s protocol [8],
with the human in Prasad and Saxena’s protocol play-
ing the role of Pasini and Vaudenay’s magical authen-
tication channel. The protocol outlined in Figure 5
is a more concrete description of how the protocol
of Prasad and Saxena could be implemented. Beyond
capturing the inability of humans to perfectly execute
a protocol, and hence that the security of Prasad and
Saxena’s instantiation is not at all equivalent to that
of Pasini and Vaudenay, our formalisation allows for
capturing and analysis of a far more realistic set of
issues. For example, using the concrete protocol out-

Proceedings of the Twelfth Australasian Information Security Conference (AISC 2014), Auckland, New Zealand

43

Alice Bob
HumanA DeviceA DeviceB HumanB

input: pkA input: pkB
Authentication Stage

HPAA ← HPAB ←
R̂⊕HK(ˆpkB) R⊕HK̂(pkB)

HPAA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
HPAA←−−−−−−−−−−−−−

HPAB←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
HPAB−−−−−−−−−−−−−→

Recognise Recognise
(HumanA,HPAA,HPAB) (HumanB ,HPAB ,HPAA)

Check 1 ←Recognise; check Alice 6= Bob

output: Bob, ˆpkB output: Alice, ˆpkA

Figure 5: Prasad and Saxena’s human-assisted device pairing protocol considered using our formalism

lined in Figure 5, there is no reason why there could
not be two potentially spatially separated humans do-
ing the comparison (one for device A and one for de-
vice B) rather than one human in the one location;
and there is no reason why the protocol cannot end
with device A believing it is paired with device B,
without device B believing it is paired with device A
(and vice versa). This lack of equality between the
pairing status of the devices may be through either
Recognise failing or else through time delays in the
human making a choice.

4.2 Proof of human-assisted device pairing
protocol

A Bellare-Rogaway 1993 based model [1] was used
to provide a security proof for Pasini and Vaude-
nay’s SAS protocol [8], upon which Prasad and Sax-
ena based further human centred protocols [9]. How-
ever, in Prasad and Saxena’s work, no formal security
analysis could be given to the BEEP-BEEP, BLINK-
BLINK and BEEP-BLINK variations of the under-
lying SAS protocol. Rather, the claim was made that
the derived protocols had equivalent security to the
underlying SAS protocol [8] under the assumption
that the human did not commit any errors [9].

Now, with our formalisation, the security frame-
work exists to formally analyse such protocols.

4.2.1 Adversarial model

Recall the model for short authentication string-based
pairing security, described by Pasini and Vaudenay [8]
based on Bellare and Rogaway’s model [1]. An outline
of Pasini and Vaudenay’s model is described here for
completeness:
Launch (n, role, x) launches a new protocol instance

on node n playing role (e.g. either Alice or Bob)
with input x. It returns a new instance tag πin.

Send (π, y) sends an incoming message y to the in-
stance π. It returns an outgoing message z, or the
final output of the protocol if it completed.

Corrupt (n) injects a malicious code in node n so that
its behaviour is no longer guaranteed.

These queries are standard in cryptographic models.
For example, the Send query allows the adversary to
run the protocol normally and to inject messages of

his choice, reflecting the assumption that the adver-
sary controls communications between protocol par-
ticipants. The Launch oracle creates a unique tag
πin, which allows node n to have multiple protocol
instances running. Corrupt allows the adversary to ef-
fectively take over a node, meaning that any code the
adversary wishes could be injected at the corrupted
node such that the node would do what the adversary
wants.

In the model, the participants IDn are located at
nodes in the network. In Pasini and Vaudenay’s proof
for their protocol [8] the winning condition for the ad-
versary in such a message cross authentication proto-
col is “if some instance ended on an uncorrupted node
with a pair (m, ID) but no instance on the node of
identity ID with input m was launched.” For a com-
plete description of the model, see [8].

Theorem 1 (Success probability of Beep-Blink pro-
tocol). Let ζ be A’s success probability of the SAS
protocol of Pasini and Vaudenay [8], then A’s success
probability of the Beep-Blink protocol of Prasad and
Saxena [9] is bounded by ζ + SuccADevice

.

Proof. We employ the Shoup’s game hopping proof
technique [12] augmented by Dent [4]. We employ a
sequence of two games, the first game being the se-
curity game for the protocol shown in Figure 5 which
is the human protocol of Prasad and Saxena repre-
sented with our formalism. We transform this to the
security game for the original protocol of Pasini and
Vaudenay shown in Figure 3 [8], bounding the adver-
sary’s advantage between the two. As such our proof
augments the proof of Pasini and Vaudenay to cater
for the human considerations of the Prasad and Sax-
ena protocol. We denote Wini as the probability of
the adversary winning game i.

Game G0 describes the real protocol, as run by
Prasad and Saxena [9], using our formalism (see Fig-
ure 5 and Figure 3). The game is played between
a probabilistic polynomial time (PPT) bound adver-
sary A and a simulator. The simulator simulates pro-
tocol participants as specified in the natural protocol
specification, and answers all of A’s queries.

Game G1 describes a game which is the same as
Pasini and Vaudenay’s SAS protocol [8]. The dif-

CRPIT Volume 149 - Information Security 2014

44

ference between Game G1 and Game G0 is that in
Game G1, the original SAS protocol, the authen-
tication comparison is based on equality, whereas
in game Game G0 the authentication comparison is
based on our human formalism. Hence, remembering
SuccADevice defined above,

|Pr[Win1]− Pr[Win0]| ≤ SuccADevice
.

Therefore,

Pr[Win0] ≤ SuccADevice
+ ζ.

Pasini and Vaudenay [8] describe a win condition
of at most 2−ρ plus the adversary’s advantage against
the hash function, where ρ is the number of bits of

the SAS. They approximate ρ by log2
N2R2

2p , where

N is the number of participants, R is the number of
runs of the protocol, and p is the attack probability,
with the example given for ATM-like PIN numbers
of p = 3 · 10−4. Our formalism gives more mean-
ingful values for p, taking into account human im-
perfection, and allows for the comparison of repre-
sentational transform techniques (such as beeps and
blinks). This means a more accurate security param-
eter of ρ could be calculated.

In this way, a general framework may be created
for all such unauthenticated key exchange protocols
followed by HPA recognition.

5 Conclusion and Future Work

This work presents a method of accumulating data
which will allow for the comparison of schemes
in which the human will need to recognise some
data. When represented formally using our tech-
nique, schemes can be compared using: the size of
HPASpace (maximise), HPASpaceH (maximise) and
the ratio between the two (bring to equality); the size
of WH,HPA (false positives, minimise); the size of ε
(false negatives, minimise); and the frequency of use
distribution (normalise).

We have provided an upper bound on the adver-
sary’s probability of success, both for the case of a hu-
man generated HPA and a device generated HPA. We
have shown how our formalism may be included easily
into existing proofs, providing a more complete model
in the case of mutual authentication over TLS, and
creating a formal proof of human-assisted device pair-
ing protocols to be created for the first time. Many
similar examples of protocols involving humans where
our formalism will be directly useful exist. Such an
example would be standard Verified-by-Visa protocol
implementations, where, due to the large numbers of
people and the large numbers of protocol runs, useful
values for each of the variables in our formalism will
be available. At the softer end of the scale, our for-
malism could be applied to human protocols which ex-
ist completely in the human realm, for example where
a human may have to authenticate themselves to an-
other human which is typically based on some sort of
recognition.

This paper presents a significant building block
in security proofs which is useful in the sense that
the formalism can be used in security proofs which
allow the comparison of practical and real-world im-
plemented human authentication schemes. However,
further work can be pursued in at least two main ar-
eas. Firstly, for the purposes of creating a bound on

the adversary’s success, in our model we have pre-

vented A from selecting a HPA
′

that is outside of

HPASpace. Allowing A to select a HPA
′

that is out-
side of HPASpace would increase the size of WH,HPA
in Figure 1. Secondly, exploration and formalisation
of the concept of context, thus making the analysis
probabilistic not deterministic, will be a significant
expansion of our work.

References

[1] M. Bellare and P. Rogaway. Entity Authenti-
cation and Key Distribution. In D. R. Stinson,
editor, CRYPTO, volume 773 of LNCS, pages
232–249. Springer, 1993.

[2] J. Bonneau, M. Just, and G. Matthews. What’s
in a name? In Financial Cryptography, volume
6052 of LNCS, pages 98–113. Springer, 2010.

[3] W. E. Burr, D. F. Dodson, and W. T. Polk. NIST
Special Publication 800-63 Electronic Authenti-
cation Guideline v1.0.2, 2006.

[4] A. W. Dent. A note on game-hopping proofs.
IACR Cryptology ePrint Archive, 2006:260,
2006.

[5] S. Gajek, M. Manulis, A.-R. Sadeghi, and
J. Schwenk. Provably Secure Browser-Based
User-Aware Mutual Authentication over TLS. In
M. Abe and V. D. Gligor, editors, ASIACCS,
pages 300–311. ACM, 2008.

[6] S. Gajek, M. Manulis, and J. Schwenk. User-
aware provably secure protocols for browser-
based mutual authentication. International
Journal of Applied Cryptography, 1(4):290–308,
2009.

[7] N. J. Hopper and M. Blum. Secure Human Iden-
tification Protocols. In C. Boyd, editor, ASI-
ACRYPT, volume 2248, pages 52–66. Springer,
2001.

[8] S. Pasini and S. Vaudenay. SAS-Based Authen-
ticated Key Agreement. In M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, editors, Public Key
Cryptography, volume 3958 of Lecture Notes
in Computer Science, pages 395–409. Springer,
2006.

[9] R. Prasad and N. Saxena. Efficient device pairing
using ”human-comparable” synchronized audio-
visual patterns. In ACNS, volume 5037 of Lec-
ture Notes in Computer Science, pages 328–345,
2008.

[10] S. E. Schechter, A. J. B. Brush, and S. Egelman.
It’s no secret. measuring the security and relia-
bility of authentication via ”secret” questions. In
IEEE Symposium on Security and Privacy, pages
375–390. IEEE Computer Society, 2009.

[11] A. Shostack and A. Stewart. The New School
of Information Security. Addison-Wesley Pro-
fessional, Upper Saddle River, N.J., 2008.

[12] V. Shoup. Sequences of games: a tool for taming
complexity in security proofs. IACR Cryptology
ePrint Archive, 2004:332, 2004.

[13] S. Vaudenay. Secure communications over in-
secure channels based on short authenticated
strings. In V. Shoup, editor, CRYPTO, volume
3621, pages 309–326. Springer, 2005.

Proceedings of the Twelfth Australasian Information Security Conference (AISC 2014), Auckland, New Zealand

45

