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Abstract—Secure initialization of sensor nodes with crypto-
graphic keys is inherent to all security protocols and applications
in the area of wireless sensor networks (WSN).

We introduce a general framework, denoted TOPKEY, that
provides tool assistance and performs secure initialization of
sensor nodes with cryptographic keys over the air by leveraging
the transmission power to confine the area in which potential
attackers can eavesdrop on communication. Our analysis shows
that physical protection based on transmission power may, in
practice, lead to an acceptable level of key deployment security.
Besides the fully automated key deployment, TOPKEY supports a
five-step initialization process, suited to off-the-shelf sensor nodes
that come without any pre-installed operating system. TOPKEY is
currently tailored to static WSN topologies: it supports topology
design and deploys topology-driven key generation for a range
of WSN communication patterns.

We implemented the framework and analyzed its performance
and scalability for commodity TelosB nodes and Contiki OS. Our
analysis, performed with respect to different WSN topologies,
shows that TOPKEY can be used to securely initialize a static
network of about 100 nodes in less than one minute.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is formed by sensor

nodes that communicate with each other over the air in a

multi-hop fashion. In typical WSN topologies nodes maintain

wireless communication links with their direct neighbors and

there exists some dedicated device (often referred to as sink)

for administrative and application-specific purposes.

Whether WSNs should be used for measuring, processing,

and transmitting of sensitive information depends on the

amount of protection that can be enforced by its security mech-

anisms. WSNs have a range of applications and throughout

network’s lifetime applications might change, thus altering the

security goals. It is well understood that security mechanisms

cannot be enforced without taking care of cryptographic keys.

Secure initialization of WSN nodes with cryptographic keys

takes place in the initial deployment phase to allow for

message authentication and/or encryption while bootstrapping

the network. Secure initialization is inherent to many security

protocols, e.g. secure routing [2], [17], [30], [41], authenticated

in-network data processing [10], [15], [26], [33], possibly

with further confidentiality support [6], [8], [31], [40], secure

distributed data storage [14], or code updates performed over

the air [20], [38], [39]. The assumption on secure initialization

is crucial for their security and the central question of our work

is how to turn this assumption into a practical solution?

The initial key deployment in sensor nodes takes place prior

to WSN’s enrollment. In static networks, topology design takes

often into account specifics of the environment such as the

required coverage area, existence of obstacles that may affect

wireless transmission, identification of critical paths, etc. An a

priori topology design is not applicable to dynamic or mobile

networks, where topologies change over the time. Common

to both network types, however, is the initial generation

and distribution of cryptographic keys. WSN key distribution

schemes (cf. Section V) support different types of keys, aiming

to protect a range of basic communication patterns (cf. Section

IV). Irrespective of the topology, generated keys must be

securely deployed into the nodes. The key deployment process

must also be practical. We argue that generation of keys and

their deployment must be assisted by tools; otherwise it is

unlikely that initialization can be carried out with a reasonable

amount of effort, especially for large networks with high

density of communication paths. Tool-assistance, however,

brings additional risks: from the usability point of view one

would like to harvest the benefit of wireless communications

and perform key deployment over the air, whereas openness

of wireless channels may result in leakage of transmitted keys

to the adversary. Since prior to key deployment step, nodes

may not be in possession of any cryptographic keys—which

is precisely the purpose of secure initialization—protection of

wireless key distribution must be realized by other means.

A. Related Work

Specification of WSN security protocols and their analysis

is often carried out under the assumption that secret keys exist.

A recent initialization approach by Perković et al. [28], termed

Group Authentication Protocol (GAP), involves communica-

tion over two channels—a wireless channel for communication

with the nodes and a visible light channel (VLC). In GAP one

of the nodes acts as coordinator and all nodes interact initially

to establish a (short) group authentication string (GAS), which

is visualized to the user by each node. The user is then required

to perform manual acknowledgement, e.g., by pushing a button

on each node. Assume that some computing device holds

secret keys that must be securely distributed to the nodes.

Using GAS nodes can communicate their locally generated
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public keys to the computing device, which can then use public

key encryption to secure key transport over the air. Secure

initialization performed via GAP or related initialization pro-

tocols with out-of-band authentication, e.g. [23], [29], [35]–

[37], inherently requires public key cryptography, unless some

physical protection mechanisms aiming to prevent interference

with the attacker are in place. In this latter domain the most

notable solution was proposed by Kuo et al. [18] — a Faraday

cage was used as a physical shield to protect transmission of

keys. In [18] one node is seen as a keying device and is placed

together with other nodes into the Faraday cage to perform

key distribution. The more nodes can fit into the cage, the

more cost-effective this solution becomes. As argued in [7],

a Faraday cage may not completely shield from interference

attacks. However, experimental results in [18], demonstrate

that the amount of achievable protection is sufficient for

practical purposes. As noticed in [28], such cage introduces an

additional overhead to the user and requires further protection

mechanisms to ensure that the keying process continues only

if the Faraday cage is closed. Is it possible to perform secure

initialization process independently of any external devices,

while still being able to deploy keys over the air with a practi-

cally acceptable level of protection? Anderson et al. [4] deploy

cryptographic keys in plain over the air if communication is

required hence rendering the communication vulnerable only

during this phase. However, the transmission of plaintext keys

can occur after deployment and is therefor not observeable by

responsible entities and interceptable by adversaries. Our work

follows this line of research and explores another approach for

automated deployment of cryptographic keys in WSNs.

II. OVERVIEW OF OUR CONTRIBUTIONS

We propose a tool-assisted approach for secure initialization

of WSN nodes with cryptographic keys to protect basic com-

munication patterns. We develop a framework, called TOPKEY
which is currently tailored to static WSNs and thus supports

the topology design. The initialization approach is nonetheless

modular and can be adopted to the needs of dynamic networks.

Secure key deployment is an important part of the framework,

which however provides automated support for a more general

five-step initialization process, tailored to off-the-shelf nodes:

Node flashing Sensor nodes are flashed with the extended

operating system (OS) image to provide software support

for their communication with the TOPKEY tool. This step is

necessary as off-the-shelf nodes are typically delivered without

any pre-installed OS.

Node registration Sensor nodes are initially registered

with TOPKEY that builds a centralized view on all the WSN

nodes. TOPKEY offers several ways to perform the registration,

aiming to increase its usability.

Topology design Registered nodes can be used to design

static WSN topology by defining single-hop connectivity links

amongst the nodes and towards the base station. TOPKEY
offers automated support for topology design and can verify its

soundness. It comes with a GUI to increase the usability. (This

step could be omitted in case of dynamic WSN topologies.)

Key Generation TOPKEY performs then automatic gener-

ation of cryptographic keys for the later protection of basic

communication patterns amongst the WSN nodes and the

base station. Keys are currently generated in a deterministic

approach, i.e. their total number and types are determined by

the topology. Such topology-driven approach is best suited

for static networks, where connectivity of nodes and fre-

quent communication patterns do not change over the time.

(TOPKEY can be extended with other key generation algo-

rithms to enable secure initialization for dynamic networks.)

Key Deployment In this final initialization stage generated

keys are securely deployed into sensor nodes. TOPKEY can

perform key deployment in several secure ways. The most

usable approach, yet also most challenging from the security

point of view, is the distribution over the air. This approach is

realized in TOPKEY by reducing the transmission power with

which keys are distributed. Regulating the transmission power

is our way to provide physical protection against eavesdrop-

pers. We observe that without external physical devices, such

as Faraday cage [18], further assumptions must be in place,

e.g. that attackers cannot eavesdrop on the communication

beyond a certain range. In order to understand limits of

this approach and to illustrate its behavior in practice we

perform experiments and determine acceptable ranges in which

transmission of keys over the air remains secure and reliable.

The modularity of TOPKEY implies benefits for usability:

for example, different steps of the initialization process can

be performed by distinct parties and on different computing

devices. While security-critical steps such as key generation

and deployment are likely to be performed on the same

device, the initial steps for node flashing, node registration,

and topology design can be outsourced to other devices under

different administrative control.

Our performance analysis of TOPKEY has a theoretical part,

where we estimate the required communication complexity

of the topology-driven key distribution approach based on

network size and connectivity, and an experimental part, where

real measurements with TelosB compatible motes [32] running

Contiki OS [12] were performed to obtain timings of key

distribution for different network topologies. We released the

developed TOPKEY tool into the open-source domain [1].

III. WSN TOPOLOGIES

Definition 1 (WSN Topology): A WSN topology is given by

a graph Γ = (V,E), where V = {vi}i denotes the set of

sensor nodes and E = {ei,j |vi, vj ∈ V } is the set of single-

hop links amongst the network nodes. Each element ei,j ∈ E
determines a pair of neighbors (vi, vj). For each node vi ∈ V
we further define a cluster comprising all neighbors vj ∈ V ,

i.e. ei,j ∈ E.

A WSN topology is static if the set of nodes and their

connectivity does not change over time; otherwise the topology

is dynamic (c.f. [34] for a more general classification). Our

main focus is on static WSN topologies that are frequently

installed in pre-defined indoor and outdoor areas to trigger fire

alarms or warn against trespassing, in the industrial automation
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to monitor the manufacturing process conditions, or in civil

engineering to warn about deviations and material degradation.

These applications often require a careful topology design to

be performed in advance, which contrasts dynamic topologies

that mostly arise in a mobile environment, e.g. in vehicular

communications.

Let |V | denote the number of nodes (network size) and |E|
the number of single-hop links. For any WSN topology there

is an upper bound |E| ≤ |V |(|V |−1)
2 , which corresponds to a

complete graph. However, in practice not all pairs of nodes

will become neighbors. We thus recall some basic topologies

and indicate upper bounds to give intuition about the growth

of |E| in practice.

Linear topology All nodes of the network can be connected

via a multi-hop path such that each node is visited at most

once. This topology has the upper bound |E| ≤ |V | − 1.

Tree topology In an n-ary tree topology sensor nodes form

a tree with each node having at most n child nodes. The upper

bound in this topology is also |E| ≤ |V | − 1.

Grid topology In a grid topology each sensor node is

connected to at most two other nodes along each dimension.

A two-dimensional grid topology, i.e. |V | = n · m, has the

upper bound |E| ≤ n(m− 1) + (n− 1)m ≤ 2|V | − 2
√|V |.

IV. WSN COMMUNICATION PATTERNS

Typical WSN traffic can be characterized according to

several, more or less frequent, basic communication patterns:

Sink-to-Node(s) This pattern assumes that the sink sends its

message to one or more nodes, via a network-wide broadcast.

In case the transmission power of the sink is high enough, the

message can reach all nodes in one hop; otherwise delivery of

messages to distant nodes is performed by routing mechanisms

to ensure that messages are propagated across the network.

The communication pattern in which sink’s message is sent to

all nodes is very frequent and is often used for administrative

purposes, e.g. to query WSN or to update the code.

Node-to-Sink Another basic pattern occurs when some

node vi ∈ V wishes to send a message to the sink device. De-

livery of this message may require traversal along a multi-hop

path, typically determined through applied routing protocols.

This pattern is very frequent in WSNs that are primarily used

for monitoring and reporting of the environmental data.

Neighbor-to-Neighbor(s) This pattern applies when a node

vi ∈ V wishes to send a message to its neighbor vj or to all

of its neighbors (cluster) {vj}j with ei,j ∈ E. Every sensor

node is a transceiver. Due to the broadcast nature of the signal

any message sent by vi is delivered to all nodes in its cluster.

Therefore, targeted messages to specific neighbors must be

addressed appropriately.

Node-to-Node This pattern occurs when two (non-

neighboring) nodes vi, vj ∈ V with ei,j �∈ E wish to ex-

change messages that are then typically forwarded via routing

protocols along the multi-hop path connecting the two nodes.

The type and frequency of utilization of the above patterns

depends on the applications as well as on the WSN topology.

V. KEY DISTRIBUTION IN WSN

In this section we review related work on key distribution

in WSNs. We then motivate and describe the topology-driven

approach for which our TOPKEY framework currently pro-

vides tool-assistance. The focus is laid on cryptographic keys

that are used with symmetric primitives, such as block ciphers

and message authentication codes, for which hardware support

is often provided by existing sensor nodes and which are in

general better suited for resource-constraint devices.

A. Keys for Different Patterns

In order to protect WSN communication patterns using

symmetric cryptography it is necessary for a node to have

independent keys of different types that it shares with other

entities (nodes/sink) within the same communication pat-

tern. In particular, each node may need an individual key,

shared with the base station and pairwise keys to protect

pairwise communication with other nodes, i.e. either using

direct communication between neighbors (link key) or indirect

communication over a multi-hop path (path key). It may also

need a group key shared with all WSN nodes and possibly with

the base station to protect network-wide broadcast messages

and cluster keys to alow secure communication amongst some

subset of nodes; a typical cluster in static WSN topologies

comprises all neighbors of a particular node.

B. Key Distribution Mechanisms

Many existing WSN key distribution schemes provide nodes

with some preliminary key material that—once the network

starts operating—is used by nodes to dynamically compute

symmetric keys for different patterns. Sensors perform this

computation typically through interaction with each other

(mostly for computing pairwise keys), but without any online

involvement of the party that performed the initialization step.

This approach is best suited for ad-hoc type of networks with

dynamic topologies or, more generally, for WSN topologies

that are not known prior to the operative deployment of nodes.

Therefore, we call this form of key distribution topology-
unaware. Its main strength is the establishment of pairwise

keys between any pair of nodes, i.e. in dynamic topologies

where neighbor relationships are not fixed. We recall and

provide a concise comparison of topology-unaware key dis-

tribution mechanisms in Table I, according to the following

criteria:

• Can the approach guarantee that for each supported

key type all nodes in the same pattern will indeed be

able to compute the same key? This is the case for

deterministic mechanisms, whereas probabilistic schemes

may not always provide nodes with the desired keys.

• The amount of pre-deployed keying material and dif-

ferent key types that can be dynamically computed by

nodes. Table I indicates whether mechanisms support

computation of a group key (gk), individual keys (ik),

link keys (lk) for protecting communication amongst

neighbors, path keys (pk) to allow secure communication

amongst non-neighbors, and cluster keys (ck). Existing
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TABLE I
BRIEF COMPARISON OF WSN KEY DISTRIBUTION MECHANISMS

key distribution deployment key types complexity
mechanism guarantee pre-deployed all supported computation communication

LEAP [43], [44] deterministic ik, gk ik, lk, pk, ck, gk low low
BROSK [19] deterministic gk lk, gk low low

IOS [21] deterministic ik, lk ik, lk medium medium
DMBS [21] deterministic ik, aux ik, lk medium medium

Merkle’s puzzle [27] deterministic - ik high high
random key assignments [13] probabilistic aux lk, pk medium medium
via transmission range [16] probabilistic aux lk, pk medium medium
q-composite approach [9] probabilistic aux lk, pk medium medium
polynomial approach [5] deterministic ik, aux ik, lk, pk medium medium
polynomial approach [25] probabilistic ik, aux ik, lk, pk medium medium

Blom-based [11] probabilistic ik, aux ik, lk, pk medium medium
with deployment knowledge [42] probabilistic aux lk, pk medium medium

location-based [24] probabilistic ik, lk ik, lk, pk medium medium

mechanisms mostly require that certain types of keys are

pre-deployed, possibly with some auxiliary information

(aux), in order to allow dynamic derivation of keys.

• The required costs for computation and communication,

primarily on the side of the sensor nodes.

According to Table I, distribution performed with LEAP

[43], [44] offers best diversity of supported key types and

patterns. The majority of schemes, however, aim to establish

shared keys amongst any pair of (non-neighboring) nodes and

is thus best suited to dynamic networks.

Our focus is on static WSN topologies that are designed

prior to the installation of the network. This setting offers a

number of benefits for key distribution. Since neighbor rela-

tionships are fixed, the knowledge of the topology can simplify

the generation of independent keys for the most frequent

communication patterns: sink-to-node(s), node-to-sink, and

neighbor-to-neighbor(s). We consider this approach for key

distribution as being topology-driven. Unlike the topology-

unaware schemes that could also be used for the purpose

of key distribution in static, predefined WSN topologies, the

topology-driven approach reliefs sensors from communication

and computation overhead, while still taking the initialization

party off-line once the network starts to operate.

VI. TOPKEY: TOPOLOGY-DRIVEN KEY DISTRIBUTION

FRAMEWORK

We describe our framework TOPKEY for topology-driven

WSN initialization and key distribution. TOPKEY offers au-

tomated support for a five-step secure initialization process

and tool-assistance for topology design, generation of cryp-

tographic keys, and their secure deployment. We elaborate

on each of the five steps, mentioning the expected outcome

and discussing challenges from the security, usability, and

technology point of view.

A. Setup Environment and Technology

TOPKEY operates in a setting, where some computing

device (setup device) is used to design WSN topology and

to securely initialize its nodes. In order to realize most of the

steps over the air, one of the sensor nodes is connected to the

setup device and acts as a gateway for communication with

other nodes. We assume that all nodes come initially without

any pre-installed software, as is often the case with off-the-

shelf nodes, which often lack an OS.

1) The Tool: Importance of tools in secure sensor node ini-

tialization is obvious: with the increasing size of the network

only tool-assisted initialization can offer the desired level of

scalability by means of automation. Another important aspect

is the usability of the tool-assisted approach. We have imple-

mented our TOPKEY framework as a fully working prototype.

Its current logic is implemented and tested in Java 1.6 to

achieve sufficient level of platform independence. TOPKEY
tool comes with its own GUI to assist the user throughout

different steps of the initialization process. This GUI and the

processing of user inputs is realized using the JGraph [3]

library with minor modifications to enhance the usability of

the framework.

2) Sensor Nodes: TOPKEY is currently tailored to Cross-

bow’s TelosB (or compatible) nodes. TelosB notes are among

the most popular sensor nodes and widely used in the scientific

community for experimental purposes; they are relatively

cheap and available off-the-shelf. Their hardware specification

includes an MSP430 platform with an 8MHz processor and

10kB of RAM. The non-volatile memory amounts to 48kB.

Communication amongst the nodes is realized using IEEE

802.15.4. TelosB nodes can be powered with two AA batteries

or over an USB port. In terms of sensing abilities, TelosB

nodes can sense light, humidity, and temperature. Our initial-

ization approach is application agnostic and is not limited with

respect to the provided sensing abilities.

TelosB nodes can work with different operating systems.

TOPKEY is currently based on the open-source Contiki

OS [12], in version1 2.5—a highly portable, multi-tasking op-

erating system with fast and event-driven architecture, which

is very well suited for memory-efficient networked embedded

systems. In this way distributed keys can persistently be stored

on the nodes, despite of possible battery exchange. Each node

1Contiki OS is currently under active development of the community, with
its latest version being released just few months ago.
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running Contiki OS is equipped with a micro IP which depends

on the manufacturing process and is assigned to the node

automatically after flashing. A micro IP has two 8-bit blocks

(e.g. 127.12).

Contiki OS has some benefits over other OS for sensor

nodes: for example, it is less overloaded than say TinyOS [22]

so that images become compact and suit better the constraints

of the restricted memory in TelosB nodes. Contiki OS is also

easier to program for due to the use of the native C (rather than

the specialized nesC of TinyOS). TOPKEY can nonetheless be

extended to function with other OS since many automated

steps of the initialization process are OS-independent.

3) Setup Device: The setup device executes TOPKEY. Its

implementation in Java admits usage of any commodity com-

puting device with a screen (e.g. desktop, laptop, or tablet

PC). We do not assume that setup device supports direct

communication with sensor nodes based on IEEE 802.15.4

— in fact, this standard is currently not supported by the

majority of computing devices. This is why our framework

currently utilizes one of the sensor nodes as a gateway that

will be connected to the setup device through the USB port.

B. Tool-Assisted Secure Initialization Process

The proposed tool-assisted secure initialization process is

given by a series of basic initialization steps (as introduced in

Section II): node flashing, node registration, topology design,

key generation, and key deployment. These steps have to be

performed in the mentioned order due to their dependen-

cies. TOPKEY offers convenient user interaction and fully-

automated support for the last three steps, whereas the node

flashing and node registration require user involvement to en-

able the actual over-the-air communication between the setup

device and the nodes. This involvement is required since nodes

come without OS and their over-the-air connectivity with the

setup device (through a gateway node) has to be established

in the first place. This effort is comparable to VLC [28]. The

proposed initialization process is highly modular, which results

in several benefits as also highlighted in the following.

1) Node Flashing: In node flashing step an OS image with

software support for TOPKEY is deployed on each node. This

is realized through the USB connection, established between

the setup device and the sensor node by the user. Image

deployment can be parallelized using USB hubs. The flashing

process copies OS images to the nodes and executes a local

installation procedure. TOPKEY supports node flashing by

offering Contiki OS images equipped with the additional logic

for tool assistance. The image size amounts to 39 kB (only 3

kB more than the native Contiki OS image including linked

lists, network connections and the file system).

Nodes can be flashed by any party, not necessarily the

one that will supervise later initialization steps. For instance,

nodes can be flashed by manufacturers. Although node flashing

doesn’t involve any information related to the security part of

the initialization process, care should be taken to ensure that

installed images are malware-free. This might be the case if

nodes are flashed by an untrusted party. Verifying whether an

image is trustworthy can be realized using standard techniques,

e.g. by measuring and comparing its cryptographic hash value,

if the underlying platform supports this.

2) Node Registration: Node registration step makes the

tool aware of nodes that will form future WSN topology.

In particular, registration must ensure that micro IPs of the

sensor nodes become known within TOPKEY tool for later

over-the-air communication. Our TOPKEY framework offers

several ways for node registration.

The first approach is manual, yet still user friendly: TOPKEY
GUI adds new nodes via a double click or the menu option.

The editing of the micro IP is then performed manually by

the user. Obviously, the user must know the micro IP for each

registered node. This approach is usable for a rather small

sensor network. TOPKEY tool can speed it up by offering

support for batch registration, using a list of all micro IPs.

The second approach is semi-automated in that it reliefs the

user from manually adding and editing the micro IPs of sensor

nodes or collecting this information manually beforehand. This

is realized by requiring the user to plug in TelosB nodes into

the USB port of the setup device. The actual registration of

nodes in the TOPKEY framework is then performed automat-

ically by reading out the micro IPs of the attached nodes and

displaying the registered nodes on the GUI. This approach

scales better as the only manual action of the user is to plug

and unplug the nodes into the USB port of the setup device.

This semi-automated approach is possible since flashed nodes

already contain software support for the communication with

TOPKEY tool and the framework provides platform-dependent

driver for the setup device to communicate with nodes via the

USB connection.

Observe that a fully automated node registration would

require that nodes continuously send out their registration

information that must then be recognized and processed by

the initialization tool. Any on-demand request of this infor-

mation would introduce user’s manual involvement. Such fully

automated approach, however, means that a continuous power

supply for sensor nodes must be in place between the node

flashing and the registration steps, which may not be practical

in most cases.

At the end, registered nodes and their micro IPs become

visible on TOPKEY GUI. The tool automatically verifies that

micro IPs of registered nodes have a correct format. The user

can thus proceed with the topology design. The usability of

node registration is further enhanced by the ability to store

registration information in an XML format and to load it

later for further processing. This introduces modularity that

separates node registration from topology design.

3) Topology Design: This step must take into account the

multi-hop nature of WSNs. TOPKEY allows the user to design

topologies using the available GUI: the user can arrange nodes

and draw two types of connections—(a) between the sink and

any other node that is supposed to be reachable in a single

hop from the sink, and (b) between any pair of nodes that are

supposed to become neighbors. In this way, for every node

a cluster comprising all its neighbors can be automatically
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Fig. 1. Topology design in TOPKEY

detected within the tool. For convenience, TOPKEY offers

XML-based storage and import of the designed topology.

The second important step in the topology design is to verify

soundness of the topology, according to several criteria: first

criterion is that all nodes must be reachable. This means that

every sensor node should be able to receive messages sent by

the sink either directly in a single hop or indirectly through

a multi-hop path via other nodes. Second criterion is the

uniqueness of micro IPs, as those are used by Contiki OS for

addressing purposes. TOPKEY offers fully automated support

for topology verification and reports identified problems (if

any) to the user. Any sound topology is ready to serve as a

basis for the key generation step. Figure 1 shows an example

of a sound topology designed with TOPKEY.

Topology design is another modular step that can be per-

formed even if sensor nodes are not physically available to the

designer, i.e. by a third party, and the designed topology can

be loaded into the setup device prior to the next step.

4) Topology-Driven Key Generation: The first security-

critical initialization step is the generation of cryptographic

keys. It is assumed that a sound WSN topology graph Γ =
(V,E) is available within the framework. The goal of the key
generation step is to produce cryptographic keys for the most

frequent communication patterns. Based on our discussion in

Section III and the analysis in Section V the highest level

of flexibility with regard to different key types is offered

by LEAP [43]. The knowledge of the topology graph Γ
can thereby significantly simplify underlying key generation

mechanism, as all keys can be computed centrally on the

setup device, rather than locally on the sensor nodes. This

eliminates the need for additional computations on the node

side as discussed in Section V.

TOPKEY generates four types of (symmetric) keys:

• a group key that can be shared between the sink and all

nodes in V and used to protect the sink-to-nodes pattern,

• an individual key for each node vi ∈ V that can be shared

between vi and the sink and offer protection for the sink-

to-node and node-to-sink patterns,

• an individual cluster key for each node vi ∈ V that can

be shared between vi and all vj ∈ V with ei,j ∈ E, and

used to protect a node-to-neighbors pattern, and

• a pairwise key for each pair of neighbors vi, vj with

ei,j ∈ E that can be used to protect their neighbor-to-

neighbor communication.

All generated keys are independent due to the use of

fresh randomness within the Java Security Extension. TOPKEY
allows for parameterizing lengths of these keys, however, the

default length is set to 128 bits, e.g. for AES-128 block cipher

that is supported by TelosB hardware.
TOPKEY saves generated keys in a local structure. If re-

quired, keys can be stored to the hard disk of the setup

device in an XML format and loaded later for redeployment or

modification due to possible updates of the network topology,

or if certain keys have to be generated anew. In general, we

assume that the setup device, performing the generation of

keys, is trustworthy, as it would not be possible to securely

initialize off-the-shelf nodes without making such assumption

on the key generation procedure. Once cryptographic keys are

generated the user can proceed with their deployment, which

is the final step of the initialization procedure.
5) Key Deployment: Availability of a sound WSN topology

Γ = (V,E) and a set of generated topology-based cryp-

tographic keys K are the prerequisites of the key deploy-
ment step, whose goal is to transmit keys from K onto

the corresponding sensor nodes in V . We are facing two

main challenges with regard to the deployment procedure as

discussed in the following.
The first challenge is to distribute keys securely, i.e.

inaccessible to an attacker. The security problem is apparent

in the fact that nodes at this stage are not equipped with any

cryptographic keys. One may think that deploying a master

secret key into each node during node flashing or node

registration would ease the problem. However, this is not

the case as it just shifts part of the problem and introduces

unnecessary security risks to the those initialization steps

that are currently less concerned with security and could

be performed by third parties. The most secure way is to

manually plug every node into the setup device and perform

the deployment by transmitting the keys over the serial

USB connection. Although this possibility is considered in

TOPKEY, it is clearly not scalable in that the amount of

user interaction increases linearly with the network size.

This brings us to the second challenge—the usability of the

distribution process. Aiming to minimize user interaction we

opt for a fully automated approach: the crucial idea behind

TOPKEY is to harness the benefit of a wireless channel

and perform distribution over the air. The setup device,

over a USB-connected gateway node, establishes wireless

communication with the remaining nodes based on IEEE

802.15.4

Regulating Transmission Power. The automated process
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for wireless key distribution described above introduces a

technical challenge behind the TOPKEY key deployment

procedure—nodes must remain within the range of the wire-

less signal to reliably receive cryptographic keys, while no

attacker should be able to interfere with the communication;

in particular, our main concern are eavesdropping attacks by

which the attacker could try to sniff on the keys that are

transmitted in plain. As a promising solution we consider

reduction of the transmission power with which the gateway

node is sending out the keys. A too weak transmission power,

however, may increase the packet loss. This leads to another

trade-off between security and usability and to definitions of

two range types:

Secure range This is the minimal radius, measured from the

location of the gateway node, at which the packet loss amounts

to 100%. This means that over-the-air key distribution can be

performed securely as long as no attacker is present within

this range.

Reliable range This is the maximal radius, measured from

the location of the gateway node, at which the packet loss

amounts to 0%. This means that over-the-air key distribution

can be performed reliably (with none of the keys being lost)

as long as all sensor nodes in V are located within this range.

The central question is, how do these ranges behave with

varying transmission power of the gateway node? In Table

II we measure secure and reliable ranges in dependency

of the transmission power through real-world experiments

using TOPKEY and TelosB nodes. In our attacker model and

experiments we do not assume that eavesdropper’s abilities are

superior (e.g. using powerful antennas) over those of commod-

ity sensor nodes. The first column depicts the transmission

power of a TelosB node. It can be set to an integer value,

between 0 (min) and 31 (max). From the measurements we

conclude that transmission powers between 3 and 7 seem to be

of main interest for practical purposes. In particular, smaller

transmission powers result in noticeable packet loss and far

to small reliable ranges, whereas higher powers increase the

range and by this the security risk. In addition to secure and

reliable ranges we also measured the average round trip time

(RTT) for a single packet communicated between the gateway

node and a TelosB node located at the reliable range distance.

For all measurements this RTT value was 15 ms. We used

the nullmac driver instead of the native Contiki OS driver to

avoid overhead at the MAC layer. RTT, however, will become

important in the scalability analysis of the key deployment

process (c.f. Section VII).

TABLE II
IMPACT OF THE TRANSMISSION POWER

Power Secure range Reliable range
3 (10%) 4m 0.5m
4 (13%) 4.5m 1m
5 (16%) 5m 1.5m
6 (19%) 6m 1.5m
7 (23%) 7.5m 2m

The above measurements were performed in a normal

office environment with a free line-of-sight between the

nodes. This also means that having obstacles would likely

reduce the resulting ranges. Each measurement was replicated

100 times, with their average value given in Table II. The

actual choice of suitable transmission power depends on

the environment in which the initialization is performed. In

general, we expect that initialization takes place in a closed

office environment or at home, for which transmission powers

between 3 and 5 would be suitable due to lower secure

ranges, e.g. if the user cannot oversee the whole area within

the secure range. Transmission power can be set slightly

higher if the boundaries offer stronger absorption.

Optimized Key Packaging and Format. In addition to the

reliable range, the usability of the key deployment step is

influenced by the overall time that is required to distribute all

keys from K to the nodes in V . This time is dominated by the

number of transmitted packets and the packet loss. TOPKEY
we developed an optimized way for the packaging of keys,

depending on the length of each key and on the admissible

packet size that is often determined by the TCP/IP protocol

stack of the operating system. As our TOPKEY framework

currently provides support for TelosB nodes with Contiki OS

(using its IP protocol stack) we elaborate on the optimal

packaging of keys with respect to this technology. The goal

of optimization is to reduce the number of packets.

For (unreliable) unicast transmissions Contiki OS offers 108

byte for payload per each micro IP packet. The default length

of a symmetric key from the TOPKEY key generation step is

128 bits (16 bytes) to suit the TelosB hardware support for

the AES-128 block cipher. Some key types that our TOPKEY
tool generates for a node vi do not depend on the actual WSN

topology, namely the group key, the individual key of vi, and

the cluster key of vi. It appears reasonable to package those

keys into a single unicast packet with the following format

where the 8-bit header information is followed by the payload

8 bits 128 bits 128 bits 128 bits 16 bits
header ik gk ck crc

containing the individual key (ik), the group key (gk), and the

cluster key (ck), each 128 bits long, together with the 16 bit

cyclic redundancy code (crc) to allow detection of accidental

changes on the receiver’s side. The constant length of this

packet amounts to 51 bytes and can be easily fitted into the

standard Contiki OS’ unicast packet.

In contrast, the amount of pairwise keys as well as the

amount of other nodes’ cluster keys that have to be sent to

vi depends on the number of its neighbors. We package those

keys using a different format where 5·19 bytes for the payload

8 bits 5 · 19 bytes 16 bits
header payload crc

part indicate that up to five entries (each 19 bytes long) can

be sent in one packet. The maximal packet length is 98 bytes

and can easily fit into one Contiki OS’ (unreliable) unicast

34



packet. Each of the at most five entries per packet consists

of one leading byte to indicate whether the entry represents

a pairwise key or a cluster key. Out of 18 remaining bytes

the first two bytes contain the micro IP address of the node

vj with which the receiver vi should associate the received

pairwise/cluster key. This micro IP will be used by Contiki

OS to address nodes that are intended to receive the packet

protected with the given key after network’s roll-out. The

last 16 bytes of each entry contain the actual cryptographic

(pairwise or cluster) key. At first sight it appears as a waste

to use a whole (leading) byte per entry to indicate the type

of the associated key. However, due to the limited payload

size of the Contiki OS’ unicast packets there is no difference

whether this information is encoded into one bit or one byte,

as either way at most five entries (keys) would fit into one

unicast packet. However, alignment to bytes makes it more

efficient to reconstruct the keys and the micro IP addresses

from within the Contiki OS. The indication of the key type

(pairwise/cluster) per entry rather than per packet allows for

a compact packaging of keys since every node vi receives

one pairwise key and one cluster key for each neighbor vj .

For example, assume that vi has six neighbors resulting in six

pairwise and six cluster keys. Since at most five keys can be

transmitted in one packet the indication of the key type per

packet would result in four packets (two for pairwise and two

for cluster keys) whereas with our approach only three packets

would be required in total.

Finally, we note that the header part in both packet formats

consists of eight bits, from which the first two denote the

packet type: if equal to ’00’ then the packet is assumed to

carry ik, gk, and ck type of keys; and if equal to ’01’ then

the receiver expects to receive pairwise and cluster keys of

its neighbors. If, however, the packet type has a leading

’1’ then its second bit is ignored and the payload of the

packet is interpreted as a command; such packet type ’1x’

is currently not used by the framework but is reserved for

the future. The header bits at positions 2 to 4 are used to

encode the sequence number of the packet — each TOPKEY
communication session between the setup device and a sensor

node vi will start with the sequence number 0 so that up to

eight sequentially numbered packets can be transmitted to vi.
The encoding of the sequence number with three bits gives

the total capacity to transmit up to 35 pairwise and cluster

keys per node, in addition to the group key, the individual

key, and the own cluster key of that node. Due to one-to-one

dependency between a pairwise key with a neighbor and that

neighbors’ cluster key this approach allows transmission of

up to 17 pairwise and 17 cluster keys to each vi, which is

more than sufficient for practical WSN topologies, i.e. in

practice we do not expect a node to have more than 3-4

neighbors. The final three bits of the header are used as a

counter for the number of packets that are still to come.

This information allows each node vi to calculate how many

packets should have been received so far (the sum of the

sequence number and the counter) and decide whether any

intermediate packet was lost. We will discuss the packet loss

problem and reliability issues in the next paragraph.

Packet Transmission and Reliability. In the key transmission

process, for each node in V the setup device starts by

sending out packets of the first type, containing the three

topology-independent keys (gk, ik, ck). Each of these packets

is followed by a sequence of packets of the second type,

containing the topology-dependent pairwise and cluster keys

of the neighbors. Every transmitted packet to vi contains the

sequence number, the counter for the number of packets that

are still to come, and the crc value, allowing each receiving

node to check that no bits were accidentally flipped. Upon

receiving a packet, nodes check the crc value and eventually

parse the keys according to the described format. The keys are

then stored in the non-volatile memory using the file system

of Contiki OS.

Packet transmission is realized using Contiki OS’ unreliable

unicast due to the better payload/transmission delay ratio in

comparison to its reliable version that acknowledges receipt

of each packet by default. In TOPKEY framework we opted

for the unreliable unicast since the distribution of keys should

be performed to nodes that are assumed to be located within

the reliable range. Even though our measurements in Table

II indicate reliable ranges with 100% delivery, in practice the

transmission of packets within this range may still result in

successful delivery for most of the packets but not necessarily

for all. Therefore, some reliability mechanisms must still be

in place, should our framework remain usable in practice.

Instead of using reliable unicast of Contiki OS we adopt a

different approach: the setup device sets locally a timeout for

each sensor node. Each node is expected to respond with an

ACK message only after obtaining all (valid) packets. If the

setup device doesn’t receive an ACK message prior to the

timeout then all packets for that node have to be repeated. At

the same time, each node locally keeps track on the arriving

packets and sets its own timeout after having received the first

packet. The node keeps track on the occurring problems, e.g.

if the crc check for some packet fails or a packet has not been

delivered, and sends a NACK message containing sequence

numbers of such packets to the setup device after its local

timeout or after receiving the last packet. Since each sequence

number is only 3 bits long there can only be 7 packets lost

— meaning that an NACK packet can hold sequence numbers

for all lost packets. The setup device then re-sends packets for

which the node encountered problems and waits for an ACK

of that node. Since key packets in TOPKEY are transmitted

within the reliable range, sending a single ACK message at

the end to acknowledge the correct delivery of all packets

leads to better performance.

VII. SCALABILITY AND PERFORMANCE

Here we are interested in the complexity of the automated

support offered by our TOPKEY framework. Since generation

of symmetric keys in K for a given topology Γ = (V,E) is

performed locally on the setup device its costs are negligible in

comparison to the costs of key deployment that are dominated
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by wireless communication between the setup device and

the nodes. First, we consider the total number of keys (size

of K) that must be computed and distributed using our

topology-driven approach. Taking into account that during key

deployment the gateway transmits keys over the air to each

node individually, we are further interested in the total number

of required single-hop transmissions. Lemma 1 shows that the

size of K and the upper-bound on single-hop transmissions

(assuming that each key per node requires one single-hop

transmission) is determined solely by the number of nodes

|V | and the number of single-hop links |E|.
Lemma 1 (Keys and Single-Hop Transmissions): Let Γ =

(V,E) be a WSN topology and K the set of keys according

to the key generation step from Section VI-B4. Then:

1) The total number of generated keys is |K| = 2|V | +
|E|+ 1.

2) The upper-bound of single-hop single-key transmissions

in the key deployment step is 3|V |+ 4|E|.
Proof: The key generation procedure computes two keys

(individual and cluster key) for each node vi ∈ V , one pairwise

key for each pair of neighbors vi, vj with ei,j ∈ E, and a single

group key, which gives the desired total number of keys. As

for the number of single-hop transmissions observe that each

node vi expects to receive a group key, its individual key, and

the cluster key, which gives us 3|V | single-key transmissions

to accomplish this task. Additionally, for each single-hop link

ei,j ∈ E the pairwise key between vi and vj must be sent

to both vi and vj , the cluster key of vi must be sent to vj ,

and the cluster key of vj must be sent to vi, which results in

additional 4|E| transmissions.
In practice the key packaging applied in TOPKEY (cf.

Section VI-B5) significantly reduces the amount of single-hop

transmissions in the key deployment step. We now present

concrete timings, measured with TelosB nodes for different

types of WSN topologies from Section III. More precisely,

we generated multiple random instances of different WSN

topologies and measured the resulting key deployment time for

networks of up to 20 TelosB nodes. The transmission power

of the gateway node was set to 5 (16%) that according to

Table II results in 1.5 m reliable range and has average RTT

of 15 ms. The resulting key deployment timings are plotted in

Figure 2. To keep the TelosB nodes from rebooting due to too

fast transmissions we needed to add delays which increased

the deployment by the factor of 41. These delays are not

necessary if more stable nodes are used. Hence the following

presentation accounts for the deployment time without the

added delays.
For a network of 20 nodes TOPKEY takes less than 3

seconds, depending on the topology, to perform automatic key

deployment. Timings for a complete graph-topology, however,

should be interpreted as a feasibility result since practical

topologies typically have sparser connectivity. Timings that

seem more suitable for practical purposes reside in the interval

given by measurements for linear/tree and grid topologies. In

this case TOPKEY would require 13 seconds on average to

perform key deployment for 20 nodes. We further apply our
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Fig. 2. TOPKEY Key Deployment Performance

measurements to estimate performance scalability in larger

networks. For example, assuming 15 ms average RTT and 5%

of maximal packet loss, key deployment for a grid topology

of 50 nodes would require with TOPKEY about 16 seconds

and for 100 nodes it would take up to 1 minute. Considering

measurements for small topologies from Figure 2 and heuristic

analysis for larger networks from Figure 3 we conclude

that key deployment with TOPKEY can be performed fully

automated within a reasonable amount of time for networks

of medium size.

100 200 300 400 500

1 min

2 min

5 min

10 min

30 min

1 h

2 h

number of nodes |V |

k
ey

d
ep

lo
y

m
en

t
ti

m
e

linear/tree, |E| = |V | − 1

grid, |E| = 2|V | − 2�√|V |�
complete, |E| = |V |(|V | − 1)/2

Fig. 3. Performance Heuristics for Larger Networks

36



VIII. CONCLUSION

Our TOPKEY framework offers tool assistance for secure

initialization of commodity sensor nodes and comes with a

fully automated and fast key deployment procedure, where

reduction of transmission power is used as a countermeasure

against eavesdropping attacks. Our experimental analysis on

TelosB nodes with Contiki OS suggests that this approach

may offer sufficient level of protection when eavesdropper’s

receiving abilities do not exceed those of sensor nodes and

where the attacker can be kept out of the estimated secure

ranges, e.g. in commodity office or home environments. The

modularity of TOPKEY may further support dynamic WSN

topologies, in which case the topology design step can be

skipped and the tool would have to be extended with im-

plementation of topology-unaware key distribution algorithms,

e.g. [44]. Our TOPKEY tool can be downloaded as open-source

project from [1].
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[2] G. Ács, L. Buttyán, and I. Vajda. Modelling Adversaries and Security

Objectives for Routing Protocols in Wireless Sensor Networks. In 4th
ACM SASN, pages 49–58. ACM, 2006.

[3] G. Alder. Design and Implementation of the JGraph
Swing Component, 1.0.6 edition, Feb. 2003. Available at:
http://jgraph.sourceforge.net/doc/paper/.

[4] R. Anderson, H. Chan, and A. Perrig. Key infection: Smart trust for
smart dust. In IEEE ICNP 2004, pages 206–215. IEEE, 2004.

[5] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and
M. Yung. Perfectly-secure key distribution for dynamic conferences.
In E. Brickell, editor, CRYPTO, volume 740 of LNCS, pages 471–486.
Springer Berlin / Heidelberg, 1993.

[6] C. Castelluccia, A. Chan, E. Mykletun, and G. Tsudik. Efficient and
Provably Secure Aggregation of Encrypted Data in Wireless Sensor
Networks. ACM TOSN, 5(3):20, May 2009.

[7] C. Castelluccia and P. Mutaf. Shake them up!: A movement-based
pairing protocol for cpu-constrained devices. In MobiSys, pages 51–
64, New York, NY, USA, 2005. ACM.

[8] A. C.-F. Chan and C. Castelluccia. A Security Framework for Privacy-
preserving Data Aggregation in Wireless Sensor Networks. ACM
Transactions on Sensor Networks (TOSN), 7:29:1–29:45, February 2011.

[9] H. Chan, A. Perrig, and D. Song. Random Key Predistribution Schemes
for Sensor Networks. In IEEE S& P, pages 197–213. IEEE CS, 2003.

[10] H. Chan, A. Perrig, and D. Song. Secure Hierarchical In-Network
Aggregation in Sensor Networks. In ACM CCS, pages 278–287. ACM,
2006.

[11] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili.
A Pairwise Key Pre-distribution Scheme for Wireless Sensor Networks.
ACM TISSEC, 8:228–258, May 2005.

[12] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors. In IEEE LCN,
pages 455–462. IEEE CS, 2004.

[13] L. Eschenauer and V. D. Gligor. A Key-Management Scheme for
Distributed Sensor Networks. In ACM CCS, pages 41–47. ACM, 2002.

[14] J. Girao, D. Westhoff, E. Mykletun, and T. Araki. TinyPEDS: Tiny
Persistent Encrypted Data Storage in Asynchronous Wireless Sensor
Networks. Ad Hoc Networks, 5(7):1073–1089, Sept. 2007.

[15] L. Hu and D. Evans. Secure Aggregation for Wireless Networks. In
SAINT-W, pages 384–391. IEEE CS, 2003.

[16] J. Hwang and Y. Kim. Revisiting Random Key Pre-distribution Schemes
for Wireless Sensor Networks. In ACM SASN, pages 43–52. ACM, 2004.

[17] C. Karlof and D. Wagner. Secure Routing in Wireless Sensor Networks:
Attacks and Countermeasures. In IEEE International Workshop on
Sensor Network Protocols and Applications 2003, pages 113–127, 2003.

[18] C. Kuo, M. Luk, R. Negi, and A. Perrig. Message-in-a-bottle: user-
friendly and secure key deployment for sensor nodes. In SenSys, pages
233–246. ACM, 2007.

[19] B. Lai, S. Kim, and I. Verbauwhede. Scalable session key construction
protocol for wireless sensor networks. In IEEE LARTES. IEEE, 2002.

[20] P. E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure Dissemi-
nation of Code Updates in Sensor Networks. In IEEE ICDCS, page 53,
2006.

[21] J. Lee and D. Stinson. Deterministic key predistribution schemes for
distributed sensor networks. In Selected Areas in Cryptography, pages
294–307. Springer, 2005.

[22] P. A. Levis. Tinyos: An open operating system for wireless sensor
networks (invited seminar). In 7th International Conference on Mobile
Data Management, page 63. IEEE CS, 2006.

[23] M. Li, S. Yu, W. Lou, and K. Ren. Group device pairing based secure
sensor association and key management for body area networks. In
INFOCOM, pages 2651–2659. IEEE Press, 2010.

[24] D. Liu and P. Ning. Location-based pairwise key establishments for
static sensor networks. In 1st ACM workshop on Security of ad hoc and
sensor networks, pages 72–82. ACM, 2003.

[25] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor
networks. ACM Transactions on Information and System, 2005.

[26] M. Manulis and J. Schwenk. Security model and framework for
information aggregation in sensor networks. ACM TOSN, 5(2), 2009.

[27] R. Merkle. Secure communications over insecure channels. Communi-
cations of the ACM, 21(4):294–299, 1978.

[28] T. Perkovic, M. Cagalj, T. Mastelic, N. Saxena, and D. Begusic. Secure
initialization of multiple constrained wireless devices for an unaided
user. IEEE TMC, PP(99):1, 2011.

[29] T. Perkovic, I. Stancic, L. Malisa, and M. Cagalj. Multichannel Protocols
for User-Friendly and Scalable Initialization of Sensor Networks. In
SecureComm, pages 228–247, 2009.

[30] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. Spins:
Security protocols for sensor networks. In MobiCom, pages 189–199,
2001.

[31] S. Peter, D. Westhoff, and C. Castelluccia. A survey on the encryption of
convergecast traffic with in-network processing. IEEE TDSC, 7(1):20–
34, 2010.

[32] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In IPSN, pages 364–369. IEEE Press, April 2005.

[33] B. Przydatek, D. X. Song, and A. Perrig. SIA: Secure Information
Aggregation in Sensor Networks. In SenSys, pages 255–265. ACM,
2003.

[34] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro. MANNA: a manage-
ment architecture for wireless sensor networks. IEEE Communications
Magazine, 41(2):116–125, 2003.

[35] N. Saxena and M. B. Uddin. Automated device pairing for asymmetric
pairing scenarios. In ICICS, volume 5308 of LNCS, pages 311–327.
Springer, 2008.

[36] N. Saxena and M. B. Uddin. Blink ’em all: Scalable, user-friendly and
secure initialization of wireless sensor nodes. In CANS, volume 5888
of LNCS, pages 154–173. Springer, 2009.

[37] N. Saxena, M. B. Uddin, and J. Voris. Universal device pairing using
an auxiliary device. In SOUPS, pages 56–67. ACM, 2008.

[38] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. SCUBA:
Secure code update by attestation in sensor networks. In ACM WiSe,
pages 85–94. ACM, 2006.

[39] O. Ugus, D. Westhoff, and J.-M. Bohli. A rom-friendly secure code
update mechanism for wsns using a stateful-verifier tau-time signature
scheme. In ACM WiSec, pages 29–40. ACM, 2009.

[40] D. Westhoff, J. Girão, and M. Acharya. Concealed data aggregation for
reverse multicast traffic in sensor networks: Encryption, key distribution,
and routing adaptation. IEEE TMC, 5(10):1417–1431, 2006.

[41] A. D. Wood, L. Fang, J. A. Stankovic, and T. He. SIGF: a family of
configurable, secure routing protocols for wireless sensor networks. In
ACM SASN, pages 35–48. ACM, 2006.

[42] Z. Yu and Y. Guan. A Key Management Scheme Using Deployment
Knowledge for Wireless Sensor Networks. IEEE TPDS, 19:1411–1425,
October 2008.

[43] S. Zhu. LEAP : Efficient Security Mechanisms for Large-Scale Dis-
tributed Sensor Networks Categories and Subject Descriptors. In ACM
CCS, pages 62–72, 2003.

[44] S. Zhu, Sencun and Setia, Sanjeev and Jajodia. LEAP+: Efficient
security mechanisms for large-scale distributed sensor networks. ACM
TOSN, 2(4):500–528, 2006.

37


