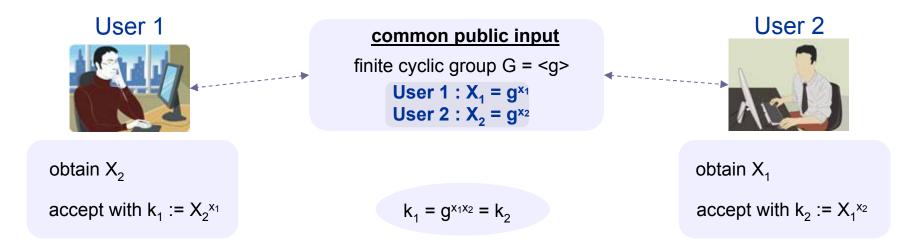
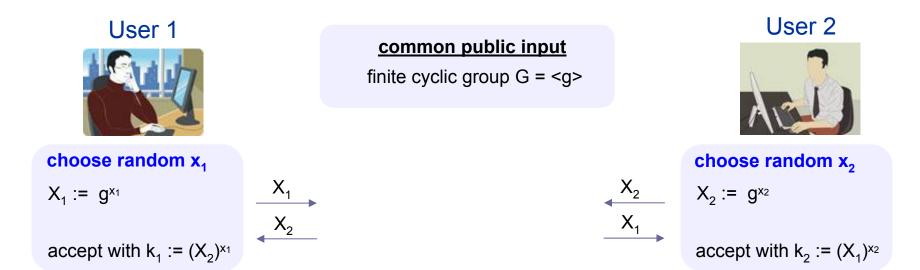
Generic Security Solutions for Group Key Exchange

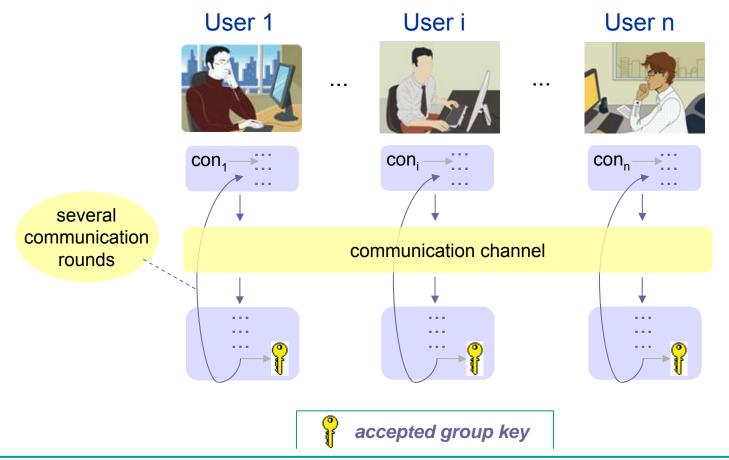

Mark Manulis

Fakultät für Elektro- und Informationstechnik Ruhr Universität Bochum

Juni 26, 2007

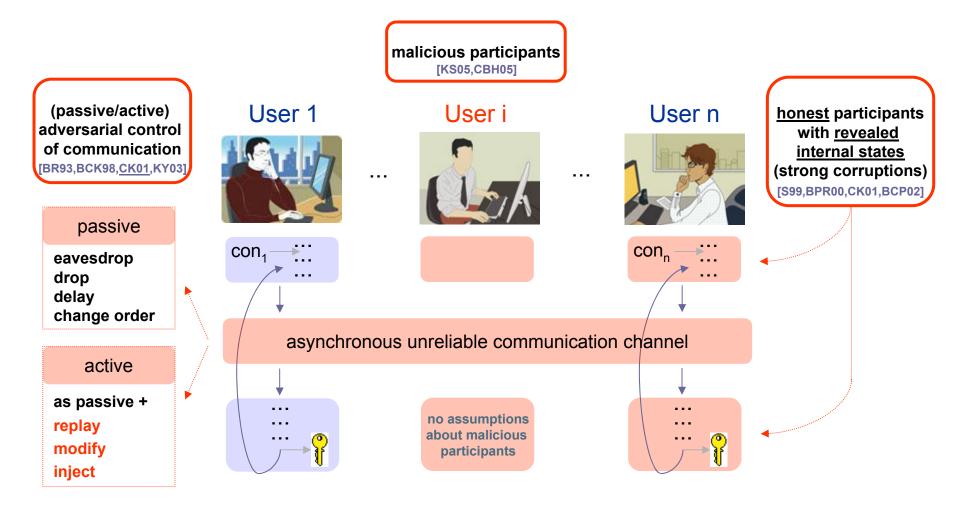

"Genuine" Diffie-Hellman Key Exchange^[DH76]

- 2-party key exchange protocol proposed by Diffie and Hellman in 1976
- foundational for many group key exchange protocols^[ITW82,SSDW88,BD94,...]
- computations are performed in the *finite cyclic* group G
 - g is the generator of G
 - Discrete Logarithm Problem (given g^x find x) is intractable in G

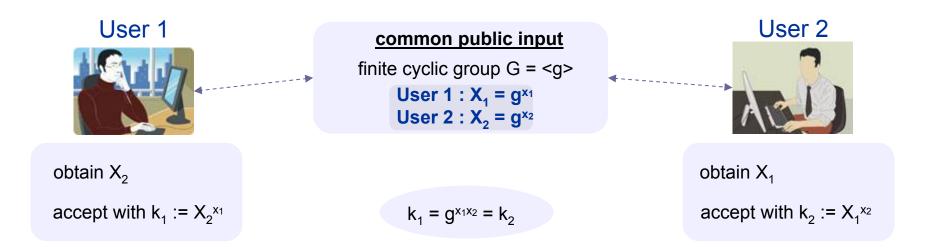


"Referenced" Diffie-Hellman Key Exchange

users choose own secret exponents during the protocol execution

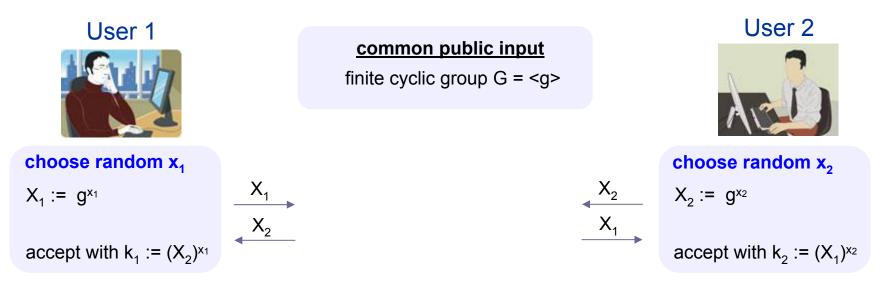


Group Key Exchange (GKE)



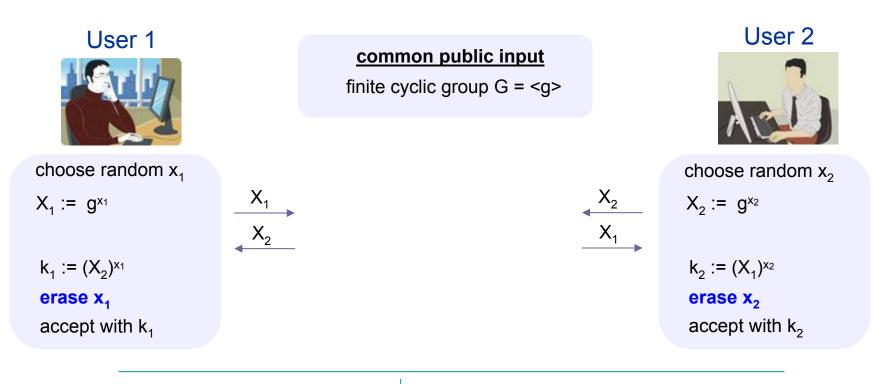
con, secret contribution of User i

Security Threats in GKE



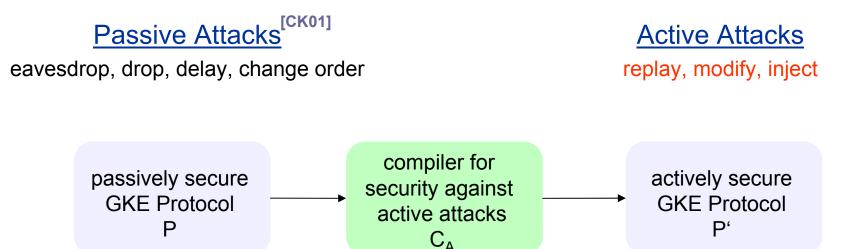
Security Observations for "Genuine" DH-KE

- every new session results in the same key
 - no key secrecy if other session keys are exposed (known-key security)^[B94]
- Iong-term keys (x₁,x₂) used directly to compute the key
 - no key secrecy if (x₁,x₂) are exposed later (weak forward secrecy)^[G89]
- long-term keys are linked to the users' identities
 -) adversary cannot act on behalf of the users (impersonation resilience)[BD94]


Security Observations for "Referenced" DH-KE

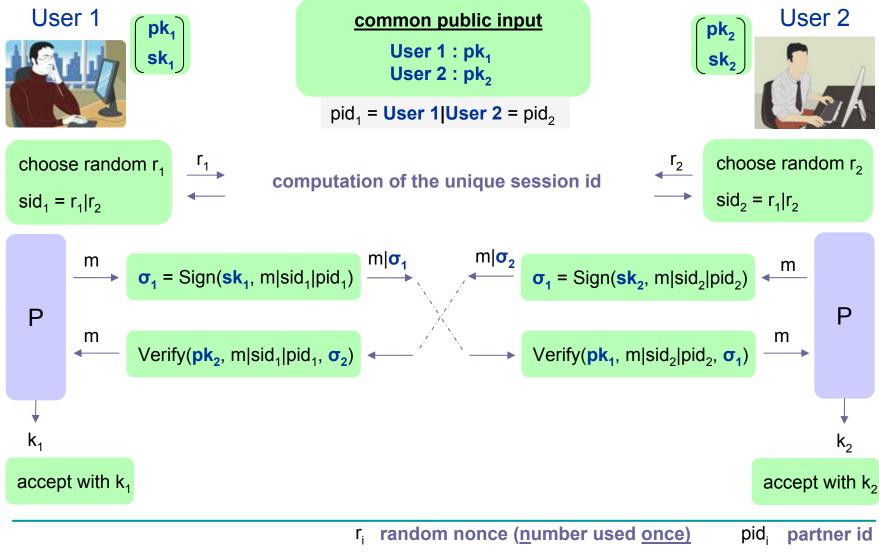
- session keys are independent in different sessions
 - known-key security is provided
- no long-term keys are used
 -) weak forward secrecy is provided, but
 - impersonation attacks become possible
- ephemeral secrets (x_1, x_2) are used to compute the key
 - no key secrecy if (x₁,x₂) are exposed later (strong forward secrecy)^[BPR00,CK01]

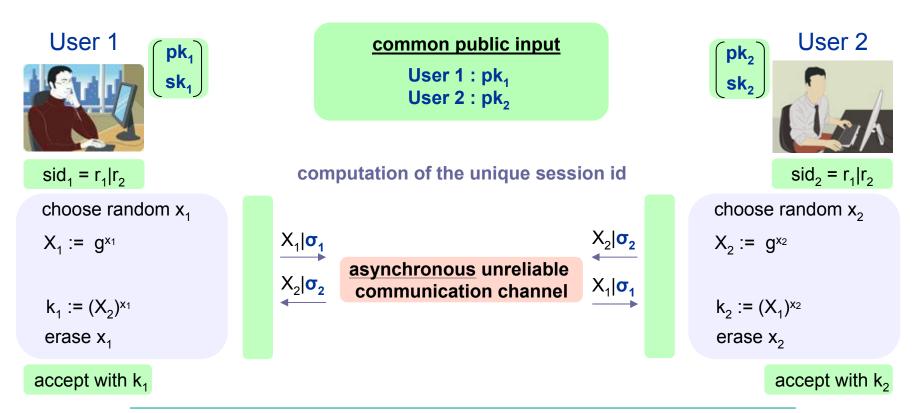
Achieving Strong Forward Secrecy


Idea: erase ephemeral secrets prior to acceptance, e.g., secure erasure[CFIJ99]

 ephemeral secrets used to compute the key are erased
+ strong forward secrecy

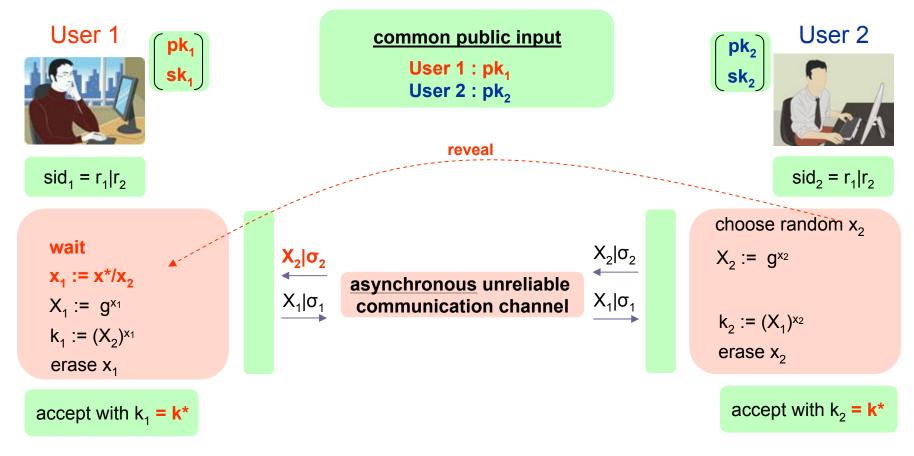
no long-term keys are used
+ weak forward secrecy is provided, *but* impersonation attacks still possible

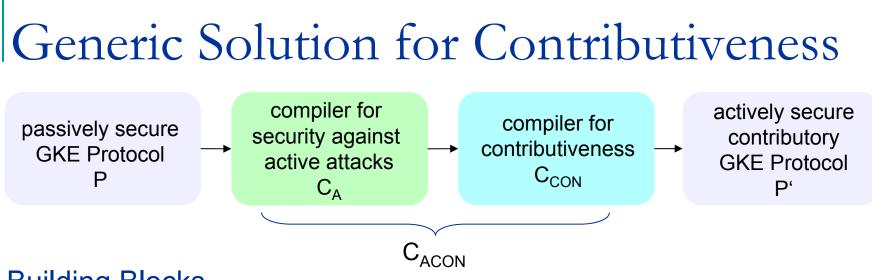

Generic Solution against Active Attacks


Building Blocks

- digital signature scheme (Gen, Sign, Verify)
 - every User i is in possession of a long-term key pair $(sk_i, pk_i) \leftarrow Gen$
 - \Box every pk_i is publicly known and linked to User i
 - provides existential unforgeability

Security Compiler C_A


C_A-compiled "Referenced" DH-KE


- Recall: malicious participants may deviate from the protocol specification and internal states of honest participants may be revealed
 - malicious user can *exclude contribution* of the honest user upon computing k (key control^[MWW98], <u>contributiveness^[AST98]</u>, key replication^[K05])

Attack against Contributiveness

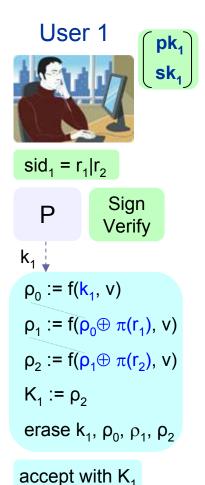
malicious User 1 wishes that User 2 accepts k* = gx* for some chosen x*

malicious User 1 succeeds for <u>any</u> choice of x₂ in <u>any</u> protocol session

Building Blocks

- collision-resistant pseudo-random function f(s, v)
 - s uniformly chosen secret seed, v (public) input value
 - collision-resistance

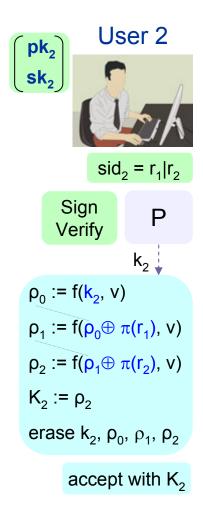
for all $s \neq s'$ holds $f(s,v) \neq f(s',v)$


pseudo-randomness

outputs $f(s, \cdot)$ are indistinguishable from randomly chosen values

- one-way permutation π
 - one-wayness

given $\pi(x)$ it is infeasible to find x


Security Compiler C_{ACON}

common public inputUser 1 : pk1User 2 : pk2

iterative embedding of r_i no further communication is needed

Presented Dissertation Results

- Compiler for Security against Active Attacks C_A
 - generic solution against replication, modification, and injection
 - under consideration of strong corruptions
- C_A with Add-on Compiler for Contributiveness C_{ACON}
 - generic solution against replication, modification, and injection
 - generic solution against attacks on contributiveness
 - under consideration of strong corruptions

Further Dissertation Results

"Provable Security" Issues

- analysis and comparison of
 - 12 security models and 3 variations
 - □ 12 provably secure GKE protocols
- enhanced security model with extended definitions
- under consideration of *dynamic* GKE protocols
- Generic Security Solutions (in addition to C_A and C_{ACON})
 - compiler for mutual authentication and key confirmation (C_{MA})
 - \Box 4 combinations of C_A, C_{CON}, and C_{MA}
 - security proofs wrt. the proposed security model
- Constant-Round GKE Protocol TDH1
 - static and dynamic versions
 - security proofs wrt. the proposed security model

Thank You

<u>Bibliography</u>

[AST98]	G. Ateniese, M. Steiner, and G. Tsudik. <i>Authenticated Group Key Agreement and Friends</i> . 5 th ACM Conference on Computer and Communications Security (CCS'98), pp. 17–26, 1998.
[BCK98]	M. Bellare, R. Canetti, and H. Krawczyk. <i>A Modular Approach to the Design and Analysis of Authentication and Key Exchange Protocols (Extended Abstract)</i> . 13 th Annual ACM Symposium on the Theory of Computing (STOC'98), pp. 419–428, 1998.
[BPR00]	M. Bellare, D. Pointcheval, and P. Rogaway. <i>Authenticated Key Exchange Secure Against Dictionary Attacks</i> . In Advances in Cryptology –EUROCRYPT'00, LNCS vol. 1807, pp. 139–155, 2000.
[BR93]	M. Bellare and P. Rogaway. <i>Entity Authentication and Key Distribution</i> . In Advances in Cryptology – CRYPTO'93, LNCS vol. 773, pp. 232–249, 1993
[BCP02]	E. Bresson, O. Chevassut, and D. Pointcheval. <i>Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions</i> . In Advances in Cryptology – EUROCRYPT'02, LNCS vol. 2332, pp. 321–336, 2002.
[B94]	M. Burmester. On the Risk of Opening Distributed Keys. In Advances in Cryptology – CRYPTO'94, LNCS vol. 839, pp. 308–317, 1994.
[BD94]	M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution System. In Advances in Cryptology – EUROCRYPT'94, LNCS vol. 950, pp. 275–286, 1994.
[CK01]	R. Canetti and H. Krawczyk. <i>Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels</i> . In Advances in Cryptology - EUROCRYPT'01, LNCS vol. 2045, pp. 453–474, 2001.
[CBH05]	KK. R. Choo, C. Boyd, and Y. Hitchcock. <i>Examining Indistinguishability-Based Proof Models for Key Establishment Protocols</i> . In Advances in Cryptology – ASIACRYPT'05, LNCS vol. 3788, pp. 585–604, 2005.
[CFIJ99]	G. D. Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. <i>How to Forget a Secret.</i> 16 th Annual Symposium on Theoretical Aspects of Computer Science (STACS'99), LNCS vol. 1563, pp. 500–509, 1999.
[G89]	C. G. Günther. An Identity-Based Key-Exchange Protocol. In Advances in Cryptology – EUROCRYPT'89, LNCS vol. 434, pp. 29–37, 1990.
[ITW82]	I. Ingemarsson, D. T. Tang, and C. K. Wong. <i>A conference key distribution system</i> . IEEE Transactions on Information Theory, 28(5):714-719, 1982.
[KS05]	J. Katz and J. S. Shin. <i>Modeling Insider Attacks on Group Key-Exchange Protocols</i> . 12 th ACM Conference on Computer and Communications Security (CCS'05), pp. 180–189, 2005.
[KY03]	J. Katz and M. Yung. <i>Scalable Protocols for Authenticated Group Key Exchange</i> . In Advances in Cryptology - CRYPTO'03, LNCS vol. 2729, pp. 110–125, 2003.
[K05]	H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In Advances in Cryptology – CRYPTO'05, LNCS vol. 3621, pp. 546–566, 2005.
[MWW98]	C. J. Mitchell, M. Ward, and P. Wilson. <i>Key Control in Key Agreement Protocols</i> . Electronic Letters, 34(10):980–981, 1998.
[\$99]	V. Shoup. <i>On Formal Models for Secure Key Exchange (Version 4)</i> . Technical Report RZ 3120, IBM Research, 1999.
[SSDW88]	D. G. Steer, L. Strawczynski, W. Diffie, and M. J. Wiener. A Secure Audio Teleconference

System. In Advances in Cryptology – CRYPTO'88, LNCS vol. 403, pp. 520–528, 1990.