
Fast SNARK-based Non-Interactive Distributed
Verifiable Random Function with Ethereum

Compatibility

PACY Lab @ RI CODE
Universität der Bundeswehr München* work done while at Enya Labs

Jia Liu Mark Manulis

ACM AsiaCCS 2025
25-29 August in Hanoi, Vietnam

Distributed Randomness Generation

• aka Distributed Randomness
Beacons (see survey IEEE S&P’23)

• Pseudorandom generator based on
contributions of n different sources

• Not all sources need to be trusted:
t-out-of-n trust model

• Third parties should be able to
verify the outputs prior to using
them

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 2

Existing approaches for DRBs

• Leader-based election protocols
• New leader per round uses VRF to output a random beacon
• Example: Algorand, Ouroboros-Praos, Elrond
• Withholding attack, i.e. leader may refuse to provide random output

• Commit-Reveal(-Recover) protocols
• Every party commits to randomness, which is then revealed and aggregated
• Last-revealer attack, i.e. last party to reveal may refuse to do so
• Can be mitigated using DKG or PVSS – introduces extra complexity overheads

• Verifiable Delay Function based protocols
• VDFs ensure that the output is released after a predetermined period of time
• (Non-cryptographic) trust assumption, typically assuming expensive hardware (ASICs)
• Often subject to parallel computation attacks, e.g. against Minroot

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 3

Approaches based on Distributed VRFs

• DVRF: Distributed VRF = t-out-of-n VRF
• Stage 1: Parties run a DKG protocol to compute pk and own shares ski
• Stage 2: Parties use ski to generate aggregatable verifiable random shares

• DVRFs with interactive DKGs
• Ex: Drand, HERB, DDH-DRB, Glow-DRB
• Interactive DKGs generally introduce high overheads to be practical

• DVRFs with non-interactive DKGs
• Groth21 NI-DKG uses costly chunk encryption and BLS12-381 curve
• “DKG inside a SNARK” code from 2022 using BLS12-377 / BW6 curve

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 4

NI-DVRF syntax overview

(mski, mpki)⟵ KGen(κ)
(mski, mpki)

(QUAL, gpk, vk, sk) ⟵ NIDKG(t, n, M)

t valid σx,i

QUAL : qualified member set

(sk[i], vk[i])
gpk : global public key

x : public DVRF input

0/1 ⟵ PartialVerify(x, vk[i], σx,i)

σx,i

σx,i ⟵ PartialEval(x, sk[i])

(v, π) ⟵ Combine(vk, x, {σx,i}i)

M : initial member set

v : random DVRF output
π : public proof

n

randomness generation

initialisation

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility

0/1 ⟵ Verify(gpk, x, v, π)
5

NI-DVRF properties and security goals

Robustness: guaranteed output v in presence of up to t corrupted members
• NI-DVRF avoids costly resolution and requires only 1 message per party

Uniqueness: public input x deterministically determines the output v
• Crucial for many apps, e.g. next block proposer, validator sets, etc

Strong Pseudorandomness: distribution of v is random, implies unpredictability
• Strong = Adversary can query PartialEval oracle on challenge x up to t-1 times

Public verifiability: anyone can verify that v was computed correctly
• Eliminates the need to trust any party with honest generation of v

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 6

Our NI-DVRF highlights

• Improves upon interactive Glow-DRB (Galindo et al, EuroS&P’21)

• Ingredients using type-3 pairing e : 𝔾1 × 𝔾2 → 𝔾T
• SNARK-based NIDKG protocol
• Threshold BLS signature for DVRF outputs

• Implementation compatible with Ethereum(-like) chains
• Main protocol in Rust. Solidity contracts for Ethereum on-chain verification.
• Adopts BN256 curve supported by Ethereum.

• PoC evaluation on Boba Network’s DRB service zkRand.

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 7

Our NI-DVRF scheme: Initialisation

• param : (𝔾=〈g〉, p), (e, 𝔾1=〈g1〉, 𝔾2=〈g2〉, q)
• H1: 𝔾 → ℤq, H2 : {0,1}* → 𝔾1, H3 : {0,1}* → ℤq, H4: 𝔾1 → {0,1}*

(mski, g
mski)⟵ KGen(κ)

fi(x) = ai,0 + … + ai,t-1xt-1

si,1= fi(1), … , si,|M|= fi(|M|)

ppi = (g1
si,1,…, g1

si,|M|, g1
ai,0, g2

ai,0)

{sj,i = cj,i – H1(hmski)}j∊QUAL

ppi, enci , SNARK πi

(QUAL, gpk, vk, sk) ⟵ NIDKG(t, n, M)

enci = (h = gr, {ci,j = H1(mpkj
r) + si,j}j∊|M|)

sk[i] = ∑j∊QUAL sj,i

vk[i] = ∏j∊QUAL g1
sj,i = g1

sk[i]

QUAL = {i} with valid πi

gpk = ∏j∊QUAL g2
aj,0

(QUAL, gpk, vk) are publicly computable from all (ppi, enci , SNARK πi)
AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 8

Our NI-DVRF scheme: Gen randomness

σx,i ⟵ PartialEval(x, sk[i], vk[i])

σx,i = (i, vi, NIZK πi)

vi = H2(x)sk[i]

public check of NIZK πi

πi = NIZK[sk[i]] : DL(vi) = DL(vk[i])

0/1 ⟵ PartialVerify(x, vk[i], σx,i)

(v, π) ⟵ Combine(vk, x, {σx,i}i)

public set I ⊆ QUAL of t valid σx,i :
π = ∏j∊I vj

λj(0)

v = H4(π)

(v, π) ⟵ Verify(gpk, x, v, π)

two public checks :
e(π, g2) ≟ e(H2(x), gpk)

v ≟ H4(π)

from QUAL

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 9

Security of our NI-DVRF

• Pseudorandomness under co-CDH and SDH in ROM.
• co-CDH : given (g1

α, g1
β, g2

α) hard to compute g1
αβ

• SDH : given (g, g α, g β) and oracle Oβ(U,X): Uβ ≟ X hard to compute gαβ

• Strong pseudorandomness under co-CDH and extended XDH
assumption in ROM.

• extended XDH : extended DDH (Agrawal et al, CCS‘18) in 𝔾1

(g1, g1
α1, … , g1

αn, g1
β, g1

α1β, … , g1
αnβ)

≈c

(g1, g1
α1, … , g1

αn, g1
β, y1, … , yn) for yi ∊R 𝔾1

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 10

Implementation and optimisations I

• SNARK π : Halo2 with KZG commitment on BN256 curve

• DKG circuit proves (ppi, enci) is computed correctly:
• ppi = (g1

si,1,…, g1
si,|M|, g1

ai,0, g2
ai,0), enci = (h = gr, {ci,j = H1(mpkj

r) + si,j}j∊|M|)

• Public shares in ppi from secret shares:
• non-native encodings on BN256

• optimised scalar-point mult gates leading to 70% reduction in gates

• Encryption of secret shares in enci:
• on Grumpkin curve which has same base field 𝔽q as BN256
• native encodings on Grumpkin 25x smaller than non-native on BN256

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 11

Implementation and optimisations II

Smart contracts in Solidity for onchain verification and computation:

• Verification of SNARKs πi for (ppi , enci) in NI-DKG

• Computation of global public key gpk

• Verification of NIZKs πi for partial evaluations vi : DL(vi) ≟ DL(vk[i])

• Computation of final pseudorandom output (v, π)

• Verification of (v, π) : e(π, g2) ≟ e(H2(x), gpk) and v ≟ H4(π)

Code & Demo available at https://github.com/bobanetwork/zkrand

zkRand is a chosen name by Boba Network for our NI-DVRF

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 12

zkRand-NIDKG performance

• NIDKG on AWS instance r6i.8xlarge (32 CPUs, 256GB of RAM)

Peak
memory

(GB)

Dealing
size (B)

Proof
size (B)

Verify
(ms)

Prove
(s)

Curvet, n
Circuit
degree

4.8448

3488

5.120.8

BN256

(3, 5)18

16.525606.074.7(20, 38)20

64.41107210.1294.3(86, 171)22

• Scalability: typical blockchain applications 10 to 30 nodes
• For large sets, divide into smaller subsets and rotate using random outputs
• for example, 10 subsets each with 16 nodes instead of 160 nodes

(ppi , enci) SNARK π

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 13

zkRand-Randomness generation performance

Verify
(ms)

Combine
(ms)

PartialVerify
(ms)

PartialEval
(ms)

t, n

1.62

0.7

1.020.86

(3, 5)

4.2(20, 38)

18.5(86, 171)

Timings for
• Creating/verifying partial evaluations σx,i = (i, vi, NIZK πi)

• Combining t valid evaluations and verifying final output (v, π)

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 14

Costs for on-chain verification on Etherum in Gas currency:

*fast : value H2(x) is computed once and stored in the contract

Lazy verification to save costs: deposit locked away for a specific period
and is paid to anyone who challenges verification and finds that is invalid.

zkRand Gas cost for onchain deployment

Verify
(fast*)

Verify
PartialVerify

(fast*)
PartialVerify

Verify
SNARK π

t, n

14746819369355098101392

726115(3, 5)

972917(20, 38)

1985415(86, 171)

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 15

Comparing zkRand-NIDKG with selected DKGs

Ethereum-
compatible

Dealing
size (B)

Proof
size (B)

Verify
(ms)

Prove
(s)

Curvet, nScheme

Yes44834885.120.8BN256(3, 5)zkRand-NIDKG

No1311383153.40.2BLS12-381*(3, 5)cdDKG (EC‘24)

No1460675106.80.1BLS12-381*(3, 5)cgDKG (CCS‘24)

No78003770103.00.2BLS12-381(3, 5)Groth21

Yes11072348810.1294.3BN256(86, 171)zkRand-NIDKG

No376343831319.31.5BLS12-381*(86, 171)cdDKG (EC‘24)

No41844675650.50.5BLS12-381*(86, 171)cgDKG (CCS‘24)

No220504119042623.54.9BLS12-381(86, 171)Groth21

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 16

Summary

• NI-DVRF using SNARK-based
NIDKG and Threshold BLS for non-
interactive randomness generation

• (Strong) pseudorandomness /
unpredictability, uniqueness,
robustness, public verifiability

• Optimised implementation for
Ethereum and Ethereum-like
networks using the BN256 curve

Mark Manulis

PACY Lab, Research Institute CODE

Universität der Bundeswehr München

mark.manulis@unibw.de

https://www.unibw.de/pacy-en

AsiaCCS 2025 | M. Manulis, J. Liu : Fast SNARK-based NIDVRF with Ethereum Compatibility 17

