Protocol Security in the Presence of Compromising Adversaries

Cas Cremers

Joint work with David Basin

Overview

 Gap between the capabilities of adversaries in formal analysis and adversaries in cryptographic security notions (AKE)

Overview

- Problem context & motivation
- A formal model of compromising adversaries
- Applications & case studies

Successful: interacting theory and new orful tools

- Successful: interesting theory and powerful tools
- $\frac{M \vdash t}{M \vdash hash(t)} \quad \frac{M \vdash t_1 \quad M \vdash t_2}{M \vdash \{t_1\}_{t_2}} \quad \frac{M \vdash \{t_1\}_{t_2} \quad M \vdash t_2^{-1}}{M \vdash t_1}$
- $\frac{t \in M}{M \vdash t} \quad \frac{M \vdash t_1 \quad M \vdash t_2}{M \vdash (t_1, t_2)} \quad \frac{M \vdash (t_1, t_2)}{M \vdash t_1} \quad \frac{M \vdash (t_1, t_2)}{M \vdash t_2}$
- Idealized black-box cryptography
- Models an active intruder with full network control and perfect recall
- Basis: Dolev Yao adversary model

Game-based security notions, e.g., key exchange

- Bit strings, probabilistic reasoning
- Reduction to known (or assumed) hard problem
- Manual proofs
 - Notable exception: Blanchet's CryptoVerif

Adversary model

- Active attacker
- Dynamic compromise of long-term keys,
- Compromise of session keys
- Compromise of session-state, randomness,...
- Successful: establishing strong guarantees for real-world protocols

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Why study corruption?

- Security is relative to powers of an adversary
- Real adversaries might...
 - Break into machine and extract disk drive
 - Read out memory
 - Cryptanalyze keys or attack side channels
 - And all of this could happen at any time!
- Flip side: rings of protection in hardware/software
 - TPMs, HSMs, smart cards and tokens vs. main memory, etc.

Formal foundations? Verification methods and tools?

Terms, roles, and protocols

Terms: operators for constructing cryptographic messages

Term ::= Agent | Fresh | Var | (Term, Term) | { Term} $_{Term}$ | ...

Roles: sequences of agent events

• Example

$$I \rightarrow R : \{I, K\}_{K_{IR}}$$

 $R \rightarrow I : \{R, M\}_{K}$
 $P(I) = \begin{bmatrix} generate(\{K\}); \\send(I, R, \{I, K\}_{k(I,R)}); \\recv(R, I, \{R, y\}_{K}) \end{bmatrix}$
 $P(R) = \begin{bmatrix} recv(I, R, \{I, x\}_{k(I,R)}); \\sessionkeys(\{x\}); \\send(R, I, \{R, M\}_{X}) \end{bmatrix}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Threads

- A **thread** is a role instance (local session)
 - No limit to number of threads
 - Each thread assigned a unique identifier from the set TID.
 - We instantiate names and syntactically bind fresh values and variables to their owning thread, e.g. K#1, y#1

 For currently active threads, we store the remaining sequence of steps in a thread pool th : TID → AgentEvent*

Core symbolic model (slightly simplified)

 $A \rightarrow B$: n

- State (*tr*,*IK*,*th*)
 - tr: trace of events that have occurred
 - IK: "intruder knowledge" of adversary, initially IK₀
 - *th*: thread pool, mapping thread identifiers to remaining steps
- Transition system modeling agents' threads and (outside) adversary

$$\frac{th(tid) = \langle send(m) \rangle^{2}}{\langle tr, IK, th \rangle \longrightarrow (tr^{\langle}(tid, send(m)) \rangle, IK \cup \{m\}, th[I \leftarrow tid])} [send]$$

$$\frac{th(tid) = \langle \operatorname{recv}(pt) \rangle^{1} \quad IK \vdash \sigma(pt) \quad dom(\sigma) = FV(pt)}{(tr, IK, th) \longrightarrow (tr^{\langle (tid, \operatorname{recv}(\sigma(pt))) \rangle, IK, th[\sigma(I) \leftarrow tid])} [\operatorname{recv}]}$$

Example of reachable state:

$$\left(\langle \underbrace{(1, \operatorname{send}(A, B, n \sharp 1))}_{tr} \rangle, \underbrace{IK_0 \cup \{n \sharp 1\}}_{IK}, \underbrace{\{1 \mapsto \langle \rangle, 2 \mapsto \langle \operatorname{recv}(A, B, X \sharp 2) \rangle \}}_{th} \right)$$

Reasoning about protocol semantics (TS)

- General complexity
 - Reachability properties are undecidable, e.g. secrecy (Durgin, Lincoln, Mitchell, Scedrov 1999)
 - NP-hard, even when number of sessions is bounded (Rusinowitch, Turuani, 1999)
- Scyther tool often successful in protocol analysis

Co-evolution of adversary models and protocols

These key exchange protocols are all "correct" in symbolic models. Finer distinctions possible using cryptographic models.

How much information can be compromised?

Dimensions of compromise

- When: before, during, or after test session
- Whose data: actor, peers, or others
- Which data: reveal long-term keys, session keys, state (of thread), or randomness

First distinction: *long-term* versus *short-term* data

Reveal long-term data: whose, when

 $\frac{th(\mathit{Test}) = \langle \rangle}{(\mathit{tr}, \mathit{IK}, \mathit{th}) \longrightarrow (\mathit{tr}^{\wedge} \langle (\mathit{tid}_{\mathcal{A}}, \mathsf{LKR}(a)) \rangle, \mathit{IK} \cup \mathit{LongTermKeys}(a), \mathit{th})} [\mathsf{LKR}_{\mathsf{after}}]$

Reveal short-term data: whose, which == == == ==

$$\frac{tid \neq Test}{(tr, IK, th) \longrightarrow (tr^{(tid_{\mathcal{A}}, SKR(tid))}, IK \cup union((tr \downarrow tid) \mid sessionkeys), th)}[SKR]$$

Results in a hierarchy of adversary models Different rule combinations yield 96 distinct adversary models

Recasting existing models

		Long-	-term d	ata	Short	-term d	ata	
	Owner		Timing			Туре		
Name	others	actor	after	aftercorrect	SessionKey	State	Random	Origin of model
Adv _{EXT}								external Dolev-Yao
Adv _{INT}	\checkmark							Dolev-Yao
Adv _{CA}		\checkmark						Key Compromise Impersonation
Adv _{AFC}				✓				Weak Perfect Forward Secrecy
Adv _{AF}			\checkmark	✓				Perfect Forward Secrecy
Adv _{BR}	\checkmark				√			BR93, BR95
Adv _{CKw}	\checkmark	\checkmark		✓	✓	\checkmark		CK2001-wPFS
Adv _{CK}	\checkmark		\checkmark	✓	\checkmark	\checkmark		CK2001
Adv _{eCK-1}	\checkmark				✓		\checkmark	eCK
Adv _{eCK-2}	\checkmark	\checkmark		\checkmark	\checkmark			

... plus dozens of new models

Tool support: extension of the Scyther tool

Applications Many new (*) and rediscovered ($\sqrt{}$) attacks

	EXT	INT	CA	AFC	AF	BR	CKw	CK	eCK-1	eCK-2
DH-ISO									\checkmark	
DH-ISO-C								\checkmark	\checkmark	
DHKE-1							*		\checkmark	\checkmark
HMQV-C							\checkmark	\checkmark		
HMQV					\checkmark		*	\checkmark		
NAXOS					\checkmark		\checkmark	\checkmark		
KEA+				*	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
NSL			*	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
BKE			*	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Yahalom-Paulson			*	\checkmark	\checkmark	*	\checkmark	\checkmark	\checkmark	\checkmark
NS		\checkmark	*	\checkmark						

- Nontrivial analysis
 - Previously by hand: 1 attack = 1 publication
 - Now tool-based: automatic, within seconds
- Can determine strength of a protocol (WRT 96 different models), establishing/disproving relationships between protocols

Unexpected side effects in applied cryptography

- Formalizing models reveals complex relations between AKE security notions
 - "Examining Indistinguishability-Based Security Models for Key Exchange Protocols...", ASIACCS 2011
- Automatically generate counterexamples to folklore
 - "Session-state Reveal is stronger than Ephemeral Key Reveal...", ACNS'09
- Suggests new directions
 - "One-round Strongly Secure Key Exchange with Perfect Forward Secrecy and Deniability", with M. Feltz, manuscript.

Conclusions Compromising Adversaries

- Bridges significant gap between crypto and formal models
- For users of formal methods
 - Stronger adversary model than standard DY
 - Tool-supported formal methodology with new applications
 - First formal definitions of KCI, wPFS, etc.
- For AKE protocol designers and provers
 - Enable fast evaluation/comparison of protocols
 - Provides hints for the maximal provable computational security
- Tool freely available (search for "Scyther tool")