Participatory Privacy: Enabling privacy in Participatory Sensing

DoE CRYPTODOC 21-Nov-2011

Claudio Soriente

http://lsd.ls.fi.upm.es/lsd/Members/claudio-soriente

Participatory Sensing: why?

Wireless Sensor Network

- Small-scale
- Short-lived
- Application-specific
- Static
- *Very* resource constrained
- Wireless multi-hop
- Deployment / maintenance costs
- Low Real-life impact
- People out-of-the-loop

Participatory Sensing: who?

Smartphones

- 10⁹ (and counting) worldwide
- Always -on, -carried, -connected (3/4G)
- Multiple embedded sensors
 - GPS, thermometer, accelerometer, light sensor, etc.
 - Bluetooth, NFC to connect to other sensors
- Powerful
 - 1.5Ghz dual-core, 1GB ram, rechargeable battery

People

- Mobile
- Interaction w/ others
- Interaction w/ environment

Participatory Sensing: what?

- Novel, fast-growing computing paradigm
- Infrastructure-less data collection at never-seen scale
- Harvest dynamic information about environmental/social trends
 - (Some) People are more interesting than motes
 - Exploit their mobility and their relationship with the environment
- That's right: mobile phones are "sensors"!

Participatory Sensing Initiatives 1

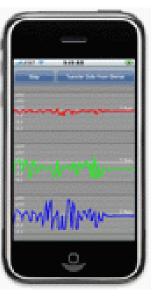
PetrolWatch @ DCOSS'08

BikeNet

@ SenSys'07

LiveCompare @ HotMobile'09

Participatory Sensing Initiatives 2


ParkNet

@ MobySys'10

SignalGuru @ MobySys'11 Ishake (tech.rep.)

Rutgers University

Princeton University

UC Berkeley

Wait... plastic surgery for WNS?

WSN	Participatory Sensing
Dull gadgets	User-carried smartphones
Poor resources	1GHz CPU
Limited battery life	Easily rechargeable
Static	Highly mobile
Network Operator owns and queries the network	Different entities co-exist and do not trust each other
Security / Dependability	Security / Privacy

PS (basic) architecture

Mobile Node Network operator Service Provider Querier (MN) (NO) (SP) (Q) **Query Registration** Data Report **Forward Query Execution**

Parties (1)

Sensors

- Installed on smartphones
- Emit data reports

Carriers

- People carrying their smartphone
- Vehicles?
- Animals?

Queriers

- Users/applications subscribing to specific information
- E.g., Bob interested in "Temperature in Darmstadt"

Sensors + Carriers = Mobile Nodes (MNs)

(E.g., Alice's phone)

Parties (2)

Network Operator (NO)

- Manages the network to collect and deliver reports
- Maintains WiFi, GSM, 3G/4G, ...
- E.g., T-Mobile

Service Provider (SP)

- Intermediary between nodes and queriers
 - They have no mutual knowledge
- E.g., ps.google.com

Participatory Sensing goes "live" if:

Users are motivated to participate

- Need to design appropriate business models
- Game-theoretical models
- Discounted data plans

Privacy is protected

- If users feel their privacy is endangered they won't participate
- Privacy of users reporting information
- Privacy of users accessing/querying information

Privacy in PS

- Crypto and alike
 - Encryption, perturbation, aggregation
- Regulation
 - Who can access what, retention, etc.
- Legibility
 - Help users decide what to share and when

Challenges

Shilton – Comm. ACM'09 Kapadia et al. @ COMNETS'09 Christin et al. @ ICCCN'10 Christin et al. – JSS'10

Pictures and Videos

- Where you are
- Who's with you

Sound

- Personal opinions
- What you are doing

Location and Time

• GPS, WiFi AP

Biometric data

Health condition

Acceleration

Activity

User studies

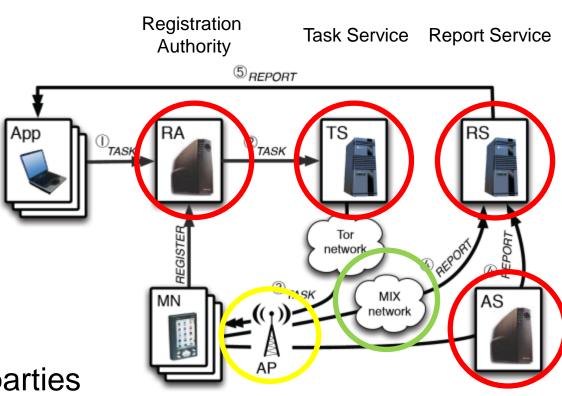
Klasnja et al @ Pervasive'09 Brush et al. @ UbiComp'10 Raij et al. @ CHI'11

Security and Privacy in PS (related work)

- Report integrity
 - Dua et al. @ HotSec'09
 - Gilbert et al. @ HotMobile'10
 - TPM-based
- Privacy-preserving aggregation
 - Dua et al. @ Securecomm'11
 - Correct behaviour of Aggregator
 - Shi et al. @ Infocom'10
 - Secret sharing based
 - Ganti et al. @ SenSys'08
 - Perturbed data w/ application-specific distribution
- Location Privacy
 - Huang et al. @ Percom'09

Anonysense (Cornelius et al. @ MobySys'08, PMC'10)

- On the plus side
 - (probably) 1st attempt to provide privacy to PS
 - AnonyTL general purpose tasking language
 - Full implementation

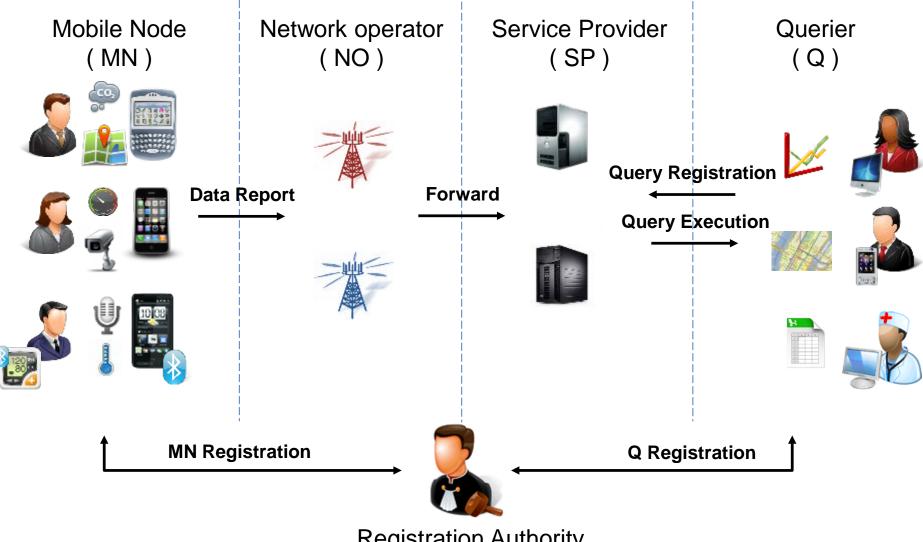

Goals

- Carrier privacy
 - Narrow Tasking
 - Tasking de-anonymization
 - Report de-anonymization
 - Selective tasking
 - Report analysis
 - Local eavesdropping / Eavesdropping by collusion
- Report Integrity
 - Tampering / Replay / Forgery

Anonysense Architecture

- Carrier privacy
 - Tor
 - MIX networks
 - AS
- Report integrity
 - Group signatures

- WiFi-based
- Many semi-trusted parties
- No provable privacy


Anonymization Service

PEPSI: Privacy-Enhanced Participatory Sensing Architecture

Joint work with E. De Cristofaro (PARC)

- Goals
 - Cryptographic "treatment" of PS
 - Protect the privacy of data producers/consumers
 - Provable guarantees
 - Realistic architectural assumptions
 - Minimize overhead

PEPSI architecture

Registration Authority (RA)

Privacy Requirements (1)

Soundness

No false positive/false negative

Query Privacy

- Protects the query q subscribed by Q
- The NO, the SP, any MN, or any other Q, learn no information about q
- (Optional) Not even the RA

Node Privacy

- Protects the data report D contributed by MN
- The NO, the SP, the RA, any MN, any unregistered Q, learn no information about D

Privacy Requirements (2)

Report Unlinkability

- No party can link two or more reports as originating from the same MN
- Seems impossible to achieve w.r.t. the NO in cellular networks

Location Privacy

- No party can infer "who is where"
- Again, seems impossible to achieve w.r.t. the NO in cellular networks

PEPSI intuition

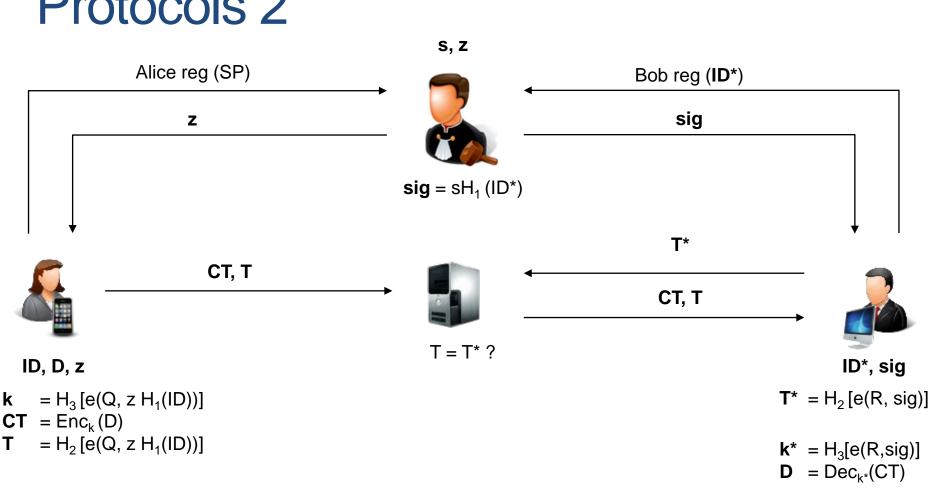
Hide Reports and Queries

- Cannot be transmitted in-the-clear, need to encrypt
- SP needs to match queries blindly

Naïve Solutions:

- Queriers/Mobile Nodes share a pairwise key
- Use public-key encryption

Main problem (and main intuition)


- Queriers and Mobile Nodes do not interact/know each other
- We can use Identity-based Encryption (e.g., Boneh-Franklin):
 - Query identifiers are like identities
 - Encrypt under the identity
 - Decrypt if authorized (in possession of the corresponding secret key)

Protocols 1

- Setup executed by RA on input security parameter λ
 - Prime p
 - Groups G₁ and G₂ (of order p)
 - e: $G_1 \times G_1 \longrightarrow G_2$ (bilinear map)
 - $e(aU,bV) = e(U,V)^{ab}$
 - s random in G₁ (secret master key)
 - z random in G₁ (periodically refreshed)
 - P random in G₁
 - $H_1:\{0,1\}^* \longrightarrow G_1$, $H_2:\{0,1\}^{G_2} \longrightarrow \{0,1\}^{\lambda}$, $H_3:\{0,1\}^{G_2} \longrightarrow \{0,1\}^{\lambda}$
 - Public parameters: e, P, Q=sP, R=zP, H₁, H₂, H₃

Protocols 2

Public params = P, Q=sP, R=zP, H_1 , H_2 , H_3

$$T^* = H_2[e(R, sig)] = H_2[e(zP, sH_1(ID^*))] = H_2[e(P, H_1(ID^*))^{sz}]$$

$$T = H_2[e(Q, zH_1(ID))] = H_2[e(sP, zH_1(ID^*))] = H_2[e(P, H_1(ID^*))^{sz}]$$

Privacy

Node Privacy

- Only authorized queriers in possession of valid sig obtain information on (T,CT)
- Reduction to CPA-security of Boneh-Franklin's IBE

Query Privacy

- No one (except the RA) learns any information about query interests
- Reduction to CPA-security of IBE

Privacy (2)

Report Unlinkability/Location Privacy

- Not guaranteed w.r.t. the NO: open problem
- The NO strips off privacy-sensitive metadata (e.g., originating cell)

Trust Assumption

- RA is trusted
- Honest-but-Curious SP
 - Does not create phantom users
 - May collude
 - But users have no incentive in colluding

Performance Evaluation

Focus on mobile phones

Experiments on Nokia N900 (600MHz CPU, 256MB RAM)

Privacy-protecting layer at MNs

- Compute (T,CT)
- One bilinear map pairing, one AES encryption
- Only 93*ms*

Overhead at other parties

- No overhead for SP (only matching hashed values)
- Negligible overhead for queriers (AES decryption)

Open Problems

- Query privacy w.r.t. the RA
 - Blind-IBE
- Fine-grained authorizations
 - Hierarchical IBE
- Work on aggregate data queries
 - Average Temperature
 - Sum, Mean, Variance, ...
 - Predicates: e.g., "sum > 20 ?"
- Location Privacy
 - Possible?
- Revocation
 - Evict malicious MNs

Questions?

- Thank you!
- More info at http://sprout.ics.uci.edu/PEPSI
- Credits: E. De Cristofaro @ PARC, Secure Mobile Networking Lab @ TU-Darmstadt