Adaptive Pseudo-Free Groups and Applications

Dario Fiore

École Normale Supérieure, Paris, France

DoE CRYPTODOC - Darmstadt, November 21, 2011

Joint work with: Dario Catalano (University of Catania, Italy) Bogdan Warinschi (University of Bristol, UK)

伺下 イラト イラ

This talk

- Motivations
- Intro: free and pseudo-free groups
- Our contribution
 - Adaptive Pseudo-Free groups
 - Applications: signatures
 - Existence: \mathbb{Z}_N^* is APF
- Conclusions

∃ >

This talk

- Motivations
- Intro: free and pseudo-free groups
- Our contribution
 - Adaptive Pseudo-Free groups
 - Applications: signatures
 - Existence: \mathbb{Z}_N^* is APF
- Conclusions

From Theory to Practice

3 N

Abstractions in cryptography and security

- Abstractions capture the essential security properties of primitives and protocols
- They allow for modular, reusable, scalable proofs

3 N

Abstractions in cryptography and security

- Abstractions capture the essential security properties of primitives and protocols
- They allow for modular, reusab
- Define an abstract model for some security guarantees

Abstractions in cryptography and security

- Abstractions capture the essential security properties of primitives and protocols
- They allow for modular, reusab
- Define an abstract model for some security guarantees
- Instantiate a primitive

Abstractions in cryptography and security

- Abstractions capture the essential security properties of primitives and protocols
- They allow for modular, reusab
- Define an abstract model for some security guarantees
- Instantiate a primitive
- Prove that the primitive satisfies the model

Abstractions in cryptography and security

- Abstractions capture the essential security properties of primitives and protocols
- They allow for modular, reusab
- Define an abstract model for some security guarantees
- Instantiate a primitive
- Prove that the primitive satisfies the model

The instantiation is "secure"

Abstractions in cryptography and security

- Abstractions capture the essential security properties of primitives and protocols
- They allow for modular, reusable, scalable proofs

Examples

- Universal Composability
- Dolev-Yao

(4) (2) (4)

A D

Abstractions in cryptography and security

- Abstractions capture the essential security properties of primitives and protocols
- They allow for modular, reusable, scalable proofs

Examples

- Universal Composability
- Dolev-Yao
- Most of them are not concerned about the mathematical structures underlying crypto constructions

A 3 3 4 4

Abstractions in cryptography and security

- Abstractions capture the essential security properties of primitives and protocols
- They allow for modular, reusable, scalable proofs

Examples

- Universal Composability
- Dolev-Yao
- Most of them are not concerned about the mathematical structures underlying crypto constructions
- One exception: Pseudo-Free Groups [Rivest04]

・ 同 ト ・ ヨ ト ・ ヨ

Free Groups

- Let $A = \{a, b, c, \ldots\}$ be a set of generators (symbols)
- Group operation: concatenation
- Identity: empty string ϵ
- <u>Inverses:</u> symbols $\{a^{-1}, b^{-1}, c^{-1}, \ldots\}$

- \$\mathcal{F}(A) = \{a, aa, \ldots, ab, abb, \ldots, ab^{-1}c, \ldots\}\$, all possible finite sequences of symbols
- We consider commutative, abelian free groups
- A free group has infinite order

They're "simple" objects!

(人間) (人) (人) (人) (人) (人)

Pseudo-Free Groups

.

• Introduced by Hohenberger in 2003 [Master's thesis] and later refined by Rivest [TCC04].

Intuition

A computational group is pseudo-free if it "behaves" as a free group to a computationally bounded machine.

Intuition

Consider the free group generated only by the symbol a,

$$\mathcal{F}(\{a\}) = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$$

Consider the following equations

x² = a⁴
 It has solution x = a². We say it is *trivial* in F({a})

<ロ> <問> <問> < E> < E>

Intuition

Consider the free group generated only by the symbol a,

$$\mathcal{F}(\{a\}) = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$$

Consider the following equations

x² = a⁴ It has solution x = a². We say it is *trivial* in F({a})
x² = a It has NO solutions in F({a}).

・ロト ・同ト ・ヨト ・ヨト

Intuition

Consider the free group generated only by the symbol a,

$$\mathcal{F}(\{a\}) = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$$

Consider the following equations

• $x^2 = a^4$

It has solution $x = a^2$. We say it is *trivial* in $\mathcal{F}(\{a\})$

• $x^2 = a$

It has NO solutions in $\mathcal{F}(\{a\})$.

• $x^2 = a \mod N$ in \mathbb{Z}_N^* (where N = pq) It has solution if a is a square, but it cannot be *efficiently computed* without knowing $ord(\mathbb{Z}_N^*) = \phi(N)$.

(人間) (人) (人) (人) (人)

Conclusions

Intuition

Consider the free group generated only by the symbol *a*,

 $\mathcal{F}(\{a\}) = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$

Intuition for pseudo-freenessFree groupComputational groupImpossibleComputationally infeasible $x^2 = a \mod N$ in \mathbb{Z}_N^* (where N = pq)

It has solution if a is a square, but it cannot be efficiently computed without knowing $ord(\mathbb{Z}_N^*) = \phi(N)$.

ヘロマ ヘ動 マ イロマ

A formal definition: equations over free groups

- $X = \{x_1, \dots, x_n\}$ set of variables
- $A = \{a_1, \ldots, a_m\}$ set of constant symbols
- Consider equations of the form

$$x_1^{\mathbf{e}_1} x_2^{\mathbf{e}_2} \cdots x_n^{\mathbf{e}_n} = a_1^{s_1} a_2^{s_2} \cdots a_m^{s_m}$$

- e_i's and s_i's are integers.
- A solution in *F*(A) is an assignment ψ : X → *F*(A) such that:

$$\psi(x_1)^{e_1}\cdots\psi(x_n)^{e_n}=a_1^{s_1}\cdots a_m^{s_m}$$

e.g., for $x^2 = a^4$, the solution is $\psi(x) = a^2$

伺 ト イ ヨ ト イ ヨ ト

A formal definition: equations over free groups

- $X = \{x_1, \dots, x_n\}$ set of variables
- $A = \{a_1, \ldots, a_m\}$ set of constant symbols
- Consider equations of the form

$$x_1^{\mathbf{e}_1} x_2^{\mathbf{e}_2} \cdots x_n^{\mathbf{e}_n} = a_1^{s_1} a_2^{s_2} \cdots a_m^{s_m}$$

- e_i's and s_i's are integers.
- A solution in *F*(A) is an assignment ψ : X → *F*(A) such that:

$$\psi(x_1)^{e_1}\cdots\psi(x_n)^{e_n}=a_1^{s_1}\cdots a_m^{s_m}$$

Trivial equations

 λ has solutions in $\mathcal{F}(A)$ (aka λ is *trivial*) if and only if

$$\forall i = 1, \dots, m : gcd(e_1, \dots, e_n) | s_i$$

Static Pseudo-Free Groups

Adaptive Pseudo-Free Groups A framework for Strong RSA-based signatures Conclusions

Pseudo-free groups

Intuition

Free group	Computational group
Impossible	Computationally infeasible

(Static) Pseudo-Free Groups

Definition

A family of computational groups $\mathcal{G} = \{\mathbb{G}_n\}_n$ is *pseudo-free* if: for randomly chosen n, |A| = poly(k) and any PPT \mathcal{A} :

$$\Pr[\mathcal{A}(\mathbb{G}_n, A) \to (\lambda, \psi)] \leq \mathit{negl}$$

such that:

- **1** λ has no solution in $\mathcal{F}(A)$ (i.e., λ is *non-trivial*)
- 2) λ has solution ψ in \mathbb{G}_n

- 同 ト - ヨ ト - - ヨ ト

Why are PF groups interesting?

Rivest showed that in a pseudo-free group a lot of assumptions naturally hold:

- Order problem: find e such that $a^e = 1$
- DLP: find x such that $a^{x} = b$
- RSA: find x such that $x^e = a$ (for e > 1)
- Strong RSA: find x, e such that $x^e = a$
- •
- CDH: only in some restricted settings

Why are PF groups interesting?

(*simple structure - impossible equations*)

伺 ト イヨト イヨト

Interesting questions about pseudo-free groups

- Do pseudo-free groups exist?
- Is the notion of pseudo-freeness suitable for cryptographic applications?

Interesting questions about pseudo-free groups

Do pseudo-free groups exist?

Is the notion of pseudo-freeness suitable for cryptographic applications?

Question 1 🖌

- Rivest [TCC04] conjectured that the RSA group is pseudo-free
- Micciancio [Eurocrypt05] solved this problem showing that under the Strong-RSA assumption Z^{*}_N is pseudo-free when N is product of safe primes.

- 4 同 6 4 日 6 4 日 6

Interesting questions about pseudo-free groups (2)

- Do pseudo-free groups exist?
- Is the notion of pseudo-freeness suitable for cryptographic applications?

Question 2 🗡

- The current definition does not seem to be sufficient :-(
- Why? An adversary interacting with a cryptographic primitive (built upon a PF group) may obtain additional informations (e.g. solutions for other equations).
- This problem was recognized and left opened by Rivest

Example: digital signatures

The adversary can produce a forgery after having seen other signatures.

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Our contribution

- Notion of Adaptive Pseudo-Free (APF) Groups
- Applications: APF groups can be used to build digital signatures and network coding (homomorphic) signatures.
- APF groups exist: \mathbb{Z}_N^* is APF under Strong-RSA

Corollary:

A framework for signatures based on Strong-RSA

▲ □ ▶ ▲ □ ▶ ▲

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Adaptive Pseudo-Freeness

Rough idea: The adversary can output a non-trivial equation with a solution after interacting with the group.

APF game

Setup Randomly choose a group \mathbb{G} from the family, fix constants A and give (\mathbb{G}, A) to A.

Equation queries \mathcal{A} is allowed to see non-trivial equations with their solutions.

Challenge \mathcal{A} outputs (λ^*, ψ^*) and wins if λ^* is non-trivial and ψ^* is a solution in \mathbb{G} .

(日) (同) (目) (日)

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Adaptive Pseudo-Freeness

Rough idea: The adversary can output a non-trivial equation with a solution after interacting with the group.

APF game

Setup Randomly choose a group \mathbb{G} from the family, fix constants A and give (\mathbb{G}, A) to A.

Equation queries \mathcal{A} is allowed to see non-trivial equations with their solutions.

Challenge \mathcal{A} outputs (λ^*, ψ^*) and wins if λ^* is non-trivial and ψ^* is a solution in \mathbb{G} .

Two challenging points:

- is allowed to see non-trivial equations
- non-trivial w.r.t. other equations

(日) (同) (三) (三)

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

How are the queried equations produced?

${\mathcal A}$ is allowed to see non-trivial equations

Some possible solutions:

• The Challenger chooses equation λ_i and gives (λ_i, ψ_i) to \mathcal{A} .

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

How are the queried equations produced?

 $\ensuremath{\mathcal{A}}$ is allowed to see non-trivial equations

Some possible solutions:

• The Challenger chooses equation λ_i and gives (λ_i, ψ_i) to \mathcal{A} .

Too weak and not really adaptive

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

G

• • • • • • • • • • • •

How are the queried equations produced?

$\ensuremath{\mathcal{A}}$ is allowed to see non-trivial equations

Some possible solutions:

٠

• The Challenger chooses equation λ_i and gives (λ_i, ψ_i) to \mathcal{A} .

Too weak and not really adaptive

A chooses λ_i, gives it to the Challenger who computes a solution ψ_i for A (adaptively repeated)

Challenger

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

G

How are the queried equations produced?

$\ensuremath{\mathcal{A}}$ is allowed to see non-trivial equations

Some possible solutions:

٠

• The Challenger chooses equation λ_i and gives (λ_i, ψ_i) to \mathcal{A} .

Too weak and not really adaptive

A chooses λ_i, gives it to the Challenger who computes a solution ψ_i for A (adaptively repeated)

Very strong! It seems unrealizable :-(

Challenger

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

How are the queried equations produced?

 $\ensuremath{\mathcal{A}}$ is allowed to see non-trivial equations

Some possible solutions:

• The Challenger chooses equation λ_i and gives (λ_i, ψ_i) to \mathcal{A} .

Too weak and not really adaptive

Solution: Parametric distribution

A chooses λ_i, gives it to the Challenger who computes a solution ψ_i for A (adaptively repeated)

Very strong! It seems unrealizable :-(

Image: A = 0

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

A security notion parametrized by $arphi(\cdot)$

A parametric distribution $\varphi(\cdot)$

 λ_i is created according to $\varphi(M_i)$, conditioned on M_i chosen by \mathcal{A} . $(e_1, \dots, e_n, s_1, \dots, s_m) \leftarrow \varphi(M)$

- φ "controls the power" of the adversary
- Different φ can capture the weak and strong definitions sketched before.
- Formally, we will say that G
 is APF w.r.t. φ
- We will define a sufficiently adaptive φ̂ that allows for building signatures and proving APF of the RSA group.

< ロ > < 同 > < 回 > < 回 >

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Non-trivial equations in the adaptive setting

Non-trivial equation w.r.t. other equations

- Let Λ = {λ_k}^t_{k=1} be the set of equations with solutions {ψ_k} obtained by the adv.
- \mathcal{A} might output $\lambda^* = \lambda_k$: it is non-trivial w.r.t. the old def.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Non-trivial equations in the adaptive setting

Non-trivial equation w.r.t. other equations

- Let Λ = {λ_k}^t_{k=1} be the set of equations with solutions {ψ_k} obtained by the adv.
- \mathcal{A} might output $\lambda^* = \lambda_k$: it is non-trivial w.r.t. the old def.
- We define non-triviality by looking at the augmented free group *F*(*A*) ∪{*ψ*₁(*x*),...,*ψ*_t(*x*)}
- Another way to look at it: λ* is trivial w.r.t. Λ if it can be obtained from a linear combination of equations in Λ.

See the formal definition in the paper.

- 4 同 6 4 日 6 4 日 6

Summary of our Contribution Definition **Applications of APF groups** A candidate group for APF: the RSA group

Applications of APF groups

- Network Coding (homomorphic) signatures
- (Standard) Digital signatures

< 台

Summary of our Contribution Definition **Applications of APF groups** A candidate group for APF: the RSA group

Applications of APF groups

- Network Coding (homomorphic) signatures
- (Standard) Digital signatures

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Network Coding homomorphic Signatures - Notion

They allow to sign *n*-dimensional vector subspaces.

- NetKG() = (vk, sk): key generation
- Sign(sk, fid, W) = σ: W= n-dimensional vector space; fid= unique identifier. W is described by a basis (w⁽¹⁾, · · · , w⁽ⁿ⁾). Usually, σ is a set of signatures σ_i on each w⁽ⁱ⁾.
- Ver(vk, fid, w, σ) = 0/1: 1 if σ valid for w.
- Combine(vk, fid, $\{w_i, \sigma_i, \alpha_i\}_{i=1}^{\mu}$) = σ : σ correctly verifies $w = \sum_{i=1}^{\mu} \alpha_i \cdot w^{(i)}$.

Main application

Linear Network Coding.

・ロト ・同ト ・ヨト ・ヨト

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Network Coding Signatures - Security Definition

• Similar to the usual unforgeability notion

Challenger

Adversary

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Network Coding Signatures - Security Definition

• Similar to the usual unforgeability notion

Challenger		Adversary
$(vk,sk) \gets NetKG()$	vk	

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Network Coding Signatures - Security Definition

• Similar to the usual unforgeability notion

Challenger		Adversary
$(vk,sk) \gets NetKG()$	vk	
	Wi	Sign. queries
$\sigma_i \leftarrow Sign(sk, fid_i, W_i)$	fid_i, σ_i	- ·

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Network Coding Signatures - Security Definition

• Similar to the usual unforgeability notion

Challenger		Adversary
$(vk,sk) \gets NetKG()$	vk	
	Wi	Sign. queries
$\sigma_i \leftarrow Sign(sk,fid_i,W_i)$	$\overbrace{fid_i,\sigma_i}{fid_i,\sigma_i}$	0
	:	
	fid*, w^*, σ^*	Forgery
Adversary wins if σ^* value	d for (<i>w</i> *,fid*), an	d:
fid * \neq fid. $\forall i$		

Or, fid^{*} = fid_j, but w^{*} ∉ W_j (namely, σ^* is not a linear combination of signatures created by the Challenger).

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Network Coding Signatures from APF groups

Preliminaries

• Assume equations in a canonical form $x^e = a_1^{s_1} \cdots a_m^{s_m}$

We design a class of parametric distributions $\varphi_{\ell,n}$

$$arphi_{\ell,n}:\mathbb{Z}_{2^\ell}^{n' imes n} o\mathbb{Z}^{1+mn} imes\{0,1\}^*$$
 such that $(n+n'\leq m+1)$

- Let fid be a binary string taken with high-entropy distribution;
- e = H(fid) where H is a map to primes
- For i = 1 to *n* define $\vec{s}^{(i)}$ as follows:

•
$$s_i^{(i)} = 1, \ s_j^{(i)} = 0, \ \forall j = 1, \dots, n : j \neq i$$

- $s_k^{(i)} \in \mathbb{Z}_e$ according to (arbitrary) D_k , $\forall k = n + 1, \dots, m$
- Output $(e, \text{fid}, \{\vec{s}^{(i)}\}_{i=1}^n)$. $\varphi_{\ell,n}$ defines *n* equations.

 $\varphi_{\ell,n}$ is equipped with an efficient algorithm for verifying whether a tuple (e, fid, \vec{s}) is in the support of $w \in \mathbb{Z}_{2^{\ell}}^{n'}$ or not.

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Network Coding Signatures from APF groups (2)

• Let \mathcal{G} be a family of APF groups w.r.t. $\hat{\varphi} \in \varphi_{\ell,n}$:

NetKG(*n*): Randomly choose a group \mathbb{G} from \mathcal{G} , fix sets X, Aand set vk = $(X, A, \mathbb{G}, \varphi_{\ell,n})$ and sk = $ord(\mathbb{G})$

NetSign(sk, fid, W): $\{\lambda_i\}_{i=1}^m \leftarrow \hat{\varphi}(W)$. For i = 1 to m: use $ord(\mathbb{G})$ to find solution ψ_i for λ_i and output $\sigma_i = (\lambda_i, \psi_i)$

NetVer(vk, fid, w, σ) (1) Check that λ is distributed according to $\hat{\varphi}$. (2) Check that ψ is a valid solution.

Combine(vk, fid, $\{w_i, \sigma_i, \alpha_i\}_{i=1}^{\mu}$): output $\sigma = (\lambda, \psi)$ where $\psi = \prod_{i=1}^{\mu} \psi_i^{\alpha_i}, \quad \vec{s} = \sum_{i=1}^{\mu} \alpha_i \cdot \vec{s}^{(i)}$

Theorem (Security of NetPFSig)

If \mathcal{G} is APF w.r.t. $\hat{\varphi} \in \varphi_{\ell,n}$ ($\forall n \ge 1$), then NetPFSig(n) is secure.

Static Pseudo-Free Grou Adaptive Pseudo-Free Grou A framework for Strong RSA-based signatur Conclusio	Summary of our Contribution Definition res Applications of APF groups A candidate group for APF: the RSA group	
Proof (sketch)		
APF	Sim.	Forger
Chall.	\mathcal{B}	$\bar{\mathcal{A}}$

Static Pseudo-Free Groups Adaptive Pseudo-Free Groups A framework for Strong RSA-based signatures Conclusions APF groups A candidate group for APF:

Proof (sketch)

APF Chall.		Sim. B		Forger \mathcal{A}
	$(X, A, \mathbb{G}, \varphi_{\ell, n})$	$vk = (X, A, \mathbb{G}, \varphi_{\ell, n})$	vk	

(日) (同) (三) (三)

 Static Pseudo-Free Groups
 Summary of our Contribution

 Adaptive Pseudo-Free Groups
 Definition

 A framework for Strong RSA-based signatures
 Conclusions

 A candidate group for APF: the RSA group

Proof (sketch)

APF Chall.		Sim. B		Forger \mathcal{A}
	$(X, A, \mathbb{G}, \varphi_{\ell, n})$	$vk = (X, A, \mathbb{G}, \varphi_{\ell, n})$	vk	
$\{\lambda_i\} \leftarrow \varphi_{\ell,n}(W)$ $\psi_i \text{ sol for } \lambda_i$	$\frac{W}{\{\lambda_i,\psi_i\}_{i=1}^n}$	$\{\sigma_i = (\lambda_i, \psi_i)\}_{i=1}^n$	$\{\sigma_i\}$	Sign. queries

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Static Pseudo-Free Groups Adaptive Pseudo-Free Groups A framework for Strong RSA-based signatures Conclusions A candidate group for APF: the RSA group

Proof (sketch)

APF Chall.		Sim. B		Forger \mathcal{A}
$\{\lambda_i\} \leftarrow \varphi_{\ell,n}(W)$ $\psi_i \text{ sol for } \lambda_i$	$(X, A, \mathbb{G}, \varphi_{\ell, n})$ W $\{\lambda_i, \psi_i\}_{i=1}^n$	$vk = (X, A, \mathbb{G}, \varphi_{\ell,n})$ \cdots $\{\sigma_i = (\lambda_i, \psi_i)\}_{i=1}^n$	vk W $\{\sigma_i\}$	Sign. queries
	$\frac{\lambda^*,\psi^*}{\text{non-trivial }\lambda^*}$ with solution	$\sigma^* = (\lambda^*, \psi^*)$	w [*] , σ [*] forgery	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Proof (sketch)

APF Chall.		Sim. B		Forger \mathcal{A}
	$(X, A, \mathbb{G}, \varphi_{\ell, n})$	$vk = (X, A, \mathbb{G}, \varphi_{\ell, n})$	vk	
Easy part			147	
Signing queries ma to equation queries	pped $\psi_i\}_{i=1}^n$	$\{\sigma_i = (\lambda_i, \psi_i)\}_{i=1}^n$	$\{\sigma_i\}$	Sign. queries
	λ^*,ψ^*	$\sigma^* = (\lambda^*, \psi^*)$	₩ *, σ*	
	non-trivial λ^* with solution		forgery	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Proof (sketch)

APF Chall.	Sim. B		Forger \mathcal{A}
$(X, A, \mathbb{G}, \varphi_{\ell, n})$	$vk = (X, A, \mathbb{G}, \varphi_{\ell, n})$	vk	
Easy part		147	
Signing queries mapped to equation queries $\frac{\psi}{\psi_i}_{i=1}^n$	$\{\sigma_i = (\lambda_i, \psi_i)\}_{i=1}^n$	$\{\sigma_i\}$	Sign. queries
	·		
More delicate	:		
Lemma: any valid forgery gives a non-trivial equation. $\frac{\lambda^*}{\lambda^*}$	$\sigma^* = (\lambda^*, \psi^*)$	$\underbrace{\mathbf{W}^*, \sigma^*}_{\text{forgery}}$	
with solution			

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Standard signatures from APF groups

$\mathsf{NetPFSig}(1) \Rightarrow \mathsf{PFSig}$

• Any Network Coding Signature for *n* = 1 is (syntactically) a signature scheme

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Standard signatures from APF groups

$\mathsf{NetPFSig}(1) \Rightarrow \mathsf{PFSig}$

- Any Network Coding Signature for *n* = 1 is (syntactically) a signature scheme
- Unfortunately, it allows for some kind of malleability
- Set Sign(sk, m) = NetSign(sk, 1||m). Then ask the verification to say that only vectors (1||w) are valid.

- 同 ト - ヨ ト - - ヨ ト

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

Standard signatures from APF groups

$\mathsf{NetPFSig}(1) \Rightarrow \mathsf{PFSig}$

- Any Network Coding Signature for n = 1 is (syntactically) a signature scheme
- Unfortunately, it allows for some kind of malleability
- Set Sign(sk, m) = NetSign(sk, 1||m). Then ask the verification to say that only vectors (1||w) are valid.

Distribution for n = 1: $\varphi_{\ell,1} : \mathbb{Z}_{2^{\ell}}^{n'} \to \mathbb{Z}^{1+m} \times \{0,1\}^*$

- Let fid be a binary string taken with high-entropy distribution;
- e = H(fid) where H is a map to primes
- $s_1 = 1$
- $s_k \in \mathbb{Z}_e$ according to (arbitrary) D_k , $\forall k = 2, \dots, m$
- Output (e, fid, \vec{s}) .

Summary of our Contribution Definition Applications of APF groups A candidate group for APF: the RSA group

The RSA group is adaptive pseudo-free

We define a concrete parametric distribution $\hat{\varphi} \subset \varphi_{\ell,n}$

Theorem (RSA is APF)

If the Strong RSA Assumption holds, then \mathbb{Z}_N^* is APF w.r.t. $\hat{\varphi}$.

A framework for Strong RSA-based signatures

- Abstract away almost all known Strong-RSA signatures
- Each scheme can be obtained by appropriately instantiating the parametric distribution $\hat{\varphi}$ (for n = 1)
- Note: each scheme does not need a new φ̂, but only a special case of the one for which our proofs hold.

Which schemes?

• [GHR99]:
$$x^e = a_1 (e = H(M))$$

- [CS99]: $x^e = a_1 a_2^{H(C)}$, C = ChamCommit(M; r)
- [CL02]: $x^e = a_1 a_2^s a_3^M$
- [Fischlin03]: $x^e = a_1 a_2^s a_3^{s \oplus M}$
- [HK08]: $x^e = a_0 a_1^{M_1} \cdots a_m^{M_m}$ ($M = M_1 \cdots M_m$) (special case)

A new network coding signature in the standard model

- We obtain a new network coding signature in the standard model based on the Strong-RSA assumption.
- All other known solutions were in the RO model.
- Independently, Attrapadung and Libert [PKC'11] built a standard model scheme in bilinear groups of composite-order.

Conclusions

Summary of our results

- Notion of APF Groups
- Applications of APF: Network Coding/Standard Signatures ^a
- Existence of APF Groups: the RSA group is APF
- A new network coding signature in the standard model
- A better understanding of previous signatures Other interpretations:
- Distilling the core of Strong-RSA-based proofs
- (Towards) establishing a connection between provably-secure crypto and formal methods

 $\ensuremath{^a\mbox{Current}}\xspace$ version has a different presentation of network coding/standard signatures from APF

< ロ > < 同 > < 回 > < 回 >

Conclusions

Open problems and follow-up works

- New network coding signatures based on Strong-RSA, qSDH, CDH
- Defining pseudo-freeness for other computational groups
- Supporting more generic parametric distributions
- Other crypto applications of APF groups

伺 ト イヨト イヨト

