ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions

Attribute-Based Cryptography: Survey and (Inefficient?) Generic Constructions

Javier Herranz

Universitat Politècnica de Catalunya Barcelona, Spain

DoE CRYPTODOC, Darmstadt (Germany), November 21st, 2011

◆夏♪

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Outline				

- 1 Attribute-Based Cryptography
- **2** ABC: State of the Art
- **3** Relation between ABE and IB-DDE
- **4** (Inefficient) Generic Constructions of ABE Schemes
- **6** Conclusions

∢ 臣 ▶

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Outline				

Attribute-Based Cryptography

2 ABC: State of the Art

3 Relation between ABE and IB-DDE

4 (Inefficient) Generic Constructions of ABE Schemes

6 Conclusions

< ≣⇒

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
●000000000	0000		00000	O
Traditional	Public Key C	Cryptography		

- Each user has a pair of keys (sk, pk).
- Each ciphertext / signature is **linked** to a particular public key pk.

- ⊒ - ►

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
●000000000	0000		00000	O
Traditiona	l Public Key (Cryptography		

- Each user has a pair of keys (sk, pk).
- Each ciphertext / signature is **linked** to a particular public key pk.
- Only the user holding the matching sk can decrypt / sign material linked to pk.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
●000000000	0000		00000	O
Traditiona	l Public Kev (Chuntography		

- Each user has a pair of keys (sk, pk).
- Each ciphertext / signature is **linked** to a particular public key pk.
- Only the user holding the matching sk can decrypt / sign material linked to pk.
- How to know that public key pk really belongs to the intended receiver ?
 Digital certificates, revocation... inefficiency !!

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0●00000000	0000		00000	O
IBC ightarrow fu	izzy IBC \rightarrow	ABC		

Identity Based Cryptography (Shamir, 1984)

Only the owner of the identity which **exactly matches** the chosen identity can decrypt / sign the message.

∃ >

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
○●○○○○○○○○	0000		00000	O
$IBC \to fu$	zzv IBC —	ABC		

fuzzy Identity Based Cryptography (Sahai-Waters, 2005)

Identities are now vectors of attributes.

Only the owners of identities which **match** the chosen identity in **at least** *t* **positions** can decrypt / sign the message.

[The threshold *t* is fixed in Setup.]

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0●00000000	0000		00000	O
IBC o fu	zzy IBC $ ightarrow$	ABC		

(Threshold) Attribute Based Cryptography (Goyal et al., 2006)

Only the owners of identities which **match** the identity chosen by the sender in **at least** *t* **positions** can decrypt the message.

[The threshold *t* is **chosen ad-hoc** by the sender / signer.]

ABC 00●0000000	State Art 0000	ABE vs. IB-DDE	Generic 00000	Conclusions
Threshold	ABC ightarrow C	General ABC		

 $S = \{\mathsf{at}_1, \mathsf{at}_2, \dots, \mathsf{at}_n\}$

and a (monotone increasing) family $\Gamma \subset 2^S$ of subsets of S.

3 N

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
00●0000000	0000		00000	O
Threshold	H ABC $ ightarrow$ (General ABC		

 $S = \{\mathsf{at}_1, \mathsf{at}_2, \dots, \mathsf{at}_n\}$

and a (monotone increasing) family $\Gamma \subset 2^S$ of subsets of S.

Only users holding a subset of attributes $A \in \Gamma$ can decrypt / sign.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
00●0000000	0000		00000	O
Threshold	ABC ightarrow C	General ABC		

 $S = \{\mathsf{at}_1, \mathsf{at}_2, \dots, \mathsf{at}_n\}$

and a (monotone increasing) family $\Gamma \subset 2^S$ of subsets of *S*.

Only users holding a subset of attributes $A \in \Gamma$ can decrypt / sign.

Example: $S = \{at_1, at_2, at_3\}$

$$\Gamma_0=\{\{\mathsf{at}_1\},\{\mathsf{at}_2,\mathsf{at}_3\}\},\ \ \Gamma=\mathrm{cl}(\Gamma_0)$$

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
00●0000000	0000		00000	O
Threshold	ABC ightarrow C	General ABC		

 $S = \{\mathsf{at}_1, \mathsf{at}_2, \dots, \mathsf{at}_n\}$

and a (monotone increasing) family $\Gamma \subset 2^S$ of subsets of *S*.

Only users holding a subset of attributes $A \in \Gamma$ can decrypt / sign.

Example: $S = \{at_1, at_2, at_3\}$

$$\Gamma_0=\{\{\mathsf{at}_1\},\{\mathsf{at}_2,\mathsf{at}_3\}\},\ \ \Gamma=\mathrm{cl}(\Gamma_0)$$

• User with $\{at_1, at_2\}$ can decrypt / sign.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
00●0000000	0000		00000	O
Threshold	ABC ightarrow C	General ABC		

 $S = \{\mathsf{at}_1, \mathsf{at}_2, \dots, \mathsf{at}_n\}$

and a (monotone increasing) family $\Gamma \subset 2^S$ of subsets of *S*.

Only users holding a subset of attributes $A \in \Gamma$ can decrypt / sign.

Example: $S = \{at_1, at_2, at_3\}$

 $\Gamma_0=\{\{\mathsf{at}_1\},\{\mathsf{at}_2,\mathsf{at}_3\}\},\ \ \Gamma=\mathrm{cl}(\Gamma_0)$

- User with $\{at_1, at_2\}$ can decrypt / sign.
- User with {at₃} cannot decrypt / sign.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
00●0000000	0000		00000	O
Threshold	ABC ightarrow C	General ABC		

 $S = \{\mathsf{at}_1, \mathsf{at}_2, \dots, \mathsf{at}_n\}$

and a (monotone increasing) family $\Gamma \subset 2^S$ of subsets of *S*.

Only users holding a subset of attributes $A \in \Gamma$ can decrypt / sign.

Example: $S = \{at_1, at_2, at_3\}$

 $\Gamma_0=\{\{\mathsf{at}_1\},\{\mathsf{at}_2,\mathsf{at}_3\}\},\ \ \Gamma=\mathrm{cl}(\Gamma_0)$

- User with {at₁, at₂} can decrypt / sign.
- User with {at₃} cannot decrypt / sign.

Considering $\Gamma = \{A \subset S : |A| \ge t\}$, we recover the **threshold** case.

< ∃ > _

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000●000000	0000		00000	O
CP-ABC:	Setup and	Key Extraction		

 SETUP: master entity runs (params, msk) ← ABE.Setup(1^λ, P), where P is the total universe of attributes.

< 注 → 注

ABC 000●000000	State Art 0000	ABE vs. IB-DDE	Generic 00000	Conclusions
CP-ABC:	Setup and	Kev Extraction		

- SETUP: master entity runs (params, msk) ← ABE.Setup(1^λ, P), where P is the total universe of attributes.
- KEY EXTRACTION: user U proves to master entity possession of his attributes A = {at_{i1},..., at_{iℓ}} ⊂ P.

 $\Xi \rightarrow$

ABC 000●000000	State Art 0000	ABE vs. IB-DDE	Generic 00000	Conclusions
CP-ARC.	Setup and	Key Extraction		

- SETUP: master entity runs (params, msk) ← ABE.Setup(1^λ, P), where P is the total universe of attributes.
- KEY EXTRACTION: user U proves to master entity possession of his attributes A = {at_{i1},..., at_{iℓ}} ⊂ P.
- Master entity gives to U the secret key sk_A ← ABE.Ext(params, A, msk).

ABC 0000●00000	State Art 0000	ABE vs. IB-DDE	Generic 00000	Conclusions
AB E : Enc	ryption and [Decryption		

ENCRYPTION: to encrypt a message *M*, sender chooses a set of attributes *S* ⊂ *P* and a monotone increasing decryption policy Γ ⊂ 2^S, and runs *C* ← ABE.Enc(params, *S*, Γ, *M*).

ヨト

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000●00000	0000		00000	O
AB E : Enci	ryption and D	ecryption		

- ENCRYPTION: to encrypt a message *M*, sender chooses a set of attributes *S* ⊂ *P* and a monotone increasing decryption policy Γ ⊂ 2^S, and runs *C* ← ABE.Enc(params, *S*, Γ, *M*).
- DECRYPTION: a user holding attributes A ⊂ S tries to decrypt by running *M̃* ← ABE.Dec(params, C, Γ, sk_A).

ABC 0000●00000	State Art 0000	ABE vs. IB-DDE	Generic 00000	Conclusions
AB E : Enci	ryption and D	ecryption		

- ENCRYPTION: to encrypt a message *M*, sender chooses a set of attributes *S* ⊂ *P* and a monotone increasing decryption policy Γ ⊂ 2^S, and runs *C* ← ABE.Enc(params, *S*, Γ, *M*).
- DECRYPTION: a user holding attributes A ⊂ S tries to decrypt by running *M̃* ← ABE.Dec(params, C, Γ, sk_A).

[For correctness: $\tilde{M} = M \iff A \in \Gamma$.]

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
00000●0000	0000		00000	O
AB S : Sign	ature and	Verification		

 SIGNATURE: to sign a message M for a signing policy (S, Γ), where Γ ⊂ 2^S, a signer holding attributes A ⊂ S runs σ ← ABS.Sign(params, S, Γ, M, sk_A).

- ⊒ - ►

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
00000●0000	0000		00000	O
AB S : Sign	hature and \mathbb{N}	Verification		

- SIGNATURE: to sign a message M for a signing policy (S, Γ), where Γ ⊂ 2^S, a signer holding attributes A ⊂ S runs σ ← ABS.Sign(params, S, Γ, M, sk_A).
- VERIFICATION: the receiver of the signed message runs 1 or 0 ← ABS.Vfy(params, S, Γ, M, σ).

ABC 00000●0000	State Art 0000	ABE vs. IB-DDE	Generic	Conclusions O
AB S : Sig	nature and	Verification		

- SIGNATURE: to sign a message M for a signing policy (S, Γ), where Γ ⊂ 2^S, a signer holding attributes A ⊂ S runs σ ← ABS.Sign(params, S, Γ, M, sk_A).
- VERIFICATION: the receiver of the signed message runs 1 or 0 ← ABS.Vfy(params, S, Γ, M, σ).

[For correctness: $1 = ABS.Vfy(params, S, \Gamma, M, ABS.Sign(params, S, \Gamma, M, sk_A)) \iff A \in \Gamma.$]

ABC 000000●000	State Art	ABE vs. IB-DDE	Generic 00000	Conclusions
AB E Secu	rity: IND-CPA	4		

< ∃ →

э

ABC 000000●000	State Art 0000	ABE vs. IB-DDE	Generic 00000	Conclusions
AB E Secu	rity: IND-CP	A		

(1) The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .

< 臣 ▶

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000●000	0000		00000	O
AB E Secu	rity: IND-CPA	A		

- 1 The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .
- **2** The challenger runs (params, msk) $\leftarrow ABE.Setup(1^{\lambda}, P)$ and gives params to A.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000●000	0000		00000	O
AB E Secu	rity: IND-CP/	4		

- 1 The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .
- 2 The challenger runs (params, msk) ← ABE.Setup(1^λ, P) and gives params to A.
- Secret key queries: A adaptively chooses subsets B ⊂ P and must receive sk_B ← ABE.Ext(params, B, msk).

ABC 000000●000	State Art	ABE vs. IB-DDE	Generic 00000	Conclusions O
AB E Secu	rity: IND-CP/	4		

- 1 The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .
- 2 The challenger runs (params, msk) ← ABE.Setup(1^λ, P) and gives params to A.
- **3** Secret key queries: \mathcal{A} adaptively chooses subsets $B \subset \mathcal{P}$ and must receive $sk_B \leftarrow ABE.Ext(params, B, msk)$.
- A outputs two messages M₀, M₁ of the same length, a set of attributes S ⊂ P and a decryption policy Γ ⊂ 2^S.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000●000	0000		00000	O
AB E Secu	rity: IND-CPA	4		

- 1 The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .
- 2 The challenger runs (params, msk) ← ABE.Setup(1^λ, P) and gives params to A.
- Secret key queries: A adaptively chooses subsets B ⊂ P and must receive sk_B ← ABE.Ext(params, B, msk).
- A outputs two messages M₀, M₁ of the same length, a set of attributes S ⊂ P and a decryption policy Γ ⊂ 2^S.
- **6 Challenge:** the challenger chooses b^{*} ∈_R {0,1}, computes C^{*} ← ABE.Enc(params, S, Γ, M_{b*}) and gives C^{*} to A.

Image: Second second

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000●000	0000		00000	O
AB E Secu	rity: IND-CPA	4		

- 1 The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .
- 2 The challenger runs (params, msk) ← ABE.Setup(1^λ, P) and gives params to A.
- Secret key queries: A adaptively chooses subsets B ⊂ P and must receive sk_B ← ABE.Ext(params, B, msk).
- A outputs two messages M₀, M₁ of the same length, a set of attributes S ⊂ P and a decryption policy Γ ⊂ 2^S.
- Challenge: the challenger chooses b^{*} ∈_R {0,1}, computes C^{*} ← ABE.Enc(params, S, Γ, M_{b*}) and gives C^{*} to A.
- 6 Step 4 is repeated.

Image: Second second

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000●000	0000		00000	O
ABE Seci	urity: IND-(СРА		

- 1 The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .
- 2 The challenger runs (params, msk) ← ABE.Setup(1^λ, P) and gives params to A.
- Secret key queries: A adaptively chooses subsets B ⊂ P and must receive sk_B ← ABE.Ext(params, B, msk).
- A outputs two messages M₀, M₁ of the same length, a set of attributes S ⊂ P and a decryption policy Γ ⊂ 2^S.
- Ghallenge: the challenger chooses b^{*} ∈_R {0,1}, computes C^{*} ← ABE.Enc(params, S, Γ, M_{b*}) and gives C^{*} to A.
- 6 Step 4 is repeated.
- 7 \mathcal{A} outputs a bit *b*, and wins if $b = b^*$.

< ∃ >

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000●000	0000		00000	O
AB E Secu	rity: IND-CPA	A		

- 1 The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .
- 2 The challenger runs (params, msk) ← ABE.Setup(1^λ, P) and gives params to A.
- Secret key queries: A adaptively chooses subsets B ⊂ P and must receive sk_B ← ABE.Ext(params, B, msk).
- A outputs two messages M₀, M₁ of the same length, a set of attributes S ⊂ P and a decryption policy Γ ⊂ 2^S.
- Ghallenge: the challenger chooses b^{*} ∈_R {0,1}, computes C^{*} ← ABE.Enc(params, S, Γ, M_{b*}) and gives C^{*} to A.
- 6 Step 4 is repeated.
- 7 \mathcal{A} outputs a bit *b*, and wins if $b = b^*$.

If $\mathsf{Pr}[\mathcal{A}~\mathrm{wins}]\approx 1/2,$ then the ABE scheme is IND-CPA secure.

·문▶· ★ 문▶ · · 문

ABC 0000000●00	State Art 0000	ABE vs. IB-DDE	Generic	Conclusions O
AB E Secu	rity: s IND-CP	A		

- 1 The challenger sends a universe of attributes \mathcal{P} to \mathcal{A} .
- **2** \mathcal{A} selects $S \subset \mathcal{P}$ and a decryption policy $\Gamma \subset 2^{S}$.
- 3 The challenger runs (params, msk) ← ABE.Setup(1^λ, P) and gives params to A.
- Gecret key queries: A adaptively chooses subsets B ⊂ P s.t.
 B ∩ S ∉ Γ, and must receive sk_B ← ABE.Ext(params, B, msk).
- **5** \mathcal{A} outputs two messages M_0, M_1 of the same length.
- 6 Challenge: the challenger chooses b^{*} ∈_R {0,1}, computes C^{*} ← ABE.Enc(params, S, Γ, M_{b^{*}}) and gives C^{*} to A.
- Step 4 is repeated.
- **(3)** \mathcal{A} outputs a bit *b*, and wins if $b = b^*$.

If $\mathsf{Pr}[\mathcal{A}~\mathrm{wins}]\approx 1/2,$ then the ABE scheme is sIND-CPA secure.

↓ ∃ ▶ ∃ • ∩ < ∩</p>

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
00000000●0	0000		00000	O
AB S Secu	rity: <mark>(s)</mark> EUF-(СМА		

- **1** The challenger sends a universe of attributes \mathcal{P} to \mathcal{F} .
- 2 (In the selective case), \mathcal{F} selects $S \subset \mathcal{P}$ and a decryption policy $\Gamma \subset 2^{S}$.
- **3** The challenger runs (params, msk) $\leftarrow ABS.Setup(1^{\lambda}, \mathcal{P})$ and gives params to \mathcal{F} .
- **④** Secret key queries: \mathcal{F} adaptively chooses subsets $B \subset \mathcal{P}$ s.t. $B \cap S \notin \Gamma$ (selective), and must receive sk_B ← ABS.Ext(params, B, msk).
- Signature queries: *F* adaptively chooses tuples (S', Γ', M') and must receive σ' ← ABS.Sign(params, S', Γ', M', sk_A), where sk_A ← ABS.Ext(params, A, msk) and A ∈ Γ'.
- **6** \mathcal{F} outputs a tuple (S, Γ, M, σ) .
- **7** \mathcal{F} wins if (S, Γ, M, σ) has not been obtained in Step 5 and $1 = ABS.Vfy(params, S, \Gamma, M, \sigma).$

If $\text{Pr}[\mathcal{F}~{\rm wins}]\approx$ 0, then the ABS scheme is <code>sEUF-CMA</code> secure.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000000●	0000		00000	O
AB S Sec	urity: Privad	CV		

It can be formalized through an indistinguishability game ...

Intuitively: a signature $\sigma \leftarrow ABS.Sign(params, S, \Gamma, M, sk_A)$ must reveal no information about the set of attributes A.

.⊒...>

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000000●	0000		00000	O
AB S Secu	ırity: Privad	CV		

It can be formalized through an indistinguishability game ...

Intuitively: a signature $\sigma \leftarrow ABS.Sign(params, S, \Gamma, M, sk_A)$ must reveal no information about the set of attributes A.

This property can be achieved **computationally** (relation to a hard problem) or **perfectly**.

.⊒...>

ABC 0000000000	State Art	ABE vs. IB-DDE	Generic 00000	Conclusions O
Outline				

- Attribute-Based Cryptography
- 2 ABC: State of the Art
- **3** Relation between ABE and IB-DDE
- **4** (Inefficient) Generic Constructions of ABE Schemes
- **6** Conclusions

< ≣⇒

3

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	●○○○		00000	O
Properties	of AB Sys	stems		

• Expressiveness: (*n*, *n*)-threshold << (*t*, *n*)-threshold << LSSS monotone policies << LSSS (non-)monotone policies

< ≣ >

3

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	●○○○		00000	O
Propertie	es of AB Sys	stems		

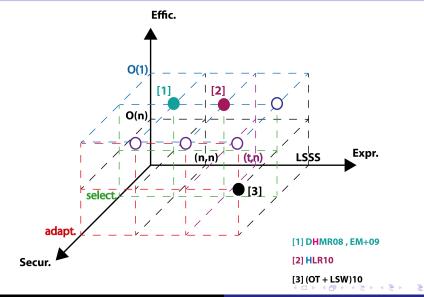
• Expressiveness: (*n*, *n*)-threshold << (*t*, *n*)-threshold << LSSS monotone policies << LSSS (non-)monotone policies

• Efficiency:
$$(|C| = |\sigma| = \mathcal{O}(n)) < < (|C| = |\sigma| = \mathcal{O}(1))$$

< ∃→

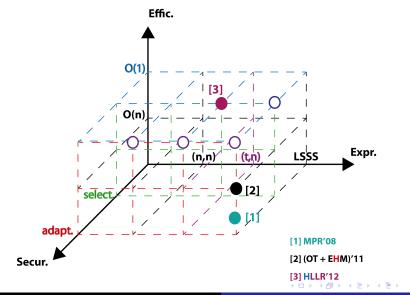
ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	●○○○		00000	O
Propertie	s of AB Sy	stems		

• Expressiveness: (*n*, *n*)-threshold << (*t*, *n*)-threshold << LSSS monotone policies << LSSS (non-)monotone policies


• Efficiency:
$$\left(|C| = |\sigma| = \mathcal{O}(n) \right) << \left(|C| = |\sigma| = \mathcal{O}(1) \right)$$

• Security: selective << adaptive ROM << standard model

< 注 ▶


ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
	0000			

CP-ABE Panorama

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
	0000			

ABS Panorama

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	000●		00000	O
Furthermo	ore			

- All existing ABE schemes employ bilinear pairings.
- Agrawal et al. (ePrint, 2011) have proposed a fuzzy-IBE scheme from lattices.

< ≣ >

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	○○○●		00000	O
Furtherm	ore			

- All existing ABE schemes employ bilinear pairings.
- Agrawal et al. (ePrint, 2011) have proposed a fuzzy-IBE scheme from lattices.
- More or less the same for ABS schemes (except generic construction of Maji et al., CT-RSA'11).

∢ ≣ ≯

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	○○○●		00000	O
Furtherm	ore			

- All existing ABE schemes employ bilinear pairings.
- Agrawal et al. (ePrint, 2011) have proposed a fuzzy-IBE scheme from lattices.
- More or less the same for ABS schemes (except generic construction of Maji et al., CT-RSA'11).
- What about generic constructions of ABE schemes ?

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000000	0000	000000	00000	
Outline				

- Attribute-Based Cryptography
- **2** ABC: State of the Art
- **3** Relation between ABE and IB-DDE
- (Inefficient) Generic Constructions of ABE Schemes
- **6** Conclusions

< ∃⇒

э

ABC 0000000000	State Art 0000	ABE vs. IB-DDE	Generic	Conclusions O
			/.	

注▶ ★ 注▶

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Identity B	ased Dyna	mic Distributed	Encryption (II	B-DDE)

• KEY EXTRACTION: a user with **identity** id; obtains from a master entity the secret key

 $sk_{id_i} \leftarrow IBDDE.Ext(msk, id_i)$

< ∃ >

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
		000000		

• KEY EXTRACTION: a user with **identity** id; obtains from a master entity the secret key

 $\mathsf{sk}_{\mathsf{id}_i} \leftarrow \mathsf{IBDDE}.\mathsf{Ext}(\mathsf{msk},\mathsf{id}_i)$

ENCRYPTION: the sender chooses a set of people,
 S = {id₁,...,id_s} and a decryption policy Γ ⊂ 2^S, monotone increasing:

 $C \leftarrow \mathsf{IBDDE}.\mathsf{Enc}(M, S, \Gamma)$

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
		•00000		

 KEY EXTRACTION: a user with identity id; obtains from a master entity the secret key

 $sk_{id_i} \leftarrow IBDDE.Ext(msk, id_i)$

ENCRYPTION: the sender chooses a set of people,
 S = {id₁,...,id_s} and a decryption policy Γ ⊂ 2^S, monotone increasing:

 $C \leftarrow \mathsf{IBDDE}.\mathsf{Enc}(M, S, \Gamma)$

 DECRYPTION: if a subset of people A ∈ Γ cooperate, they can jointly decrypt by using their secret keys:

```
\tilde{M} \leftarrow \mathsf{IBDDE}.\mathsf{Dec}(C, \{\mathsf{sk}_i\}_{\mathsf{id}_i \in A})
```

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	000000	00000	

• KEY EXTRACTION: a user with **identity** id; obtains from a master entity the secret key

 $\mathsf{sk}_{\mathsf{id}_i} \leftarrow \mathsf{IBDDE}.\mathsf{Ext}(\mathsf{msk},\mathsf{id}_i)$

ENCRYPTION: the sender chooses a set of people,
 S = {id₁,...,id_s} and a decryption policy Γ ⊂ 2^S, monotone increasing:

 $C \leftarrow \mathsf{IBDDE}.\mathsf{Enc}(M, S, \Gamma)$

 DECRYPTION: if a subset of people A ∈ Γ cooperate, they can jointly decrypt by using their secret keys:

```
\tilde{M} \leftarrow \mathsf{IBDDE}.\mathsf{Dec}(C, \{\mathsf{sk}_i\}_{\mathsf{id}_i \in A})
```

 $[Again, \ \tilde{M} = M \iff A \in \Gamma.]$

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	○●○○○○	00000	
From IB-D	DE to ABE			

- ◆ 臣 ▶ - -

Ξ.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
From IB-D	DE to ABE			

• ABE.Setup: same as IBDDE.Setup.

< ∃ >

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	○●○○○○	00000	O
From IB-	DDE to AE	3E		

- ABE.Setup: same as IBDDE.Setup.
- ABE.Ext(A, msk): run sk_{at_i} \leftarrow IBDDE.Ext(msk, at_i) for each at_i \in A, and define

 $\mathsf{sk}_{\mathcal{A}} \;=\; \{\mathsf{sk}_{\mathsf{at}_i}\}_{\mathsf{at}_i \in \mathcal{A}}$

< 臣 ▶

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	○●○○○○	00000	O
From IB-	DDE to AE	3E		

- ABE.Setup: same as IBDDE.Setup.
- ABE.Ext(A, msk): run sk_{at_i} \leftarrow IBDDE.Ext(msk, at_i) for each at_i \in A, and define

$$\mathsf{sk}_A = \{\mathsf{sk}_{\mathsf{at}_i}\}_{\mathsf{at}_i \in A}$$

• ABE.Enc(M, S, Γ): works exactly as IBDDE.Enc(M, S, Γ).

< 臣 ▶

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	○●○○○○	00000	O
From IB-	DDE to AE	3E		

- ABE.Setup: same as IBDDE.Setup.
- ABE.Ext(A, msk): run sk_{at_i} \leftarrow IBDDE.Ext(msk, at_i) for each at_i \in A, and define

$$\mathsf{sk}_A = \{\mathsf{sk}_{\mathsf{at}_i}\}_{\mathsf{at}_i \in A}$$

- ABE.Enc(M, S, Γ): works exactly as IBDDE.Enc(M, S, Γ).
- ABE.Dec(C, Γ, sk_A): works exactly as IBDDE.Dec(C, {sk_i}_{at_i∈A}).

< 注 →

ABC 0000000000	State Art	ABE vs. IB-DDE	Generic 00000	Conclusions O
Witho	ut Coalitior	n-Resistance !!		

• Suppose a message is encrypted for $S = \{at_1, \dots, at_4\}$ with a **threshold** decryption policy, t = 3.

★ E ▶ E

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Withou	ut Coalition	n-Resistance !!		

- Suppose a message is encrypted for S = {at₁,..., at₄} with a threshold decryption policy, t = 3.
- With the construction based on IB-DDE, a coalition of a user holding {at₁, at₂} and a user holding {at₃} will be able to decrypt.

[This contradicts the security requirements for ABE.]

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Basic Ma	thematics	.?		

ABE - 'coalition-resistance' = IB-DDE

Attribute-Based Cryptography DoE CRYPTODOC, November 21st, 2011

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Basic Mat	hematics	.?		

ABE - 'coalition-resistance' = IB-DDE

$\mathsf{IBDDE} = \mathsf{IBE} + \mathsf{`secret sharing'}$

E ► ★ E ► _ E

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Basic Mat	hematics	.?		

ABE - 'coalition-resistance' = IB-DDE

 $\mathsf{IBDDE} = \mathsf{IBE} + \mathsf{`secret sharing'}$

ABE - 'coalition-resistance' = IBE + 'secret sharing'

물 위 위 물 위 이 물

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Basic Mat	hematics	.?		

ARF -	'coalition-resistance'	= IR-DDF
ADL -	Coantion-resistance	

 $\mathsf{IBDDE} = \mathsf{IBE} + \mathsf{`secret sharing'}$

ABE - 'coalition-resistance' = IBE + 'secret sharing'

ABE = IBE +'secret sharing' + 'coalition-resistance'

- 米田 ト 三臣

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
From IB-[DDE to AB	E		

The approach ABE = IB-DDE + 'coalition-resistance' has been followed for specific schemes (with pairings).

< ∃ >

3

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	0000€0	00000	
From IB-D	DE to ABE			

The approach ABE = IB-DDE + 'coalition-resistance' has been followed for specific schemes (with pairings).

To achieve **coalition-resistance**, one can *try* to modify ABE.Ext: linking the values $\{s_{kat_i}\}_{at_i \in A}$ with some additional value, **different** for each user.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	000000●	00000	O
From IB-D	DE to ABE:	Precedents		

 IB-DDE scheme in [DHMR,ProvSec'07] → ABE scheme in [DHMR,AAECC'10] (available at ePrint 2008/502 since 2008).

Schemes work for LSSS monotone policies, have selective security, and |C| = 2(n - t) + O(1).

② IB-DDE scheme in [DelPoi,Crypto'08] \rightarrow ABE scheme in [HLR,PKC'10].

Schemes work for threshold policies, have selective security, and $|\mathcal{C}| = \mathcal{O}(1).$

ヨト くヨト 一

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	000000●	00000	O
From IB-D	DE to ABE:	Precedents		

 $\textbf{IB-DDE scheme in [DHMR, ProvSec'07] } \longrightarrow \text{ABE scheme in } \\ \textbf{[DHMR, AAECC'10] (available at ePrint 2008/502 since 2008). }$

Schemes work for LSSS monotone policies, have selective security, and |C| = 2(n - t) + O(1).

② IB-DDE scheme in [DelPoi,Crypto'08] \rightarrow ABE scheme in [HLR,PKC'10].

Schemes work for threshold policies, have selective security, and $|\mathcal{C}| = \mathcal{O}(1).$

But ... is there a generic way to achieve 'coalition-resistance' ?

< ∃ > ____

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	O
Outline				

- Attribute-Based Cryptography
- **2** ABC: State of the Art
- **3** Relation between ABE and IB-DDE

(Inefficient) Generic Constructions of ABE Schemes

6 Conclusions

< ≣⇒

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		●0000	O
The Simp	le Idea			

ABE = IBE + 'secret sharing' + 'coalition-resistance'

- ∢ ≣ ▶

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		●0000	O
The Simn	حما ما			

$ABE = IBE + \frac{\cdot}{secret sharing' + \frac{\cdot}{coalition resistance'}}$

▲ 臣 ▶ ▲ 臣 ▶ = = ∽ ९ ୯ ୯

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		●0000	O
The Simp	le Idea			

ABE = IBE + 'brute force approach'

Attribute-Based Cryptography DoE CRYPTODOC, November 21st, 2011

≣ ►

(★ 문) 문 문

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		•0000	O
The Simp	le Idea			

ABE = IBE + 'brute force approach'

Consider **all** the subsets of A for sk_A , and **all** the subsets in Γ_0 for C.

< ∃ >

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		○●○○○	O
The Sche	me: Setup	and Key Extract	tion	

Let IBE = (IBE.Setup, IBE.Ext, IBE.Enc, IBE.Dec) be an IBE scheme.

< ≣⇒

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
			00000	
	~			

The Scheme: Setup and Key Extraction

Let IBE = (IBE.Setup, IBE.Ext, IBE.Enc, IBE.Dec) be an IBE scheme.

ABE.Setup($1^{\lambda}, \mathcal{P}$):

- 1 Run (params_{IBE}, msk_{IBE}) \leftarrow IBE.Setup(1^{λ}).
- ② Let ID be the identity space of IBE, included in params_{IBE}. Choose a hash function $H : \{0, 1\}^* \rightarrow ID$.
- **3** Define params = (params_{IBE}, H) and msk = msk_{IBE}.

프 🖌 🔺 프 🛌

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
			00000	

The Scheme: Setup and Key Extraction

Let IBE = (IBE.Setup, IBE.Ext, IBE.Enc, IBE.Dec) be an IBE scheme.

ABE.Setup($1^{\lambda}, \mathcal{P}$):

- 1 Run (params_{IBE}, msk_{IBE}) \leftarrow IBE.Setup(1^{λ}).
- ② Let ID be the identity space of IBE, included in params_{IBE}. Choose a hash function $H : \{0, 1\}^* \rightarrow ID$.
- **3** Define params = (params_{IBE}, H) and msk = msk_{IBE}.

ABE.Ext(params, A, msk):

● For every subset $A' \subseteq A$, $A' \neq \emptyset$, run $sk_{A'} \leftarrow IBE.Ext(params_{IBE}, H(A'), msk)$.

2 Define
$$\mathsf{sk}_{\mathcal{A}} = \{\mathsf{sk}_{\mathcal{A}'}\}_{\mathcal{A}' \subseteq \mathcal{A}}$$
.

▲ 国 → 二

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
			00000	

The Scheme: Encryption and Decryption

ABE.Enc(params, S, Γ , M):

- **1** Find the basis Γ_0 of minimal subsets of Γ .
- **2** For each $B \in \Gamma_0$, compute $c_B \leftarrow \mathsf{IBE}.\mathsf{Enc}(\mathsf{params}_{\mathsf{IBE}}, H(B), M)$.

3 Define
$$C = \{c_B\}_{B \in \Gamma_0}$$
.

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
000000000	0000	000000	00000	

The Scheme: Encryption and Decryption

ABE.Enc(params, S, Γ , M):

- **1** Find the basis Γ_0 of minimal subsets of Γ .
- **2** For each $B \in \Gamma_0$, compute $c_B \leftarrow \mathsf{IBE}.\mathsf{Enc}(\mathsf{params}_{\mathsf{IBE}}, H(B), M)$.

3 Define
$$C = \{c_B\}_{B \in \Gamma_0}$$
.

ABE.Dec(params, C, Γ , sk_A):

- **1** Find a subset $A' \subseteq A$ such that $A' \in \Gamma_0$.
- **2** Extract $c_{A'}$ from C, and extract $sk_{A'}$ from sk_A .
- **3** Output $M \leftarrow \mathsf{IBE}.\mathsf{Dec}(\mathsf{params}_{\mathsf{IBE}}, c_{A'}, H(A'), \mathsf{sk}_{A'}).$

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
			00000	
The Cohen		internet and the		11

The Scheme: (Bad) Efficiency, and "Improvements"

- Let $n = |\mathcal{P}|$ be the number of attributes.
- Then $|\mathsf{sk}_{\mathcal{A}}| = 2^{|\mathcal{A}|} 1 \le 2^n$.
- And $|C| = 2^{|\Gamma_0|} \le 2^n$.

▲注▶ ▲注▶ 注 のへの

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		○○○●○	O
The Schem	ne: (Bad)	Efficiency, and	"Improvements"	

- Let $n = |\mathcal{P}|$ be the number of attributes.
 - Then $|\mathsf{sk}_A| = 2^{|A|} 1 \le 2^n$.
 - And $|C| = 2^{|\Gamma_0|} \le 2^n$.
 - Using **HIBE** or **IBBE** instead of IBE leads to similar constructions, with shorter sk_A or C.

▶ ★ 医 ▶ 二 臣

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		○○○●○	O
The Schem	ne: (Bad)) Efficiency, and	"Improvements"	

- Let $n = |\mathcal{P}|$ be the number of attributes.
- Then $|\mathsf{sk}_{\mathcal{A}}| = 2^{|\mathcal{A}|} 1 \le 2^n$.
- And $|C| = 2^{|\Gamma_0|} \le 2^n$.
- Using **HIBE** or **IBBE** instead of IBE leads to similar constructions, with shorter sk_A or C.

So, if $n \leq \log[poly(\lambda)]$, the protocols of ABE are all poly-time...

< ≣ ▶

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		○○○●○	O
The Schem	ne: (Bad)	Efficiency, and	"Improvements"	

- Let $n = |\mathcal{P}|$ be the number of attributes.
- Then $|\mathsf{sk}_{\mathcal{A}}| = 2^{|\mathcal{A}|} 1 \le 2^n$.
- And $|C| = 2^{|\Gamma_0|} \le 2^n$.
- Using **HIBE** or **IBBE** instead of IBE leads to similar constructions, with shorter sk_A or C.

So, if $n \leq \log[poly(\lambda)]$, the protocols of ABE are all poly-time...

What about AB Signatures ? Same ideas, using IB ring signatures instead of IBE.

(《 문 》 문

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
			00000	

Can this Simple Construction Be Useful ?

- ABE from any IBE: pairings, lattices, quadratic residuosity (ROM)...
- If the IBE scheme is **adaptively** secure, so the ABE scheme is.

- ⊒ - ▶

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
			00000	

Can this Simple Construction Be Useful ?

- ABE from any IBE: pairings, lattices, quadratic residuosity (ROM)...
- If the IBE scheme is **adaptively** secure, so the ABE scheme is.
- Is AB crypto being used somewhere, in real life ?
 [In theory: access control, cloud computing...]

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
			00000	

Can this Simple Construction Be Useful ?

- ABE from any IBE: pairings, lattices, quadratic residuosity (ROM)...
- If the IBE scheme is adaptively secure, so the ABE scheme is.
- Is AB crypto being used somewhere, in real life ? [In theory: access control, cloud computing...]
- If the answer is **YES**, what are the typical values for $n, |A|, |\Gamma_0|$?

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000	000000	00000	
Outline				

- Attribute-Based Cryptography
- **2** ABC: State of the Art
- **3** Relation between ABE and IB-DDE
- **4** (Inefficient) Generic Constructions of ABE Schemes
- **6** Conclusions

< ∃→

э

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	•
AB Crypto	: Theory a	nd Practice		

Theory

Practice

Attribute-Based Cryptography DoE CRYPTODOC, November 21st, 2011

< (¶ →

★ E ► ★ E ►

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	●
AB Crypto	: Theory a	nd Practice		

Theory

- Designing new AB cryptosystems is challenging (strong security requirements).
- Many open problems \rightarrow possible theoretical crypto papers !
- In particular, is there any efficient and generic way to achieve 'coalition-resistance', when IB-DDE \rightarrow ABE ?

Practice

∃ >

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions
0000000000	0000		00000	●
AB Crypto	: Theory a	nd Practice		

Theory

- Designing new AB cryptosystems is challenging (strong security requirements).
- Many open problems \rightarrow possible theoretical crypto papers !
- In particular, is there any efficient and generic way to achieve 'coalition-resistance', when IB-DDE \rightarrow ABE ?

Practice

- Theoretical research should be complemented with practical issues.
- Real needs of the market in terms of AB crypto ?
- Maybe for a small company which implements access control for its workers, IBE \to ABE suffices...

4 E b

ABC	State Art	ABE vs. IB-DDE	Generic	Conclusions

Attribute-Based Cryptography: Survey and (Inefficient?) Generic Constructions

Javier Herranz

Universitat Politècnica de Catalunya Barcelona, Spain

DoE CRYPTODOC, Darmstadt (Germany), November 21st, 2011

