MODULAR CODE-BASED CRYPTOGRAPHIC VERIFICATION

MARKULF KOHLWEISS (MARKULF@MICROSOFT.COM

Joint work with Cédric Fournet and Pierre-Yves Strub

CRYPTO PROTOCOLS (STILL) GO WRONG

- ➤ Design & implementation errors lead to vulnerabilities
- * Traditional crypto models miss most details
- Production code and design specs differ

THIS TALK

Goal: Automated verification of protocol code under standard cryptographic assumptions (rather than symbolic verification of protocol models)

Method: Refinement types & parametricity

Proofs are by programming, typechecking, and local game-based code rewriting

Outline

0

- Background / a Mixed Bag
 - A bit of history
 - Type checking for (non-)programmers
 - Goldreich in F#
 - The big picture
- Example Primitive: Authenticated Encryption
- Example Protocol: Remote Procedure Call Protocol

FORMAL COMPUTATIONAL CRYPTOGRAPHY

Two approaches for verifying protocols and programs

Symbolic models (Needham-Schroeder, Dolev-Yao, ... late 70's)

- Structural view of protocols, using formal languages and methods
- Many automated verification tools, scales to large systems including full-fledged implementations of protocol standards

Computational models (Yao, Goldwasser, Micali, Rivest, ... early 80's)

- Concrete, algorithmic view, using probabilistic polynomial-time machines
- New formal tools: CryptoVerif, Certicrypt, Easycrypt

Can we get the best of both worlds?

- Much ongoing work on computational soundness for symbolic cryptography (Abadi Rogaway, Backes Pfitzmann Waidner, Warinschi,... mid 00's)
 - It works... with many mismatches, restrictions, and technicalities
 - At best, one still needs to verify protocols symbolically
- Can we directly verify real-world protocols?
 This paper: type-based verification is more effective and more compositional computationally than symbolically.

F7: REFINEMENT TYPECHECKING FOR F#

- We program in F#
- We specify in F7
 We typecheck programs
 against interfaces
- F7 does some type inference
 & calls Z3, an SMT solver,
 on each logical proof obligation

In prior work: symbolic crypto
 libraries and verified large protocols
 (e.g. CardSpace at POPL'10)

ASSUME AND ASSERTS; SAFETY BY TYPING

Refinement types $\{x: T | C\}$

```
// Sample type and value declarations in F7 type nat = n:int{ 0 < n } val read: n:nat -> b:bytes{ Length(b) < n }
```

Global set of first-order logical formulas, the log

- assume C adds C to the log
- assert C succeeds if C logically follows from the logged formulas
- An expression A is safe if and only if in all evaluations of A, all assertions succeed.
- We use a logic judgement $I \vdash C$ (C follows from refinements in I)

Theorem 1 (Safety by Typing)

If $\emptyset \vdash A: T$ then A is safe.

COMPUTATIONAL SECURITY WITH F7

- Use existing F7 typechecker and code base
- Remove non-determinism
- Add probabilistic sampling and native references
- (Prove type safety & parametricity of new extended subset of F7 in Coq)
- We still type protocols and applications against refined typed interfaces that idealize crypto libraries
- We relate two implementations of crypto libraries
 - Ideal, well-typed functionality (replaces symbolic libraries)
 - Concrete implementation (with weaker typing in F7)
- Computational security follows from p.p.t. indistinguishability
 (a bit similar to universal composability)

COMPLEXITY, PROBABILITY, AND ASYMPTOTICS

- Series $(A_{\eta})_{\eta \geq 0}$ of expressions indexed by η . (Short A)
- Define p.p.t. for expressions A such that $I_{Pr} \vdash A : T$ and modules Pr such that $I \vdash Pr \mapsto I_{Pr}$.
 - Limit ourselves to 1st order interfaces.
 - Top most attacker interface I_{Pr} unrefined, \Rightarrow power of A corresponds to Oracle Turing machine.
- Fair coin tossing primitive with probabilistic semantics $A \to_p A'$ sample $\to_{\frac{1}{2}}$ true, sample $\to_{\frac{1}{2}}$ false
- A is asymptotically safe when the series of probabilities of A_{η} being unsafe is negligible.
- A^0 and A^1 are asymptotically indistinguishable, $A^0 \approx A^1$, when $|\Pr[A^0 \downarrow M] \Pr[A^1 \downarrow M]|$ is negligible for all closed values M.

CRYPTOGRAPHY USING F7

- $-P \cdot G \cdot A$ (oracle systems),
 - P functions describing cryptographic primitives
 - G game programming the oracles made available to attacker
 - A module describing attacker program that tries to win the game
- Auth. Encryption: C_{Enc} defines GEN, ENC, and DEC.
 - p.p.t. adversary A.
 - CTXT security defined as $C_{Enc} \cdot CTXT \cdot A$ asymptotically safe
 - CPA security defined as $C_{Enc} \cdot CPA_0 \cdot A \approx_{\epsilon} C_{ENC} \cdot CPA_1 \cdot A$, where

```
let k = GEN ()
ext{let enc } x_0 x_1 = \\ ext{let } x = x_b \text{ in} \\ ext{let } c = \text{ENC k x in}
```

```
let k = GEN()
let log = ref []
let enc p = let c=ENC k p in log := c::!log; c
let dec c =
  match DEC k c with
  | None -> None
  | Some(x) -> assert(List.mem c !log); x
```

MODULAR CODE-BASED CRYPTO VERIFICATION

attack

MODULAR CODE-BASED CRYPTO VERIFICATION

attack

cryptographic

(security guarantees)

cryptographic functionalities

(security guarantees)

active adversaries

Authenticated Encryption

Sample ideal interfaces and functionalities

plain F# interface

```
type plain = bytes
type key = bytes
type cipher = bytes
```

module Enc

This interface says nothing about security of Enc

```
val GEN: unit -> key
```

val ENC: k:key -> plain -> cipher

val DEC: k:key -> cipher -> (plain) option

keys are abstract

```
module Enc val ciphersize
```

Ciphertext has fixed size

ideal F7 interface

```
open Plain
                      {Length(b)=ciphersize}
type key
type cipher = b:bytes
                                 Msg is specified by
predicate Msg of key * plain
                                 protocols using Enc
val GEN: unit -> key
```

```
val ENC: k:key -> t:plain{Msg(k,t)} -> cipher
```

val DEC: k:key -> t:cipher

-> (plain{Msg(k,t)}) option

"All decrypted messages have been encrypted"

```
module RPC
definition !k,q. Msg(k,Utf8(q)) <=> Request(q)
let client q =
                        let server q =
 // precondition:
                          ... let m=DEC k (utf8 q)
 // Request(q)
                         if m!=None
 ... send ENC k (utf8 q) then // we have Request(q)
                               process q
```

sample protocol using **Auth Enc**

We express perfect, i.e., information theoretic, properties on interfaces:

$$I_{PLAIN} \vdash C_{Enc} \cdot F_{Enc} \mapsto I_{Enc}^{ae}$$

- Refinements model authenticity properties
- Abstraction in I_{PLAIN} models that other outputs of F_{ENC} , in particular ciphertexts, are independent of abstractly typed plain.

```
type plain

val service: plain \rightarrow plain

val repr: p:plain \rightarrow
b:bytes {Len(b)=plainsize}

val plain:
b:bytes{Len(b)=plainsize} \rightarrow p:plain
```

```
type key

val GEN: unit \rightarrow key

val ENC: k:key \rightarrow p:plain {Msg(k,p)}

\rightarrow c:cipher

val DEC: k:key \rightarrow c:cipher

\rightarrow (p:plain {Msg(k,p)}) option
```

Real Enc cannot meet this interface, but ideal functionality does

```
let GEN () =
let kv = Enc.GEN() in
let log = ref [] in
Key(kv,log)
let ENC (Key(kv,log)) (x:plain) =
let c = Enc.ENC kv zero in
log := (c,x) :: !log;
c
let DEC (Key(kv,log)) c = assoc kv c !log
```

- Check using typing that $I_{Plain} \vdash C_{Enc} \cdot F_{Enc}^{ae} \mapsto I_{Enc}^{ae}$ - Prove that $\forall p.p.t. P, A, s.t., \vdash P \mapsto I_{Plain}^{c}$ and $I_{Plain}^{c}, I_{Enc}^{ae} \vdash A$. $P \cdot C_{Enc} \cdot A \approx_{\epsilon} P \cdot C_{Enc} \cdot F_{Enc}^{ae} \cdot A$

Encrypting Session Keys

AUTHENTICATED Encrypted RPC Sample Protocol

We obtain no guarantee of request/response correlation:

Client sends request1, request2 awaits replies Service computes and sends response1, response2

Opponent swaps response1, response2

Client successfully checks MACs, and acts on the swapped responses

MULTI SESSION RPC PROTOCOL

```
1. a \rightarrow b : Enc0.ENC \ k_{ae} \ (concat \ s \ k)
2. b \rightarrow a : Enc.ENC \ k \ t
```

```
let keygen (a:pri) (b:pri) =
                                                                                      RPC
 let k0 = Enc0.GEN() in assume(KeyAB(k0,a,b)); k0 (* for encryption of requests *)
let client (a:pri) (b:pri) (k0:key{KeyAB(k0,a,b)}) s =
 let k= Enc.GEN() (* for response *)
                                              let server a b (k0:key {KeyAB(k0,a,b)}) =
 assume (Request(a,b,s,k));
                                               recv (fun msg ->
 let p = concat s k
                                                if length msg = Enc0.ciphersize then
 send (EncO.ENC kO p);
                                                 match EncO.DEC kO msg with
 recv (fun msg ->
                                                  I Some sk ->
  if length msg = Enc.ciphersize then
                                                    let (s,k) = split Enc.keysize sk in
   let res = Enc.DEC k msg
                                                    assert (Request(a,b,s,k));
   match res with
                                                    let t = service s in
    | Some t -> assert (Response(a,b,s,t))
                                                   assume (Response(a,b,s,t));
   | None -> ();
                                                   send (Enc.ENC k t)
   res
                                                  | None -> ())
```

ADVERSARY INTERFACE

A 'trusted' with message transfer and scheduling

```
send: bytes -> unit I_{NET} recv: (bytes -> unit) -> unit
```

A_check_send: unit -> bytes
A_check_recv: unit -> handle
A_continue_recv: handle -> bytes -> unit

- Uses only unrefined 1^{st} order interface I_{RPC}^{A} :

```
val keygen: principal -> principal -> unit I_{RPC}^{A} val client: principal -> principal -> bytes-> unit val server: principal -> principal -> unit
```

 $-C_{RPC} \triangleq RPC \cdot C_{RPC}^A$

```
let keys = ref []

let keygen a b = let k = RPC.keygen() in keys:=((a,b),k) :: !keys

let client a b s = let k = List.assoc !keys (a,b) in RPC.client a b k plain(s); ()

val server a b = let k = List.assoc !keys (a,b) in RPC.server a b k
```

SAMPLE SECURITY THEOREM

If C_{ENC} securely emulate F_{Enc}^{ae} and if $Net \cdot C_{RPC}$ is p.p.t. such that $\vdash Net \mapsto I_{NET}^A$, $\vdash Net \mapsto I_{NET}^A$,

then for any p.p.t.
$$A$$
 such that I_{NET}^A , $I_{RPC}^A \vdash A$: $bool$: (We abbreviate $A' \triangleq C_{Enc} \cdot P_0 \cdot C_{Enc0} \cdot Net \cdot C_{RPC} \cdot A$)

- 1. The expression $P \cdot A'$ is asymptotically safe
- 2. $P^0 \cdot A' \approx_{\epsilon} P^1 \cdot A'$ where $\vdash P^0 \mapsto I_{Plain}$ and $\vdash P^1 \mapsto I_{Plain}$

Note, P^0 and P^1 may implement different service functions.

is indistinguishable from

PROOF SKETCH

To prove: $P \cdot C_{Enc} \cdot P_0 \cdot C_{Enc0} \cdot Net \cdot C_{RPC} \cdot A \approx_{\epsilon}$ (1) $P \cdot C_{Enc} \cdot P_0 \cdot C_{Enc0} \cdot F_{Enc}^{ae} \cdot F_{Enc0}^{ae} \cdot Net \cdot C_{RPC} \cdot A$ (2)Game 0: $(1) \approx P_0 \cdot C_{Enc0} \cdot P \cdot C_{ENC} \cdot Net \cdot C_{RPC} \cdot A$ *Typecheck:* $I_{Plain0}^{C}, I_{Enc0}^{ae}, I_{Plain}^{C}, I_{Enc0}^{C,ae}, I_{NET} \vdash C_{RPC} \mapsto I_{RPC}^{A}$ Game 1: $\approx_{\epsilon} P_0 \cdot C_{Enc0} \cdot F_{Enc0}^{ae} \cdot P \cdot C_{Enc} \cdot Net \cdot C_{RPC} \cdot A$ Game 2: $\approx P \cdot C_{Enc} \cdot P_0 \cdot C_{Enc0} \cdot F_{Enc0}^{ae} \cdot Net \cdot C_{RPC} \cdot A$ Typecheck: $I_{Plain}^{C}, I_{Enc}^{ae}, I_{Plain0}, I_{Enc0}^{ae}, I_{NET}, \vdash C_{RPC} \mapsto I_{RPC}^{A}$ Game 3

 $\approx_{\epsilon} P \cdot C_{Enc} \cdot F_{Enc}^{ae} \cdot P_0 \cdot C_{Enc0} \cdot F_{Enc0}^{ae} \cdot Net \cdot C_{RPC} \cdot A \approx (2)$

AUTHENTICITY BY TYPING

Safety:

- Msg(k,m) is the logical payload of an AE of bytes m with key k
- KeyAB(k,a,b) means k is shared between a and b for this specific protocol
- **assume** $\forall a, b, k0, p. KeyAB(k0, a, b) \Rightarrow$ $Enc0. Msg(k0, p) \Leftrightarrow \exists k, s. (p = s | k \land Length(s) = plainsize \land Request(a, b, s, k))$
- **assume** \forall a, b, s, k. Request(a, b, s, k) \Rightarrow \forall t. Enc. Msg(k, t) \Leftrightarrow Response(a, b, s, t)

SECRECY BY TYPING

Parametricity:

- A "secret module" P_{α} operates on secrets
- A programs A uses P_{α} via an interface I_{α} that gives type α to secrets, but does not directly access their representation.
- Different implementations of I_{α} are equivalent for A.

Secret Interface: $I_{\alpha} \triangleq \alpha, x_1: T_{\alpha,1}, ..., x_n: T_{\alpha,n}$ where

$$T_{\alpha} = \alpha \mid T \to T_{\alpha}$$

Theorem (Secrecy by Typing).

Let A such that $I_{\alpha} \vdash A$: bool.

For all pure
$$\vdash P_{\alpha}^{0} \mapsto I_{\alpha}$$
 and $\vdash P_{\alpha}^{1} \mapsto I_{\alpha}$, we have $P_{\alpha}^{0} \cdot A \approx P_{\alpha}^{1} \cdot A$.

Strong Secrecy:

$$I_{Plain} \vdash C_{Enc} \cdot Net \cdot P_0 \cdot F_{Enc0}^{ae} \cdot C_{Enc} \cdot F_{Enc}^{ae} \cdot C_{RPC} \cdot A$$

CONCLUSION

Code based analysis through and through

- verification of programs
- formal (as proposed by Bellare et al.)

Efficient

- We pay only for crypto we need (CPA, AE)
- Types guarantee that cryptography is used appropriately

Modular

- We verify one module at a time.
- Do cryptographic reasoning at the right place (little overhead)

Powerful

- We support trace and indistinguishability properties
- We can encrypt key

http://research.microsoft.com/~fournet/comp-f7/

- We support different corruption models
- More ideal functionalities: e.g., public-key cryptography, CCA encryption

CONCLUSION

- Code based analysis through and through.
 - Clean and general purpose programming language:
 ML, F#,
 - General purpose automated program verification tool: F7 refinement types typechecker for F#.
 - We support both
 - x formal theorem proving (Coq): (type safety, parametricity)
 - × automated protocol verification: (wiring, ordering, spec)
 - x manual code-based reasoning: (for justifying abstractions)
 - Combine all three in single language framework

ENCRYPTION

- $\vdash P \mapsto I_{PLAIN}^{C}$ and $I_{PLAIN}^{C} <: I_{PLAIN}$
 - $I_{PLAIN}^C \vdash C_{ENC} \mapsto I_{ENC}^C$
 - $I_{PLAIN}, I_{ENC}^C \vdash F_{Enc} \mapsto I_{ENC}$
- Theorem (Ideal Functionality for CCA2). If C_{ENC} is CCA2 secure and A is a p.p.t. expression such that I_{PLAIN}^C , $I_{ENC} \vdash A$ then

$$P \cdot C_{ENC} \cdot A \approx_{\epsilon} P \cdot C_{ENC} \cdot F_{ENC} \cdot A$$

- Theorem (Asymptotic Secrecy). If C_{ENC} is CCA2 secure and A is a p.p.t. expression such that I_{PLAIN} , $I_{ENC} \vdash A$ then for any two pure P^b of I_{PLAIN}

$$P^0 \cdot C_{ENC} \cdot A \approx_{\epsilon} P^1 \cdot C_{ENC} \cdot A.$$

MAC

- $\vdash C_{MAC} \mapsto I_{MAC}^{C}$ $I_{MAC}^{C} \vdash F_{MAC} \mapsto I_{MAC}$
- Theorem (Ideal Functionality for MAC). If C_{MAC} is CMA secure and A is a p.p.t. expression such that $I_{MAC} \vdash A$ then

$$C_{MAC} \cdot A \approx_{\epsilon} C_{MAC} \cdot F_{MAC} \cdot A$$

- Theorem (Asymptotic Safety). If C_{MAC} is CMA secure and A is a p.p.t. expression such that $I_{MAC} \vdash A$: bool then $C_{MAC} \cdot A$ is asymptotically safe.

COMPUTATIONAL COMPLEXITY

- Asymptotic notions consider series $\left(A_{\eta}\right)_{\eta\geq 0}$ of expressions indexed by integer constant η .
 - We write A instead of $(A_{\eta})_{\eta \geq 0}$
- Closed expression series E is p.p.t. when $\exists p \in Poly_{\eta} . \forall \eta \geq 0 . E_{\eta}$ terminates in at most $p(\eta)$ steps
- Closed first-order functional value is p.p.t. when its runtime is bounded by a polynomial in the size of its parameters.
- Let B be module of such values.
 - Open expression A such that $I \vdash A$: T is p.p.t. when for every $\vdash B \mapsto I$, the closed expression $B \cdot A$ is p.p.t.
 - ◆ A module F such that $I \vdash F \mapsto I_F$ is p.p.t. when, for every $\vdash B \mapsto I$ and p.p.t. expression A such that $I_F \vdash A$, the closed expression $B \cdot F \cdot A$ is p.p.t.