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CRYPTO PROTOCOLS (STILL) GO WRONG 

 Design & implementation errors lead to vulnerabilities 

 Traditional crypto models miss most details 

 Production code and design specs differ 

We verify security on production code 



THIS TALK 

Goal: Automated verification of protocol code 
 under standard cryptographic assumptions  
 (rather than symbolic verification of protocol models) 
 

Method: Refinement types & parametricity 
               Proofs are by programming, typechecking, 
     and local game-based code rewriting 
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Outline 

• Background / a Mixed Bag 

• A bit of history 

• Type checking for (non-)programmers 

• Goldreich in F# 

• The big picture 

 

• Example Primitive: Authenticated Encryption 

 

• Example Protocol: Remote Procedure Call Protocol 
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FORMAL COMPUTATIONAL CRYPTOGRAPHY 

Two approaches for verifying protocols and programs 

 Symbolic models (Needham-Schroeder, Dolev-Yao, ... late 70‟s) 

 Structural view of protocols, using formal languages and methods 

 Many automated verification tools, scales to large systems 
including full-fledged implementations of protocol standards  

 Computational models (Yao, Goldwasser, Micali, Rivest, ... early 80‟s) 

 Concrete, algorithmic view, using probabilistic polynomial-time machines 

 New formal tools: CryptoVerif, Certicrypt, Easycrypt 
 

Can we get the best of both worlds?  

─ Much ongoing work on 
computational soundness for symbolic cryptography 
 (Abadi Rogaway, Backes Pfitzmann Waidner, Warinschi,… mid 00‟s) 

 It works… with many mismatches, restrictions, and technicalities  

 At best, one still needs to verify protocols symbolically 

─ Can we directly verify real-world protocols ? 
This paper: type-based verification is more effective and 
more compositional computationally than symbolically.  
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F7: REFINEMENT TYPECHECKING FOR F# 

─ We program in F# 

 

─ We specify in F7 

We typecheck programs 

against interfaces 

 

─ F7 does some type inference 

& calls Z3, an SMT solver,  

on each logical proof obligation 
 

 

─ In prior work: symbolic crypto  

libraries and verified large protocols 

(e.g. CardSpace at POPL‟10) 

RPC.fs7 

RPC.fs 

RPC.fsi 

Type 
(F7) 

Prove 
(Z3) 

Compile 
(F#) 

Erase  
types 

Enc.fs7 

Lib.fs7 
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ASSUME AND ASSERTS; SAFETY BY TYPING 

Refinement types 𝑥: 𝑇 𝐶  
  values 𝑀 of this type are of type 𝑇 and such that 𝐶*𝑀/𝑥+ holds. 

 

 

 

Global set of first-order logical formulas, the log 

─ assume  𝐶 adds 𝐶 to the log 

─ assert 𝐶 succeeds if 𝐶 logically follows from the logged formulas 

─ An expression 𝐴 is safe if and only if 
in all evaluations of 𝐴, all assertions succeed. 

─ We use a logic judgement I ⊢ 𝐶 (𝐶 follows from refinements in 𝐼) 

 

Theorem 1 (Safety by Typing)   

If ∅ ⊢ 𝐴: 𝑇 then 𝐴 is safe. 
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   // Sample type and value declarations in F7 
 

   type nat  = n:int{ 0 < 𝑛 } 
 

   val read:  n:nat -> b:bytes{ 𝐿𝑒𝑛𝑔𝑡ℎ 𝑏 <   𝑛 } 



COMPUTATIONAL SECURITY WITH F7 

─ Use existing F7 typechecker and code base  

─ Remove non-determinism 

─ Add probabilistic sampling and native references 

─ (Prove type safety & parametricity of new extended subset of F7 in Coq) 

 

─ We still type protocols and applications against 

refined typed interfaces that idealize crypto libraries 

─ We relate two implementations of crypto libraries 

 Ideal, well-typed functionality (replaces symbolic libraries) 

 Concrete implementation (with weaker typing in F7) 

─ Computational security follows from p.p.t. indistinguishability  

(a bit similar to universal composability) 
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COMPLEXITY, PROBABILITY, AND ASYMPTOTICS 

─ Series 𝐴𝜂 𝜂≥0
 of expressions indexed by 𝜂. (Short 𝐴) 

─ Define p.p.t. for expressions 𝐴 such that 𝐼𝑃𝑟 ⊢ 𝐴: 𝑇 and  
modules 𝑃𝑟 such that I ⊢ 𝑃𝑟 ↦ 𝐼𝑃𝑟.  

 Limit ourselves to 1st order interfaces. 

 Top most attacker interface 𝐼𝑃𝑟 unrefined,  
⇒ power of 𝐴 corresponds to Oracle Turing machine. 

 

─ Fair coin tossing primitive with probabilistic semantics 𝐴 →𝑝 𝐴′ 

𝐬𝐚𝐦𝐩𝐥𝐞 →1

2

true, 𝐬𝐚𝐦𝐩𝐥𝐞 →1

2

false 

─ 𝐴 is asymptotically safe when the series of probabilities of 𝐴𝜂 being 

unsafe is negligible. 

─ 𝐴0 and 𝐴1 are asymptotically indistinguishable, A0 ≈ 𝐴1, when 

| Pr 𝐴0 ⇓ 𝑀 − Pr ,𝐴1 ⇓ 𝑀-| is negligible for all closed values 𝑀. 
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CRYPTOGRAPHY USING F7 
─ 𝑃 ⋅ 𝐺 ⋅ 𝐴 (oracle systems), 

 𝑃 functions describing cryptographic primitives 

 𝐺 game programming the oracles made available to attacker 

 𝐴 module describing attacker program that tries to win the game 

─ Auth. Encryption: 𝐶𝐸𝑛𝑐 defines GEN, ENC, and DEC. 
 p.p.t. adversary 𝐴. 

 CTXT security defined as 𝐶𝐸𝑛𝑐 ⋅ 𝐶𝑇𝑋𝑇 ⋅ 𝐴 asymptotically safe 

 CPA security defined as 𝐶𝐸𝑛𝑐 ⋅ 𝐶𝑃𝐴0 ⋅ 𝐴 ≈𝜖 𝐶𝐸𝑁𝐶 ⋅ 𝐶𝑃𝐴1 ⋅ 𝐴, 
where 
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 let k = GEN ()   

  let enc 𝑥0 𝑥1 = 

    let x = 𝑥𝑏 in 

    let c = ENC k x in 

𝐶𝑃𝐴𝑏 

let k = GEN()  

let log = ref []  

let enc p = let c=ENC k p in log := c::!log; c 

let dec c =  

  match DEC k c with  

  | None -> None 

  | Some(x) -> assert(List.mem c !log); x 

CTXT 
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Authenticated 
Encryption 
Sample ideal interfaces and functionalities 



module Enc 
 

type plain = bytes 
type key = bytes   
type cipher = bytes 
 

 
 

val GEN: unit -> key  
val ENC: k:key -> plain  -> cipher 
val DEC: k:key -> cipher -> (plain) option   

plain F# 
interface 

This interface says nothing 
about security of Enc 

AUTHENTICATED ENCRYPTION 



module Enc 
 

open Plain  
type key   
type cipher = b:bytes 
 

predicate Msg of key * plain 
 

val GEN: unit -> key  
val ENC: k:key -> t:plain{Msg(k,t)} -> cipher 
val DEC: k:key -> t:cipher  
  -> (plain{Msg(k,t)}) option   

ideal F7 
interface 

“All decrypted 

messages 

have been 

encrypted” 

keys are abstract 

Msg is specified  by 

protocols using Enc 

module RPC 
 

definition !k,q. Msg(k,Utf8(q)) <=> Request(q) 
 

let client q =    let server q =  
  // precondition:      … let m=DEC k (utf8 q) 
  // Request(q)         if m!=None 
 … send ENC k (utf8 q)      then // we have Request(q) 
      process q   
   

 sample 

protocol 

using 

Auth Enc 

 

Ciphertext has fixed 

size 

{Length(b)=ciphersize} 

val ciphersize 

AUTHENTICATED ENCRYPTION 



We express perfect, i.e., information theoretic, 

properties on interfaces:  

𝐼𝑃𝐿𝐴𝐼𝑁 ⊢ 𝐶𝐸𝑛𝑐 ⋅ 𝐹𝐸𝑛𝑐 ↦  𝐼𝐸𝑛𝑐
𝑎𝑒  

 Refinements model authenticity properties 

 Abstraction in 𝐼𝑃𝐿𝐴𝐼𝑁 models that other outputs of 𝐹𝐸𝑁𝐶, 
in particular ciphertexts, are independent of abstractly 
typed plain. 
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type plain 

val service: plain → plain 

val repr: p:plain → 

  b:bytes {Len(b)=plainsize}  

val plain:    

  b:bytes{Len(b)=plainsize} → p:plain 

𝐼𝑃𝑙𝑎𝑖𝑛 
type key 

val GEN: unit → key 

val ENC: k:key → p:plain {Msg(k,p)}  
                         → c:cipher 

val DEC: k:key → c:cipher  

          → (p:plain {Msg(k,p)}) option 

𝐼𝐸𝑛𝑐
𝑎𝑒  

C 

AUTHENTICATED ENCRYPTION 



─ Real Enc cannot meet this interface, but ideal functionality does 

 
 
 
 
 
 
 
 

 
─ Check using typing that IPlain ⊢ CEnc ⋅ FEnc

𝑎𝑒 ↦ 𝐼𝐸𝑛𝑐
𝑎𝑒  

─ Prove that ∀p.p.t. P, 𝐴, s.t., ⊢ 𝑃 ↦ 𝐼𝑃𝑙𝑎𝑖𝑛
𝑐  and 𝐼𝑃𝑙𝑎𝑖𝑛

𝑐 , 𝐼𝐸𝑛𝑐
𝑎𝑒 ⊢ 𝐴.  

𝑃 ⋅ CEnc ⋅ 𝐴 ≈𝜖 𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝐹𝐸𝑛𝑐
𝑎𝑒 ⋅ 𝐴 
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let GEN () =  

  let kv = Enc.GEN() in 

  let log = ref [] in 

  Key(kv,log) 

let ENC (Key(kv,log)) (x:plain) =  

  let c = Enc.ENC kv zero in 

  log := (c,x) :: !log;  

  c 

let DEC (Key(kv,log)) c = assoc kv c !log 

AUTHENTICATED ENCRYPTION 



Encrypting Session Keys 

AUTHENTICATED Encrypted RPC 
Sample Protocol 
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We obtain no guarantee of request/response correlation: 
 
Client sends request1, request2 awaits replies 
Service computes and sends response1, response2 
Opponent swaps response1, response2 
Client successfully checks MACs, and acts on the swapped responses 

Client  
Service 

request MAC(key,1|request) 

response MAC(key,2|response) 

 ENC  𝑘𝑎𝑏, request 𝑘  

ENC( 𝑘,  response ) 



MULTI SESSION RPC PROTOCOL 

19 

let keygen (a:pri) (b:pri) =  

  let k0 = Enc0.GEN() in assume(KeyAB(k0,a,b)); k0  (* for encryption of requests *) 

 

let client (a:pri) (b:pri) (k0:key{KeyAB(k0,a,b)})  s = 

  let k= Enc.GEN()   (* for response *) 

  assume (Request(a,b,s,k));  

  let p = concat s k  

  send (Enc0.ENC k0 p);  

  recv ( fun msg ->  

    if length msg = Enc.ciphersize then  

      let res = Enc.DEC k msg 

      match res with  

      | Some t -> assert (Response(a,b,s,t)) 

      | None -> (); 

      res 

let server a b (k0:key {KeyAB(k0,a,b)})  = 

  recv (fun msg -> 

    if length msg = Enc0.ciphersize then    

      match Enc0.DEC k0 msg with  

      | Some sk ->  

          let (s,k) = split Enc.keysize sk in 

          assert (Request(a,b,s,k));  

          let t = service s in 

          assume (Response(a,b,s,t)); 

          send (Enc.ENC k t) 

      | None -> ()) 

1. 𝑎 → 𝑏 ∶ 𝐸𝑛𝑐0. 𝐸𝑁𝐶 𝑘𝑎𝑒 𝑐𝑜𝑛𝑐𝑎𝑡 𝑠 𝑘  

2. 𝑏 → 𝑎 ∶ 𝐸𝑛𝑐. 𝐸𝑁𝐶 𝑘 𝑡   

RPC 



ADVERSARY INTERFACE 

─ 𝐴 „trusted‟ with message transfer and scheduling 

 

 

 

─ Uses only unrefined 1st order interface 𝐼𝑅𝑃𝐶
𝐴 : 

 

 

 

─ 𝐶𝑅𝑃𝐶 ≜ RPC ⋅ 𝐶𝑅𝑃𝐶
𝐴    
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val keygen: principal -> principal -> unit 

val client: principal -> principal -> bytes-> unit 

val server: principal -> principal -> unit 

𝐼𝑅𝑃𝐶
𝐴  

A_check_send: unit -> bytes    

A_check_recv: unit -> handle 

A_continue_recv: handle -> bytes  -> unit 

𝐼𝑁𝐸𝑇
𝐴  send: bytes -> unit  

recv: (bytes -> unit) -> unit 

𝐼𝑁𝐸𝑇 

 

let keys = ref [] 

let keygen a b = let k = RPC.keygen() in keys:=((a,b),k) :: !keys  

let client a b s = let k = List.assoc !keys (a,b) in RPC.client a b k plain(s); () 

val server a b = let k = List.assoc !keys (a,b) in RPC.server a b k 

𝐶𝑅𝑃𝐶
𝐴  



SAMPLE SECURITY THEOREM 

If 𝐶𝐸𝑁𝐶  securely emulate 𝐹𝐸𝑛𝑐
𝑎𝑒  and if 𝑁𝑒𝑡 ⋅  𝐶𝑅𝑃𝐶  is p.p.t. 

such that ⊢  𝑁𝑒𝑡 ↦ 𝐼𝑁𝐸𝑇, ⊢  𝑁𝑒𝑡 ↦ 𝐼𝑁𝐸𝑇
𝐴 , 

 

then for any p.p.t. 𝐴 such that 𝐼𝑁𝐸𝑇
𝐴 , 𝐼𝑅𝑃𝐶

𝐴 ⊢ 𝐴: 𝑏𝑜𝑜𝑙:  
(We abbreviate 𝐴′ ≜ 𝐶𝐸𝑛𝑐 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝑁𝑒𝑡 ⋅  𝐶𝑅𝑃𝐶 ⋅ 𝐴) 

 

1. The expression 𝑃 ⋅ 𝐴′ is asymptotically safe 

2.  𝑃0 ⋅ 𝐴′ ≈𝜖 𝑃1 ⋅ 𝐴′ where  
          ⊢ 𝑃0 ↦ 𝐼𝑃𝑙𝑎𝑖𝑛 and ⊢ 𝑃1 ↦ 𝐼𝑃𝑙𝑎𝑖𝑛 

 

Note, 𝑃0 and 𝑃1 may implement different service functions. 
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RPC: INTERFACES AND IMPLEMENTATIONS 

 

 

RPC LINK 

plain F#  

interfaces 

 

protocol concrete 

implementations 
22 

Plain0.fsi 

Enc0.fsi 

Plain.fsi 

Enc.fsi 

Enc0 Plain Plain0 Enc 
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Plain0.fsi 

Enc0.fsi 

Plain.fsi 

Enc.fsi 

… and their refinements 

and parametric versions 

𝑭𝑬𝒏𝒄𝟎 𝑭𝑬𝒏𝒄 

𝑬𝒏𝒄𝑪.fs7 

Plain𝟎.fs7 Plain.fs7 

Enc𝟎𝑪. 𝐟𝐬𝟕 Enc0.fs7 Enc.fs7 

RPC.fs7 

Enc0 Plain Plain0 Enc 

ideal 

functionalities 



RPC: INTERFACES AND IMPLEMENTATIONS 

is safe too, with 

overwhelming 

probability 

 

 

is always 

safe 

(by typing) 

is indistinguishable from 
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RPC 𝑭𝑬𝒏𝒄𝟎 𝑭𝑬𝒏𝒄 
PPT 

Adversary 

RPC 
PPT 

Adversary 

Enc0 Plain Plain0 Enc 

Enc0 Plain Plain0 Enc 



PROOF SKETCH 

To prove: 

𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 ≈𝜖       (1) 

𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝐹𝐸𝑛𝑐
𝑎𝑒 ⋅ 𝐹𝐸𝑛𝑐0

𝑎𝑒 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴      (2) 

 

Game 0: 

(1) ≈ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝑃 ⋅ 𝐶𝐸𝑁𝐶 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 

 

 

Game 1: 

≈𝜖 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝐹𝐸𝑛𝑐0
𝑎𝑒 ⋅ 𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 

Game 2: 

≈ 𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝐹𝐸𝑛𝑐0
𝑎𝑒 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 

 

 

Game 3 

≈𝜖 𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝐹𝐸𝑛𝑐
𝑎𝑒 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝐹𝐸𝑛𝑐0

𝑎𝑒 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 ≈ (2) 

Typecheck: 
𝐼𝑃𝑙𝑎𝑖𝑛

𝐶 , 𝐼𝐸𝑛𝑐
𝑎𝑒 , 𝐼𝑃𝑙𝑎𝑖𝑛0, 𝐼𝐸𝑛𝑐0

𝑎𝑒 , 𝐼𝑁𝐸𝑇 , ⊢ 𝐶𝑅𝑃𝐶 ↦ 𝐼𝑅𝑃𝐶
𝐴  

Typecheck: 
𝐼𝑃𝑙𝑎𝑖𝑛0

𝐶 , 𝐼𝐸𝑛𝑐0
𝑎𝑒 , 𝐼𝑃𝑙𝑎𝑖𝑛

𝐶 , 𝐼𝐸𝑛𝑐0
𝐶,𝑎𝑒 , 𝐼𝑁𝐸𝑇 ⊢ 𝐶𝑅𝑃𝐶 ↦ 𝐼𝑅𝑃𝐶

𝐴  
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AUTHENTICITY BY TYPING 

Safety: 

─ Msg(k,m) is the logical payload of an AE of bytes m with 
key k 

─ KeyAB(k,a,b) means k is shared between a and b for this 
specific protocol  

 

─ assume ∀ 𝑎, 𝑏, 𝑘0, 𝑝. 𝐾𝑒𝑦𝐴𝐵 𝑘0, 𝑎, 𝑏 ⇒ 
 Enc0. 𝑀𝑠𝑔 𝑘0, 𝑝  ⇔  ∃𝑘, 𝑠. 𝑝 =  𝑠  𝑘 ∧   

𝐿𝑒𝑛𝑔𝑡ℎ 𝑠 = 𝑝𝑙𝑎𝑖𝑛𝑠𝑖𝑧𝑒 ∧ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑎, 𝑏, 𝑠, 𝑘 )  
─ assume ∀ 𝑎, 𝑏, 𝑠, 𝑘. 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑎, 𝑏, 𝑠, 𝑘 ⇒ 

∀ 𝑡.  𝐸𝑛𝑐. 𝑀𝑠𝑔 𝑘, 𝑡 ⇔ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑎, 𝑏, 𝑠, 𝑡  
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SECRECY BY TYPING 

Parametricity:  

─ A "secret module" 𝑃𝛼  operates on secrets 

─ A programs 𝐴 uses 𝑃𝛼  via an interface 𝐼𝛼 that gives type 𝛼 to  
secrets, but does not directly access their representation.  

─ Different implementations of 𝐼𝛼 are equivalent for 𝐴. 

 

Secret Interface: 𝐼𝛼 ≜ 𝛼, 𝑥1: 𝑇𝛼,1, … , 𝑥𝑛: 𝑇𝛼,𝑛 where 

      𝑇𝛼 = 𝛼 | 𝑇 → 𝑇𝛼  

Theorem (Secrecy by Typing).  
Let 𝐴 such that 𝐼𝛼 ⊢ 𝐴: 𝑏𝑜𝑜𝑙. 

For all pure ⊢ 𝑃𝛼
0 ↦ 𝐼𝛼  and ⊢ 𝑃𝛼

1 ↦ 𝐼𝛼 , we have 
 𝑃𝛼

0 ⋅ 𝐴 ≈ 𝑃𝛼
1 ⋅ 𝐴. 

Strong Secrecy: 

𝐼𝑃𝑙𝑎𝑖𝑛 ⊢  𝐶𝐸𝑛𝑐 ⋅  𝑁𝑒𝑡 ⋅ 𝑃0 ⋅ 𝐹𝐸𝑛𝑐0
𝑎𝑒 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝐹𝐸𝑛𝑐

𝑎𝑒 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 
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CONCLUSION 

─ Code based analysis through and through 
 verification of programs 

 formal (as proposed by Bellare et al.) 

─ Efficient 
 We pay only for crypto we need (CPA, AE) 

 Types guarantee that cryptography is used appropriately 

─ Modular 
 We verify one module at a time. 

 Do cryptographic reasoning at the right place (little overhead) 

─ Powerful 
 We support trace and indistinguishability properties 

 We can encrypt key 

 

http://research.microsoft.com/~fournet/comp-f7/ 
 We support different corruption models  

 More ideal functionalities: e.g., public-key cryptography, CCA encryption 
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CONCLUSION 

─ Code based analysis through and through. 

 Clean and general purpose programming language: 

ML, F#,  

 General purpose automated program verification 

tool: F7 refinement types typechecker for F#. 

 We support both  

 formal theorem proving (Coq):      (type safety, parametricity)  

 automated protocol verification:         (wiring, ordering, spec) 

 manual code-based reasoning:    (for justifying abstractions) 

 Combine all three in single language framework 
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ENCRYPTION 

─ ⊢ 𝑃 ↦ 𝐼𝑃𝐿𝐴𝐼𝑁
𝐶 and  𝐼𝑃𝐿𝐴𝐼𝑁

𝐶 <: 𝐼𝑃𝐿𝐴𝐼𝑁 

 𝐼𝑃𝐿𝐴𝐼𝑁
𝐶 ⊢ 𝐶𝐸𝑁𝐶 ↦ 𝐼𝐸𝑁𝐶

𝐶  

 𝐼𝑃𝐿𝐴𝐼𝑁, 𝐼𝐸𝑁𝐶
𝐶 ⊢ 𝐹Enc ↦ 𝐼𝐸𝑁𝐶  

 

─ Theorem (Ideal Functionality for CCA2). If 𝐶𝐸𝑁𝐶 is CCA2 
secure and 𝐴 is a p.p.t. expression such that 
𝐼𝑃𝐿𝐴𝐼𝑁

𝐶 , 𝐼𝐸𝑁𝐶 ⊢ 𝐴 then 

𝑃 ⋅ 𝐶𝐸𝑁𝐶 ⋅ 𝐴 ≈𝜖 𝑃 ⋅ 𝐶𝐸𝑁𝐶 ⋅ 𝐹𝐸𝑁𝐶 ⋅ 𝐴 

 

─ Theorem (Asymptotic Secrecy). If 𝐶𝐸𝑁𝐶 is CCA2 secure 
and  is a p.p.t. expression such that 𝐼𝑃𝐿𝐴𝐼𝑁, 𝐼𝐸𝑁𝐶 ⊢  
then for any two pure 𝑃𝑏 of 𝐼𝑃𝐿𝐴𝐼𝑁 

𝑃0 ⋅ 𝐶𝐸𝑁𝐶 ⋅ ≈𝜖 𝑃1 ⋅ 𝐶𝐸𝑁𝐶 ⋅ . 
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MAC 

─ ⊢ 𝐶𝑀𝐴𝐶 ↦ 𝐼𝑀𝐴𝐶
𝐶  

𝐼𝑀𝐴𝐶
𝐶 ⊢ 𝐹𝑀𝐴𝐶 ↦ 𝐼𝑀𝐴𝐶   

 

─ Theorem (Ideal Functionality for MAC). If 𝐶𝑀𝐴𝐶  is CMA 
secure and 𝐴 is a p.p.t. expression such that 𝐼𝑀𝐴𝐶 ⊢ 𝐴 
then 

𝐶𝑀𝐴𝐶 ⋅ 𝐴 ≈𝜖 𝐶𝑀𝐴𝐶 ⋅ 𝐹𝑀𝐴𝐶 ⋅ 𝐴 

 

─ Theorem (Asymptotic Safety). If 𝐶𝑀𝐴𝐶  is CMA secure and 
 is a p.p.t. expression such that 𝐼𝑀𝐴𝐶 ⊢ : 𝑏𝑜𝑜𝑙 then 

𝐶𝑀𝐴𝐶 ⋅  is asymptotically safe. 
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COMPUTATIONAL COMPLEXITY 

─ Asymptotic notions consider series 𝐴𝜂 𝜂≥0
 of expressions indexed by 

integer constant 𝜂. 

 We write 𝐴 instead of 𝐴𝜂 𝜂≥0
 

─ Closed expression series 𝐸 is p.p.t. when ∃𝑝 ∈ 𝑃𝑜𝑙𝑦𝜂 . ∀𝜂 ≥ 0. 𝐸𝜂 

terminates in at most  𝑝 𝜂  steps 

─ Closed first-order functional value is p.p.t. when its runtime is bounded 

by a polynomial in the size of its parameters.  

─ Let 𝐵 be module of such values. 

 Open expression 𝐴 such that 𝐼 ⊢ 𝐴: 𝑇 is p.p.t. when for every ⊢ 𝐵 ↦ 𝐼, the 

closed expression 𝐵 ⋅ 𝐴 is p.p.t. 

 A module F such that I ⊢ 𝐹 ↦ 𝐼𝐹 is p.p.t. when, for every ⊢ 𝐵 ↦ 𝐼 and p.p.t. 

expression A such that 𝐼𝐹 ⊢ 𝐴, the closed expression 𝐵 ⋅ 𝐹 ⋅ 𝐴 is p.p.t. 
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