MODULAR
CODE-BASED
CRYPTOGRAPHIC
VERIFICATION

MARKULF KOHLWEISS (MARKULF@MICROSOFT.COM

Joint work with Cédric Fournet and Pierre-Yves Strub

CRYPTO PROTOCOLS (STILL) GO WRONG

x Design & implementation errors lead to vulnerabilities
x Traditional crypto models miss most details
x Production code and design specs differ

ﬂ: Microsoft Security Bulletin M505-042 Vulnerabilities in Kerberos Could Allow Denial of Service - Windows Internet Explorer = | E |

)| D bttps/ /s microsoft.com/technet/security/Bulletin/MS05-042.mspx = [42| % || kerberos attack cervesato

Fe)

fi - B

v = v |7k Page v {F Tools v

All Microso

iere to Install Silverlight United States Change

"& US-CERT Vulnerability Note VU=612636 - Windows Internet Explorer =lE

_ Microsoft TechNet | B e
Bl @ ivitp://ovw kb it org/vuls/id/612636 ~ [42| x || google app authentication attack £ ~|
= = —— S — - > TechNet Home TechCenters | Downloads | TechNet Program | Subscriptions | Security Bulletins | Archive
e i I. US-CERT Vulnerability Note VU#612636] }) v B v @ v 5k Page v G Tools v Search for
Tachhet Home > TechNet Sacurity > Bullstin
y Wi =\ vy B a

n ASP.NET Could Allow Information Disclos - Win

US-CERT

UNITED STATES COMPUTER EMERGENCY READINESS TEAM

T:.? Favorites {;5, = Simon Peyton-Jones - Mi.. IACR Paper i OSDI '10 Technical Sessions €| FLoC Preliminary Proceed... 1681 USENIX Security '10 Techn...

[l Microsoft Security Advisory (2416728): Vulnerabili...

- v [s v Pagew Safetyv Tools~ @~ &2

Lherzbii Vulnerability Note VU#612636

Notes
Database Y

Google SAML

% Find: ‘ assoc | Previous Next |@ Qg

m | Tec|| Search Microsoft.com oiINg t.'“ | Web |

Search

Vulnerability

Notes Overview TechNet Home TechCenters | Downloads | TechNet Program | Subscriptions | Security Bulletins
. . ML Si : - S h fi . . N
Valnerabiity The SAML Single Sign-) el I carchtor TechNet Home > TechNet Security > Security Advisories
PoiesHelp could have allowed an a " Newsflash | State | Announce | News | ChangelLog |
ormation ‘

Microsoft Security Advisory (2416728)

L Description TechNet Security

OpenSSL vulnerabilities

The Security Assertion Security Bulletin Search Vulnerability in ASP.NET Could Allow Information Disclosure
View Notes N - This page lists all security vulnerabilities fixed in released versios .
. authentication data betw released on 5th April 2001 Library Published: September 17, 2010 | Updated: September 28, 2010
& security packets are call) L
Name : t earn
e providers who allow the 2010
authentication response Documents Downloads Version: 2.0
DRNmber ity of the recipient
toentt ecpien- CVE-2010-1633: 1st June 2010 Support

Microsoft has completed the investigation into a public report of this vulnerability.
We have issued M510-070 to address this issue. For more information about this
issue, including download links for an available security update, please review
MS10-070. The vulnerability addressed is the ASP.NET Padding Oracle Vulnerability
- CVE-2010-3332.

CVE Name at other service provider]|

An invalid Return value check in pkey_rsa_verifyrecover
recovery fails for RSA keys an uninitialised buffer with a
of an error code. This could lead to an information leak. |

Date Public More technical informatil
2.0 Web Browser Single
Date Published (Foogle Apps whitepap:

1ab it'armando/ GoooleS. B

THIS TALK

Goal: Automated verification of protocol code

under standard cryptographic assumptions
(rather than symbolic verification of protocol models)

Method: Refinement types & parametricity

Proofs are by programming, typechecking,
and local game-based code rewriting

ARTS,
SEARTALE,

@ US-CERT

loads = TechNet Program | Subscriptions
0O,

Security Bulletin
7 &/ UNITED STATES COMPUTER EMERGENCY READINESS TEAM
AND S¥

OpenSSL vulnerabilities

hNet Security > Security Advisories

curity Advisory (2416728)
ASP.NET Could Allow Information Disclosure
r 17, 2010 | Updated: September 28, 2010

This page lists all security vulnerabilities fixed in released versions of OpenSSL since 0.9.6a was
released on 5th April 2001.

2010

eatlit Vulnerability Note VU#612636

Database

Google SAML Single Sign on vulnerability
Search

Vulnerability .
Notes Overview

CVE-2010-1623: 1st June 2010

3

An invalid Return valie check in pkey_rsa verifyrecover was discovered. When verification
recovery fails for RSA keys an uninitialised buffer with an undefined length is returned instead

Outline

® Background / a Mixed Bag
® A bit of history
® Type checking for (non-)programmers

® Goldreich in F#
® The big picture

® Example Primitive: Authenticated Encryption

® Example Protocol: Remote Procedure Call Protocol

FORMAL COMPUTATIONAL CRYPTOGRAPHY

Two approaches for verifying protocols and programs

Symbolic models (Needham-Schroeder, Dolev-Yao, ... late 70’s)
+ Structural view of protocols, using formal languages and methods

+ Many automated verification tools, scales to large systems
including full-fledged implementations of protocol standards

Computational models (Yao, Goldwasser, Micali, Rivest, ... early 80’s)
+ Concrete, algorithmic view, using probabilistic polynomial-time machines
+ New formal tools: CryptoVerif, Certicrypt, Easycrypt

Can we get the best of both worlds?

— Much ongoing work on
computational soundness for symbolic cryptography
(Abadi Rogaway, Backes Pfitzmann Waidner, Warinschi,... mid 00’s)
+ It works... with many mismatches, restrictions, and technicalities
+ At best, one still needs to verify protocols symbolically

— Can we directly verify real-world protocols ?
This paper: type-based verification is more effective and
more compositional computationally than symbolically.

F7: REFINEMENT TYPECHECKING FOR F#

— We program in F#

— We specify in F7
We typecheck programs
against interfaces

— F7 does some type inference
& calls Z3, an SMT solver,
on each logical proof obligation

RPC.fsi

— In prior work: symbolic crypto
libraries and verified large protocols
(e.g. CardSpace at POPL10)

ASSUME AND ASSERTS; SAFETY BY TYPING
Refinement types {x: T |C}

// Sample type and value declarations iﬁ F77
type nat = n:int{ 0<n }
val read: n:nat -> b:bytes{ Length(b) < n}

Global set of first-order logical formulas, the log

assume C adds C to the log
assert C succeeds if C logically follows from the logged formulas

An expression A is safe if and only if
in all evaluations of A, all assertions succeed.

We use a logic judgement I - C (C follows from refinements in I)

Theorem 1 (Safety by Typing)
If ® - A: T then A is safe.

COMPUTATIONAL SECURITY WITH F7

— Use existing F7 typechecker and code base

— Remove non-determinism

— Add probabilistic sampling and native references

— (Prove type safety & parametricity of new extended subset of F7 in Coq)

— We still type protocols and applications against
refined typed interfaces that idealize crypto libraries
— We relate two implementations of crypto libraries
+ ldeal, well-typed functionality (replaces symbolic libraries)
+ Concrete implementation (with weaker typing in F7)

— Computational security follows from p.p.t. indistinguishability
(a bit similar to universal composability)

COMPLEXITY, PROBABILITY, AND ASYMPTOTICS

— Series (A")n>0 of expressions indexed by n. (Short A)

— Define p.p.t. for expressions A such that Ip,. - A: T and
modules Pr such that Il + Pr & Ip,..

+ Limit ourselves to 15t order interfaces.

+ Top most attacker interface Ip,. unrefined,
= power of A corresponds to Oracle Turing machine.

— Fair coin tossing primitive with probabilistic semantics A —,,)l

sample —: true, sample —1 false
2 2

— Ais asymptotically safe when the series of probabilities of A, being
unsafe is negligible.

— A% and A are asymptotically indistinguishable, A° ~ A, when
| Pr[A° U M] — Pr[A U M]| is negligible for all closed values M.

CRYPTOGRAPHY USING F7

— P -G - A (oracle systems),

+ P functions describing cryptographic primitives
+ (G game programming the oracles made available to attacker

+ A module describing attacker program that tries to win the game
— Auth. Encryption: Cg, . defines GEN, ENC, and DEC.

+ p.p.t. adversary A.

¢ CTXT security defined as Cg,,. - CTXT - A asymptotically safe
¢ CPA security defined as Cgy, - CPAy - A =, Cgnc - CPA{ - A,

where
let k = GEN () CPA,
letenc xy x1 =
let x = Xp in
letc=ENCKkXxin

let k = GEN() CTXT

let log = ref []
let enc p = let c=ENC k p in log := c::llog; ¢
let dec c =

match DEC k ¢ with

| None -> None

| Some(x) -> assert(List.mem c !log); x

10

MODULAR CODE-BASED CRYPTO VERIFICATION

G S public-key cryptographic
(SHA3-HMAC) encryption encryption i
(AES-CBC RSA-OAEP) primitives
IND-CPA, CCA2

typed interfaces
(security guarantees)

Hibsi

encrypt
then-MAC

hybrid
encryption

cryptographic
functionalities

Auth. encryption

IND-CPA, CCA2

/ typed interfaces
\ (security guarantees)
Secure RPC TLS 1.2 security
protocols

secure channels

some
attack

typed interfaces
(attacker model)

another active adversaries

attack

11

MODULAR CODE-BASED CRYPTO VERIFICATION

MAC symmetric public-key
(SHA3-HMAC) encryption encryption
(AES-CBC RSA-OAEP)

IND-CPA, CCA2 *

Hibsi

cryptographic
primitives

typed interfaces

encrypt
then-MAC

Auth. encryption

hybrid
encryption

IND-CPA, CCA2

\

Secure RPC

secure channels

TLS 1.2

some
attack

another
attack

(security guarantees)

cryptographic
functionalities

typed interfaces
(security guarantees)

security
protocols

typed interfaces
(attacker model)

active adversaries

ths

Authenticated
Encryption

Sample ideal interfaces and functionalities

AUTHENTICATED ENCRYPTION

plain F#
module Enc interface

type plain = bytes _ :
type key = bytes This 1nter'face.says nothing
type cipher = bytes about security of Enc

val GEN: unit -> key
val ENC: k:key -> plain -> cipher
val DEC: k:key -> cipher -> (plain) option

AUTHENTICATED ENCRYPTION

el ideal Fr
module Enc val ciphersize size interface

open Plain

type key {Length(b)=ciphersize}
type cipher = b:bytes Msg is specified by
predicate Msg of key * plain
val GEN: unit -> key

val ENC: k:key -> t:plain{Msg(k,t)} -> cipher

“All decrypted

val DEC: k:key -> t:cipher messages
-> (plain{Msg(k,t)}) option have been
encrypted”
module RPC Sample
definition !k,q. Msg(k,Utf8(q)) <=> Request(q)
. protocol
let client q = let server q = i
// precondition: . let m=DEC k (utf8 q) using
// Request it ml=None
e Auth Enc

. send ENC k (utf8 q) then // we have Request(q)
process ¢

AUTHENTICATED ENCRYPTION

We express perfect, i.e., information theoretic,

properties on interfaces:

ae

Ipraiv = Cenc * Fene 2 Ignc
+ Refinements model authenticity properties

¢ Abstraction in Ip; 4;5 Models that other outputs of Fgpc,
In particular ciphertexts, are independent of abstractly

typed plain.

IS,4;
type plain Plain

val service: plain — plain
val repr: p:plain —
b:bytes {Len(b)=plainsize}
val plain:
b:bytes{Len(b)=plainsize} — p:plain

type key I%¢

Enc
val GEN: unit — key
val ENC: k:key — p:plain {Msg(k,p)}
— c:cipher
val DEC: k:key — c:cipher
— (p:plain {Msg(k,p)}) option

16

AUTHENTICATED ENCRYPTION

— Real Enc cannot meet this interface, but ideal functionality does

let GEN () =
let kv = Enc.GEN() in
let log = ref [] in
Key(kv,log)
let ENC (Key(kv,log)) (x:plain) =
let ¢ = Enc.ENC kv zero in
log := (c,x) :: llog;
c
let DEC (Key(kv,log)) ¢ = assoc kv ¢ !log

— Check using typing that Ipiyin b Cene * Fgne 7 Ig5e

— Prove that Vp.p.t. BA,st, - P > Ip ., and I5,,.., [F A.
P-Cegnc: A~ P-Cope + Feye + 4

E ENC(k3, request|k)

ﬁ ENC(k, response)

=

Service

Client

Encrypting Session Keys

AUTHENTICATED Encrypted RPC
Sample Protocol

We obtain no guarantee of request/response correlation:

Client sends requestl, request2 awaits replies
Service computes and sends responsel, response2

Client successfully checks MACs, and acts on the swapped responses

MULTI SESSION RPC PROTOCOL

1. a—b:Enc0.ENC k,, (concat s k)
2. b->a:Enc.ENCkt

let keygen (a:pri) (b:pri) =

RPC

let KO = EncO.GEN() in assume(KeyAB(kO,a,b)); kO (* for encryption of requests *)

let client (a:pri) (b:pri) (kO:key{KeyAB(kO,a,b)}) s =
let k= Enc.GEN() (* for response *)
assume (Request(a,b,s,k));
let p = concat s k /> recv (fun msg ->
send (EncO.ENC kO p); if length msg = EncO.ciphersize then
match EncO.DEC kO msg with
| Some sk ->
let (s,k) = split Enc.keysize sk in
assert (Request(a,b,s,k));
let t = service s in
assume (Response(a,b,s,t));
send (Enc.ENC K t)
| None -> ()

recv (fun msg -> <
if length msg = Enc.ciphersize then
let res = Enc.DEC k msg
match res with
| Some t -> assert (Response(a,b,s,t))
| None -> ();
res

let server a b (kO:key {KeyAB(kO,a,b)}) =

8

ADVERSARY INTERFACE

— A ‘trusted’ with message transfer and scheduling

send: bytes -> unit
recv: (bytes -> unit) -> unit

INET

A_check_send: unit -> bytes

A _check_recv: unit -> handle

A
INET

A_continue_recv: handle -> bytes -> unit

— Uses only unrefined 1st order interface I4,
RPC

HH CRPC é RPC g Céqpc

val keygen: principal -> principal -> unit

A
IRPC

val client: principal -> principal -> bytes-> unit

val server: principal -> principal -> unit

let keys = ref []

let keygen a b = let k = RPC.keygen() in keys:=((a,b),k) :: 'keys
let client a b s = let k = List.assoc 'keys (a,b) in RPC.client a b k plain(s); ()
val server a b = let k = List.assoc !keys (a,b) in RPC.server a b k

A
CRPC

SAMPLE SECURITY THEOREM

If Czyc Securely emulate Fgis. and if Net Crpc 1S pP-p-t.
{1 ol s it s s e U U, b o L Ry

then for any p.p.t. A such that I{zr, Iis- + A: bool:
(We abbreV|ate A, é CETLC i PO | CETLCO 3 Net I CRPC I A)

1. The expression P - A’ is asymptotically safe

2. PY.4"=_P!.A where
i PO it IPlaln and Pl it IPlam

Note, P° and P! may implement different service functions.

21

RPC: IN R FA)y AND 1IVIF VIENTATION.
!olaln i EncO.fsi Enc.fsi
interfaces

PlainO.fsi Plain.fsi

>

concrete protocol
Implementations

RPC;

plain F# ' '
interfaces EncO.fs7 Enc.fs7

... and their refinements
1 |] and parametric versions

PlainO.fs7 Plain.fs7

cannot
typecheck in F7!

B

concrete protocol
Implementations

23

RPC: INTERFACES AND IMPLEMENTATIONS

plain F#
interfaces

-1 EncO.fsi Enc.fsi

... and their refinements
1 |] and parametric versions

Plain0.fs7 Plain.fs7

— EncOC.fs7 H EncC¢.fs7 || EncO.fs7 Enc.fs7

Y

Plain Enc PlainO ° EncO RP

concrete ideal protocol

Implementations functionalities RPC.fs7

A

24

RP

e, o

is indistinguishable from

-

s

PPT

(by typing

is safe too, with
overwhelming
probability

25

PROOF SKETCH

To prove:
P - Cgnc " Po - Cgnco - Net - Crpc - A = (1)
P t CEnC } PO I CEnCO FETLC FEncO Net T CRPC 5 A (2)
Game O:
(1) = Po - Cgnco * P * Cgnc - Net - Crpe * A
Typecheck:
Game 1: IPlaan'IETlCO'IPlalnl Igncé%, INET - CRPC - IﬁPC
G PO-CEnCO FEnCO P 'CEnC-Net .CRPC.A
Game 2:
zp 'CEnC-PO-CEnCO FEnCO Net .CRPC.A
Typecheck:
Game 3 Ilglain' IEnc: IPlainO» IEaﬁcoilNET; F CRPC = Ij;lpc

~e P i CETLC FETLC PO 1 CEncO FETLCO Net g CRPC g A =~ (2)

26

AUTHENTICITY BY TYPING

Safety:

Msg(k,m) is the logical payload of an AE of bytes m with
key Kk

KeyAB(k,a,b) means K is shared between a and b for this

specific protocol

assume V a, b, k0,p. KeyAB(kO,a,b) =
EhcOuMiaitiaiimgsiconifsienlmiiig ilun

Length(s) = plainsize A Request(a, b, s, k))
assumeV a, b, s, k. Request(a,b, s, k) =
Vt. Enc. Msg(k,t) & Response(a,b,s,t)

27

SECRECY BY TYPING

Parametricity:
— A "secret module" P, operates on secrets

— A programs A uses P, via an interface I, that gives type a to
secrets, but does not directly access their representation.

— Different implementations of I, are equivalent for A.

secret lnterfaced il =iayxys Taly il piwnere

gt R

Theorem (Secrecy by Typing).
Let A such that I, + A: bool.

Forall pure - P2 » I, and + P! » I, , we have
PY.A = P} - A.
Strong Secrecy:
Ipjgin F CEnc AN IR FEncO Cenc FEnc Crpc - A

28

CONCLUSION

— Code based analysis through and through

+ verification of programs

+ formal (as proposed by Bellare et al.)
— Efficient

+ We pay only for crypto we need (CPA, AE)

+ Types guarantee that cryptography is used appropriately
— Modular

+ We verify one module at a time.

+ Do cryptographic reasoning at the right place (little overhead)
— Powerful

+ We support trace and indistinguishability properties

+ We can encrypt key

http://research.microsoft.com/~fournet/comp-f7/
+ We support different corruption models
+ More ideal functionalities: e.g., public-key cryptography, CCA encryption

30

http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/

CONGLUSION -/

— Code based analysis through and through.

+ Clean and general purpose programming language:
ML, F#,

+ General purpose automated program verification
tool: F7 refinement types typechecker for F#.

+ We support both
x formal theorem proving (Coq): (type safety, parametricity)
x automated protocol verification: (wiring, ordering, spec)
x manual code-based reasoning: (for justifying abstractions)

+ Combine all three in single language framework

Al

ENCRYPTION

C C :

C C
* Ipraiv F Cene 7 IgEnC

C
* Ippaini IEnc F Fene 7 Ignc

— Theorem (Ideal Functionality for CCA2). If Cy¢ is CCA2
secure and A is a p.p.t. expression such that
IpLainvs Ienc F A then

P:Cenc A=e P Cenc Fene - A

— Theorem (Asymptotic Secrecy). If Cgy¢ is CCA2 secure
and A is a p.p.t. expressmn such that Ip; a;n, IEnc FH A
then for any two pure P? of Ip; 41w

PO CENC A~ P1 CENC.A'

1952

MAC

C
i I_CCMAC = Iyac
Intac © Fyac » Imac

— Theorem (ldeal Functionality for MAC). If Cy; 4 is CMA
secure and A is a p.p.t. expression such that Iy;oc F A

then
Cyac " A =¢ Cpyrac - Fyac - A

— Theorem (Asymptotic Safety). If C; 4 is CMA secure and
Ais a p.p.t. expression such that Iy 4 + A: bool then

Cyvac - A is asymptotically safe.

33

COMPUTATIONAL COMPLEXITY

— Asymptotic notions consider series (A")n>0 of expressions indexed by

integer constant 7.
+ We write 4 instead of (4,)
n=0

— Closed expression series E is p.p.t. when 3p € Poly,.Vn = 0. E,
terminates in at most p(n) steps

— Closed first-order functional value is p.p.t. when its runtime is bounded
by a polynomial in the size of its parameters.

— Let B be module of such values.

¢+ Open expression A suchthatl - A: T is p.p.t. when for every - B = I, the
closed expression B - A is p.p.t.

¢ A module Fsuchthatl - F = I is p.p.t. when, for every - B — [and p.p.t.
expression A such that Ir + A, the closed expression B - F - A is p.p.t.

34

