
MODULAR

CODE-BASED

CRYPTOGRAPHIC

VERIFICATION

 MARKULF KOHLWEISS (MARKULF@MICROSOFT.COM

Joint work with Cédric Fournet and Pierre-Yves Strub

1

F7

CRYPTO PROTOCOLS (STILL) GO WRONG

 Design & implementation errors lead to vulnerabilities

 Traditional crypto models miss most details

 Production code and design specs differ

We verify security on production code

THIS TALK

Goal: Automated verification of protocol code
 under standard cryptographic assumptions
 (rather than symbolic verification of protocol models)

Method: Refinement types & parametricity
 Proofs are by programming, typechecking,
 and local game-based code rewriting

3
3

Outline

• Background / a Mixed Bag

• A bit of history

• Type checking for (non-)programmers

• Goldreich in F#

• The big picture

• Example Primitive: Authenticated Encryption

• Example Protocol: Remote Procedure Call Protocol

4

FORMAL COMPUTATIONAL CRYPTOGRAPHY

Two approaches for verifying protocols and programs

 Symbolic models (Needham-Schroeder, Dolev-Yao, ... late 70‟s)

 Structural view of protocols, using formal languages and methods

 Many automated verification tools, scales to large systems
including full-fledged implementations of protocol standards

 Computational models (Yao, Goldwasser, Micali, Rivest, ... early 80‟s)

 Concrete, algorithmic view, using probabilistic polynomial-time machines

 New formal tools: CryptoVerif, Certicrypt, Easycrypt

Can we get the best of both worlds?

─ Much ongoing work on
computational soundness for symbolic cryptography
 (Abadi Rogaway, Backes Pfitzmann Waidner, Warinschi,… mid 00‟s)

 It works… with many mismatches, restrictions, and technicalities

 At best, one still needs to verify protocols symbolically

─ Can we directly verify real-world protocols ?
This paper: type-based verification is more effective and
more compositional computationally than symbolically.

5

F7: REFINEMENT TYPECHECKING FOR F#

─ We program in F#

─ We specify in F7

We typecheck programs

against interfaces

─ F7 does some type inference

& calls Z3, an SMT solver,

on each logical proof obligation

─ In prior work: symbolic crypto

libraries and verified large protocols

(e.g. CardSpace at POPL‟10)

RPC.fs7

RPC.fs

RPC.fsi

Type
(F7)

Prove
(Z3)

Compile
(F#)

Erase
types

Enc.fs7

Lib.fs7

6

ASSUME AND ASSERTS; SAFETY BY TYPING

Refinement types 𝑥: 𝑇 𝐶
 values 𝑀 of this type are of type 𝑇 and such that 𝐶*𝑀/𝑥+ holds.

Global set of first-order logical formulas, the log

─ assume 𝐶 adds 𝐶 to the log

─ assert 𝐶 succeeds if 𝐶 logically follows from the logged formulas

─ An expression 𝐴 is safe if and only if
in all evaluations of 𝐴, all assertions succeed.

─ We use a logic judgement I ⊢ 𝐶 (𝐶 follows from refinements in 𝐼)

Theorem 1 (Safety by Typing)

If ∅ ⊢ 𝐴: 𝑇 then 𝐴 is safe.

7

 // Sample type and value declarations in F7

 type nat = n:int{ 0 < 𝑛 }

 val read: n:nat -> b:bytes{ 𝐿𝑒𝑛𝑔𝑡ℎ 𝑏 < 𝑛 }

COMPUTATIONAL SECURITY WITH F7

─ Use existing F7 typechecker and code base

─ Remove non-determinism

─ Add probabilistic sampling and native references

─ (Prove type safety & parametricity of new extended subset of F7 in Coq)

─ We still type protocols and applications against

refined typed interfaces that idealize crypto libraries

─ We relate two implementations of crypto libraries

 Ideal, well-typed functionality (replaces symbolic libraries)

 Concrete implementation (with weaker typing in F7)

─ Computational security follows from p.p.t. indistinguishability

(a bit similar to universal composability)

8

COMPLEXITY, PROBABILITY, AND ASYMPTOTICS

─ Series 𝐴𝜂 𝜂≥0
 of expressions indexed by 𝜂. (Short 𝐴)

─ Define p.p.t. for expressions 𝐴 such that 𝐼𝑃𝑟 ⊢ 𝐴: 𝑇 and
modules 𝑃𝑟 such that I ⊢ 𝑃𝑟 ↦ 𝐼𝑃𝑟.

 Limit ourselves to 1st order interfaces.

 Top most attacker interface 𝐼𝑃𝑟 unrefined,
⇒ power of 𝐴 corresponds to Oracle Turing machine.

─ Fair coin tossing primitive with probabilistic semantics 𝐴 →𝑝 𝐴′

𝐬𝐚𝐦𝐩𝐥𝐞 →1

2

true, 𝐬𝐚𝐦𝐩𝐥𝐞 →1

2

false

─ 𝐴 is asymptotically safe when the series of probabilities of 𝐴𝜂 being

unsafe is negligible.

─ 𝐴0 and 𝐴1 are asymptotically indistinguishable, A0 ≈ 𝐴1, when

| Pr 𝐴0 ⇓ 𝑀 − Pr ,𝐴1 ⇓ 𝑀-| is negligible for all closed values 𝑀.

9

CRYPTOGRAPHY USING F7
─ 𝑃 ⋅ 𝐺 ⋅ 𝐴 (oracle systems),

 𝑃 functions describing cryptographic primitives

 𝐺 game programming the oracles made available to attacker

 𝐴 module describing attacker program that tries to win the game

─ Auth. Encryption: 𝐶𝐸𝑛𝑐 defines GEN, ENC, and DEC.
 p.p.t. adversary 𝐴.

 CTXT security defined as 𝐶𝐸𝑛𝑐 ⋅ 𝐶𝑇𝑋𝑇 ⋅ 𝐴 asymptotically safe

 CPA security defined as 𝐶𝐸𝑛𝑐 ⋅ 𝐶𝑃𝐴0 ⋅ 𝐴 ≈𝜖 𝐶𝐸𝑁𝐶 ⋅ 𝐶𝑃𝐴1 ⋅ 𝐴,
where

10

 let k = GEN ()

 let enc 𝑥0 𝑥1 =

 let x = 𝑥𝑏 in

 let c = ENC k x in

𝐶𝑃𝐴𝑏

let k = GEN()

let log = ref []

let enc p = let c=ENC k p in log := c::!log; c

let dec c =

 match DEC k c with

 | None -> None

 | Some(x) -> assert(List.mem c !log); x

CTXT

MODULAR CODE-BASED CRYPTO VERIFICATION
symmetric

encryption

(AES-CBC)

.

cryptographic

primitives

public-key

encryption

(RSA-OAEP)

Secure RPC

another

attack

TLS 1.2

active adversaries

security

protocols

cryptographic

functionalities

encrypt

then-MAC

hybrid

encryption

typed interfaces

(security guarantees)

typed interfaces

(attacker model)

some

attack
some

attack

some

attack

MAC

(SHA3-HMAC)

typed interfaces

(security guarantees)

PRF, INT-CMA IND-CPA, CCA2

Auth. encryption IND-CPA, CCA2

secure channels

11

MODULAR CODE-BASED CRYPTO VERIFICATION
symmetric

encryption

(AES-CBC)

.

cryptographic

primitives

public-key

encryption

(RSA-OAEP)

Secure RPC

another

attack

TLS 1.2

active adversaries

security

protocols

cryptographic

functionalities

encrypt

then-MAC

hybrid

encryption

typed interfaces

(security guarantees)

typed interfaces

(attacker model)

some

attack
some

attack

some

attack

MAC

(SHA3-HMAC)

typed interfaces

(security guarantees)

PRF, INT-CMA IND-CPA, CCA2

Auth. encryption IND-CPA, CCA2

secure channels

12

Authenticated
Encryption
Sample ideal interfaces and functionalities

module Enc

type plain = bytes
type key = bytes
type cipher = bytes

val GEN: unit -> key
val ENC: k:key -> plain -> cipher
val DEC: k:key -> cipher -> (plain) option

plain F#
interface

This interface says nothing
about security of Enc

AUTHENTICATED ENCRYPTION

module Enc

open Plain
type key
type cipher = b:bytes

predicate Msg of key * plain

val GEN: unit -> key
val ENC: k:key -> t:plain{Msg(k,t)} -> cipher
val DEC: k:key -> t:cipher
 -> (plain{Msg(k,t)}) option

ideal F7
interface

“All decrypted

messages

have been

encrypted”

keys are abstract

Msg is specified by

protocols using Enc

module RPC

definition !k,q. Msg(k,Utf8(q)) <=> Request(q)

let client q = let server q =
 // precondition: … let m=DEC k (utf8 q)
 // Request(q) if m!=None
 … send ENC k (utf8 q) then // we have Request(q)
 process q

 sample

protocol

using

Auth Enc

Ciphertext has fixed

size

{Length(b)=ciphersize}

val ciphersize

AUTHENTICATED ENCRYPTION

We express perfect, i.e., information theoretic,

properties on interfaces:

𝐼𝑃𝐿𝐴𝐼𝑁 ⊢ 𝐶𝐸𝑛𝑐 ⋅ 𝐹𝐸𝑛𝑐 ↦ 𝐼𝐸𝑛𝑐
𝑎𝑒

 Refinements model authenticity properties

 Abstraction in 𝐼𝑃𝐿𝐴𝐼𝑁 models that other outputs of 𝐹𝐸𝑁𝐶,
in particular ciphertexts, are independent of abstractly
typed plain.

16

type plain

val service: plain → plain

val repr: p:plain →

 b:bytes {Len(b)=plainsize}

val plain:

 b:bytes{Len(b)=plainsize} → p:plain

𝐼𝑃𝑙𝑎𝑖𝑛
type key

val GEN: unit → key

val ENC: k:key → p:plain {Msg(k,p)}
 → c:cipher

val DEC: k:key → c:cipher

 → (p:plain {Msg(k,p)}) option

𝐼𝐸𝑛𝑐
𝑎𝑒

C

AUTHENTICATED ENCRYPTION

─ Real Enc cannot meet this interface, but ideal functionality does

─ Check using typing that IPlain ⊢ CEnc ⋅ FEnc

𝑎𝑒 ↦ 𝐼𝐸𝑛𝑐
𝑎𝑒

─ Prove that ∀p.p.t. P, 𝐴, s.t., ⊢ 𝑃 ↦ 𝐼𝑃𝑙𝑎𝑖𝑛
𝑐 and 𝐼𝑃𝑙𝑎𝑖𝑛

𝑐 , 𝐼𝐸𝑛𝑐
𝑎𝑒 ⊢ 𝐴.

𝑃 ⋅ CEnc ⋅ 𝐴 ≈𝜖 𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝐹𝐸𝑛𝑐
𝑎𝑒 ⋅ 𝐴

17

let GEN () =

 let kv = Enc.GEN() in

 let log = ref [] in

 Key(kv,log)

let ENC (Key(kv,log)) (x:plain) =

 let c = Enc.ENC kv zero in

 log := (c,x) :: !log;

 c

let DEC (Key(kv,log)) c = assoc kv c !log

AUTHENTICATED ENCRYPTION

Encrypting Session Keys

AUTHENTICATED Encrypted RPC
Sample Protocol

18

We obtain no guarantee of request/response correlation:

Client sends request1, request2 awaits replies
Service computes and sends response1, response2
Opponent swaps response1, response2
Client successfully checks MACs, and acts on the swapped responses

Client
Service

request MAC(key,1|request)

response MAC(key,2|response)

 ENC 𝑘𝑎𝑏, request 𝑘

ENC(𝑘, response)

MULTI SESSION RPC PROTOCOL

19

let keygen (a:pri) (b:pri) =

 let k0 = Enc0.GEN() in assume(KeyAB(k0,a,b)); k0 (* for encryption of requests *)

let client (a:pri) (b:pri) (k0:key{KeyAB(k0,a,b)}) s =

 let k= Enc.GEN() (* for response *)

 assume (Request(a,b,s,k));

 let p = concat s k

 send (Enc0.ENC k0 p);

 recv (fun msg ->

 if length msg = Enc.ciphersize then

 let res = Enc.DEC k msg

 match res with

 | Some t -> assert (Response(a,b,s,t))

 | None -> ();

 res

let server a b (k0:key {KeyAB(k0,a,b)}) =

 recv (fun msg ->

 if length msg = Enc0.ciphersize then

 match Enc0.DEC k0 msg with

 | Some sk ->

 let (s,k) = split Enc.keysize sk in

 assert (Request(a,b,s,k));

 let t = service s in

 assume (Response(a,b,s,t));

 send (Enc.ENC k t)

 | None -> ())

1. 𝑎 → 𝑏 ∶ 𝐸𝑛𝑐0. 𝐸𝑁𝐶 𝑘𝑎𝑒 𝑐𝑜𝑛𝑐𝑎𝑡 𝑠 𝑘

2. 𝑏 → 𝑎 ∶ 𝐸𝑛𝑐. 𝐸𝑁𝐶 𝑘 𝑡

RPC

ADVERSARY INTERFACE

─ 𝐴 „trusted‟ with message transfer and scheduling

─ Uses only unrefined 1st order interface 𝐼𝑅𝑃𝐶
𝐴 :

─ 𝐶𝑅𝑃𝐶 ≜ RPC ⋅ 𝐶𝑅𝑃𝐶
𝐴

20

val keygen: principal -> principal -> unit

val client: principal -> principal -> bytes-> unit

val server: principal -> principal -> unit

𝐼𝑅𝑃𝐶
𝐴

A_check_send: unit -> bytes

A_check_recv: unit -> handle

A_continue_recv: handle -> bytes -> unit

𝐼𝑁𝐸𝑇
𝐴 send: bytes -> unit

recv: (bytes -> unit) -> unit

𝐼𝑁𝐸𝑇

let keys = ref []

let keygen a b = let k = RPC.keygen() in keys:=((a,b),k) :: !keys

let client a b s = let k = List.assoc !keys (a,b) in RPC.client a b k plain(s); ()

val server a b = let k = List.assoc !keys (a,b) in RPC.server a b k

𝐶𝑅𝑃𝐶
𝐴

SAMPLE SECURITY THEOREM

If 𝐶𝐸𝑁𝐶 securely emulate 𝐹𝐸𝑛𝑐
𝑎𝑒 and if 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 is p.p.t.

such that ⊢ 𝑁𝑒𝑡 ↦ 𝐼𝑁𝐸𝑇, ⊢ 𝑁𝑒𝑡 ↦ 𝐼𝑁𝐸𝑇
𝐴 ,

then for any p.p.t. 𝐴 such that 𝐼𝑁𝐸𝑇
𝐴 , 𝐼𝑅𝑃𝐶

𝐴 ⊢ 𝐴: 𝑏𝑜𝑜𝑙:
(We abbreviate 𝐴′ ≜ 𝐶𝐸𝑛𝑐 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴)

1. The expression 𝑃 ⋅ 𝐴′ is asymptotically safe

2. 𝑃0 ⋅ 𝐴′ ≈𝜖 𝑃1 ⋅ 𝐴′ where
 ⊢ 𝑃0 ↦ 𝐼𝑃𝑙𝑎𝑖𝑛 and ⊢ 𝑃1 ↦ 𝐼𝑃𝑙𝑎𝑖𝑛

Note, 𝑃0 and 𝑃1 may implement different service functions.

 21

RPC: INTERFACES AND IMPLEMENTATIONS

RPC LINK

plain F#

interfaces

protocol concrete

implementations
22

Plain0.fsi

Enc0.fsi

Plain.fsi

Enc.fsi

Enc0 Plain Plain0 Enc

RPC: INTERFACES AND IMPLEMENTATIONS

RPC LINK

plain F#

interfaces

protocol concrete

implementations
23

Plain0.fsi

Enc0.fsi

Plain.fsi

Enc.fsi

Plain0.fs7

Enc0.fs7

Plain.fs7

Enc.fs7
… and their refinements

and parametric versions

cannot

typecheck in F7!

Enc0 Plain Plain0 Enc

RPC: INTERFACES AND IMPLEMENTATIONS

RPC LINK

plain F#

interfaces

protocol
concrete

implementations
24

Plain0.fsi

Enc0.fsi

Plain.fsi

Enc.fsi

… and their refinements

and parametric versions

𝑭𝑬𝒏𝒄𝟎 𝑭𝑬𝒏𝒄

𝑬𝒏𝒄𝑪.fs7

Plain𝟎.fs7 Plain.fs7

Enc𝟎𝑪. 𝐟𝐬𝟕 Enc0.fs7 Enc.fs7

RPC.fs7

Enc0 Plain Plain0 Enc

ideal

functionalities

RPC: INTERFACES AND IMPLEMENTATIONS

is safe too, with

overwhelming

probability

is always

safe

(by typing)

is indistinguishable from

25

RPC 𝑭𝑬𝒏𝒄𝟎 𝑭𝑬𝒏𝒄
PPT

Adversary

RPC
PPT

Adversary

Enc0 Plain Plain0 Enc

Enc0 Plain Plain0 Enc

PROOF SKETCH

To prove:

𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 ≈𝜖 (1)

𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝐹𝐸𝑛𝑐
𝑎𝑒 ⋅ 𝐹𝐸𝑛𝑐0

𝑎𝑒 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 (2)

Game 0:

(1) ≈ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝑃 ⋅ 𝐶𝐸𝑁𝐶 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴

Game 1:

≈𝜖 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝐹𝐸𝑛𝑐0
𝑎𝑒 ⋅ 𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴

Game 2:

≈ 𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝐹𝐸𝑛𝑐0
𝑎𝑒 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴

Game 3

≈𝜖 𝑃 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝐹𝐸𝑛𝑐
𝑎𝑒 ⋅ 𝑃0 ⋅ 𝐶𝐸𝑛𝑐0 ⋅ 𝐹𝐸𝑛𝑐0

𝑎𝑒 ⋅ 𝑁𝑒𝑡 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴 ≈ (2)

Typecheck:
𝐼𝑃𝑙𝑎𝑖𝑛

𝐶 , 𝐼𝐸𝑛𝑐
𝑎𝑒 , 𝐼𝑃𝑙𝑎𝑖𝑛0, 𝐼𝐸𝑛𝑐0

𝑎𝑒 , 𝐼𝑁𝐸𝑇 , ⊢ 𝐶𝑅𝑃𝐶 ↦ 𝐼𝑅𝑃𝐶
𝐴

Typecheck:
𝐼𝑃𝑙𝑎𝑖𝑛0

𝐶 , 𝐼𝐸𝑛𝑐0
𝑎𝑒 , 𝐼𝑃𝑙𝑎𝑖𝑛

𝐶 , 𝐼𝐸𝑛𝑐0
𝐶,𝑎𝑒 , 𝐼𝑁𝐸𝑇 ⊢ 𝐶𝑅𝑃𝐶 ↦ 𝐼𝑅𝑃𝐶

𝐴

26

AUTHENTICITY BY TYPING

Safety:

─ Msg(k,m) is the logical payload of an AE of bytes m with
key k

─ KeyAB(k,a,b) means k is shared between a and b for this
specific protocol

─ assume ∀ 𝑎, 𝑏, 𝑘0, 𝑝. 𝐾𝑒𝑦𝐴𝐵 𝑘0, 𝑎, 𝑏 ⇒
 Enc0. 𝑀𝑠𝑔 𝑘0, 𝑝 ⇔ ∃𝑘, 𝑠. 𝑝 = 𝑠 𝑘 ∧

𝐿𝑒𝑛𝑔𝑡ℎ 𝑠 = 𝑝𝑙𝑎𝑖𝑛𝑠𝑖𝑧𝑒 ∧ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑎, 𝑏, 𝑠, 𝑘)
─ assume ∀ 𝑎, 𝑏, 𝑠, 𝑘. 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑎, 𝑏, 𝑠, 𝑘 ⇒

∀ 𝑡. 𝐸𝑛𝑐. 𝑀𝑠𝑔 𝑘, 𝑡 ⇔ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑎, 𝑏, 𝑠, 𝑡

 27

SECRECY BY TYPING

Parametricity:

─ A "secret module" 𝑃𝛼 operates on secrets

─ A programs 𝐴 uses 𝑃𝛼 via an interface 𝐼𝛼 that gives type 𝛼 to
secrets, but does not directly access their representation.

─ Different implementations of 𝐼𝛼 are equivalent for 𝐴.

Secret Interface: 𝐼𝛼 ≜ 𝛼, 𝑥1: 𝑇𝛼,1, … , 𝑥𝑛: 𝑇𝛼,𝑛 where

 𝑇𝛼 = 𝛼 | 𝑇 → 𝑇𝛼

Theorem (Secrecy by Typing).
Let 𝐴 such that 𝐼𝛼 ⊢ 𝐴: 𝑏𝑜𝑜𝑙.

For all pure ⊢ 𝑃𝛼
0 ↦ 𝐼𝛼 and ⊢ 𝑃𝛼

1 ↦ 𝐼𝛼 , we have
 𝑃𝛼

0 ⋅ 𝐴 ≈ 𝑃𝛼
1 ⋅ 𝐴.

Strong Secrecy:

𝐼𝑃𝑙𝑎𝑖𝑛 ⊢ 𝐶𝐸𝑛𝑐 ⋅ 𝑁𝑒𝑡 ⋅ 𝑃0 ⋅ 𝐹𝐸𝑛𝑐0
𝑎𝑒 ⋅ 𝐶𝐸𝑛𝑐 ⋅ 𝐹𝐸𝑛𝑐

𝑎𝑒 ⋅ 𝐶𝑅𝑃𝐶 ⋅ 𝐴

28

CONCLUSION

─ Code based analysis through and through
 verification of programs

 formal (as proposed by Bellare et al.)

─ Efficient
 We pay only for crypto we need (CPA, AE)

 Types guarantee that cryptography is used appropriately

─ Modular
 We verify one module at a time.

 Do cryptographic reasoning at the right place (little overhead)

─ Powerful
 We support trace and indistinguishability properties

 We can encrypt key

http://research.microsoft.com/~fournet/comp-f7/
 We support different corruption models

 More ideal functionalities: e.g., public-key cryptography, CCA encryption

30

F7

http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/
http://research.microsoft.com/~fournet/comp-f7/

CONCLUSION

─ Code based analysis through and through.

 Clean and general purpose programming language:

ML, F#,

 General purpose automated program verification

tool: F7 refinement types typechecker for F#.

 We support both

 formal theorem proving (Coq): (type safety, parametricity)

 automated protocol verification: (wiring, ordering, spec)

 manual code-based reasoning: (for justifying abstractions)

 Combine all three in single language framework

31

F7

ENCRYPTION

─ ⊢ 𝑃 ↦ 𝐼𝑃𝐿𝐴𝐼𝑁
𝐶 and 𝐼𝑃𝐿𝐴𝐼𝑁

𝐶 <: 𝐼𝑃𝐿𝐴𝐼𝑁

 𝐼𝑃𝐿𝐴𝐼𝑁
𝐶 ⊢ 𝐶𝐸𝑁𝐶 ↦ 𝐼𝐸𝑁𝐶

𝐶

 𝐼𝑃𝐿𝐴𝐼𝑁, 𝐼𝐸𝑁𝐶
𝐶 ⊢ 𝐹Enc ↦ 𝐼𝐸𝑁𝐶

─ Theorem (Ideal Functionality for CCA2). If 𝐶𝐸𝑁𝐶 is CCA2
secure and 𝐴 is a p.p.t. expression such that
𝐼𝑃𝐿𝐴𝐼𝑁

𝐶 , 𝐼𝐸𝑁𝐶 ⊢ 𝐴 then

𝑃 ⋅ 𝐶𝐸𝑁𝐶 ⋅ 𝐴 ≈𝜖 𝑃 ⋅ 𝐶𝐸𝑁𝐶 ⋅ 𝐹𝐸𝑁𝐶 ⋅ 𝐴

─ Theorem (Asymptotic Secrecy). If 𝐶𝐸𝑁𝐶 is CCA2 secure
and is a p.p.t. expression such that 𝐼𝑃𝐿𝐴𝐼𝑁, 𝐼𝐸𝑁𝐶 ⊢
then for any two pure 𝑃𝑏 of 𝐼𝑃𝐿𝐴𝐼𝑁

𝑃0 ⋅ 𝐶𝐸𝑁𝐶 ⋅ ≈𝜖 𝑃1 ⋅ 𝐶𝐸𝑁𝐶 ⋅ .
 32

MAC

─ ⊢ 𝐶𝑀𝐴𝐶 ↦ 𝐼𝑀𝐴𝐶
𝐶

𝐼𝑀𝐴𝐶
𝐶 ⊢ 𝐹𝑀𝐴𝐶 ↦ 𝐼𝑀𝐴𝐶

─ Theorem (Ideal Functionality for MAC). If 𝐶𝑀𝐴𝐶 is CMA
secure and 𝐴 is a p.p.t. expression such that 𝐼𝑀𝐴𝐶 ⊢ 𝐴
then

𝐶𝑀𝐴𝐶 ⋅ 𝐴 ≈𝜖 𝐶𝑀𝐴𝐶 ⋅ 𝐹𝑀𝐴𝐶 ⋅ 𝐴

─ Theorem (Asymptotic Safety). If 𝐶𝑀𝐴𝐶 is CMA secure and
 is a p.p.t. expression such that 𝐼𝑀𝐴𝐶 ⊢ : 𝑏𝑜𝑜𝑙 then

𝐶𝑀𝐴𝐶 ⋅ is asymptotically safe.

33

COMPUTATIONAL COMPLEXITY

─ Asymptotic notions consider series 𝐴𝜂 𝜂≥0
 of expressions indexed by

integer constant 𝜂.

 We write 𝐴 instead of 𝐴𝜂 𝜂≥0

─ Closed expression series 𝐸 is p.p.t. when ∃𝑝 ∈ 𝑃𝑜𝑙𝑦𝜂 . ∀𝜂 ≥ 0. 𝐸𝜂

terminates in at most 𝑝 𝜂 steps

─ Closed first-order functional value is p.p.t. when its runtime is bounded

by a polynomial in the size of its parameters.

─ Let 𝐵 be module of such values.

 Open expression 𝐴 such that 𝐼 ⊢ 𝐴: 𝑇 is p.p.t. when for every ⊢ 𝐵 ↦ 𝐼, the

closed expression 𝐵 ⋅ 𝐴 is p.p.t.

 A module F such that I ⊢ 𝐹 ↦ 𝐼𝐹 is p.p.t. when, for every ⊢ 𝐵 ↦ 𝐼 and p.p.t.

expression A such that 𝐼𝐹 ⊢ 𝐴, the closed expression 𝐵 ⋅ 𝐹 ⋅ 𝐴 is p.p.t.

34

