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CRYPTO PROTOCOLS (STILL) GO WRONG

x Design & implementation errors lead to vulnerabilities
x Traditional crypto models miss most details
x Production code and design specs differ
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THIS TALK

Goal: Automated verification of protocol code

under standard cryptographic assumptions
(rather than symbolic verification of protocol models)

Method: Refinement types & parametricity

Proofs are by programming, typechecking,
and local game-based code rewriting
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An invalid Return valie check in pkey_rsa verifyrecover was discovered. When verification
recovery fails for RSA keys an uninitialised buffer with an undefined length is returned instead




Outline

® Background / a Mixed Bag
® A bit of history
® Type checking for (non-)programmers

® Goldreich in F#
® The big picture

® Example Primitive: Authenticated Encryption

® Example Protocol: Remote Procedure Call Protocol



FORMAL COMPUTATIONAL CRYPTOGRAPHY

Two approaches for verifying protocols and programs

Symbolic models (Needham-Schroeder, Dolev-Yao, ... late 70’s)
+ Structural view of protocols, using formal languages and methods

+ Many automated verification tools, scales to large systems
including full-fledged implementations of protocol standards

Computational models (Yao, Goldwasser, Micali, Rivest, ... early 80’s)
+ Concrete, algorithmic view, using probabilistic polynomial-time machines
+ New formal tools: CryptoVerif, Certicrypt, Easycrypt

Can we get the best of both worlds?

— Much ongoing work on
computational soundness for symbolic cryptography
(Abadi Rogaway, Backes Pfitzmann Waidner, Warinschi,... mid 00’s)
+ It works... with many mismatches, restrictions, and technicalities
+ At best, one still needs to verify protocols symbolically

— Can we directly verify real-world protocols ?
This paper: type-based verification is more effective and
more compositional computationally than symbolically.



F7: REFINEMENT TYPECHECKING FOR F#

— We program in F#

— We specify in F7
We typecheck programs
against interfaces

— F7 does some type inference
& calls Z3, an SMT solver,
on each logical proof obligation

RPC.fsi

— In prior work: symbolic crypto
libraries and verified large protocols
(e.g. CardSpace at POPL10)



ASSUME AND ASSERTS; SAFETY BY TYPING
Refinement types {x: T |C}

// Sample type and value declarations iﬁ F77
type nat = n:int{ 0<n }
val read: n:nat -> b:bytes{ Length(b) < n}

Global set of first-order logical formulas, the log

assume C adds C to the log
assert C succeeds if C logically follows from the logged formulas

An expression A is safe if and only if
in all evaluations of A, all assertions succeed.

We use a logic judgement I - C (C follows from refinements in I)

Theorem 1 (Safety by Typing)
If ® - A: T then A is safe.



COMPUTATIONAL SECURITY WITH F7

— Use existing F7 typechecker and code base

— Remove non-determinism

— Add probabilistic sampling and native references

— (Prove type safety & parametricity of new extended subset of F7 in Coq)

— We still type protocols and applications against
refined typed interfaces that idealize crypto libraries
—  We relate two implementations of crypto libraries
+ ldeal, well-typed functionality (replaces symbolic libraries)
+ Concrete implementation (with weaker typing in F7)

— Computational security follows from p.p.t. indistinguishability
(a bit similar to universal composability)



COMPLEXITY, PROBABILITY, AND ASYMPTOTICS

— Series (A")n>0 of expressions indexed by n. (Short A)

— Define p.p.t. for expressions A such that Ip,. - A: T and
modules Pr such that Il + Pr & Ip,..

+ Limit ourselves to 15t order interfaces.

+ Top most attacker interface Ip,. unrefined,
= power of A corresponds to Oracle Turing machine.

— Fair coin tossing primitive with probabilistic semantics A —,, )l

sample —: true, sample —1 false
2 2

— Ais asymptotically safe when the series of probabilities of A, being
unsafe is negligible.

— A% and A are asymptotically indistinguishable, A° ~ A, when
| Pr[A° U M] — Pr[A U M]| is negligible for all closed values M.



CRYPTOGRAPHY USING F7

— P -G - A (oracle systems),

+ P functions describing cryptographic primitives
+ (G game programming the oracles made available to attacker

+ A module describing attacker program that tries to win the game
— Auth. Encryption: Cg, . defines GEN, ENC, and DEC.

+ p.p.t. adversary A.

¢ CTXT security defined as Cg,,. - CTXT - A asymptotically safe
¢ CPA security defined as Cgy, - CPAy - A =, Cgnc - CPA{ - A,

where
let k = GEN () CPA,
letenc xy x1 =
let x = Xp in
letc=ENCKkXxin

let k = GEN() CTXT

let log = ref []
let enc p = let c=ENC k p in log := c::llog; ¢
let dec c =

match DEC k ¢ with

| None -> None

| Some(x) -> assert(List.mem c !log); x

10



MODULAR CODE-BASED CRYPTO VERIFICATION
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MODULAR CODE-BASED CRYPTO VERIFICATION
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Authenticated
Encryption

Sample ideal interfaces and functionalities



AUTHENTICATED ENCRYPTION

plain F#
module Enc interface

type plain = bytes _ :
type key = bytes This 1nter'face.says nothing
type cipher = bytes about security of Enc

val GEN: unit -> key
val ENC: k:key -> plain -> cipher
val DEC: k:key -> cipher -> (plain) option



AUTHENTICATED ENCRYPTION

el ideal Fr
module Enc val ciphersize size interface

open Plain

type key {Length(b)=ciphersize}
type cipher = b:bytes Msg is specified by
predicate Msg of key * plain
val GEN: unit -> key

val ENC: k:key -> t:plain{Msg(k,t)} -> cipher

“All decrypted

val DEC: k:key -> t:cipher messages
-> (plain{Msg(k,t)}) option have been
encrypted”
module RPC Sample
definition !k,q. Msg(k,Utf8(q)) <=> Request(q)
. protocol
let client q = let server q = i
// precondition: . let m=DEC k (utf8 q) using
// Request it ml=None
e Auth Enc

. send ENC k (utf8 q) then // we have Request(q)
process ¢



AUTHENTICATED ENCRYPTION

We express perfect, i.e., information theoretic,

properties on interfaces:

ae

Ipraiv = Cenc * Fene 2 Ignc
+ Refinements model authenticity properties

¢ Abstraction in Ip; 4;5 Models that other outputs of Fgpc,
In particular ciphertexts, are independent of abstractly

typed plain.

IS,4;
type plain Plain

val service: plain — plain
val repr: p:plain —
b:bytes {Len(b)=plainsize}
val plain:
b:bytes{Len(b)=plainsize} — p:plain

type key I%¢

Enc
val GEN: unit — key
val ENC: k:key — p:plain {Msg(k,p)}
— c:cipher
val DEC: k:key — c:cipher
— (p:plain {Msg(k,p)}) option

16




AUTHENTICATED ENCRYPTION

— Real Enc cannot meet this interface, but ideal functionality does

let GEN () =
let kv = Enc.GEN() in
let log = ref [] in
Key(kv,log)
let ENC (Key(kv,log)) (x:plain) =
let ¢ = Enc.ENC kv zero in
log := (c,x) :: llog;
c
let DEC (Key(kv,log)) ¢ = assoc kv ¢ !log

— Check using typing that Ipiyin b Cene * Fgne 7 Ig5e

— Prove that Vp.p.t. BA,st, - P > Ip ., and I5,,.., [ F A.
P-Cegnc: A~ P-Cope + Feye + 4



E ENC( k3, request|k )

ﬁ ENC( k, response )

=

Service

Client

Encrypting Session Keys

AUTHENTICATED Encrypted RPC
Sample Protocol

We obtain no guarantee of request/response correlation:

Client sends requestl, request2 awaits replies
Service computes and sends responsel, response2

Client successfully checks MACs, and acts on the swapped responses




MULTI SESSION RPC PROTOCOL

1. a—b:Enc0.ENC k,, (concat s k)
2. b->a:Enc.ENCkt

let keygen (a:pri) (b:pri) =

RPC

let KO = EncO.GEN() in assume(KeyAB(kO,a,b)); kO (* for encryption of requests *)

let client (a:pri) (b:pri) (kO:key{KeyAB(kO,a,b)}) s =
let k= Enc.GEN() (* for response *)
assume (Request(a,b,s,k));
let p = concat s k /> recv (fun msg ->
send (EncO.ENC kO p); if length msg = EncO.ciphersize then
match EncO.DEC kO msg with
| Some sk ->
let (s,k) = split Enc.keysize sk in
assert (Request(a,b,s,k));
let t = service s in
assume (Response(a,b,s,t));
send (Enc.ENC K t)
| None -> ()

recv ( fun msg -> <
if length msg = Enc.ciphersize then
let res = Enc.DEC k msg
match res with
| Some t -> assert (Response(a,b,s,t))
| None -> ();
res

let server a b (kO:key {KeyAB(kO,a,b)}) =

8




ADVERSARY INTERFACE

— A ‘trusted’ with message transfer and scheduling

send: bytes -> unit
recv: (bytes -> unit) -> unit

INET

A_check_send: unit -> bytes

A _check_recv: unit -> handle

A
INET

A_continue_recv: handle -> bytes -> unit

— Uses only unrefined 1st order interface I4,
RPC

HH CRPC é RPC g Céqpc

val keygen: principal -> principal -> unit

A
IRPC

val client: principal -> principal -> bytes-> unit

val server: principal -> principal -> unit

let keys = ref []

let keygen a b = let k = RPC.keygen() in keys:=((a,b),k) :: 'keys
let client a b s = let k = List.assoc 'keys (a,b) in RPC.client a b k plain(s); ()
val server a b = let k = List.assoc !keys (a,b) in RPC.server a b k

A
CRPC




SAMPLE SECURITY THEOREM

If Czyc Securely emulate Fgis. and if Net Crpc 1S pP-p-t.
{1 ol s it s s e U U, b o L Ry

then for any p.p.t. A such that I{zr, Iis- + A: bool:
(We abbreV|ate A, é CETLC i PO | CETLCO 3 Net I CRPC I A)

1. The expression P - A’ is asymptotically safe

2. PY.4"=_P!.A where
i PO it IPlaln and Pl it IPlam

Note, P° and P! may implement different service functions.

21



RPC: IN R FA )y AND 1IVIF VIENTATION.
!olaln i EncO.fsi Enc.fsi
interfaces

PlainO.fsi Plain.fsi

>

concrete protocol
Implementations




RPC;

plain F# ' '
interfaces EncO.fs7 Enc.fs7

... and their refinements
1 | ] and parametric versions

PlainO.fs7 Plain.fs7

cannot
typecheck in F7!

B

concrete protocol
Implementations
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RPC: INTERFACES AND IMPLEMENTATIONS

plain F#
interfaces

-1 EncO.fsi Enc.fsi

... and their refinements
1 | ] and parametric versions

Plain0.fs7 Plain.fs7

— EncOC.fs7 H EncC¢.fs7 || EncO.fs7 Enc.fs7

Y

Plain Enc PlainO ° EncO RP

concrete ideal protocol

Implementations functionalities RPC.fs7

A
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RP

e, o

is indistinguishable from

-

s

PPT

(by typing

is safe too, with
overwhelming
probability
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PROOF SKETCH

To prove:
P - Cgnc " Po - Cgnco - Net - Crpc - A = (1)
P t CEnC } PO I CEnCO FETLC FEncO Net T CRPC 5 A (2)
Game O:
(1) = Po - Cgnco * P * Cgnc - Net - Crpe * A
Typecheck:
Game 1: IPlaan'IETlCO'IPlalnl Igncé%, INET - CRPC - IﬁPC
G PO-CEnCO FEnCO P 'CEnC-Net .CRPC.A
Game 2:
zp 'CEnC-PO-CEnCO FEnCO Net .CRPC.A
Typecheck:
Game 3 Ilglain' IEnc: IPlainO» IEaﬁcoilNET; F CRPC = Ij;lpc

~e P i CETLC FETLC PO 1 CEncO FETLCO Net g CRPC g A =~ (2)
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AUTHENTICITY BY TYPING

Safety:

Msg(k,m) is the logical payload of an AE of bytes m with
key Kk

KeyAB(k,a,b) means K is shared between a and b for this

specific protocol

assume V a, b, k0,p. KeyAB(kO,a,b) =
EhcOuMiaitiaiimgsiconifsienlmiiig ilun

Length(s) = plainsize A Request(a, b, s, k))
assumeV a, b, s, k. Request(a,b, s, k) =
Vt. Enc. Msg(k,t) & Response(a,b,s,t)

27



SECRECY BY TYPING

Parametricity:
— A "secret module" P, operates on secrets

— A programs A uses P, via an interface I, that gives type a to
secrets, but does not directly access their representation.

— Different implementations of I, are equivalent for A.

secret lnterfaced il =iayxys Taly il piwnere

gt R

Theorem (Secrecy by Typing).
Let A such that I, + A: bool.

Forall pure - P2 » I, and + P! » I, , we have
PY.A = P} - A.
Strong Secrecy:
Ipjgin F CEnc AN IR FEncO Cenc FEnc Crpc - A

28



CONCLUSION

— Code based analysis through and through

+ verification of programs

+ formal (as proposed by Bellare et al.)
— Efficient

+ We pay only for crypto we need (CPA, AE)

+ Types guarantee that cryptography is used appropriately
— Modular

+ We verify one module at a time.

+ Do cryptographic reasoning at the right place (little overhead)
— Powerful

+ We support trace and indistinguishability properties

+ We can encrypt key

http://research.microsoft.com/~fournet/comp-f7/
+ We support different corruption models
+ More ideal functionalities: e.g., public-key cryptography, CCA encryption

30
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CONGLUSION -/

— Code based analysis through and through.

+ Clean and general purpose programming language:
ML, F#,

+ General purpose automated program verification
tool: F7 refinement types typechecker for F#.

+ We support both
x formal theorem proving (Coq):  (type safety, parametricity)
x automated protocol verification: (wiring, ordering, spec)
x manual code-based reasoning: (for justifying abstractions)

+ Combine all three in single language framework

Al



ENCRYPTION

C C :

C C
* Ipraiv F Cene 7 IgEnC

C
* Ippaini IEnc F Fene 7 Ignc

— Theorem (Ideal Functionality for CCA2). If Cy¢ is CCA2
secure and A is a p.p.t. expression such that
IpLainvs Ienc F A then

P:Cenc A=e P Cenc Fene - A

— Theorem (Asymptotic Secrecy). If Cgy¢ is CCA2 secure
and A is a p.p.t. expressmn such that Ip; a;n, IEnc FH A
then for any two pure P? of Ip; 41w

PO CENC A~ P1 CENC.A'

1952



MAC

C
i I_CCMAC = Iyac
Intac © Fyac » Imac

— Theorem (ldeal Functionality for MAC). If Cy; 4 is CMA
secure and A is a p.p.t. expression such that Iy;oc F A

then
Cyac " A =¢ Cpyrac - Fyac - A

— Theorem (Asymptotic Safety). If C; 4 is CMA secure and
Ais a p.p.t. expression such that Iy 4 + A: bool then

Cyvac - A is asymptotically safe.

33



COMPUTATIONAL COMPLEXITY

— Asymptotic notions consider series (A")n>0 of expressions indexed by

integer constant 7.
+ We write 4 instead of (4,)
n=0

— Closed expression series E is p.p.t. when 3p € Poly,.Vn = 0. E,
terminates in at most p(n) steps

— Closed first-order functional value is p.p.t. when its runtime is bounded
by a polynomial in the size of its parameters.

— Let B be module of such values.

¢+ Open expression A suchthatl - A: T is p.p.t. when for every - B = I, the
closed expression B - A is p.p.t.

¢ A module Fsuchthatl - F = I is p.p.t. when, for every - B — [ and p.p.t.
expression A such that Ir + A, the closed expression B - F - A is p.p.t.
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